
Mini-Mixer: The Miniature

Wireless Automated Drink

Mixer
Thomas Bergens, William Tuggle

Dept. of Electrical and Computer Engineering,
University of Central Florida, Orlando, Florida,

32816-2450

Abstract — This paper describes the design
considerations and implementation of a wirelessly controlled,
fully automatic miniature drink mixer. This automated

mixing solution is targeted for many household use cases,
including its versatile application as an indoor kitchen
appliance as well as small outdoor events such as patio and

garden parties. The Mini-Mixer solution is focused on ease-
of-use, relative portability, copious drink combinations, and
speed as seen by the consumer.

Index-Terms -- microcontroller, microcomputer,

power MOSFET, H bridge, peristaltic pump, RGB LED

I. INTRODUCTION

The Mini-Mixer is a small appliance designed to be

compact, fast, and user-friendly for everyday use in a

kitchen or dinner/garden party setting. The appliance is

designed to automatically mix drinks as quickly and

accurately as possible. The idea of the Mini-Mixer was

brought about after several brainstorming sessions while

trying to determine a project that was fit for our group’s

collective skillsets. Our basic requirements for such a

project was to have something that included a multitude of

modern technologies that are relevant in today’s

industries. The appliance takes advantage of the user’s

smart phone to provide a simple, intuitive interface to

create and order drink mixtures on the machine via

wireless communication. The Mini-Mixer is divided into

three primary subsystems: the “Embedded Server”, the

“Embedded Controller”, and the “Client System”. Each of

these have their own appropriate software and hardware

representations. The Embedded Controller is responsible

for doing most of the heavy-lifting in the context of

actually controlling the pumps, thereby producing the

main goal of the Mini-Mixer. The Embedded Controller

also maintains communications with the Embedded Server

to allow for requests to be served quickly. The Embedded

Server is the “heart” of the entire system as it is

responsible for handling messages and commands

between the Client System and the Embedded Controller.

The Client System is the main method by which the user

interfaces and controls the Mini-Mixer. There, the user

will issue requests that the Mini-Mixer will process and

complete. Overall, the integration of these sub-systems

provides a seamless and responsive transition from drink

request to drink completion that has not been

accomplished in previous projects with the budget of the

Mini-Mixer.

II. SYSTEM COMPONENTS

The Mini-Mixer has been designed with modularity in

mind. This configuration is chosen to allow other

engineers or the user to easily modify individual

components of the Mini-Mixer without compromising on

the functionality of another subsystem. The major

components of the Mini-Mixer comprise of the following:

 Embedded Controller System

 Embedded Server System

 Client System

The Embedded Server is responsible for controlling

and communicating between the other major systems,

namely the Client System and Embedded Controller

System. The Embedded Server is responsible for storing

all user accounting information as well as available

ingredients and all drink mixes created by the users. The

Embedded Server will have serial communications

functionality for the wired communications between itself

and the Embedded Controller. These communications are

responsible for sending the ingredients list along with the

proper ratios to the Embedded Controller for further

processing. The Embedded Server will also play a key role

in the Setup process of the Mini-Mixer. The Server will

need to maintain the state of connectivity between both the

Client(s) and the Access Point. The Server will also be

responsible for updating the Temperature status of the

drink container by utilizing a temperature sensor

connected to one of its input/output ports.

The Client System encompasses the client device(s),

software, and connectivity used to communicate with the

Mini-Mixer. The Client System uses a popular wireless

communications standard to both setup and use the Mini-

Mixer. The Client System includes the Client Interface

that includes used to control and command the Mini-

Mixer. Using the Wireless transceiver on their device, the

user is able to connect to the Mini-Mixer through the

provided Client Application on their device. The Client

Application has a Login Interface used to authenticate

with a user’s given credentials to be greeted with their

personal Drink Menu. At the Drink Menu, the user is able

to create, edit, remove drinks. The Drink Menu includes a

status indicator of the Mini-Mixer for various things such

as mixing state and connectivity. The user will only need

to login with the mobile application and immediately have

the ability to view and modify their own personal mixed

drinks. When the user needs to modify the drinks within

the Mini-Mixer, they can enter a settings mode where the

current designated drinks for each slot will be presented.

