
DESIGN DOCUMENT: MINI-MIXER 
       
 

DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER 
SCIENCE 

UNIVERSITY OF CENTRAL FLORIDA 
DR. SAMUEL RICHIE 

SENIOR DESIGN I 
 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
 

 
GROUP 14 

THOMAS “TJ” BERGENS 
TJBERGENS@KNIGHTS.UCF.EDU 

WILLIAM “DAVIDSON” TUGGLE 
DTUGGLE@KNIGHTS.UCF.EDU 

 
 
 
 

mailto:tjbergens@knights.ucf.edu
mailto:dtuggle@knights.ucf.edu


TABLE OF CONTENTS 

1. Executive Summary .......................................................................................... 1 

2. Project Description ........................................................................................... 1 

2.1 Description ................................................................................................... 1 

2.2 Motivation .................................................................................................... 2 

2.3 Goals and Objectives .................................................................................. 2 

3. Requirements and Specifications ..................................................................... 2 

3.1 Hardware Requirements Specifications ....................................................... 2 

3.2 Software Requirements Specifications ........................................................ 4 

4. Realistic Design Constraints ............................................................................. 5 

4.1 Economic and Time-based .......................................................................... 5 

4.2 Environmental, Social, and Political ............................................................. 5 

4.3 Ethical, Health, and Safety .......................................................................... 5 

4.4 Manufacturability and Sustainability ............................................................ 6 

5. Research .......................................................................................................... 6 

5.1 Similar Projects ............................................................................................ 6 

5.1.1 Project-Based Solutions ........................................................................ 7 

5.1.2 Commercial Solutions ............................................................................ 8 

5.2 Hardware Component Considerations ......................................................... 9 

5.2.1 Embedded Controller ............................................................................. 9 

5.2.2 Embedded Server ................................................................................ 11 

5.2.3 Client System ...................................................................................... 11 

5.2.4 Hardware Interface .............................................................................. 12 

5.2.5 Power Supply System.......................................................................... 15 

5.2.6 Cooling Method ................................................................................... 15 

5.2.7 Fluid Pump System.............................................................................. 17 

5.2.8 Fluid Storage ....................................................................................... 18 

5.2.9 Frame and Enclosure .......................................................................... 18 

5.2.10 Illumination ........................................................................................ 21 

5.3 Software Component Considerations ........................................................ 21 

5.3.1 Embedded Controller ........................................................................... 21 

5.3.2 Embedded Server ................................................................................ 22 

5.3.3 Client System ...................................................................................... 23 

5.4 Communications Considerations ............................................................... 25 



5.4.1 Controller-Server ................................................................................. 25 

5.4.2 Client-Server ........................................................................................ 27 

6. Relevant Standards ........................................................................................ 27 

6.1 Hardware ................................................................................................... 28 

6.2 Software and Communications .................................................................. 28 

6.3 Food and Safety ........................................................................................ 29 

7. Design Details ................................................................................................ 29 

7.1 High-Level Overview.................................................................................. 29 

7.2 Hardware Components .............................................................................. 31 

7.2.1 Embedded Controller ........................................................................... 33 

7.2.2 Embedded Server ................................................................................ 35 

7.2.3 Client System ...................................................................................... 35 

7.2.4 Hardware Interface .............................................................................. 36 

7.2.5 Power Supply System.......................................................................... 36 

7.2.6 Cooling System ................................................................................... 36 

7.2.7 Fluid Pump System.............................................................................. 37 

7.2.8 Fluid Storage ....................................................................................... 37 

7.2.9 Frame and Enclosure .......................................................................... 38 

7.2.9 Illumination .......................................................................................... 38 

7.3 Software Components ............................................................................... 40 

7.3.1 Embedded Controller ........................................................................... 40 

7.3.2 Embedded Server ................................................................................ 42 

7.3.3 Client System ...................................................................................... 50 

7.4 Communications ........................................................................................ 63 

7.4.1 Controller-Server ................................................................................. 63 

7.4.2 Client-Server ........................................................................................ 64 

8. Prototype Construction and Programming ...................................................... 65 

8.1 Parts Acquisition and Bill of Materials ........................................................ 65 

8.2 PCB Vendor and Assembly ....................................................................... 66 

8.3 Preconstruction .......................................................................................... 66 

8.4 Final Programming Plan ............................................................................ 67 

8.5 Hardware Construction .............................................................................. 68 

9. Prototype Testing and Verification .................................................................. 68 

9.1 Hardware Test Environment ...................................................................... 69 



9.2 Hardware Test Cases ................................................................................ 69 

9.3 Software Test Environment ....................................................................... 71 

9.4 Software Test Cases ................................................................................. 71 

9.5 Verification ................................................................................................. 72 

10. Prototype Operation ..................................................................................... 73 

10.1 Setup and Maintenance ........................................................................... 73 

10.2 Usage ...................................................................................................... 73 

11. Project Management .................................................................................... 74 

11.1 Division of labor ....................................................................................... 74 

11.2 Milestones and Scheduling ...................................................................... 74 

11.2.1 Roadmap ........................................................................................... 75 

11.3 Budget and Finance ................................................................................ 76 

11.3.1 Estimated Budget .............................................................................. 76 

12. Summary ...................................................................................................... 77 

13. Appendices ................................................................................................... 78 

13.1 Appendix A: Copyright Permissions ........................................................ 78 

13.2 Appendix B: Works Cited ......................................................................... 78 

13.3 Appendix C: Datasheets .......................................................................... 80 



1 
 

1. EXECUTIVE SUMMARY 

 
The concept of an autonomous drink mixer has been around for quite some time, 
and has been realized in different projects and products. Like many other 
concepts, such realizations tend to have their set of advantages and 
disadvantages. The Mini-Mixer is a project that tries to maximize the advantages 
shared in previous projects, while also trying to minimize the disadvantages. One 
of the main factors that is to separate the Mini-Mixer from other similar projects is 
the performance to price ratio; a ratio in which the Mini-Mixer will strive to make 
as high as possible. Quality is another major factor in the Mini-Mixer, where the 
system as a whole will be simple and intuitive to use, all the while being flexible 
enough to allow customization that will satisfy a user’s needs. Safety is very 
important to the design of the Mini-Mixer; important enough that certain 
subsystem designs were heavily influenced by it. Supporting technology that is 
prevalent was also a high priority in the design of the Mini-Mixer, with a mobile 
app specifically designed to be the primary interface for it. All of these factors 
were decided to be integrated into a compact package no larger than the 
average sized kitchen appliance.  
 

2. PROJECT DESCRIPTION 

 
The idea of the Mini-Mixer was brought about after several brainstorming 
sessions while trying to determine a project that was fit for our group’s collective 
skillsets. Our basic requirements for such a project was to have something that 
included a multitude of modern technologies that are relevant in today’s 
industries. We wanted to take these technologies and find a practical way to 
apply them to a problem. Once a problem and general solution had been 
determined, we wanted to take proposed features and find interesting ways to 
implement them given the context of this project. 
 

2.1 DESCRIPTION 

 
The Mini-Mixer is a small appliance designed to be compact, fast, and user-
friendly for everyday use in a kitchen or dinner/garden party setting. The 
appliance is designed to automatically mix drinks as quickly and accurately as 
possible. The appliance takes advantage of the user’s smart phone to provide a 
simple, intuitive interface to create and order drink mixtures on the machine via 
wireless communication. The mixture management interface is used to store 
custom mixtures, as well as suggest new or popular mixtures for the user to try, 
based on what is available in the machine.  
 
 
 
 



2 
 

2.2 MOTIVATION 

 
As the world inches closer and closer to automation in all facets of the 
consumer’s life, there is significant room for improvement in the area of beverage 
dispensers. Specifically, there are very few options for a high quality drink mixer 
that is both affordable and small enough to carry to different locations such as 
parties, beach houses or other “getaway” destinations. A compact drink mixer 
can serve as both a household appliance, as well as a novelty at a dinner or 
garden party. With the introduction of the mobile smart phone that has come to 
dominate the tech gadget market, we can use this to our advantage to provide a 
“remote” of sorts to the drink mixer as a means of further adding convenience 
and features at little to no additional cost on the part of the design of the 
machine. This realization opens us many possibilities to enhance a drink mixing 
experience, such as the ability to have user accounts with favorite drinks and the 
ability to share recipes with friends with ease.  
 

2.3 GOALS AND OBJECTIVES 

 
The main objective of his project is to design a drink mixer that is small and 
simple enough to have as many use cases as possible for the consumer. A one-
off permanent fixture such as Coca-Cola’s Freestyle machine [1] and similar 
products is not viable for the everyday consumer. However, these types of 
machines have become extremely popular at restaurants in recent years due to 
the combination of ease-of-use and high level of customization in mixing the 
drinks. The average person will only be willing to purchase an appliance such as 
this if the number of use cases increases to a point that makes it a reasonable 
investment for the size and price point of the appliance. We plan to achieve this 
by making the unit as small as possible to become a semi-portable machine that 
has a robust feature set suitable for many applications in the consumer’s life.   
 

3. REQUIREMENTS AND SPECIFICATIONS 

 
The following set of requirements specifications are what we will use to define all 
functional features in the design of the Mini-Mixer. These requirements 
specifications have been carefully selected to reflect the general motivation and 
goals outlined in the project description. The requirements specifications have 
been divided into two contexts – the hardware and the software specifications. 
With each specification, we provide a brief reasoning and insight into the 
selection of the requirement specification and how it directly applies to the goals 
and objectives of the project.  
 

3.1 HARDWARE REQUIREMENTS SPECIFICATIONS 

 
 The unit will be designed to be very compact – small enough to place on a 

tailgate, countertop, or take out to your patio. 



3 
 

 The unit shall have a dry weight of no more than 40 pounds. 
 The “mixing” process is to be reasonably fast and should not keep the user 

waiting too long. 
 The unit should produce a mixed drink from start to finish in no longer than 

1 minute. 
 The “mixing” process should have good accuracy, with a margin of error that 

you could expect from a human bartender. 
 The amount of fluid in the components of each mix should have an error of 

no more than +/-10%.  
 The variety of drinks should be sufficiently large so that the user has enough 

choice of mixes that they are not constantly switching out drinks or frustrated 
at the lack of options. 
 The unit shall provide enough resources to hold six different fluids.  

 The unit should have a power rating that is safe for both the branch circuit of 
the source as well as for the user. A power rating around the average small 
kitchen appliance shall be chosen.  
 The unit shall consume no more than 600 Watts of power under load.  

 The mixer is meant to be low-cost to be viable in the consumer market. The 
prototype should be comparatively low-cost as well. 
 The mixer prototype should have a combined total cost of no more than 

$800. 
 The mixer should be extremely easy to use through a mobile device. 

 The mixer will be controlled using a mobile device with an application.  
 The mixer should be both portable and have a semi-universal bottle 

acceptance. These containers should be able to accommodate both standard 
750mL spirit’s bottles as well as 1-2 Liter soda bottles.   
 The size of the accepted fluid containers shall be no higher than 250mm.  

 The mixer should be able to produce a mixture at a chilled temperature that is 
appropriate for consumption of cocktails and general fluid mixtures.  
 The unit should produce a mixture with an initial temperature of no higher 

than 55 degrees Fahrenheit.  
 The unit is meant to be semi-portable as well as small enough to fit on 

common tabletop areas. With this in mind, we are aiming for a size similar to 
the common microwave appliance. 
 The unit shall have dimensions no larger than 2-foot Height X 3-foot Width 

x 3-foot Depth. 
 The unit should be able to accommodate most popular cocktail glass types 

including highball, Collins, and martini glasses.  
 The unit shall accept a glass size of 6 inches in height and 4 inches in 

diameter.  
 The unit’s server should be able to accept cocktails submissions from the 

mobile device at an acceptable range from the unit. With this in mind, the 
range should be acceptable for a kitchen or outdoor gathering setting.  
 The unit should be able to accept cocktails orders from a range of up to 

20ft.  
 



4 
 

3.2 SOFTWARE REQUIREMENTS SPECIFICATIONS 

 
 The mobile application is meant to be very user-friendly and simple to use, 

while still providing a variety of mixture choices.  
 We’re placing a limit of no more than a 4 step process from the 

application’s start screen to a drink in the cup.  
 The mobile application should be able to create all possible combinations of 

the given fluids in the mixing unit. 
 The application should be able to create 128 different combinations of the 

fluids in the machine. 
 The user should be able to adjust the fluid ratios in their mixtures. This must 

also be in line with the expected accuracy of our pumps used for the fluids. 
 The mobile application should be able to create mixtures in units/steps of 

0.5oz.  
 The mobile application should limit the total mixture size to a value that 

satisfies the cup size, average cocktail size, and expected size of general 
mixtures that are otherwise not cocktails. 
 We are placing a limit of no more than 8 ounces (~237 milliliters) on the 

total mixture size that application can create. 
 The time it takes from submission of the mixture until the mixing unit is ready 

to begin mixing should be sufficiently fast so that the user is not frustrated 
with the wait time.  
 The total time from submission of the mixture until the machine begins 

mixing should be no longer than 1 second.  
 The user should be able to store a large number of custom drinks in their 

profile.  
 The maximum allowed custom mixtures for a single user will be limited to 

100.  
 The user should be able to view a top list of most favorited/popular drinks 

while still allowing the application to remain performant. 
 The maximum allowed size of the top list will be limited to 100.  

 The mobile application should only provide the amount of drinks available to 
the machine. 
 The application will provide the limit of drinks on the machine, which is 6. 

Specifically, the application may only provide options for the current types 
of the 6 drinks in the machine at any given time.  

 The application should have the ability to suggest drinks to the user, given the 
ingredients on hand. This will add a component of exploration and 
convenience to the user when they are ready to try something new.  
 The client application will need to have the ability to suggest at least 1 

mixture to the user, based on available drinks.  
 
 
 
 



5 
 

4. REALISTIC DESIGN CONSTRAINTS 

 
Realistic Design Constraints are to be carefully considered, as this can greatly 
impact the outcome of the design as well as the implementation. Failing to 
consider major design constraints can result in complications or failure to 
implement components or even entire requirements specifications during the 
prototype construction phase. 
 

4.1 ECONOMIC AND TIME-BASED 

 
There is a considerable constraint placed on the Mini-Mixer economically. In 
order to produce a system that will be accessible to many people, it must be 
affordable enough to manufacture. Even in the home setting, there are still 
economic constraints; high power consumption is not attractive, as it will lead to a 
higher electric bill. These factors must be taken into consideration when 
designing the Mini-Mixer for such a large range of users. The time frame to 
research, produce, implement, and test a working prototype of the Mini-Mixer is 
around a total 20-25 weeks. This is not considering other course loads, work or 
personal obligations of the team. This leaves us with a very limited time frame to 
go from an idea to a working prototype of the Mini-Mixer. We are considering this 
to be a fairly significant time-constraint that must be considered in the scope of 
the project. Our team has also been restricted in the human resources that are 
contributing to this project. Originally, the Mini-Mixer team consisted of 3 
persons: Two Computer Engineering students and one Electrical Engineering 
students. Due to unforeseen circumstances, we are now a team of two Computer 
Engineers working on the design of the Mini-Mixer. This poses and issue of 
limited knowledge surrounding the Electrical Engineering aspects of our design. 
We also have the obvious human resource limitations that come with working in 
a team of two persons. This is considered a major constraint on our team that we 
must carefully monitor throughout the design and implementation of the Mini-
Mixer. 
 