The Embedded Controller System is responsible for

the actual dispensing of the mixed drink. There are a total

of 6 pumps – one for each ingredient in the Mini-Mixer.

Each pump is connected to their individual liquid

containers through food-safe tubing. Each pump is

connected in one direction to the microcontroller. Each

pump is also connected to a half h bridge; this half h

bridge is connected to the pump, the microcontroller, and

the 12 Volt power supply. The microcontroller has a serial

transceiver which will be interfaced with the serial

transceiver of the Embedded Server. The Embedded

Controller receives instructions for each liquid pump

which includes how much liquid is required from each

fluid container for a specific drink mix. The Embedded

Controller then determines the optimal sequence of

pumping and begin the mixing process. The embedded

controller reports back to the Embedded Server when each

pump has begun and completed the pumping process. An

overview of these major components as well as their

subsystems and relations can be found in Figure 1.

Fig. 1 Hardware Overview

III. HARDWARE COMPONENTS

At its core, the Mini-Mixer is comprised of six liquid

pumps that drive the mixing process. These pumps are

driven by an Embedded Controller that receives

instructions and sends commands to the pumps during the

mixing process. The Embedded Controller receives

commands from the Embedded Server. The Embedded

Server stores the drinks database as well as the user

accounts associated with them. The Embedded Server is

responsible for facilitating the communication between the

Embedded Controller and the Client System. The Client

System is a wirelessly connected mobile device that will

be used as a User Interface for the client using a mobile

application.

A. Embedded Controller

The ubiquitous Atmel ATmega328P was chosen as

the Embedded Controller for the Mini-Mixer, providing

many GPIO pins and known hardware support due to it

being the microcontroller of the Arduino Uno [1]. UART

hardware is utilized to establish serial communication

between it and the Embedded Server. This only requires

two pins to be used; namely, pins 2 and 3 on the

microcontroller (Rx and Tx). 6 pins of the 328P are analog

pins, capable of providing a PWM signal to the peristaltic

pumps; accordingly, each pin corresponds to a pump in

the Mini-Mixer. Providing power to the 328P is done via a

Molex connector modified to where only the +5 V and

ground lines are connected. In order to utilize the 328P, a

16MHz crystal, two 22pF ceramic capacitors, one 10 kΩ

through-hole resistor, one 100kΩ through-hole resistor,

and one green LED are necessary. An external crystal was

chosen instead of utilizing one of the internal clocks in the

328P due to the reason that the internal clock is much less

accurate than the crystal. The two capacitors are equally as

important, as they are required to provide a load for the

crystal. The 10kΩ resistor is tied from ground to an active

low pin on the 328P to prevent the controller from

resetting itself continuously. The 100Ω resistor is used in

conjunction with the LED to provide a visible status on

the state of the controller (state being ‘On’ or ‘Off’). A

schematic designed in EAGLE can be seen in Figure 2.

All of these components are assembled on a two-layer

PCB, reducing space and ensuring connections are

secured.

Fig. 2. Atmega328P Schematic

B. Embedded Server

The BeagleBone: Black was chosen to be used as the

embedded server for the Mini-Mixer, with its open source

advantages [2]. It is running the pre-installed Debian

distribution; this distribution was chosen due to it being

the default operating system on the BeagleBone, and due

to its support, is likely one of the more stable operating

systems available for it. The status indicator hardware is

controlled with several of the BeagleBone’s GPIO pins,

while communication to the microcontroller (as previously

stated) uses two GPIO pins.

C. Client System

The mobile hardware device of choice is any device

running the Android Operating System. This is due to the

team having extensive hardware resources for this OS.

This includes current popular mobile phone models,

previously older popular phone models, newer mobile

tablets, as well as older mobile tablets. Due to almost all

devices that run Android having Wi-Fi capability,

supporting such devices as inputs to the Mini-Mixer is not

an issue for almost all modern devices. The app is

designed to not be resource intensive, which will help

support older phones and laptops. An approach is also

taken to keep the size of the app to a minimum, once again

appealing to a wide variety of users that may have

minimal amounts of space on their devices.

The Personal Computer is pseudo-supported with the

Mini-Mixer by means of using a modern internet browser

(i.e. Firefox, Chrome, SeaMonkey, etc) to navigate to a

Browsable API. Using standard internet technologies and

languages, a wide variety of modern browsers is

supported. Inherently, any computer capable of using said

modern internet browser is supported by the Mini-Mixer.

D. Hardware Interface

A status indicator is composed of a LCD backlit

display mounted on the Mini-Mixer chassis. The LCD

screen is used to provide immediate information in regards

states of the system that are relatively easy to describe.

Such states include “On”, “Mixing”, “Ready”. These are

controlled by the embedded server via GPIO pins. The

character display utilizes the HD44780 controller, making

it relatively easy to program. The display is controlled by

the embedded server using 6 GPIO pins. The character

display provides various prompts and feedback from the

Mini-Mixer that the user will be able to clearly read.

E. Power Supply System

The Mini-Mixer’s power is provided by the

Thermaltake TR2 500W switching power supply. Due to

its switching operation, it is more efficient than other

conventional power supplies. The advantages that the

standard 4 pin Molex connectors provide are utilized for

the Mini-Mixer, providing both flexibility and the option

to replace components if necessary.

F. Cooling System

The cooling system consists of a small air-to-air

thermoelectric system powered by a Peltier plate. The

system is comprised of a Peltier plate rated at 12 Volts

with a current draw of 6 Amps. The Peltier plate is couple

on both sides of the plate by two heatsinks and CPU fans

to control the air flow through the heat sinks. The cold

side of the Peltier plate has a small VGA cooler

repurposed to serve as the heat sink and fan. The fan is

measured at 45 x 45 x 10mm with a rated speed of

5000RPM. The hot side of the Peltier plate uses a large 90

90mm x 90mm heat sink with matching fan to help

dissipate the heat from the plate. The components are

attached to the Peltier plate using a layered composite

thermal adhesive rated with a temperature tolerance of -

40C to 150C which is well outside the range of the Peltier

plate temperature with proper heat sinks and ventilation.

This system will be acquired and is expected to run on 12

Volts and consume anywhere from 70-90 Watts. The

Embedded Server monitors the cooling system using a

digital temperature sensor to, ensure it keeps the contents

of the Mini-Mixer within acceptable temperature ranges.

The thermoelectric heat exchanger is mounted on the

chassis of the enclosure with the cold side facing an

insulated container chamber and the hot side facing

ambient air.

G. Fluid Pump System

The fluid pump system is implemented using 12 Volt

peristaltic pumps capable of pumping 500 milliliters per

minute with impressive accuracy. The exact accuracy of

the particular pumps sourced is not specified, and can vary

depending on the duty cycle chosen for a particular mixer.

The pumps have an estimated current draw of around 500

milliamps which is well within our power requirements

for the Mini-Mixer. The pumping system consists of 6

peristaltic pumps – one for each ingredient. These pumps

have the inherent advantage of avoiding ingredient

contamination by never coming into contact with the

ingredients themselves. The pumps themselves are Pulse

Width Modulated (PWM) to control the flow of fluid. It

should be noted that the relationship between the

frequency of the PWM signal and the flow rate of the

pump is not linear; experimentation was required to

determine what ranges of frequencies give near linear

relationships. Each pump requires at least one digital I/O

pin for each direction of flow. In our case, we only care

about one direction of flow so only one digital I/O pin will

be required for each pump on the microcontroller. Each

pump is driven using a half-H driver; these are provided

via three TI SN754410 integrated controllers. These

devices support a PWM input, which is what several of the

GPIO pins on the embedded controller will be used for.

Safety diodes are built into the integrated controller, which

will help prevent damage to the integrated controller. Each

half-H bridge supports up to 1000 milliamps of current,

which satisfies the 500 milliamps requirement for the

peristaltic pump.