4.2 ENVIRONMENTAL, SOCIAL, AND POLITICAL 

 
From an environmental and political standpoint, there are no constraints imposed 
on the Mini-Mixer in any capacity. Although there aren’t any social constraints 
imposed on the Mini-Mixer per se, there is some converging point between social 
and safety that must be considered, and that is on alcoholic beverages. This is 
further discussed in Section 4.3. 
 

4.3 ETHICAL, HEALTH, AND SAFETY 

 
One major consideration that arises out of designing and implementing a drink 
mixer is that of the risk surrounding serving alcoholic drinks. This actually 
touches on ethical, health, and safety issues altogether. We must be aware of 



6 
 

the amount and types of alcoholic beverages we are mixing and dispensing from 
the machine. For example, we cannot allow the machine to dispense “too much” 
alcohol to a single user in a given time frame. We also must consider the ethical 
issue of the age required to drink alcoholic beverages. Ideally, we will need to 
have mechanisms in place to prevent minors from being able to dispense 
alcoholic beverages at their leisure.  
 

4.4 MANUFACTURABILITY AND SUSTAINABILITY 

 
Manufacturability and sustainability influences the design of the Mini-Mixer 
considerably, because in order to satisfy these constraints, the Mini-Mixer must 
be designed with modular subsystems. These subsystems must all function 
properly at the lowest level, and must be compatible with other subsystems at the 
high level. At the highest level, each subsystem must be replaceable. With 
subsystems that are both replaceable and compatible with each other, it is 
possible for them to be manufactured independently at the same time. For 
sustainability, the option to be able to replace a subsystem is critical; without it, it 
is unlikely to sustain such a system for a prolonged period of time. 
 

5. RESEARCH 

 
The research behind the Mini-Mixer is a key component of the design process, 
particularly in early development. Our research efforts have been used to drive 
the design of the Mini-Mixer early on in the process. Specifically, we have been 
able to iterate over proposed implementations of our requirements specifications 
very quickly by researching all available solutions, as well as previous efforts to 
tackle our problem set. We have been able to utilize the findings of similar 
projects to throw out bad ideas as well as use previous projects as a foundation 
of inspiration for the design and implementation of the Mini-Mixer.  
 

5.1 SIMILAR PROJECTS 

 
During the early phase of research, we encountered many different projects that 
have attempted to tackle the same problem space. Some of these projects were 
the basis for inspiration later in our own design. Some had obvious issues in their 
choice of design which allowed us to avoid these approaches very early on. The 
projects with complete documentation were particularly helpful in gaining some 
insight into the thought process behind their respective implementations in the 
problem space. Proper documentation allowed us to study designs as well as 
part choices for each feature and even how they fared during the testing phase. 
We used these findings in our own research and considerations for the part 
choices in our own designs. For this reason, we chose to pursue further research 
only on projects that had sufficient documentation for their design and 
implementation process.  



7 
 

5.1.1 PROJECT-BASED SOLUTIONS 
 
Under the Sun Drink Mixer was a project designed by students here at the 
University of Central Florida that shares a similar set of goals to that of the Mini-
Mixer. Its primary purpose is to provide a system that can mix drinks using solar 
energy as its power source. Like the Mini-Mixer will be, it is an autonomous 
device that can be operated via a mobile phone application. It features a barcode 
scanner that allows a user to scan a barcode that will reference a local server to 
determine what drink to make. The machine used a gas based solution along 
with 12 Volt solenoids to serve as the pumping mechanism. The case was 
constructed using plywood, and the fluid bottle compartment used was a large 
Styrofoam box.  
 
The Automated Beverage Dispenser was a project designed by students at 
Georgia Tech. It features a touch screen interface that is drove by a 
programmable logic controller running a modified version of VxWorks’s real time 
operating system. Relays are used to control the fluid pumps, and liquid level 
sensors are used to detect the levels of various fluids used. The hardware for this 
project was divided into two units, ‘dispensing unit’ and ‘control unit’. Similar to 
the Mini-Mixer, the system takes in a user generated recipe and makes the drink 
within a reasonable amount of time. An interesting note is that the cost of this 
particular project was over $3000, primarily due to the high priced hardware that 
was used. One of Mini-Mixer’s goals is to be reasonably cheap to produce, so 
practically none of the hardware used in this project will be used in the Mini-
Mixer, although some of the ideas that incorporated said expensive hardware 
may be similar to that found in the Mini-Mixer. 
 
The Automated Drink Mixer project was designed by students at Oregon State 
University. Like the other projects discussed, the primary goal was to provide an 
autonomous system that will make drinks for users. Automated Drink Mixer ‘s 
other goals are interesting in that they align pretty close with that of the Mini-
Mixer’s. One immediate goal that stands out drink mixing requirement of under 
120 seconds, which is close to the Mini-Mixer’s requirement of a minute or less. 
Another goal similar is that of the size and cost constraints; the size constraint of 
the Automated Drink Mixer is only two feet taller than Mini-Mixer’s constraint, and 
$200 cheaper than Mini-Mixer’s cost. The weight of the Mini-Mixer is to be 10lb 
less than the Automated Drink Mixer, which is also similar quantitatively. An 
interesting goal specified in this project that was not explicitly handled in Mini-
Mixer’s initial requirements was the maximum voltage level; from a safety 
perspective, this is a requirement that addresses both hardware design and 
safety. For the Automated Drink Mixer, that maximum was set to 50V. 
Interestingly, this is roughly under the minimum voltage that can negate the 
effects of the human body’s resistance, which can make the current passing 
through potentially lethal. For this reason, a maximum voltage will certainly be 
taken into consideration during the design of the Mini-Mixer.  
 



8 
 

The SFSU Drink Mixer was designed by students at San Francisco State 
University. Once again, its primary purpose was to be an automated drink mixer 
that a user could easily control. The hardware design of this project in theory was 
good, but the actual execution and outcome wasn’t as good. The construction 
used was an open style wood design, with exposed wiring and tubing. A 
breadboard was used, so no permanent design was in place. Only two 
containers for fluids were used, and said containers were polycarbonate mason 
jars. The concept that was used for fluid level detection was interesting; a 
differential pressure sensor was used in order to do so. However, there seemed 
to be an accuracy issue with this approach, where the team suggested “better 
signal conditioning” to mitigate this. Nevertheless, this approach is interesting 
and may be further researched for the Mini-Mixer’s purposes. 
 

5.1.2 COMMERCIAL SOLUTIONS 
 
Bartendro - The Bartendro is a Kickstarter-baked project to develop and 
commercialize an automated drink mixing product. [2] Their product uses custom 
peristaltic pumps with Arduino-powered PCBs embedded in each pump to control 
the flow of liquids to the dispensing area. These are all controlled using a 
Raspberry Pi which is used to serve the UI and dispatch commands to each 
pump. The hardware and software of the Bartendro is completely open source 
which allows for replication and modification. The commercial version of the 
Bartendro comes with up to 15 peristaltic pumps Which allows a wide range of 
drink combinations. The Bartendro 7 is the closest with respect to features as we 
envision with our own design. The Bartendro 7 has a price tag of $2,499.99 
which is far above our cost constraints. The open-source nature of this project 
allows us to study and discuss similar functionality for our own design and 
functional specifications and requirements. The most interesting takeaway from 
the design of this solution was their design choice to power each peristaltic pump 
with an attached Arduino-powered PCB. This makes for a very expensive pump 
to sell but at the same time this allowed for some very interesting features and 
overall design choices. For example, having an entire microcontroller for each 
pump allowed for embedded illuminating LEDs complete with animations 
sequences during the pumping process. This also allowed them to use Ethernet 
ports to network all of their pumps together for communications.  
 
Coca-Cola Freestyle Machine - The Coca-Cola freestyle machine is a large 
standing machine that vends hundreds of combinations of soda and juice 
mixtures. The machine is meant to replace the traditional fountain drink station 
that dominates the restaurant industry as well as quick-service stations such as 
convenience stores. While the machine’s portability and power requirements are 
well out of the range for our project, it is worth noting the easy-to-use interface 
that comes with the machine. The freestyle machine sports a massive touch-
screen on the unit, as well as a mobile application as a means of interfacing with 
the device. Both of these user experiences are very straightforward and simple to 



9 
 

use, while maintaining an impressive level of drink customization. Both UIs have 
a similar interface, with the mobile app offering an accounting feature where a 
user can store their own mixes and even share them with others. The UI itself 
defaults to a tree-based layout of “bubbles” that represent a main drink type. You 
can select the main drink type and proceed down a level in the tree to encounter 
several variants of that base drink, including additional flavors as well as diet and 
caffeine-free choices. The entire process for selecting any pre-made drink on the 
machine is no more than a few steps, with each step simply being a touch event 
on the screen. The mobile application offers a way to save favorites of the pre-
made mixes for a user. The user can also create their own drink combinations 
under a “My Mixes” menu where they can store and edit their own mixtures. The 
mixture creation process is particularly interesting as the user is able to select up 
to three different ingredients and adjust their proportions by altering a pie chart 
using the touch screen. This makes for a very simple and intuitive interface for 
creating and editing drink mixtures.  
 

5.2 HARDWARE COMPONENT CONSIDERATIONS 

 
Our first set of considerations is that of the hardware components. This is 
arguably the most important of all component considerations as this drives our 
core design which determines things such as power consumption, size, and 
software component choices. The chosen hardware components will also 
determine the technologies that are available to consider as well. As we are 
interested in diversifying our usage of different technologies in the design of the 
Mini-Mixer, this will be the primary concern when considering the viable 
considerations of the hardware components.  
 

5.2.1 EMBEDDED CONTROLLER  
 
The embedded controller is essentially the “meat” of the project and will be 
responsible for doing most of the heavy-lifting in the context of actually controlling 
other pieces of hardware and producing the main goal of the Mini-Mixer. The 
embedded controller is going to be primarily responsible for the control of the 
hardware liquid pumps as well as the communication to and from the Embedded 
Server. This will include things such as accepting mixing instructions from the 
Embedded Server, accepting update requests, and reporting this information 
back to the Embedded Server. We will have to consider features such as support 
for Pulse Width Modulation (PWM) to control the fluid pumps. The selection of 
the controller will need to be carefully selected to be able to support the 
requirements of our pumps and the communication between the Embedded 
Controller and Embedded Server. The Texas Instruments MSP430 family is one 
that is rich and diverse, offering many different generations and series of 
microcontrollers within it. The one specific controller that was researched was the 
MSP430G2553, which is one of two controllers that comes with the TI 
LaunchPad. Due to the familiarity of which the team already has with this 



10 
 

particular controller, it has considerable potential to become the MCU of choice 
for the MiniMixer. The primary advantage of this µC is the ease of which it is to 
program it; there are two main IDE’s that can be used, each of which providing a 
certain level of simplicity and control. GCC supports the MSP430 architecture, 
which helps in the development process. It contains 24 GPIO pins, which is a 
reasonable amount for the price point of this microcontroller ($2-$4/unit). This 
particular controller is clocked at 16MHz. The controller also comes with other 
nice features, such as two built in 16 bit timers, support for UART, I2C, and SPI, 
as well has having 8 built in comparators and a built in temperature sensor. 
Because of its affordability, the LaunchPad series has had a reasonably sized 
community formed on the internet, with many tutorials and documentation 
available. The power consumption of the MSP430G2553 is very low, which is 
negligible compared to the rest of the hardware’s power requirements. Similar to 
the MSP430 family, the ATMega family also has a large variety of 
microcontrollers. Of the family, the primary interest of the team’s research was 
the ATMega328 µC. This particular controller was chosen because it is the same 
one used on the very popular Arduino Uno. Inherently, it has a plethora of 
community support. Many “maker” movements use the Arduino Uno, some of 
which have internet video channels specifically for projects utilizing the Uno. The 
controller can be programmed with the Arduino IDE, which also has much 
support online as well. If necessary, it is possible to program in assembly with 
this controller with no additional hardware, and some extra software that can be 
acquired for no cost. The 328 has 23 GPIO pins, which like the MSP430 is a 
reasonable amount for the price point. Like the MSP430, it contains support for 
UART, I2C, and SPI, while also having a built in temperature sensor. The 328 
has a clock rate of 20MHz, which is a small but noticeable difference over the 
MSP430’s 16MHz clock rate (assuming each operate at around 1 cycle per 
instruction). The MSP430, however, contains more voltage comparators than the 
328 does. Perhaps the biggest advantage of this controller is its support for 
additional hardware due to it being the controller used on the Uno; any hardware 
‘shield’ that is compatible with the Arduino Uno is also compatible with the 328. 
This brings a lot of opportunities to the project with this much support. The 
PIC24FJ64GA002 is a microcontroller offered by Microchip that provides a 
decent amount of features and functions. Like both the MSP430 and the 
ATMega328 controllers previously mentioned, this controller also supports 
UART, SPI, and I2C serial communications. It has 21 general purpose 
input/output pins, which is a bit lower than either of the previously mentioned 
controllers, but it makes up for this by having five 16 bit and two 32 bit timers built 
in. It is capable of providing 16 MIPS, which is comparable to the other two 
controllers assuming they operate at around one cycle per instruction. This 
controller also contains a 10-bit ADC with 16 channels, supporting 500k samples 
per second. This controller contains two voltage comparators, which although 
less than what the MSP430 provides, is one more than what the ATMega328 
provides. One disadvantage that is not necessarily the fault of the controller itself 
is the lack of a programmer bundles with it. Perhaps most important drawback of 
the controller is the lack of community support; although some tutorials for this 



11 
 

controller do exist, it is not nearly as abundant as those tutorials found for the 
MSP430 and ATMega controllers.  
 

5.2.2 EMBEDDED SERVER  
 
The Embedded Server is the “heart” of the entire system as it is responsible for 
handling messages and commands between the Client System and the 
Embedded Controller. The Embedded Server will also require all hardware 
necessary to facilitate communications for both the Client System and the 
Embedded Controller. The Embedded Server will be hosting the server 
component of our client-server software stack so we will have to consider 
hardware choices that will support a modern web server stack. As 
communication between the Embedded Server and Embedded Controller will 
almost certainly be a form of wired serial communications, we will have to 
consider hardware components that support this directly. We will also require an 
Embedded Server that is lightweight and can be portable enough to meet our 
Requirements Specifications. The Raspberry Pi was the first viable option that 
was researched for the embedded server. The second generation Model B was 
the model that was chosen for research. This particular model boasted a quad 
core 900MHz ARM Cortex A-7, with 1GB of SDRAM and HDMI support. The 
second gen model B had 46 GPIO pins, which is more than enough for Mini-
Mixer’s purposes. Power consumption of the Raspberry Pi is roughly 4W, which 
is low relative to the power requirements of other components of the Mini-Mixer. 
With these hardware specifications, the Raspberry Pi is a strong possibility to 
handle the server side requirements of the Mini-Mixer. One other strong suit of 
the Raspberry Pi is its large community, with many tutorials on the internet for all 
sorts of projects. The BeagleBone was the second option that was researched 
for the embedded server. The newest version, BeagleBone Black (BBB) was 
researched for the project. It sports a 1GHz ARM Cortex-A8, 512MB of DDR3 
RAM, and 69 GPIO pins. The BeagleBone consumes less power than the 
Raspberry Pi, at around 2-3W. The BeagleBone also has 65 GPIO pins, 
providing even more expandability than the Raspberry Pi. The BeagleBone’s 
design has been fully open sourced, with schematics and code available straight 
from a wiki. Because the BeagleBone has not existed for as long as the 
Raspberry Pi, it does not have nearly as large of a community. In some 
instances, it can be difficult to find tutorials for certain applications. Nevertheless, 
the community is still of respectable size with a lot of documentation on the 
community wiki. Overall, the BeagleBone essentially provides better hardware 
than what the Raspberry Pi does with less power consumption.  