H. Fluid Storage

Fluid storage is important to the Mini-Mixer, as the

containers used must fit within the space constraints. The

containers themselves must be safe to use, to conform to

all food safety standards. Taking these factors into

consideration, it was decided that Rubbermaid 14oz

bottles would be used. The material used in the bottle is

safe; the same material is used in many consumers bottled

beverages and such. The caps on the bottles are holed out

to allow the pump tubing to reach the bottom. This cap

makes it easy to secure the tubing in place, while also

providing a convenient way to refill and/or wash the

container after usage. The bottles are held in place by

Velcro strips, making it easy to take them out of the Mini-

Mixer when desired.

I. Frame and Enclosure

The Mini-Mixer’s enclosure features a repurposed full

ATX Thermaltake Spedo Advance computer chassis. This

enclosure was modified to fit the needs and purposes of

the Mini-Mixer. The dimensions of the chassis are 21.1 x

9.1x 24.0 inches, which is within the size constraints for

the Mini-Mixer. A custom pump bracket and pump rack

was built to hold all 6 pumps in an easy to access way.

The rack is mounted to the case, and is easily removable if

necessary.

J. Illumination

The illumination is the addition of lighting on the

Mini-Mixer as part of an added aesthetic effect and to

make the Mini-Mixer appear more interactive and

animated. The illumination is dynamic and controlled by

the Embedded Server. The Embedded Server is

responsible for changing the state of the illumination

depending on the mixing state of the Mini-Mixer and

preferences of the user. Strips of RGB LEDs are lined

around the Mini-Mixer, giving a distinctive, ambient feel

to it. The lights are placed on the bottom trim of the Mini-

Mixer. The lights are illuminated when the machine is

turned on. The Mini-Mixer will flash the lights during a

mixing process to have the machine appear more

animated. The RGB LEDs are driven using power

MOSFETs powered by the power supply as neither

microcontroller can drive the Voltage or Current required

to power the LEDs [3]. Figure 3 shows the power

MOSFET schematic used in our implementation.

Fig. 3 Power MOSFET Schematic

IV. SOFTWARE COMPONENTS

The software components are the logic behind the

Mini-Mixer and are what power the features of the

Embedded Controller, Embedded Server, and Client

System. As such, the actual software driving these

components are divided are modularized for each

component. The overall design of these components

revolves around the client-server software architecture.

The client would be the Client System and the server is the

Embedded Server. Nearly every user input/output is

carried out on the client-side of this setup and the server is

used to handle the rest. The notable exceptions to this are

the actual dispensed drink and the user’s installed

ingredients.

A. Embedded Controller

The embedded controller was programmed using the

C programming language. This language was chosen due

to the high availability of resources on the microcontroller

as well as being a higher-level language than the

alternative. This is important as the software was required

precisely control several different pumps at virtually the

same time, while also communicating with and accepting

commands from the Embedded Server. The commands

sent from the embedded server to the embedded controller

are sent serially via UART. The embedded server

generates a request that the controller parses and then

controls the pumps in the intended manner. A top-down

approach was taken into the design of the software for the

embedded controller. This design approach was selected

because it synthesizes a large portion of other high level

sub-systems into a functional higher-level system with a

systematic, programmable backend. As previously stated,

there are 6 pumps; each pumps is differentiated from each

other by use of a single character letter. For ease of usage,

these letters are the first 6 letters of the English alphabet:

“A”, “B”, “C”, “D”, and “E”. Only uppercase letters are

used for this purpose, for advantages later seen in parsing.

There are two modes of dispensing that the Mini-Mixer

uses; namely, a “parallel” mode and a “sequential mode”.

As the names suggest, the parallel mode runs two or more

pumps at the same time, while the sequential mode runs at

one pump at a time. This is advantageous for two reasons;

one reason being that having pumps running at the same

time with the parallel can help cut down the time it takes

to make the drink (depending on the recipe, the time cut

can be significant). The other reason is that with a

sequential mode, certain recipes that call for each

ingredient to be poured one at a time to get the “layered”

color effect can be done. Aside from these two main

reasons, another advantage can be found by bringing the

two modes together; it is possible to create a drink quickly

while providing a good mix by using both modes to create

the desired drink. Each command that is sent from the

embedded server to the controller is simplified down to a

single ASCII character, for ease of implementation and

debugging purposes. Every drink request issued from the

embedded server to the embedded controller will always

begin with an ‘R’ command, representing a new request.