5.2.3 CLIENT SYSTEM 
 
The client system is the main method by which the user interfaces and controls 
the mixing machine. Our considerations are based on ease-of-use as well as the 
typical devices that the user has at their disposal. We are most interested on 



12 
 

selecting a client device that meets or exceeds our ease-of-use requirements of 
the project. This means selecting a hardware device that the client is familiar with 
as well as a device that can host the client software that will meet those needs as 
well. Our first consideration is that of the mobile platform. In the case of mobile 
devices, the hardware device is almost always tied to one Operating System. 
This is an unfortunate outcome of the industry but this will allow us to choose one 
type of device and develop a polish and feature-complete application. As the 
Operating System is generally not a choice with the hardware vendor, we will be 
considering a wide range of hardware devices that will accompany the Operating 
System of our choice. However, we must keep in mind the devices that are 
owned by the team or have the resources to require, as we must ensure that the 
Client Application is fully working through extensive testing. For this reason, we 
will be considering only hardware devices that are already available to the team. 
In effect, the choice of hardware becomes directly tied to the choice of the 
Operating System. The mobile platform is ideal as many mobile hardware 
devices come equipped with several different means of communication, mostly 
being wireless. However, the devices typically have a wired connection in the 
form of a Universal Serial Bus (USB) that can be used for wired serial 
communications. This is important to consider as there are some initial setup 
steps that may be required to have a working wireless connection. Most of these 
devices are very light and portable, which allows the user to walk around while 
operating the application. There is a concern about the user sending commands 
to the drink mixer remotely, which may result in liquid spillage, though this can be 
mitigated through software to some extent.  Another hardware consideration for 
the Client System is that of the Personal Computer. The advantage of this is we 
are not necessarily tied to a single Operating System and can either choose an 
Operating System of our liking, or we can choose a Programming Language that 
will allow us to support all Operating Systems at once. However, the only 
personal computer that is likely to be seen in a setting for the Mini-Mixer is a 
laptop. This is due to the social settings that accompany uses of the Mini-Mixer. 
Despite these setbacks, this is a popular choice for client communications in 
several DIY products similar to the Mini-Mixer.  
 

5.2.4 HARDWARE INTERFACE 
 
The hardware interface components are comprised of a status indicator of some 
fashion as well as some simple input. The hardware interface is not meant to 
have significant input and should only cover administrative purposes to keep the 
machine as operationally simple as possible. The status indicator is to be used to 
show certain states of the device such as connectivity and mixing state with 
minor details. The status indicator’s main function is to show a quick-look of the 
state of the machine and generally let the user know that the mixing device is on 
and working.  
 



13 
 

Status Indicator - The status indicator is to work as a way for the user to 
determine what “state” the machine is in. The status indicators should update in 
near real-time and be easy to read or interpret. The status indicator should only 
display relevant information regarding the state of our machine. In our case, we 
are mostly interested in power, wireless connectivity, and mixing state or 
progress. 
 
Character Display - Character displays have been in use for a long while and 
has matured as a technology over time. Due to the large variety of displays of 
this type, the type of microcontroller used to drive the display was chosen to 
include a reasonably sized set of this variety; that controller being the Hitachi 
HD44780 microcontroller. This microcontroller drives a dot-matrix liquid crystal 
display, and has become a standard in the industry. Many enthusiasts and 
hobbyists have written multiple libraries to simplify usage of this controller 
through code. One advantage of this controller is it includes an ASCII character 
set, leaving less work for the developer. Another advantage of this controller is 
that it requires as little as 6 lines to control with no additional hardware. With a 
shift register, this can be reduced to 3 lines with no change in functionality. The 
HD44780 supports 4-bit and 8-bit modes of operation. Although the 4-bit 
operation requires less active lines, it also makes programming more difficult. 
With many GPIO pins available on the embedded server, the 4-bit mode of 
operation is likely of no use for the Mini-Mixer. The controller supports different 
LCD sizes, from as small as 8x1 (one row of 8 characters) up to 80x8 (8 rows of 
80 characters). Due to the low power supply requirements of this controller (2.7-
5V), power consumption is of little concern relative to the rest of Mini-Mixer’s 
power requirements.  
 
TFT LCD - TFT technology has existed for some time now, and often is used in 
many consumer electronics. Such a display is primarily used as an electronics 
functional output, and as of recent, sometimes both input and output. This family 
of display technology certainly provides the best quality output of all the types of 
displays researched. However, it comes at the price of increased complexity, as 
well as a considerable increase of GPIO pins necessary to drive it. Although the 
power consumption isn’t as high as other parts of the Mini-Mixer, relative to the 
other display types, it is considerably higher. When considering the primary 
function of the Mini-Mixer, it can be determined that the output display is not what 
provides the main functionality; something in which a TFT display is generally 
responsible for.  
 
Light Emitting Diodes - The LED display family is the most primitive of today’s 
digital display interfaces. Inherently, a display of this nature is very easy to 
implement into a project in regard to both the hardware and software aspects. 
The LED display family ranges from using single LED’s to different types of 
segmented LED displays (7 segment, 9 segment, etc.). Research was 
constrained to single and segmented LED displays, because interfacing a more 
complex LED display (such as a dot matrix display) would be pointless when a 



14 
 

character display could be used instead. The obvious advantage of using single 
or segmented LED displays is, as mentioned before, the ease of which it can be 
integrated into the project. Driving single LEDs is trivial, and driving a multi-
segment LED display can be done easily through either hardwiring to a 
microcontroller and controlled via software, or using an IC that can decode data 
from a source and display it appropriately on the display. Power consumption of 
these displays is of little concern relative to the rest of the project. As easy and 
convenient as these displays are, they lack in flexibility. Unfortunately, only small 
amounts of information can be displayed with single LEDs, and slightly more with 
multi-segment displays. For this display to be effective, a considerable amount of 
thought and experimentation as to how output would be formatted would be 
required. It may even be impossible, depending on the requirements of the rest 
of the system. 
 
Interface Controls - The interface controls are used by the user to alter the 
major states of the machine. This would include things such as powering on and 
off the machine, as well as cancelling or confirming the mixing process. 
Depending on the approach taken, the interface controls may play a role in 
activating a “setup” mode, as would be required in certain cases of 
communicating between the mixer and the client’s wireless device.  
 
Touched-Based Controls - Touch-based control schemes have been 
immensely popularized by the recent advancements in mobile technology. Due to 
its user control simplicity, it is a great way to provide input to an electronic device. 
With its popularity, the time it takes the average user to learn how to use the 
device would be decreased considerably. Unfortunately, as is often the case, 
simplifying the user experience results in a more complicated hardware and 
software design. Interfacing the display to an MCU requires more control lines or 
additional hardware if said control lines are to be conserved. Device selection 
would become limited to those that provide libraries that allow for simplified 
programming, as writing an entire library from scratch would be unreasonable 
and is outside the scope of this project. Using a touch based interface would 
almost certainly require it to be embedded into the display, which would require 
the display itself to be more complex. Likely the screen would be a TFT or similar 
display, which brings an additional amount of complexity to the project that was 
described in the TFT Display portion. 
 
Switches and Buttons - Switches and buttons are the most basic digital input 
devices used on electronic devices. Due to this, they are very easy to implement 
and program in a project. There are a wide variety of switches and buttons, with 
differences as little as the color scheme and actuation type, to more important 
features such as functionality. Depending on the power supply used it might not 
be necessary, but one type of switch that will almost certainly be used for the 
Mini-Mixer will be a rocker switch, that will control the main power for the Mini-
Mixer. Pushbuttons can be used in addition to the display to allow the user to 



15 
 

view any pertinent information the Mini-Mixer can provide. A “keypad” could be 
created with a matrix of buttons if the design required it. 
 

5.2.5 POWER SUPPLY SYSTEM 
 
Personal Computer Power Supply - There is a general trend in the “make” 
movement where electronic enthusiasts and hobbyist use an ATX power supply 
for their projects. This is, generally speaking, a fairly cost effective way to supply 
a project with the power demands of Mini-Mixer. However, this particular power 
supply will not work straight out of box and requires some slight modifications. 
The reason behind this is primarily for safety implementations that most PC 
power supplies have. One of these is a minimum load requirement, where the 
power supply will only supply proper voltage levels if a minimum load is supplied 
(this load generally is the motherboard). Most power supplies will not turn on 
unless a certain pin from the 24 pin ATX motherboard power connecter is set to 
ground, which is another factor that must be taken into consideration. Besides 
these requirements, an ATX power supply would server the Mini-Mixer well, as it 
provides +/-12V, +/-5V, and +/-3.3V rails; each of these can serve a purpose in 
the Mini-Mixer. For instance, the 12V rail could be used with the pumps, while the 
5V and 3V can be used for the embedded server and embedded microcontroller, 
respectively.  
 
Custom Design - Although the team consists of two computer engineers, it may 
be possible to still design the power supply system. However, this would require 
extra research into the total power consumption, as well as other attributes of 
each part. The advantage of creating a custom design is it can be built to 
specifically the Mini-Mixer’s requirements. This can be done in a number of ways, 
but will likely involve a step down transformer, full wave rectifier, a linear 
regulator, a few resistors, and a few capacitors. Likely, that circuit would supply 
the highest rated voltage the project would require, and for other parts that 
require less voltage, a buck converter would be used. What would be difficult to 
accomplish in designing a custom power supply is not necessarily satisfying the 
power requirements for the Mini-mixer, but the different standards and 
regulations that are in place for such a system. Safety would be one major 
concern, and would be of high importance during actual research. Some 
research into other aspects, such as fusing and heat dissipation, would have to 
be done as well. 
 

5.2.6 COOLING METHOD 
 
The cooling method is to be considered as we would like the mixed drinks to be 
cold by the time it reaches the user’s mouth. Several solutions have been 
considered based on the requirements of our project as well as the resources 
that the average user will have available to them when mixing drinks.  



16 
 

 
Thermoelectric Cooling - An initial consideration that was researched included 
a thermoelectric cooling solution, using a Peltier plate with heat sinks and fans. 
Upon investigating further, some solutions that are typically used for cooling 
CPUs and other small electronics were considered. [3] [4] [5] These plates run on 
a 12V source at 5-10 amps which is in the area of our power requirements for our 
pumps. To meet our power requirement, this would be a very careful choice to 
make as this type of solution would contribute around ten percent to our total 
power requirements. The units are typically around 500 grams in weight so the 
added weight to our unit is minimal which is excellent for our portability 
requirements. This would also require a custom fitting where air ports will need to 
be machined and the entire assembly will need to be mounted in a particular way 
to cool the air inside of the unit.   
 
Refrigerant-based Cooling - The more traditional solution to cooling our 
ingredients is the use of a refrigerant-based system. These systems are 
extremely common in home appliances as well as automotive air conditioning. 
The air conditioning system for this method includes a refrigerant compressor, a 
condensing element and an evaporating element at the very least. Such 
miniature systems exist for our size constraints such as the R134a Compressor 
from Purswave Technology. [6] However, these systems consume anywhere 
from 250-350 Watts of power on a 12 Volt power supply. This type of cooling 
system would easily become the heaviest user of power in the entire product. In 
addition, the compressor, evaporator, and condenser can collectively weigh 
several pounds when the system is fully charged with refrigerant. As we have 
strict power and weight limits, this is a major concern. In addition, these parts will 
need to be assembled separately which would require careful orientation of all 
components, with the connections requiring a blowtorch to connect the copper 
endpoints. We would then need to have the system tested and our team has no 
experience in this area so this is a major issue when considering this solution.  
 
Ice-based Cooling - The most straight-forward solution considered for the 
project is using ice-based cooling for the drinks. This could take the form of either 
applying the ice around the drink containers within the machine, or requiring the 
user to place ice cubes in their cup before or after the mixing process. This would 
require the user to have a source of ice that is reasonably close to the mixer. In 
the case of cooling the drinks within the Mini-mixer, the user would be required to 
have a fairly large amount of ice to fill this entire area. We would also need to 
consider a drain pan or port for the melted ice. The enclosure design would also 
have to be considered for this as we would require very easy access for placing 
and removing ice from the machine. The simplest case using ice-based solutions 
is to have the user fill the cup with their desired amount of ice before mixing. A 
couple issues arise out of this. First, the user would have to ensure the drink 
does not overflow or that they can confirm that the dispensed amount will pour 
into their glass without issue. We would also need to guarantee an ice source. As 
our target uses cases are for house parties and general kitchen use, we have a 



17 
 

reasonable guarantee that the user has an ice-maker from their freezer, or is 
storing ice within their freezer. This method uses much less ice than filling the 
Mini-Mixer directly as well. 

5.2.7 FLUID PUMP SYSTEM 
 
Arguably the most important hardware component of the entire mixing system is 
the choice of the fluid pumps. There are a wide array of pump types and sizes. 
Due to monetary and size constraints, we are restricting our considerations to the 
“micro pump” variety. That is – small pumps that are around the size that can be 
held with a single human hand and are light, cheap, low-power, and pump on the 
order of at least a few ounces of liquid per minute.  
 
Peristaltic pump - Peristaltic pumps are a type of fluid displacement pumps that 
is suited for all kinds of fluids. This is mainly due to the fact that no mechanical 
parts ever touch the fluid, as the fluid is only ever in the supplied tubing at all 
times. This has several advantages that allow the fluid to not be contamination by 
internal parts of a pumping system. The pump works by usually having a 
spinning roller press against a sub-section of the fluid tubing in a circular pattern, 
causing the fluid to be pushed out of one end, and collected in the other. This 
makes the pump self-priming as a low pressure vacuum is created on the 
pumping side. Small pumps with flow rates around 100 Milliliters per minute are 
inexpensive and low-powered, typically operating at 12 Volts at around a few 
hundred milliamps. Another great advantage to these types of pumps are they 
tend to be very accurate, with error of flow rates in the single percentage range. 
[7] [8] This makes it very ideal for our project as we can have a large number of 
these inexpensive pumps in a small and low-powered environment. One major 
disadvantage is the cost; most pumps tend to increase dramatically if we need to 
go over a flow rate of 100 Milliliters per minute.  
 