From there, two numbers are sent; each indicating the

amount of each ingredient that corresponds to the two

pump modes. From there, each ingredient and its amount

follows sequentially, where the ingredient will correspond

to the alphabet character labeled pump responsible for

dispensing it, followed by a float corresponding to the

amount of each ingredient (measured in ounces). After as

many pumps and their associated ingredient amount as

specified parallel pumps has been supplied by the

embedded server, the same process is done for the

sequential ingredients and pumps. When the final

sequential pump and ingredient amount is, a status echo is

sent to the embedded server, where the embedded server

will issue the final command, “S”, to start the drink

mixing. An example drink mix request from the embedded

server to the embedded controller would look like the

following:

R 2 3 A 1.1 B 0.4 F 3.0 E 2.7 D 0.8 S

This sequence of commands would start a drink

request with two ingredients, “A” and “B”, dispensed in

parallel, while the other three ingredients are sequentially

dispensed in the order in which the commands were issued

from the embedded server. The duration of time the pump

has been activated roughly corresponds to the amount of

liquid dispensed in a linear relationship. During initial

setup, using each amount of ingredient to determine an

approximate running time for each pump, float variables

that correspond to end times are set to be used for the

previously mentioned periodic checking. Once an end

time has been met or exceeded, the associated pump is

shut down. The sequential mode for dispensing is more

straightforward; each pump operates for the duration

corresponding to the amount of the ingredient said pump

is dispensing. The pumps are represented in the

controller’s software as data structures named “Pump”.

Each pump contains a char corresponding to the pump’s

label, a float for the amount of ounces it will dispense, and

a time that represents how long the pump is to run for.

During the initialization for the parallel mode, an array of

Pumps is created to store each Pump associated with the

parallel mode. The two dispense functions also facilitates

communication between the controller and Embedded

System, providing feedback as to the status as the pumps,

which the Embedded System then uses to provide a status

to the user through both the on board status indicators and

the user mobile phone app/website.

B. Embedded Server

From a high level perspective, the Embedded Server

is responsible for taking a user created recipe (or a recipe

already present on the server), and converting it into a set

of simple ASCII character commands that will be sent to

the Embedded Controller via UART. Bidirectional

communications happen between the two to ensure proper

speedy operation. The Embedded Server is also

responsible for monitoring the temperature of the

thermoelectric cooling system in the Mini-Mixer. This is

an important subsystem, as it keeps the ingredients cool

enough to not go bad. The Embedded server also controls

the character LCD in the Mini-Mixer, which is important

in relaying status information to the user physically. Much

of the power of Debian Linux will be leveraged to handle

all of these subsystems together with just the Embedded

Server. The Embedded Server is implemented using the

Python programming language with the Django REST

Framework on the Linux operating system. The Django

REST Framework was chosen as we have decided to use a

client-server configuration with the traditional request-

response lifecycle. The Django REST Framework allows

us to implement a clean API using the best programming

practices outlined by the REST methodologies. We also

have the huge advantage of the Django base framework

which gives us a structured MVC architecture to build out

our application in the most modular way possible. The

Django framework also provides us with built-in

administration and accounting features.

The Mini-Mixer implements service discovery using

the Zero-configuration networking (zeroconf) standard

through “iw” Linux tool. The iw tool is accessed directly

from a Django app using Python’s built-in subprocess

module to run iw by calling the Linux command. As the

Embedded Server is implemented using RESTful API

design, we can describe the entire functionality of the

Embedded Server by describing each API endpoint. The

calls to the REST API will be made by the client using a

uniform resource locator (URL) over HTTP when

connected to the same LAN as the Embedded Server. The

API can be described using the uniform resource identifier

(URI) as RESTful design is dictated around defines

“resources” and the actions that can be applied to them.

The API is described by defining each resource as a URI

and describing all methods and their function for each

resource. An entire resource will be defined in requests

and response using the standard JSON format. All requests

that do not change data or state of the Embedded Server

are implemented using GET requests. Otherwise, POST

requests are used to indicate a state change or data

manipulation on the Embedded Server. Figure 4 illustrates

the entire set of resources required to power our API.