Gear Pump - One popular pump type consideration is that of the gear pump. A 
gear pump uses circulating gear to create displacement of the fluid. These types 
of pumps are very popular with vicious fluids, such as oil, and other fluids that 
you might find in a combustion engine. These pumps are not very accurate – to 
such an extent that it was difficult to find a geared micro pump that actually 
specified a rate of flow. Of the pumps that do specify a rate of flow, we typically 
see the specification in units of gallons per hour, which also speaks to the 
accuracy and precision of the pumps not being ideal at all. These pumps operate 
around the 12V range which is ideal. However, the current draw tends to be 
much higher in the range of 1-2 amps as compared to peristaltic pumps that 
operate under 1 amp of current. The pumps are also very cheap with a price 
range around 25 percent lower than what can be found with peristaltic pump 
offerings. These pumps are not self-priming, which is a major concern as this 
would require either a gravity-fed fluid input, or priming by the user – both of 
which will ultimately require more work on the part of the user and makes for a 
less-than-friendly drink mixer. Additionally, there is a health and safety concern 



18 
 

surrounding cleaning the gearing and cross-contamination of fluids, both of which 
are major issues when dealing with consumable beverages. [9] [10] [11] 
 
Gas Pump - Gas Pumps are a very popular option in the beverage service 
industry. Gas-driven pumps are known for robust delivery within fountain drink 
stations that are seen in nearly every facet of the food service industry. Gas 
pumps are called as such due to them being driven by a form of gas, usually 
carbon dioxide. The pumps are self-priming and have flow rates on the order of 
several ounces per second. The major concern of the pumps with respect to our 
project is the added necessity of a gas source. This is a very heavy component 
that adds to both the size and weight of the mixer. This would also require the 
user to routinely replace or refill the carbon dioxide canister for continued 
operation. [12] 
 
Solenoid Valve - Another consideration for fluid delivery was the implementation 
of a solenoid valve to manage the flow of the liquid. These pumps work by 
opening and closing an electronic valve to start or stop the flow of fluids. The 
pumps operate in the 12 Volt range with a current draw around 1-2 Amps. [13] 
The pumps do not tend to be gravity-fed and would require pressurization of the 
fluids in some form. This of course would require a gas compressor and we are 
met with some of the same issues that plague the gas-powered pump solution, 
specifically regarding the increased weight and size of the device as well as the 
increased maintenance required by the user. 
 

5.2.8 FLUID STORAGE 
 
The fluid storage selection is an important component of how the user interacts 
and maintains the device. The selection should reflect our goals of being very 
simple to use while still covering the required functionality of the device. The 
liquids are to be sourced by the user which means in most cases the user will 
have bought the beverages and flavoring in bottled-form from a store. Therefore, 
we must consider storage solutions that interface well with transferring fluids from 
one container to another. Safety is of most concern with storage; the fluids shall 
never come into contact with anything other than the pump tubing, to prevent 
possible contamination. The storages used should be either replaceable or easy 
to wash and reuse.  
 

5.2.9 FRAME AND ENCLOSURE 
 
The framing is what will house and mount all hardware components of the mixing 
device. The options available to us are vast in the scope of our size and weight 
requirements. Similar projects have found creative, and sometimes simple, 
solutions to house their mixing design. Not only does the framing determine the 
housing for the components, but the mount points and physical configuration of 



19 
 

all hardware components as well. We would like to consider frames and 
enclosures that are very simple to assemble and can be modified on-the-fly. That 
is – we would like the ability to iterate over the arrangement and configuration of 
our hardware components without compromising the constructions of the frame 
and enclosure itself. This will allow us to test different approaches to the physical 
configuration as well as allow room for modifications or adjustments should any 
unforeseen issues arise. We will consider a few approaches based primarily on 
the aesthetics, price point, and ease of assembly.  
 
Wooden-enclosed Frame - One consideration for the framing is an enclosed, 
wooden frame. The main advantage to this is wood being relative cheap and 
available in many different types. This would be an enclosure matching our 
dimensions of the requirements specifications using a wood type appropriate for 
the Mini-Mixer, ensuring that it is food-safe and fire-resistant. We would also 
want to consider wood types that are not prone to water damage as the 
enclosure will consist mostly of containers of liquid. One great advantage to 
using a wooden enclosure is the ability to adjust or refine the design of the 
enclosure very quickly, as it would only require re-mounting components by 
driving them into the wood at different locations. Wood is also strong while being 
fairly easy to manipulate. There are many different types of tools to form wood 
into virtually any way imaginable. However, any assembly beyond basic 
geometric shapes is entering carpenter territory, for which our team has no 
experience. In addition, wood tends to be very heavy and can allow us to reach 
our weight limit very quickly. We would also have to ensure the outside of the 
wood is sanded and treated properly to prevent user from hurting themselves 
with splinters or cuts due to unfinished wood. Although not crucial to the 
functionality of the system, aesthetics are of concern with a wood based 
enclosure; much time would be spent to make the enclosure look as 
professionally presentable as possible. This could potentially take a lot of trial 
and error testing, which would consume even more time. 
 
Steel Rod Open Layout - Another consideration for the framing is by using an 
assembly of steel rods or tubing to create a scaffold of sorts to mount all 
components of the Mini-Mixer. This would bring up an immediate concern of the 
chilling the mixtures. This would require an external cooler to store the 
ingredients or the user would have to rely on ice-based solutions or a pre-chilled 
ingredient. Another concern is keeping the hardware and electrical components 
protected from the liquid components. When using a scaffold frame, there isn’t 
much room to separate the fluid pumping system away from the electrical 
components. We would also be concerned about the client’s immediate access 
to the electrical components of the device. Durability is another concern as many 
fragile components of the Mini-Mixer will be exposed to both the user and the 
environment around it. The joints to connect the steel rods would have to either 
be specially machined or 3D-printed. However, the major advantage of this 
framing is the simplicity and reduced weight of the Mini-Mixer compared to other 
considerations. 



20 
 

 
Copper-pipe Open Layout – Similar to the Steel Rod Open Layout, we also 
have the choice of using small diameter (one half inch) copper tubing to construct 
and open layout configuration. One major advantage to this configuration is the 
fact that copper tubing is already a standard use case for commercial and home 
water distribution systems. This means that we can find standard sizes at nearly 
every major hardware store. Specifically, we have the advantage of using an 
array of copper fittings to form our framework with ease. [14] This allows us to 
iterate over our design at any point of the implementation process by simply 
running to a nearby hardware store and picking up new parts. This would also be 
beneficial should we encounter sudden issues or have parts of the frame 
damaged during the implementation. Copper piping and fittings are very popular 
so we have the added advantage of these construction materials being relatively 
inexpensive compared to other considerations. With the respect to aesthetics, 
the shiny copper finish is a beautiful touch to the look of the project, adding a 
sharp, elegant look to the design with very little effort. Similar to the framing 
choices, we have several different solutions at our disposal regarding the 
containment of the liquids. Most of our pump considerations are self-priming, so 
we will focus on solutions that do not necessarily provide a gravity-fed input to 
the pumps. The main concern behind liquid containment is ensuring that we are 
using food-safe material for the containers. This gives an obvious bias towards 
pre-constructed containers as we can verify their compliance by using only FDA-
approved containers.  
 
Self-contained Ingredients - The use of self-contained ingredients – that is 
using the container the ingredients are originally purchased in, is an obvious 
choice that can be considered. This comes with the advantages that the user can 
just open the container and place it inside the machine. When the user is done 
mixing, they can just remove the container and place it somewhere for storage 
with very little work. However, the user would be limited in what ingredients to 
use by the space limits within the mixing machine. We would also have to ensure 
our ingredient extraction method is nearly universal for all types of bottles and 
sizes.  
 
Uniform Containers - Another consideration is using a uniformly-sized container 
for the ingredients. This would allow for careful selection of the size and materials 
used to be easy to handle and clean. This would also allow the choice of a 
container size that uses the maximum amount of space within the machine. A 
major disadvantage is that the user would have to transfer their ingredients from 
the purchased bottle to our containers. We would have to ensure our containers 
allow the transfer of liquid with as little issues as possible. The user may want to 
save any leftover ingredients so we would require the container to be practical for 
storage as well. A major design requirement of the containers would be selection 
of a form-factor and material that is approved by health & safety standards and 
can handle many different types of liquids with little risk of cross-contamination.  
 



21 
 

5.2.10 ILLUMINATION 
 
Illumination in the project refers to lights on the Mini-mixer that are primarily 
focused on aesthetics. This leaves us with a wide range of approaches to 
implementing the feature. The placement and type of Illumination is going to 
heavily rely on the choice of the machine’s enclosure.  
 

5.3 SOFTWARE COMPONENT CONSIDERATIONS 

 
The software components of the Min-Mixer embody all of the logic required to 
operate the machine and fulfill the requirements specifications. The major 
components have been modularized into the Embedded Controller, Embedded 
Server, and Client System. These are three logical modules that encompass all 
functionality of the Mini-Mixer. The Embedded Controller is responsible for taking 
mixing commands and controlling the liquid pumps. The Embedded Server is 
responsible for handling the drinks database and facilitating a user accounting 
system. The Client System is mostly responsible for the User Interface for the 
client to control the Mini-Mixer. 

5.3.1 EMBEDDED CONTROLLER  
 
Assembly - Second to machine code, assembly coding is as low level as a 
developer can get with an embedded controller. Due to this, the assembly code 
for each embedded controller may differ depending on architecture differences. 
Nevertheless, assembly provides more control than any other higher level 
language. Because of this, however, programming becomes more arduous and 
can potentially take a multiple amount of time longer to implement a process 
versus a higher level language. Programming in the controller’s assembly could 
introduce a learning curve depending on what is used. Certain factors, such as 
instruction orthogonality, also can have an effect on how certain systems are 
programmed. Although it is true that in some cases assembly code can provide 
much quicker code than a compiler can, with the advancement and improvement 
of compilers over the last several decades, this is a rare occurrence. For the 
most part, assembly will only be used if and where absolutely necessary for the 
Mini-Mixer. 
 
The C Programming Language - Although originally not intended, C is the most 
commonly used programming language for embedded controllers. Its immediate 
advantages over assembly automatically make it attractive to the vast majority of 
embedded system developers. From ease of readability, to pointer manipulation 
and structure support, C has many strengths. Tasks that would be rather difficult 
in assembly can be done in a fraction of time with C. Because of how long C has 
existed, as well as how much it has been used, many compilers exist for it. In 
other words, the chances of finding a microcontroller that does not have an 
associated C compiler for it is very, very slim. Due to the team’s familiarity with C, 
it is probable that it will be the choice of language to program the MCU for the 



22 
 

Mini-Mixer. It is relatively easy to also do inline assembly within C code, which 
brings in any advantages assembly might have.  
 
The C++ Programming Language - While C is the most used language for 
embedded systems, C++ in the past decade has been gaining ground as an 
alternative. Because of its object oriented attributes, it allows for easier code 
structuring and flow than C. Although this definitely improves the workflow for a 
developer, it comes at the cost of resource management; generally speaking, 
resources are constrained on an embedded controller. C++, if the developer is 
not careful, is not as resource conservative as C is. This can cause major issues 
depending on the application; however, for the purposes of the Mini-Mixer, the 
issues that would arise would likely not be of much concern. While an object 
oriented language would be well suited to the task of the embedded server, it is 
hard to determine whether it would be as well suited for the microcontroller. 
There might not be much advantage to abstracting the hardware out into its own 
class, depending on what and how much hardware is being used. For this 
reason, C++ might be considered as a possible language for the µC, but with 
preference towards C.  
 
The Ada Programming Language - Unlike C or C++, Ada is an object oriented 
programming language that was originally designed with the intent to be used for 
embedded systems. Ada’s primary focus is to produce safe and stable code 
through detecting possible errors during compile time vs run time. For this 
reason, Ada is often used in critical systems where failure can result with 
devastating consequences. Ada provides interoperability with other languages, 
which can be advantageous in multiple scenarios. However, when considering 
the intended usage for the Mini-Mixer, Ada does not seem as well suited for its 
purposes as does C. Compared to C++, however, Ada may be a viable 
alternative. In the event that it is deemed necessary to use an object oriented 
language for the Mini-Mixer, further evaluation will be necessary to decide 
between the two. 
 

5.3.2 EMBEDDED SERVER  
 
The Embedded Server can be thought of as the “heart” of the software 
components in the project. The Embedded Server is responsible for interfacing 
with the Clients and the Embedded Controller. Since the Client and Embedded 
Controller do not directly communicate with each other, the Embedded Server is 
a key component of the entire software system. As the user’s only interaction 
with the system is from the Client’s point of view, the Embedded Server will be 
the endpoint for all commands sent and received from the Mini-Mixer. Our goal is 
to create a set of API endpoints that can be used by any type of client and does 
not rely on our choice of client, should we decide to support multiple types of 
clients or change the client in the future. As the choice of Operating System 
usually depends entirely on the hardware choice of the Embedded Server, we 



23 
 

have to be careful when consideration platform-dependent languages. For this 
reason and in an attempt to keep each component of the project as modular as 
possible, we will be considering languages and frameworks that are as cross-
platform as possible. Due to our limited time and development resources, we will 
only be considering programming languages for which the team has non-trivial 
experience. 
 
Python with Django Framework - A major consideration of software choice is 
Python using the Django framework. [15] [16] Specifically, an app built on top of 
Django called Django REST Framework will be considered. [17] Django REST 
framework incorporates a RESTful (Representational State Transfer) design 
approach to API programming. The REST architecture operates on the client-
server model which lines up exactly with our project’s implementation. The 
architecture is to be stateless which means that all data required to respond to a 
request is sent in a single request. This also means that the state of the session 
is handled entirely by the client, although this cannot be true in some cases (e.g., 
Client authentication). There are several other requirements to RESTful design, 
though these are the most relevant to our project. The Django framework itself 
provides us with an Authentication and Accounting backend which are the most 
important features that would be used by the framework for our project. The 
Django REST Framework gives us those advantages of Django along with a 
robust framework for building a complete API. Part of the team has intermediate 
experience with this software stack which will be a factor in consideration. 
 
Java with Dropwizard Framework - A similar approach to the Django stack, the 
Java programming language with an API framework such as Dropwizard is being 
considered due to the team’s familiarly to Java through our academics. [18] 
Dropwizard is another RESTful API framework that can be used to develop API 
endpoints for our application. [19] 
 However, this would require us to either build our own Accounts and 
Authentication systems, or make use of another third-party SDK.  
 

5.3.3 CLIENT SYSTEM 
 
The client system component of the Mini-Mixer is the remote control of the entire 
mixing solution. Careful consideration must be taken on this component to cover 
as many general uses cases for the user as possible. We must also maintain a 
balance of chosen platform(s) with respect to our collective background 
knowledge, hardware resources, and time constraints that are present in this 
project. Of most concern is the time constraints when considering the size of our 
team and project will force us to choose to focus on one platform to provide the 
best user experience with the prototype.  
 
Mobile Platform - The mobile and handheld platform is a major consideration for 
our choice of the client component. However, our hardware choice of a client will 



24 
 

dictate the programming language and SDKs that will need to be used as each 
hardware vendor is usually tied to a specific language and SDK and in some 
cases, the platform required to develop with. The mobile platforms are ideal as 
many devices come with several forms of wireless communication, including Wi-
Fi, Bluetooth, and NFC. These communications are almost always supported 
very well in the form of the SDK for the particular mobile platform. This allow us 
to explore many different methods of communicating with the drink mixer that 
suits our needs.  
 
Google Android - The Google Android operating system is a major 
consideration for our client choice. This would require uses of the Android SDK, 
which is based on Java. There is an immense amount of documentation, both 
first-party and third-party, on developing applications for the Android operating 
system. There is also the added advantage that our team is very familiar with the 
Java programming language and already has some novice experience in 
developing Android applications.  
 
Apple iOS - The choice of Apple’s iOS for the operating system would constrain 
us entirely to the Apple ecosystem. This requires an Apple OS X operating 
system to develop with the iOS SDK. We would also be required to develop our 
software with the Objective-C or Swift programming languages. Although iOS is 
one of the two major mobile operating systems, our team does not currently have 
the resources to purchase and develop for this device.  
 
Native PC Application - A native PC Application was an initial consideration. 
This opens us to many different software stacks to implement the system. 
However, native PC applications are generally platform-dependent and would 
limit us to larger devices such as Desktop and Laptop Computers. We can 
mitigate the platform dependence by choosing a language that runs on a virtual 
machine, such as Java, but we would still be limited in the scope of devices that 
we can support. In addition, the development time required for a native PC 
application can be as much, or more, than development for a mobile device.  
 
Native Web Application - A Web Application was another consideration for 
implementing the client interface. This is an application that can be loaded from 
the server and run in a computer browser using elements of Hypertext Markup 
Language (HTML), JavaScript, and Cascading Style Sheets (CSS). This would 
likely require nothing more than a device with a browser. This means that we 
could cover both mobile and larger platforms with a single codebase. However, 
this requires extensive experience in this area as the web page would have to be 
responsive and automatically adjust to many different screen sizes and input 
types.  
 
 
 
 



25 
 

5.4 COMMUNICATIONS CONSIDERATIONS 

 
The communications considerations for the Mini-Mixer are regarding the 
communications hardware and protocols between the distinct hardware 
components within the Mini-Mixer system. This includes the communication 
between the Embedded Server and Client system as well as that of the 
Embedded Server and Embedded Controller. As the Embedded Server and 
Embedded Controller are going to be physically close to each other as they will 
be housed within the Mini-Mixer, we will mainly consider physically wired means 
of communications as this is generally the cheaper and more reliable solution for 
close-range communications. The Embedded Controller will likely be a type of 
microcontroller so we will need to have a distinct focus on serial communications 
between the Embedded Controller and Embedded Server, as this is one of the 
most straight-forward and most popular means of communications with this type 
of hardware configuration.  
 

5.4.1 CONTROLLER-SERVER 
 
The communications selection surrounding the embedded controller and server 
is fairly important as it dictates what hardware to use for the controller and 
server. This is especially important as our choice of communications will depend 
on our I/O pin resources we have on both the controller and server. As the 
method of communication isn’t entirely important, due to the devices being close 
together and data transfer being relatively small and not time-sensitive, we have 
considered a wide range of interesting mediums to consider for the project.  
 
RS-232 w/ UART – As one of the oldest and most used standards for 
establishing serial communication, RS-232 is an immediate consideration for 
Embedded Server to Embedded Controller communications. It has a distinct 
advantage of being practically ubiquitous amongst most current day 
microcontrollers, all the while avoiding being resource demanding by only 
requiring two lines for communication with another device; namely, the Tx and Rx 
lines. With the UART hardware, most of RS-232 is taken care of. A simple 
sequential ASCII based command set could be devised and implemented 
relatively easily using RS-232 and UART, making it all the more appealing. 
  
Bluetooth and Bluetooth LE - Bluetooth and its low energy derivative(LE), is a 
wireless standard operating in the 2.4 GHz area that is mainly used for short-
distance wireless communications. The range of Bluetooth varies somewhat 
depending on the environment and devices used to implement the standard. 
However, the range is typically under ten meters from the host. A Bluetooth host 
can connect several clients at once, so it is sometimes referred to as an 
implementation of a Wireless Personal Area Network (WPAN). There are many 
different transport protocol implementations over the Bluetooth Standard. Two of 
the most popular that we have looked at for consideration are Radio Frequency 



26 
 

Communications (RFCOMM) and Logical Link Control and Adaptation Protocol 
(L2CAP). L2CAP is a packet-based protocol that allows for guaranteed delivery. 
It can be altered for best-effort mode, however. The packet size varies up to 64 
kilobytes and the packet itself can be formatted to the programmer’s 
requirements. [20] L2CAP offers two flow control modes that resemble that of 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) over 
Internet Protocol (IP). Enhanced Retransmission Mode (ERTM) is a 
retransmission mode that gives the protocol a reliable communication channel 
similar to that of TCP. Streaming Mode (SM) has no retransmission or flow 
control and is mean to be a “best-effort” protocol, much like that of UDP. It was 
worth considering Bluetooth with L2CAP transport solely due to the fact that 
L2CAP has similarities to TCP/UDP for which the team is already familiar. 
RFCOMM is a protocol specifically crafted to emulate RS-232 serial 
communications. [21] RFCOMM itself is actually an implementation over the 
L2CAP layer. As RFCOMM is meant to be a drop-in replacement for serial 
communications, the implementation is very similar to what you would expect 
from wired RS-232 equivalents. Our team chose to consider RFCOMM due to 
our familiarity and experience with wired RS-232 communications. As the total 
amount of commands required to pass to and from the server and controller is 
relatively low, RFCOMM can be considered a solid choice as the serial 
commands would be simple to define and makes the overall communications 
between the hardware as simple as possible. 
 
Wi-Fi - Wi-Fi is an implementation of a Wireless Local Area Network based on 
the Institute of Electrical and Electronics Engineers’ (IEEE) 802.11 standards 
[22]. The most popular transport protocol used with the Wi-Fi implementation is 
the Transmission Control Protocol/Internet Protocol (TCP/IP). This allows us to 
use a set of standards and protocols that we are already familiar with from 
developing and using web applications as well as from academic studies. 
However, a wireless protocol isn’t entirely necessary as both the controller and 
the server are within close proximity. In addition, the commands being 
transported are very simple and would not require the large amount of overhead 
that comes with designing and implementation a communications solution over 
Wi-Fi. We would also have to ensure that both the server and the controller 
implement compatible Wi-Fi hardware modules, which is particularly concerning 
for the embedded controller as this would consume many digital pins on the 
board.  
 
Serial Peripheral Interface - Serial Peripheral Interface (SPI) is another serial 
data protocol primarily used for communication between microcontrollers and 
other embedded devices. [23] The protocol itself is a de facto standard so 
vendors may choose to implement the protocol differently. The protocol is 
synchronous and is configured in a master/slave format. The designated master 
can communicate with several slaves in a synchronous format. Communication 
between the master and its slaves is done using a Slave Select (SS) line for each 



27 
 

slave. This ensures both the direction of transfer and the selected device that 
data is being transferred. 
 

5.4.2 CLIENT-SERVER  
 
The client-server communications are the means of communication between the 
client interface and the embedded server. To meet our connectivity requirements, 
the communications will need to be wireless and have a range that is suitable for 
our specifications. This will mostly constrain us to the popular wireless 
communications implementations as the Client System will be mobile and 
physically detached from the Mini-Mixer. We will also be limited by the common 
wireless configurations that are offered in the popular mobile hardware 
components. We will consider two of the most popular methods of wireless 
communication, as their hardware availability, maximum range, and data 
throughput meet or exceed our requirements specifications.  
 
Bluetooth and Bluetooth LE - Bluetooth is again considered as a means of 
communication between our hardware components. In this case, the range (~10 
meters) of communication meets our requirement of being able to control the 
Mini-Mixer from a distance. This would require the design and implementation of 
serial commands between the client and server. As the server would be hosting 
several different resources such as user accounts and custom mixes, it may not 
be ideal to use this method of communication due to the complexity of the 
commands required.  
 
Wi-Fi - Wi-Fi is another communication method to consider when dealing with 
client-server communications. With this, we can simply use existing TCP/IP 
protocols with HTTP requests to deliver content. In this manner, the Embedded 
Server can be treated as a normal Web Server and the client as any Internet-
capable device. This is the traditional method of client-server configurations as 
HTTP is designed specifically for this type of communication. This would also 
open up the possibility of being able to remotely configure the Mini-Mixer from 
the client device itself. This would require the use of Wi-Fi P2P mode between 
the server and client. However, this would eliminate the difficulties in setting up 
the Mini-Mixer in different network environments. This is a major advantage to 
the user and brings Wi-Fi to the forefront of our considerations.  
 
 

6. RELEVANT STANDARDS 

 
The relevant standards in the context of our project are something to consider as 
these underlying standards are what dictate the construction, features, and 
operation of the hardware and software components that we will be considering. 
While our project is not directly affected by these standards for the most part, we 
do need to be aware of them and how they interact with the various components 



28 
 

of the Mini-Mixer. The standards of most concern to us would be the health and 
safety standards surround the storage and dispensing of consumable liquids. 
This is an area that we are more or less directly responsible for ensuring we are 
within compliance as there are legal implications to not conforming to these 
standards if our prototype were to become a consumer product.  
 

6.1 HARDWARE 

 
When dealing with mechanical pumps and the rubber tubing required to pump 
and carry liquids through the pump itself, we must consider a standard that has 
been created specifically for those situations. The ASTM D2000 standard is used 
to standardize rubber products in automotive applications. [24] In our case, the 
automotive application is the fluid pump with the rubber product being that of the 
rubber tubing. This standard is focused on testing methods for the integrity of the 
material in various environmental conditions, including compression, extreme 
temperatures, tension, stiffening at low temperatures, among many other 
scenarios. We will need to ensure that the tubing we use to interface with the 
mechanical pumps will comply with this standard. The Mini-Mixer will contain 
several hardware components that will need to be assembled on a Printed Circuit 
Board (PCB). Because of this, we must consider the standard that accompanies 
the designs of PCBs. In this case, this is the IP-2221A standard. [25] This is a 
generic standard that details everything surrounding PCB design. This includes 
materials, general requirements, physical properties, electrical properties, 
thermal management, assembly, and quality assurance among many other 
topics. We will have to keep this standard in mind when designing our PCB(s).  
 

6.2 SOFTWARE AND COMMUNICATIONS 

 
The Mini-Mixer will consist of a number of different hardware components that 
will need to interact with each other in some way. Some hardware components 
are a large distance away so even wireless communication standards will need 
to be considered. One wireless standard we will have to consider when designing 
the Mini-Mixer is the IEEE 802.11 set of standards. [26] These are a complete 
set of specifications and standards that define a wireless local area network 
(WLAN) over a specific set of frequencies. It is crucial to consider this standard if 
we are going to be communicating using hardware equipment over the bands 
that IEEE 802.11 specifies. Another standard to consider is that of the Bluetooth 
Core Specification. [27] This standard defines the protocols and physical layers 
that are behind the Bluetooth technology. This would typically be an alternative to 
the Wi-Fi set of standards when considering this for the Mini-Mixer. For physical 
communications, we must consider the RS-232 (EIA-232) standard for serial 
communications. [28] This is the basis of most serial communications, defining 
the protocol and transmission of data in point-to-point connections.  
 
 
 



29 
 

6.3 FOOD AND SAFETY 

 
The Mini-Mixer contains a number of components that will be used to handle 
various stages of mixing liquids. These liquids are going to be almost 
immediately consumed by a user. For this reason, we have to consider Food 
handling standards that define the requirements and specifications for the 
equipment that will be handling these liquids. The first standard to consider is 
NSF International Standard/American National Standard 170. [29] This standard 
is essentially a glossary of terms that defines food equipment terminology that is 
to be found in subsequent standard specifications. This is important as it serves 
as a definitive reference for any terminology used in this family of standards so 
that there is no ambiguity. Another standard to consider is the NSF/ANSI 2 
standard. [30] This contains a set of requirements detailing the materials, design, 
and assembly for equipment that handles food products. This is the main 
standard to consider when handling our liquids in the Mini-Mixer. Specifically, we 
must ensure that the materials used from the containers, tubing, connections, 
pumps, and dispenser are all within compliance of this standard. We will also 
need to ensure that that the Mini-Mixer complies with some of the cleanliness 
requirements within the standard.  
 

7. DESIGN DETAILS 

 
In this section, we describe the design details of the implementation of the 
components of the Mini-Mixer. This includes all hardware components as well as 
any software components that compliment them. Each component of the 
hardware and software system was carefully chosen to meet our design goals 
through the requirements specifications. We also took careful consideration of 
the relevant standards of each component as well as the design constraints that 
have been imposed on us in the context of this project.  
 

7.1 HIGH-LEVEL OVERVIEW 

 
The design of the Mini-Mixer system has been made to be a modular as possible 
with each component having a specific purpose in the system. Ideally, we would 
like the entire system to follow the design principle of modular systems, where 
specific modules can be switched out, upgraded, modified, or replaced with little 
to no effort necessary. This essentially means that the components choices of 
one module should not impact that of another module, given the inputs and 
outputs of each module still match. This design approach allows for a cleaner 
design with the ability to iterate or modify the design in the future, including 
making it hackable by the user. One of the most important aspects of this choice 
of design is the ability to parallelize the development of the prototype using the 
resources of our team. The Mini-Mixer will comprise of four major subsystems: 
 

 Embedded Controller System 



30 
 

 Embedded Server System 

 Client System 

 Liquid Controls System 
 
The Embedded Server system is essentially planted in between all of the other 
systems so we will review this first as a basis for the other major components. 
The Embedded Server is responsible for controlling and communicating between 
the other major systems, namely the Client System and Embedded Controller 
System. The Embedded Server is responsible for storing all user accounting 
information as well as available ingredients and all drink mixes created by the 
users. The Embedded Server will have serial communications functionality for 
the wired communications between itself and the Embedded Controller. These 
communications are responsible for sending the ingredients list along with the 
proper ratios to the Embedded Controller for further processing. The Embedded 
Server will also play a key role in the Setup process of the Mini-Mixer. The 
Server will need to maintain the state of connectivity between both the Client(s) 
and the Access Point. The Server will also be responsible for updating the 
Temperature status of the drink container by utilizing a temperature sensor 
connected to one of its input/output ports. The Client System encompasses the 
client device(s), software, and connectivity used to communicate with the Mini-
Mixer. The Client System will use a popular wireless communications standard to 
both setup and use the Mini-Mixer. The Client System will include the Client 
Interface that will be used to control and command the Mini-Mixer. Using the 
Wireless transceiver on their device, the user will be able to connect to the Mini-
Mixer through the provided Client Application on their device. The Client 
Application will have a Login Interface used to authenticate with a user’s given 
credentials and be greeted with their personal Drink Menu. At the Drink Menu, 
the user will be able to create, edit, remove drinks. The Drink Menu will include a 
status indicator of the Mini-Mixer for various things such as mixing state and 
connectivity. The Embedded Controller System is responsible for the actual 
dispensing of the mixed drink. The Embedded Controller System will have an 
embedded microcontroller used to control the pumps for dispending liquid. There 
will be 6 pumps – one for each ingredient in the Mini-Mixer. Each pump will be 
connected to their individual liquid containers through food-safe tubing. Each 
pump will be connected in one direction to the microcontroller. Each pump will 
also be connected to a half h bridge; this half h bridge is connected to the pump, 
the microcontroller, the 12V power supply. The microcontroller will have a serial 
transceiver which will be interfaced with the serial transceiver of the Embedded 
Server. This will serve as a means of communication between these two 
components. The Embedded Controller is expected to receive instructions for 
each liquid pump which includes how much liquid is required from each fluid 
container for the drink mix. The Embedded Controller will then determine the 
optimal sequence of pumping and begin the mixing process. The embedded 
controller is expected to report back to the Embedded Server when each pump 
has begun and completed the pumping process. From the user’s point-of-view, 
the usage of the Mini-Mixer will be straightforward. The user will handle all 



31 
 

controls of the Mini-Mixer from within our provided mobile application. At first use, 
the user will simply need to connect directly to the Mini-Mixer and will be guided 
through a fairly quick setup mode, where the setup is very similar to what users 
encounter when setting up a home router or connecting to a new secure Access 
Point. Once done, the user can connect back to their normal Home Access Point 
and begin using the Mini-Mixer. The user will only need to login with the mobile 
application and immediately have the ability to view and modify their own 
personal mixed drinks. When the user needs to modify the drinks within the Mini-
Mixer, they can enter a settings mode where the current (if any) designated 
drinks for each slot will be presented.  
 