Resource Description

/connection

Server-side wireless connection

configuration.

/user Account Management, Authentication

/ingredients
Describes single(or many) ingredient and
properties.

/sensor
Provides sensor state info(temperature,
uptime)

/recipes
Describes one(or many) drink recipes and
actions.

/mixer
Manages submission and status of drink
orders.

Fig. 4 Embedded Server API

C. Client System

The mobile platform of choice is the Android

Operating System. The Android Operating System boasts

and very comprehensive SDK to power the application.

The Android User Interface Guidelines were used to

dictate the look-and-feel and well as the user experience of

the application. User Interface design guidelines that are

provided by Google. The Client System is described using

states of the mobile application. The major states of the

mobile applications are as follows:

 Login and Account Creation

 Home Screen

 Top Drinks

 Suggested Drinks

 Ingredient Manager

 Recipe Manager

The initial components that the user may encounter

are the Login and Home screens. The login screen is used

for account creation and authentication. The Home Screen

the hub from where the user can access the remaining

components of the client system. The main components of

the application consist of the Ingredient Manager and the

Recipe Manager. The Ingredient Manager is used to view,

edit, and modify the drinks that are active inside the Mini-

Mixer, as well as drinks that had been previously entered

but may not reside in the machine. The Recipe Manager

utilizes the ingredients from the Ingredient Manager to

allow the user to create and edit their own, personal drink

mixtures. These are then used by the Top and Suggested

Drinks components to display popular drinks or new

drinks that the user may want to try. A flowchart

exhibiting these main components can be found in Figure

5.

Fig. 5 Home Screen Flow Chart

V. COMMUNICATIONS

The communications between the hardware

components facilitates each component appropriately

without compromising the performance or capability of

each subsystem. We have a unique solution to these

challenges in our Mini-Mixer implementation as we aimed

to both initially setup the Mini-Mixer as well as normally

operate the machine exclusively using wireless

technologies available to our hardware choices. With this

in mind, we have chosen the communications methods

carefully for each pair of hardware components.

A. Controller-Server

The controller-server communications are facilitated

by UART hardware over serial RS-232 standard

communications. The commands being passed between

the Embedded Controller and Embedded Server are small

and simple and can be defined elegantly as serial

commands. The UART connections only require two pins

on each device, one for transmission (Tx) and one for

receiving (Rx). This is ideal as we have a number of

pumps and other sensors that will be accommodating the

available pins on our MCU. ASCII character commands

will be sent in a sequential manner from the Embedded

Server to the Embedded Controller, with possible parity

bit checking to determine if data transmission was

successful. Unlike I2C, acknowledgement is not supported

natively with UART; however, it is possible to emulate

the behavior to ensure that the controller properly receives

the commands. Certain functions will be written to

facilitate this communication between controller-and

server even further.

B. Client-Server

The client-server communications consist of a mixed-

mode operation with a Wi-Fi module on the Embedded

Server. The mixed-mode operation is divided into two

modes:

 Wi-Fi WLAN Mode

 Wi-Fi P2P Mode

We have taken advantage of Android’s built-in Wi-Fi

P2P mode support of our Client System in order to

implement a seamless setup mode for the Mini-Mixer, as

well as offer multiple connection options should the user

not have a supported access point or otherwise. Once the

Mini-Mixer application is launched on the user’s device,

and option is present to enter a P2P mode and connect to

the Mini-Mixer serving as the host. The user can then

choose to enter information about their Access Point for

the Mini-Mixer to connect and submit the connection

settings to be applied. The Mini-Mixer’s server accepts

this request with the modified connection settings and

applies them to the WLAN interface of the Embedded

Server. At this point, the Mini-Mixer can now be accessed

through Wi-Fi P2P or through the configured access point,

depending on the user’s preference. If the settings are

successful, the Mini-Mixer will indicate a “connected”

status on its hardware indicator interface. Otherwise, the

Mini-Mixer will indicate a “failed” status on the indicator

and the user will need to fall back to the P2P connection to

the Mini-Mixer. Once both connection methods have been

configured, it is up to the client to connect their device to

the same Access Point or through P2P, at which point the

user may enter the application and login to their account

using their credentials and make HTTP requests to the

Embedded Server to control the Mini-Mixer.