7.2 HARDWARE COMPONENTS 

 
The hardware components of the Mini-Mixer are divided up into several modules. 
The Embedded Controller, Embedded Server, and Client System will more or 
less cover all hardware required to implement the software of the Mini-Mixer. 
These systems can be thought of as the hosts for the logic of the Mini-Mixer 
system. The remaining hardware components are external to these devices and 
help provide the functionality needed to implement the requirement 
specifications. To get an idea of how all of the hardware components fit together 
to form the Mini-Mixer, a hardware block diagram has been constructed in Figure 
[7.1] to illustrate the associations between the different hardware components 
being considered.  
 



32 
 

 
Figure [7.1] 

At its core, the Mini-Mixer is comprised of six liquid pumps that will be driving the 
mixing process. These pumps will be driven by an Embedded Controller that will 
receives instructions and send commands to the pumps during the mixing 
process. The Embedded Controller will receive commands from the Embedded 
Server. The Embedded Server will store the drinks database as well as the user 
accounts associated with them. The Embedded Server is responsible for 
facilitating the communication between the Embedded Controller and the Client 
System. The Client System is a wirelessly connected mobile device that will be 
used as a User Interface for the client using a mobile application. 
 



33 
 

7.2.1 EMBEDDED CONTROLLER  
 
The embedded microcontroller of choice for the Mini-Mixer is the ATMega328P, 
which provides many GPIO pins and known hardware support due to it being 
used for the Arduino Uno. UART will be used for communication between the 
BeagleBone. This only requires two pins to be used; namely, pins 2 and 3 on the 
microcontroller (Rx and Tx). 6 pins of the 328P are capable of providing a PWM 
signal to the peristaltic pumps; this works out well since 6 peristaltic pumps are 
used in the Mini-Mixer. Providing power to the 328P will be done by only utilizing 
the 5V rail from the power supply, with a decoupling capacitor on the power 
inputs to help mitigate any electrical noise. The schematic for the controller was 
designed in EAGLE, and the PCB layout of the controller was designed in 
ExpressPCB. Pictured in Figure [7.2] is the schematic of the controller, and the 
PCB layout in Figure [7.2.1]: 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure [7.2] 
 



34 
 

 
Figure [7.2.1] 

 
 
The hardware used for the 328P is as follows: 
 

 Atmel ATMega328P 

 16 MHz crystal 

 2x 22pF ceramic capacitors 

 10kΩ through-hole resistor 

 100Ω through-hole resistor 

 Green 5mm LED 
 
An external crystal was chosen instead of utilizing one of the internal clocks in 
the 328P due to the reason that the internal clock is much less accurate than the 
crystal. All three internal clocks are also necessary to use all 6 analog pins to 
drive the pumps with. The two capacitors are equally as important, as they are 
required to provide a load for the crystal. The range of these capacitors is 12-
22pF, and the value used must fall in that range; otherwise, the 328p will not 
operate at the expected 16MHz and will potentially affect certain components 
(e.g. UART). The 10kΩ resistor is tied from VCC to an active low pin on the 328P 
to prevent the controller from resetting itself continuously. The 100Ω resistor is 
used in conjunction with the LED to provide a visible status on the state of the 
controller (state being ‘On’ or ‘Off’). A PCB was designed for all three 
SN754410’s; the PCB layout is pictured in [7.3]: 



35 
 

 
Figure [7.3] 

A simple voltage divider is also used on the output of the TX pin for the 328P, 
because the Beaglebone works with 3.3V high TTL logic as opposed to 5V for 
the 328P. Therefore, that voltage divider simply “steps down” the voltage to an 
acceptable level. A small aside: Although 5V would work with UART 
communications, it is important to acknowledge there isn’t a lot of current 
involved. If there was more current involved, the Beaglebone could potentially be 
damaged beyond repair. Please keep that in mind if you try to connect a 5V (or 
higher) device to a Beaglebone Black! 

7.2.2 EMBEDDED SERVER  
 
The BeagleBone: Black (referred to as BeagleBone throughout this section) was 
decided to be used as the embedded server for the Mini-Mixer, with its open 
source advantages. It will be running the pre-installed Debian distribution; this 
distro was chosen due to it being the default operating system on all 
BeagleBone’s, and due to its support, is likely one of the more stable operating 
systems available for it. The status indicator hardware will be controlled with 
several of the BeagleBone’s GPIO pins, while communication to the 
microcontroller (as previously stated) will use two GPIO pins.  
 

7.2.3 CLIENT SYSTEM 
 



36 
 

Mobile Device - The mobile hardware device of choice is any device running the 
Android Operating System. This is due to the team having extensive hardware 
resources for this OS. This includes current popular mobile phone models, 
previously older popular phone models, newer mobile tablets, as well as older 
mobile tablets. Due to almost all devices that run Android having Wi-Fi capability, 
supporting such devices as inputs to the Mini-Mixer will be fairly straightforward. 
The app will be designed to not be resource intensive, which will help support 
older phones and laptops. An approach will also be taken to keep the size of the 
app to a minimum, once again appealing to a wide variety of users that may have 
minimal amounts of space on their devices. 
 
Personal Computer - The Personal Computer will likely be supported with the 
Mini-Mixer by means of using a modern internet browser (i.e. Firefox, Chrome, 
SeaMonkey, etc). Using standard internet technologies and languages, a wide 
variety of modern browsers will be supported. Inherently, any computer capable 
of using said modern internet browser will be supported by the Mini-Mixer.  
 

7.2.4 HARDWARE INTERFACE 
 
Interface Controls - All of the user interaction with the Mini-Mixer will be done 
via client device running the mobile app. The only major requirement of the client 
device is that it must run a newer version of Android, and it must have Wi-Fi 
capabilities.   
 

7.2.5 POWER SUPPLY SYSTEM 
 
It was determined with the power consumption of the Mini-Mixer that a 500w 
switching power supply would be the best choice. The Mini-Mixer utilizes the 
Thermaltake TR2 TR-500 500w ATX computer power supply. The power supply 
contains 12V, 5V, and 3.3V rails that are each capable of supplying sufficient 
amperage for each component in the Mini-Mixer. From the perspective of the 
user, the usage of this power supply makes it convenient for repairs in case the 
power supply goes bad. All electronic components in the Mini-Mixer utilizes 
standard 4 pin Molex power connectors to interface with the PSU, which allows 
for easy replacement if necessary.  

7.2.6 COOLING SYSTEM 
 
The cooling system will consist of a small air-to-air thermoelectric system 
powered by a Peltier plate. This system will be acquired and is expected to run 
on 12 Volts and consume anywhere from 70-90 Watts. A 5000 RPM fan is 
attached to the cool side of the plate, to move the cool air down towards the 
bottles. The Embedded Server will control and monitor this cooling system, 



37 
 

ensuring it keeps the contents of the Mini-Mixer within acceptable temperature 
ranges. 
 

7.2.7 FLUID PUMP SYSTEM 
 
The fluid pump system will be implemented using 12 volt peristaltic pumps 
capable of pumping 500 milliliters per minute with impressive accuracy. The 
exact accuracy of the particular pumps sourced is not specified, but similar sized 
pumps used in DIY solutions such as the Bartendro cite an accuracy of less than 
10 milliliters for a single serving drink. This lines up directly with our requirements 
specifications and we hope to achieve the same or better results with our own 
peristaltic pumps. The pumps have an estimated current draw of around 500 
milliamps which is well within our power requirements for the Mini-Mixer. The 
pumping system will consist of 6 peristaltic pumps – one for each ingredient. As 
mentioned in the research section, these pumps have the inherent advantage of 
avoiding ingredient contamination by never coming into contact with the 
ingredients themselves. The pumps themselves are Pulse Width Modulated 
(PWM) to control the flow of fluid. We aren’t very concerned with the variable rate 
of flow when starting the pumping process, though this may come as an 
advantage when stopping the pumps to avoid splashing of a full drink cup by 
gradually slowing the pump down with PWM. Each pump is driven using a Half-H 
driver; these drives will be provided via three TI SN754410 ICs. These devices 
support a PWM input, which is what several of the GPIO pins on the embedded 
controller are used for. Safety diodes are built into the integrated controller, which 
will help prevent damage to the IC. Each half-h bridge supports up to 1000 
milliamps of constant current, which satisfies the 500 milliamp requirement for 
the peristaltic pump. A PWM duty cycle of roughly 70% is used for the pumps in 
the Mini-Mixer; this provides output flow high enough to meet the requirements of 
the Mini-Mixer, while at the same time avoiding turbulent output that can possibly 
cause a mess.  

7.2.8 FLUID STORAGE 
 
Fluid storage is important to the Mini-Mixer, as the containers used must fit within 
the space constraints. The containers themselves must be safe to use, to 
conform to all food safety standards. Taking these factors into consideration, it 
was decided that 14oz Rubbermaid polyethylene wash bottles will be used. 
These bottles are translucent, which make it easy for the user to determine fluid 
levels in the Mini-Mixer. The material used in the bottle is safe; the same material 
is used in many consumers bottled beverages and such. The caps on the bottles 
are drilled out, allowing the pump tubing to reach the bottom. This cap makes it 
easy to secure the tubing in place, while also providing a convenient way to refill 
and/or wash the container after usage. The Mini-Mixer has a designated 
compartment that houses each of these containers; this compartment is located 



38 
 

in such a manner that allows each container to sit securely yet be easily refilled 
when necessary. 

7.2.9 FRAME AND ENCLOSURE 
 
A full ATX computer case is used as the enclosure for the Mini-Mixer, keeping it 
within the required size constraints and weight, while providing a clean and sleek 
appearance. The specific case used for the Mini-Mixer is the Thermaltake Spedo 
Advance, with its dimensions being 21.1 x 9.1x 24.0 inches.  Some parts of the 
case were modified in order to better suit the needs of the Mini-Mixer; for 
instance, the hard drive cage was removed, and the front panel of the case was 
drilled to allow for the spigot to pass through. A custom pump rack was built out 
of aluminum in order to securely mount the pumps in the case. To protect the 
power supply of an accidental leakage, the backing of the pump rack was 
covered in vinyl. The various electronics (PCBs, Beaglebone Black, etc) were 
first mounted to protoboards via adhesive standoffs made to fit in 1/8inch holes. 
From there, the back of the protoboard was covered in long strips of double 
faced tape in two stacks. The usage of the protoboard was done to prevent any 
possible grounding issues with the electronic component and the enclosure. The 
5 ¼” drive bay was left in the case, and used to mount the AC unit in the Mini-
Mixer with tie wraps. The liquid containers were placed in the front of the case, 
and securely placed with Velcro backing. Tie wraps and electrical taping were 
used to route the cables and reduce tension on power cables to avoid any 
accidental component removal.  

 

7.2.9 ILLUMINATION 
 
The illumination is the addition of lighting on the Mini-Mixer as part of an added 
aesthetic effect and to make the Mini-Mixer appear more interactive and 
animated. The illumination will be dynamic and controlled by the Embedded 
Server. The Embedded Server will be responsible for changing the state of the 
illumination depending on the mixing state of the Mini-Mixer. A combination of 
LED’s and cold cathode tubes will be used to provide this lighting experience. 
Strips of amber LED’s will be lined around the Mini-Mixer, giving a distinctive, 
ambient feel to it. Our group has chosen to illuminate the Mini-Mixer using RGB 
Waterproof Flexible LED Strip Lights. [33] The lights will be placed on the bottom 
trim of the Mini-Mixer. The lights will be illuminated when the machine is turned 
on. The Mini-Mixer will flash the lights during a mixing process to have the 
machine appear more animated. As the exact length of LED strips required for 
the Mini-Mixer can vary, depending on the exact dimensions of the enclosure as 
well as the power requirements of the strips themselves, a robust PCB has been 
designed to facilitate this. The PCB is a general purpose MOSFET driver board 
with a maximum current of 5 Amperes as allowed by the thickness of the traces. 
Pull-down resisters were added to the gates of the MOSFETs to prevent a 



39 
 

floating ground condition. Figure [7.4.1] shows the schematic of the MOSFET 
board. 
 

 
Figure [7.4.1] 

 
The breadboard design is a two-layer PCB with traces thick enough to allow up 
to 5 Amperes of current along each trace. The breadboard is shown in Figure 
[7.4.2] 
 

 
Figure [7.4.2] 

 
 
 



40 
 

7.3 SOFTWARE COMPONENTS 

 
The software components are the logic behind the Mini-Mixer and are what 
power the features of the Embedded Controller, Embedded Server, and Client 
System. As such, the actual software driving these components are divided are 
modularized for each component. The overall design of these components 
revolves around the client-server software architecture. The client would be the 
Client System and the server is the Embedded Server. Nearly every user 
input/output is carried out on the client-side of this setup and the server is used to 
handle the rest. The notable exceptions to this are the actual dispensed drink, 
the user’s installed ingredients, and the hardware reset and power buttons on the 
Mini-Mixer.  
  

7.3.1 EMBEDDED CONTROLLER 
 
The embedded controller was programmed using the C programming language. 
This language was chosen due to the high availability of resources on the MCU 
as well as being a higher-level language than the alternative. This is important as 
the software needs to precisely control several different pumps at virtually the 
same time, while also communicating with and accepting commands from the 
Embedded Server. The commands sent from the embedded server to the 
embedded controller will be sent serially via UART. The embedded server will 
generate a request that the controller will parse and then control the pumps in the 
intended manner. A top-down approach was taken into the design of the software 
for the embedded controller. This design approach was selected because it 
synthesizes a large portion of other high level sub-systems into a functional 
higher-level system with a systematic, programmable backend. As previously 
stated, there are 6 pumps; each pumps will be differentiated from each other by 
use of a single character letter. For ease of usage, these letters will be the first 6 
letters of the English alphabet: “A”, “B”, “C”, “D”, and “E”. There are two modes of 
dispensing that the Mini-Mixer will use; namely, a “parallel” mode and a 
“sequential mode”. As the names suggest, the parallel mode runs two or more 
pumps at the same time, while the sequential mode runs at one pump at a time. 
This is advantageous for two reasons; one reason being that having pumps 
running at the same time with the parallel can help cut down the time it takes to 
make the drink (depending on the recipe, the time cut can be significant). The 
other reason is that with a sequential mode, certain recipes that call for each 
ingredient to be poured one at a time to get the “layered” color effect can be 
done. The Mini-Mixer will utilize both modes in a sequential manner, first 
dispensing all ingredients that will run in parallel, and then dispensing all 
ingredients that will be done sequentially. This design decision allows for the 
advantages of both while providing an easy yet effective manner to implement 
said design. Each command that is sent from the embedded server to the 
controller is simplified down to a single ASCII character, for ease of 
implementation and debugging purposes. Every drink request issued from the 



41 
 

embedded server to the embedded controller will always begin with an ‘R’ 
command, representing a new request. From there, two numbers will be sent; 
each indicating the amount of each ingredient that corresponds to the two pump 
modes. From there, each ingredient and its amount will follow sequentially, 
where the ingredient will correspond to the alphabet character labeled pump 
responsible for dispensing it, followed by a float corresponding to the amount of 
each ingredient (measured in ounces). After as many pumps and their 
associated ingredient amount as specified parallel pumps has been supplied by 
the embedded server, the same process is done for the sequential ingredients 
and pumps. The general form of an instruction looks like the following: 
 

 
 
An example drink mix request from the embedded server to the embedded 
controller would look like the following: 
 

 
 
This sequence of commands would start a drink request with two ingredients, “” 
and “C”, dispensed in parallel, while the other two ingredients are sequentially 
dispensed in the order in which the commands were issued from the embedded 
server. Following the top-down design pattern, we observe what happens during 
each dispense mode for a drink mix request. The parallel dispense mode has a 
set containing a various number of pumps, each with their own amount of a 
corresponding ingredient. The approach taken for dispensing is to let each pump 
start at the same time, and periodically check to see how long each pump has 
been running for. The duration of time the pump has been activated will roughly 
correspond to the amount of liquid dispensed in a linear relationship. During 
initial setup, using each amount of ingredient to determine an approximate 
running time for each pump, float variables that correspond to end times will be 
set that will be used for the previously mentioned periodic checking. Once an end 
time has been met or exceeded, the associated pump will be shut down. The 
sequential mode for dispensing is more straightforward; each pump will operate 
for the duration corresponding to the amount of the ingredient said pump is 
dispensing. As mentioned previously, it will be done in the order in which the 
commands were issued from the embedded server. The pumps will be 
represented in the controller’s software as structs named “Pump”. Each pump will 
contain a char corresponding to the pump’s label, a float for the amount of 



42 
 

ounces it will dispense, and a time that represents how long the pump is to run 
for. During the initialization for the parallel mode, an array of Pumps will be 
created to store each Pump associated with the parallel mode. This will allow for 
ease of management and control, as well as reducing the length of code 
required. Time is accurately kept track of by utilizing one of the three internal 
timers in the code; however, this required that the same timer be multi-purposed 
in that it would also generate the necessary PWM signal required to drive two of 
the pumps. Two of the three timers are 8 bit, and the other one is 16 bit; for the 
Mini-Mixer, the 16bit timer was configured to operate in the same manner as the 
other 8 bit timers for uniformity.  
 

7.3.2 EMBEDDED SERVER  
 
From a high level perspective, the Embedded Server will be responsible for 
taking a user created recipe (or a recipe already present on the server), and 
converting it into a set of simple ASCII character commands that will be sent to 
the Embedded Controller via UART. Bidirectional communications will happen 
between the two to ensure proper operation. The Embedded Server will also be 
responsible for controlling and monitoring the temperature for the thermoelectric 
cooling system in the Mini-Mixer. This is an important subsystem, as it keeps the 
ingredients cool enough to not go bad. The Embedded server will also control the 
various LEDs in the Mini-Mixer, important in relaying status information to the 
user physically. Much of the power of Debian Linux will be leveraged to handle all 
of these subsystems together with just the Embedded Server. The Embedded 
Server will be implemented using the Python programming language with the 
Django REST Framework on the Linux operating system. Our team is most 
familiar with Python so this was a natural fit for the Embedded Server. We also 
have the advantage of the robust standard library that comes packaged with 
Python. There is also the extremely popular Python Package Index repository 
which supplies an easy-to-use tool to download and install third-party Python 
libraries and applications. The Django REST Framework was chosen as we have 
decided to use a client-server configuration with the traditional request-response 
lifecycle. The Django REST Framework allows us to implement a clean API using 
the best programming practices outlined by the REST methodologies. We also 
have the huge advantage of the Django base framework which gives us a 
structured MVC architecture to build out our application in the most modular way 
possible. The Django framework also provides us with built-in administration and 
accounting features, so that we can easily define our accounting scheme and 
have an account management interface ready-to-go. Should we choose to later 
pursue other platforms or multiple platforms for the client system, our Embedded 
Server will require almost no additional development as is granted by the use of 
the REST methodologies.  
 
Service Discovery and Wireless Configuration – The Mini-Mixer will 
implement service discovery using the Zero-configuration networking (zeroconf) 



43 
 

standard. A Python third-party library simply named zeroconf will be used to 
implement service announcing over both Wi-Fi P2P in Setup Mode and the 
normal Wi-Fi WLAN connection in the Normal Mode. [34]. The actual 
configuration of the wireless interface on the Beaglebone Black is somewhat 
complex so a popular Linux tool called iw will be used to configure the wireless 
interface for both Setup and Normal modes. [35] The iw tool will be accessed 
directly from a Django app using Python’s built-in subprocess module to run iw 
by calling the Linux command. The subprocess module allows us to run Linux 
commands safely while capturing exit status codes and error messages from 
standard output to handling directly within the Django app. As the Embedded 
Server will be implemented using RESTful API design, we can describe the 
entire functionality of the Embedded Server by describing each API endpoint. 
The calls to the REST API will be made by the client using a uniform resource 
locator (URL) over HTTP when connected to the same LAN as the Embedded 
Server. The API can be described using the uniform resource identifier (URI) as 
RESTful design is dictated around defines “resources” and the actions that can 
be applied to them. The API will be described by defining each resource as a URI 
and describing all methods and their function for each resource. An entire 
resource will be defined in requests and response using the standard JSON 
format. [36] JSON is a specific Internet Media Type [MIME] that helps to 
standardize the file format between communications on the Internet. [37] The 
official MIME type of JSON is known as “application/json” and is what we will be 
using for all requests and responses that require the transmission of resources. 
[38] 
 
/connection – The connection resource defines the Mini-Mixer’s wireless 
connection configurations. The connection resource properties are defined in 
Table [7.1] as shown: 
 

Property Name Value Description 

id Integer A unique id of the connection 
configuration. 

networkName String The SSID of the network, if 
applicable. 

securityType String The type of wireless security 
being used. Can be WPA or 

WPA2. 

password String The pre-shared password for the 
connection, if applicable.  

networkType String The type of network connection. 
Can be p2p or wlan.  

isActive Boolean Defines whether the given 
network is the currently 

connected network. 

Table [7.1] 
 



44 
 

Methods are provided for the Client to view and change the configuration as 
needed. The available methods are as follows: 
 
Connection: get – This method will be used to retrieve the current wireless 
connection settings (if any) of the Mini-Mixer. This will typically be used to display 
the current connection details to the user while in Setup Mode. The HTTP 
request may look like the following: 
 

GET /connection/details/{Connection id} 
 

The optional property {Connection id} can be the id of a Connection resource. If 
no property is specified, then all connections are returned in the response body 
as an array of Connection resources. 
 
Connection: create – This method is used to create a new connection 
configuration. The HTTP request looks like the following: 
 

POST /connection/add 
  
The POST request body should contain at least one Connection resource to be 
added. The HTTP response code will return 200 if the configuration was 
successfully saved and a HTTP response code 500 otherwise.  
 
Connection: edit – This method provides the ability to edit current connection 
configurations saved on the Mini-Mixer. The HTTP request looks like the 
following: 
 

PUT /connection/edit 
 
This method simply requires an existing Connection resource in the request 
body. The Connection resource id is required and all other parameters are 
optional, depending on the data to be updated. 
 
Connection: delete – This method gives the ability to remove Connection 
resources from the wireless configuration of the Mini-Mixer. The HTTP request 
looks like the following: 
 

DELETE /connection/delete 
 

This request requires a request body with a Connection resource id. The HTTP 
status code will return 200 if successful. If the specified configuration is active or 
does not exist, the HTTP status code will be 500. 
 
Connection: set – This method is used to set the new configuration of the 
wireless module on the Mini-Mixer. The HTTP request looks like the following: 
 



45 
 

POST /connection/set 
 
The request body should contain a Connection resource with at least the 
Connection id property. This method will return a HTTP status code 200 if the 
specified Connection resources exists and will immediately set the new 
connection. If the connection does not exist, a HTTP status code 500 will be 
returned and the Mini-Mixer will keep the current wireless configuration. 
 
/user – The user resource describes the user accounting methods of the Mini-
Mixer. This includes authenticating to the Mini-Mixer with an existing account, 
creating a new account, requesting basic profile information as well as updating 
that profile information. The user resource properties are defined in Table [7.2] as 
shown: 

Property Name Value Description 

id Integer The user’s unique id.  

username String The username of the 
client.  

password String The password of the 
user. 

Table [7.2] 
 
The available methods are as follows: 
 
User: register – This method is used to register new users with the currently 
connected Mini-Mixer. The HTTP request is as follows: 
 

POST /user/register 
 

The HTTP request requires a User resource with at least the username and 
password. A 200 response will be returned upon successful creation along with 
the User resource in the response body. If the username already exists, a 500 
HTTP status will be returned.  
 
User: login – This method is used to authenticate with the Mini-Mixer and obtain 
an authorization token to be used in future requests. The HTTP request is as 
follows: 
 

POST /user/login 
 

The request body must be a User resource with at least the username and 
password in order to authenticate. The request response will have HTTP code 
200 and an authorization token in the response body if login was successful. The 
request response will return HTTP status 500 with an error message in the 
response body if the login was unsuccessful. 
 



46 
 

/ingredients – The ingredients resource is used when the client needs to view 
the current ingredients inside the Mini-Mixer or manage the configuration of each 
ingredient. This resource will also be used to add or remove ingredients from the 
Mini-Mixer. The ingredients resource properties are defined in Table [7.3] as 
shown: 
 

Property Name Value Description 

id Integer The id of the ingredient. 

name String The name of the 
ingredient. 

amount Integer The initial amount of the 
ingredient, in units. 

amountLeft Integer The estimated remaining 
amount of ingredient left 
in the container, in units.  

type String The type of ingredient 
being used. 

location Char The location of the 
ingredient in the Mini-

Mixer. Can also denote 
an ingredient placed in 

storage. 

unit String The type of unit in 
amounts. 

Table [7.3] 
 
The available methods are as follows: 
 
Ingredients: list – This method will list the ingredients entered into the Mini-
Mixer according to the filtered parameters. The HTTP request is the following: 
 

GET /ingredients/list 
 

The HTTP request accepts a request body containing any one of the parameters 
of an ingredient resource. The HTTP response will contain one or more 
Ingredient resources that match the parameters specified. 
 
Ingredients: add – This method will add an ingredient to the internal list of the 
Mini-Mixer. The HTTP request is as follows: 
 

POST /ingredients/add 
 

The HTTP request accepts an ingredient resource with a required name 
parameter. The request response will return HTTP status 200 and the full 
Ingredient resources in the response body. An HTTP status 500 will be returned 
if there is a duplicate-named ingredient.  



47 
 

 
Ingredients: edit – This method provides the ability to edit or update a particular 
ingredient in the Mini-Mixer. The HTTP request looks like the following: 
 

PUT /ingredients/edit 
 
This method requires an existing Ingredients resource with at least the Ingredient 
id parameter in the request body. The HTTP request response code will return 
200 with the full Ingredient resource if successful. Otherwise, a HTTP status 
code of 500 will be returned. 
 
Ingredients: delete – This method allows Ingredients to be removed from the 
Mini-Mixer database. The HTTP request looks like the following: 
 

DELETE /ingredients/delete 
 

This request requires a request body with an Ingredients resource id. The HTTP 
status code will return 200 if successful. Otherwise, the HTTP status code will 
return 500. 
 
/sensor – The sensor resource is used to provide information on the state of the 
Mini-Mixer. The sensor resource properties are defined in Table [7.4] as shown: 
 

Property Name Value Description 

type String The type of sensor 
metric. 

status Boolean The current status of the 
sensor metric. 

metric Integer The metric value for the 
given sensor. 

Table [7.4] 
 
The status methods include metrics such as internal temperature of the Mini-
Mixer, state of the internal cooling unit, current uptime of the machine, as well as 
other metrics that are found to be useful or novel in nature. The available 
methods are as follows: 
 
Sensor: list – This method will return a list of Sensor resources. A sensor 
resource can be a fluid pump, temperature sensor, uptime, or wireless 
connection state and strength. The HTTP request is as follows: 
 

GET /sensor/list 
  
The HTTP request body can contain a Sensor resource with at least the Sensor 
id to filter sensors. If no request body is sent, the response will return a list of 



48 
 

Sensor resources with a 200 HTTP status response. Invalid requests will return a 
HTTP response code 500.  
 
/recipes – The recipes resource is the endpoint used for everything surround the 
drink mixes owned by the authenticated user. This is also where the user can 
add, edit, remove their own recipes. The resource will also serve as a way to find 
the top used recipes on the Mini-Mixer and provide suggestions for new recipes 
for the user. The connection resource properties are defined in Table [7.5] as 
shown: 
 

Property Name Value Description 

id Integer The unique id of the recipe. 

description String A brief description of the recipe. 

ingredients [] List A list of ingredient ids and their 
quantities for the recipe. 

creator String The username of the recipe’s 
creator. 

name String The name of the recipe. 

ordered Integer The number of times the recipe 
has been ordered since creation. 

Table [7.5] 
 
The available methods are as follows: 
 
Recipes: list – This method will list the ingredients entered into the Mini-Mixer 
according to the filtered parameters. The HTTP request is the following: 
 

GET /recipes/list 
 

The HTTP request accepts a request body containing any one of the parameters 
of a recipes resource. The HTTP response will contain one or more recipes 
resources that match the parameters specified. 
 