The hardware implementation of this hybrid method

for the Embedded Server requires a wireless module

capable of Wi-Fi P2P mode within a Linux operating

system environment. We also require a device that is

capable of connecting to a normal WLAN using an Access

Point that is generally considered to be a home Wi-Fi

router. For this, have chosen a wireless module that

supports the major wireless standards in use as well as the

data security protocols that are supported and preferred.

For this, we intend to support Wi-Fi Protected Access

(WPA) and its successor, Wi-Fi Protected Access II

(WPA2). These requirements are achieved using USB

module for the Beaglebone Black. The module chosen is

based on the RTl8192/8188CUS Chipset which has Linux

drivers capable of this ad-hoc mode as well as supports

our chosen wireless standards and security protocols. On

the client side, this functionality is provided by the

hardware and firmware of the mobile device. In our case,

this could be any of the major mobile devices and smart

phones that have been released in the past several years.

We have determined that although not all devices will

support the Wi-Fi Direct standard, we are confident that a

sufficient and majority of modern mobile devices support

this standard, which is appropriate for the Mini-Mixer.

VI. CONCLUSION

The Mini-Mixer is an autonomous drink mixer that

strives to provide the best performance for the price point,

while conforming to all safety and design standards.

Combined with an aesthetically pleasing look and a

relatively small form-factor, the Mini-Mixer is the ideal

appliance for any drink mixing necessities. The Mini-

Mixer was designed with keeping a simple, intuitive

interface in mind, while at the same time making such an

interface contain features that provided enough

customization to suit any user’s taste. With impressive

speed and accuracy, users will be very satisfied with what

the Mini-Mixer can provide. The Mini-Mixer uses safe,

removable containers that are washable, for the sake of

convenience. Compatibility is a large factor in the success

of Mini-Mixer, to which the Mini-Mixer will support

mobile devices, as well as personal computers. Cost of

operation was also taken into consideration for the Mini-

Mixer, with design choices geared towards power efficient

devices to lower the overall power consumption of the

system. The design of the Mini-Mixer utilized both

electrical and computer engineering disciplines; this

convergence of disciplines within the project was

necessary from both a functional and practical standpoint.

With only a team of two computer engineering

undergraduates, this project has proven to be a challenging

yet rewarding one. The design approach of the Mini-

Mixer, overall, utilized a top-down approach that allowed

for subsystem modularity; this resulted in benefits for

several different constraints. This approach also allowed

for flexibility of part selection, which is likely what

contributed to producing a low budget. Overall, with all of

the design decisions taken to fulfill the most goals and

constraints, the Mini-Mixer has exceeded our

expectations, and effectively raised the bar for project

based autonomous drink mixing solutions.

ACKNOWLEDGEMENT

The authors would like to acknowledge the

considerable help and guidance given to our team by Dr.

Samuel Richie. The authors would also like to

acknowledge the various peers and mentors that were

willing to provide feedback and critique on the countless

issues encountered while designing and implementing this

project.

Thomas Bergens, is a 24-year-old

Senior Computer Engineering

student at the University of Central

Florida. Thomas is actively pursuing

a working career in software

engineering. He currently holds a

Network Security position at a web

hosting company.

William Tuggle is a 20-year-old

Senior Computer Engineering

student at the University of Central

Florida. He has accepted a position

at Northrop Grumman after a

summer and fall extended internship.

He plans to continue his education

through graduate school, with a focus on engineering.

REFERENCES

[1] SN754410 Quadruple Half-H Driver Datasheet, Website:
http://www.ti.com/lit/ds/symlink/sn754410.pdf

[2] BeagleBone Rev A3 System Reference Manual, Website:
http://beagleboard.org/static/beaglebone/a3/Docs/Hardware

[3] V. Barkhordarian Power MOSFET Basics, Website:
http://www.irfc.com

http://www.ti.com/lit/ds/symlink/sn754410.pdf
http://beagleboard.org/static/beaglebone/a3/Docs/Hardware
http://www.irfc.com/