Recipes: top – The method will provide a list of the Top (up to 100) most popular 
recipes on the current Mini-Mixer. The HTTP request is as follows: 
 

GET /recipes/top 
 

The HTTP request requires no request body and will return a HTTP response 
code 200 and list of ordered Recipe resources in the response body.  
 
Recipes: add – This method will add a recipe to the internal list of the Mini-
Mixer. The HTTP request is as follows: 
 

POST /recipes/add 
 



49 
 

The HTTP request accepts an ingredient resource with a required name 
parameter. The request response will return HTTP status 200 and the full 
Recipes resources in the response body. An HTTP status 500 will be returned if 
there is a duplicate-named Recipe.  
 
Recipes: edit – This method provides the ability to edit or update a particular 
ingredient in the Mini-Mixer. The HTTP request looks like the following: 
 

PUT /recipes/edit 
 
This method requires an existing Recipes resource with at least the Recipes id 
parameter in the request body. The method also requires the currently logged in 
user to be the creator of the recipe. The HTTP request response code will return 
200 with the full recipes resource if successful. Otherwise, a HTTP status code of 
500 will be returned. 
 
Recipes: delete – This method allows Ingredients to be removed from the Mini-
Mixer database. The HTTP request looks like the following: 
 

DELETE /recipes/delete 
 

This request requires a request body with a recipes resource id. The recipe is 
also required to be created by the currently logged in user. The HTTP status 
code will return 200 if successful. Otherwise, the HTTP status code will return 
500. 
 
/mixer – The mixer resource is used to control and send commands that 
describe the actual physical mixing functions of the Mini-Mixer. The mixer 
resource properties are defined in Table [7.6] as shown: 
 

Property Name Value Description 

queuePosition Integer The position of the recipe 
order in the mixing queue. 

recipe Nested object The object representing 
the recipe to be mixed. 

isMixing Boolean Whether the drink is 
currently being mixed. 

timeLeft Integer The estimated time left 
until the order is complete. 

orderId Integer A unique identifier for a 
given order. 

customerId Integer The unique Id of the user 
who placed the order. 

Table [7.6] 
 



50 
 

This is where the user can initiate a mix given a recipe, manage the mixing 
queue, or perform actions such as starting and stopping the mixing process. The 
available methods are as follows: 
 
Mixer: getQueue – This method will return the Mixer’s queue as well as filter the 
queue given a Mixer resource parameter. The HTTP request is as follows: 
 

GET /mixer/queue/list 
 
The HTTP request may contain a Mixer resource with at least one resource 
parameters with the response being a full list of Mixer resources that were filtered 
from the queue using the request parameters. Otherwise, the response will 
contain the entire queue as a list of Mixer resources.  
 
Mixer: order – This method is used to place an order on the Mini-Mixer. The 
HTTP request is as follows: 
 

POST /mixer/order/create 
 

The request body must contain the recipe parameter for a successful order. If 
successful, the HTTP response code will be 200 and the response body will 
contain the full Mixer resource for the order. Otherwise, the HTTP status will 
return 500. 
 
Mixer: start – This method is used to begin the actual mixing process. The 
HTTP request is the following: 
 

POST /mixer/order/start 
 

The HTTP request body must contain the order ID being started. The order will 
only start mixing if it is at the top of the queue and the user who placed the order 
is starting it. A HTTP status code of 200 will be returned if this is the case. A 
HTTP status code of 500 will be returned otherwise.  

7.3.3 CLIENT SYSTEM 
 
Mobile Platform - The mobile platform of choice will be the Android Operating 
System. This has mainly been chosen over other considerations due to our 
team’s familiarity with Java. The Android Operating System also boasts and very 
comprehensive SDK to implement our application. The development environment 
is also not limited to one single platform, as is the case in other considerations. 
The entire development stack is completely free of charge, which the exception 
of publishing to Android’s Play Store, should we choose to do so. This is a major 
advantage for us when we consider our monetary constraints. We are also 
pleased with the User Interface design guidelines that are provided by Google. 
This is a great learning resource as our team does not have extensive knowledge 



51 
 

in the area of UI/UX design. The design of the Client Interface will closely follow 
Google’s Material Design guidelines [40]. The Client System will be described 
using states of the mobile application and mockups as illustration for each state. 
The major states of the mobile applications are as follows: 
 

 Setup Mode. 
 Login and Account Creation. 
 Home Screen. 
 Top Drinks. 
 Suggested Drinks. 
 Ingredient Manager. 
 Create a Drink. 
 Edit and Manage My Drinks. 

 
Login and Account Creation – Consider that the Mini-Mixer has been newly 
unboxed and the user is preparing to operate the machine. Once the Mini-Mixer 
has been unboxed and plugged into a power supply, the user will download and 
install the Mini-Mixer mobile application on their Android device. Once the 
application is started, the user will be met with the initial login screen. In the 
background, the client application will attempt to discover any Mini-Mixer service 
over the currently connected network. It was considered to allow the application 
to discover services on both the current connected network and services in range 
of Wi-Fi P2P, but this would cause the user to get disconnected from their current 
network and possibly lose connectivity. Mini-Mixer discovery will be implemented 
using Zero-configuration networking (zeroconf). [41] Zeroconf uses Domain 
Name Service (DNS) based service discovery to broadcast registered services to 
clients using standard DNS queries. This is extremely beneficial as the client 
application requires no initially-stored or preprogrammed information about the 
Mini-Mixer that it would like to connect to. This type of setup even allows multiple 
Mini-Mixer’s to be chosen that are within the client’s wireless range. The client 
application will implement the support for this service discovery using the 
available classes in the Android API provided by NsdManager for Normal or 
Operating Mode. [42] [43] The features provided by zeroconf will allow us to 
announce a unique name for a given Mini-Mixer as well as the service type and 
port. If no service is discovered on the currently connected network, the 
application will notify the user with a toast message and provide an optional 
action to go to Setup Mode, as shown in Figure [7-5]: 
 



52 
 

 
Figure [7-5] 

 
In the case that the user did not enter setup mode from the toast, or simply 
missed the opportunity before the toast disappeared, there is an alternative way 
to access setup mode. The user can touch the action overflow icon at the top 
right of the login screen to be provided with a menu as shown in Figure [7.6], 
which provides access to setup mode as well as some information about the 
application.  
 

 
Figure [7.6] 



53 
 

In the case that the user is connected to a Wi-Fi network with at least one Mini-
Mixer service, a toast will appear indicating that a Mini-Mixer was discovered, 
with an optional action to show a list of available Mini-Mixers as shown in Figure 
[7.7]: 
 

 
Figure [7.7] 

 
The user may then either choose to login, register or show the Mini-Mixer’s that 
have been found. All of these actions will lead to a bottom sheet being displayed 
so that the user may select and connect the Mini-Mixer of their choosing. The 
“show” action button will simply allow the user to select a Mini-Mixer to then 
either Login or Register. The Login and Register buttons will display the bottom 
sheet, but will then attempt to connect to the Mini-Mixer and then carry out their 
respective functions. The mockup in Figure [7.8] illustrates what the bottom sheet 
may look like for these actions. 
 



54 
 

 
Figure [7.8] 

 
Setup Mode – In the case that this is the first time a user is setting up their Mini-
Mixer, the Setup Mode will be selected from the login screen either through a 
toast message or the dropdown menu. If the user is currently using their Wi-Fi 
device, the application will prompt the user with a dialog warning of network 
disconnection as it switches over to Wi-Fi P2P as shown in Figure [7.9]: 
 

 
Figure [7.9] 



55 
 

 
Once confirmed, the application will proceed to initiate service discovery while 
showing an indefinite progress bar on the screen in the same position as the 
Setup Mode confirmation dialog. The client application will implement the support 
for this service discovery using the available classes in the Android API, provided 
by WifiP2pManager for Setup Mode. Once the service discovery is complete, a 
bottom sheet will appear with all discovered Mini-Mixers. The user will select a 
Mini-Mixer to setup and the application will proceed to the setup page. The setup 
page will contain fields for SSID, Security Type, and Password for the user to 
enter for their given home router.  
 
Home Screen – The home page is the default landing page for a user after they 
have logged into the Mini-Mixer. The home page contains status indicators for 
the Mini-Mixer including internal temperature, wireless signal, and current mixing 
state. The home screen will also show the current mixing queue of order drinks 
and progress on any currently mixing drinks. From the home screen, the 
hamburger menu can be accessed to select other components of the application, 
such as settings, top drinks, suggested drinks, and the ingredient manager. The 
home page will also contain a floating action button, which will be present on all 
screens of the application. [44] The floating action button will be used to create, 
edit, and place drink orders very quickly. A flowchart of the process is shown in 
Figure [7.10]: 
 



56 
 

 
Figure [7.10] 

 
Top Drinks – This screen will contain a list of top 100 drinks on the Mini-Mixer. 
The hamburger menu and the floating action button will be present as well to aid 
in navigation away from this screen. The top drinks will be displayed as a list of 
Card Components. [45] The card component for each recipe will contain two 
actions – order recipe and add to the user’s current recipes. The card can be 
expanded on touch into Content Blocks which will provide additional details about 
the selected recipe. The process flowchart is shown in Figure [7.11]: 
 



57 
 

 
Figure [7.11] 

 
Suggested Drinks – The suggested drinks tool will provide an overlay with a 
card component containing a suggested drink from available ingredients. The 
card overlay can be refresh for a new recipe to be suggested until the user is 
satisfied or wishes to exit the tool. The process flowchart is shown in Figure 
[7.12]: 
 



58 
 

 
Figure [7.12] 



59 
 

Ingredient Manager – The ingredient manager is the interface that can be 
accessed from the hamburger menu which will be used to manage entered 
ingredients as well as moving ingredients from storage to a designated pump. 
The ingredient manager will consist of a screen using mobile tab components to 
differentiate between pumping stations and storage. [46] Each tab will be labeled 
with the pump id with one tab designated ingredients in storage. The tabs 
designating liquid pump spot will have a main card displaying the current 
ingredient as well as a list of smaller cards below it with available ingredients. 
The user only needs to select a smaller card to switch out an ingredient at a 
given liquid pump. The process is shown in a flowchart of Figure [7.13]: 

 



60 
 

 
Figure [7.13] 

 



61 
 

Create a Drink – The drink creation tool can be accessed from either the 
navigation button or the hamburger menu. The drink creation tool will feature a 
list of at least default two discrete sliders that are divided into five parts. Beside 
each slider will be a selection list for each available ingredient that has been 
entered into the Mini-Mixer. A floating button at the bottom of the sliders list will 
be used to add more ingredients if needed, up to a maximum of six total discrete 
sliders. The drink can be named at the top of the screen which will contain a title 
text field and a “done” button which will create and save the drink. A description 
of the drink can be added below the discrete sliders within a test field. A flowchart 
of the process is shown in Figure [7.14]: 
 

 
Figure [7.14] 

 
Edit and Manage My Drinks – The drink manager can be accessed by either 
the floating action button or the hamburger menu. The drink manager will consist 
of a list of cards containing the drinks owned by the user of the application. The 
user can touch the card to provide more information in an expanded form. The 
user can also use the edit and order action buttons to be taken to the drink 
creation/editing screen or ordering screen, respectively. The flowchart for the 
Drink Manager is shown in Figure [7.15]: 
 



62 
 

 
Figure [7.15] 

 
 
 
 



63 
 

Personal Computer Platform - The personal computer platform is another client 
that we will be pursuing to some extent. This is mainly due to the fact that the 
Django REST Framework has a built-in feature where API endpoints have 
automatically generated views – in our case web pages. While not entirely 
practical or operational from a user’s standpoint, this makes for a great 
debugging and testing platform to support, should we allow users to develop their 
own client applications in the future. The Interface for the PC will be provided by 
the mostly automatically generated Web Browsable API. [47] The Web 
Browsable API will mostly serve as a convenient point for experienced user to 
hack with the Embedded Server and create their own applications and 
experiences aside from the provided mobile client system. For our purposes, the 
Web Browsable API will serve as a software testing point for our test cases as 
well as during our iterative phases of our programming plan for the Mini-Mixer 
software.  
 

7.4 COMMUNICATIONS 

 
The communications between the hardware components has to facilitate each 
component appropriately without compromising the performance or capability of 
each component. We have a unique challenge in our Mini-Mixer implementation 
as we would like to both initially setup the Mini-Mixer as well as normally operate 
the machine exclusively using wireless technologies available to our hardware 
choices. With this in mind, we have chosen the communications methods 
carefully for each pair of hardware components.  

7.4.1 CONTROLLER-SERVER 
 
The controller-server communications will be facilitated by UART hardware over 
serial RS-232 standard communications. The commands being passed between 
the Embedded Controller and Embedded Server are small and simple and can 
be defined elegantly as serial commands. The UART connections only require 
two pins on each device, one for transmission (Tx) and one for receiving (Rx). 
This is ideal as we have a number of pumps and other sensors that will be 
accommodating the available pins on our MCU. ASCII character commands will 
be sent in a sequential manner from the Embedded Server to the Embedded 
Controller, with possible parity bit checking to determine if data transmission was 
successful. Unlike I2C, acknowledgement is not supported natively with UART; 
however, it is possible to emulate the behavior to ensure that the controller 
properly receives the commands. Certain functions will be written to facilitate this 
communication between controller-and server even further. 
 
 
 
 



64 
 

7.4.2 CLIENT-SERVER  
 
The client-server communications will consist of a mixed-mode operation with a 
Wi-Fi module on the Embedded Server. The mixed-mode operation is divided 
into two modes: 
 

 Wi-Fi WLAN Mode, or Normal Operating Mode. 
 Wi-Fi P2P Mode, or Setup Mode. 

 
We are taking advantage of Android’s built-in Wi-Fi P2P mode support of our 
Client System in order to implement a seamless setup mode for the Mini-Mixer. 
In this mode, which will be activated by a “reset” physical input on the machine, 
the machine will disconnect from any current Wi-Fi access points and enter the 
Wi-Fi P2P mode with a preset PIN/passphrase. Once the “reset” input has been 
activated on the Mini-Mixer, the client should be able to enter a “setup” mode and 
connect to the Mini-Mixer serving as the host. At this point, the user will enter in 
information about their Access Point for the Mini-Mixer to connect and submit the 
connection settings to be applied. The Mini-Mixer’s server will accept this request 
with the new/modified connection settings and apply them to the WLAN interface 
of the Embedded Controller. At this point, the Mini-Mixer will have dropped out of 
“Setup Mode” and entered “Normal Operation” mode, ceasing any P2P 
connection with client. If the settings are successful, the Mini-Mixer will indicate a 
“connected” status on its indicator. If not, the Mini-Mixer will indicate a “failed” 
status on the indicator and go back into “Setup” mode for the client system to 
attempt to apply new settings. Setup Mode is only activated when the Mini-Mixer 
cannot connect to an access point after leaving Setup Mode or if the user 
manually activates the physical “reset” input on the Mini-Mixer. Normal Operation 
mode will begin once at least one successful Setup has been completed. At this 
point, the Mini-Mixer is connected to an Access Point of the user’s choosing in 
the traditional manner as most Wi-Fi devices are accustomed to. Once in this 
mode, it is up to the client to connect their device to the same Access Point, at 
which point the user may enter the application and login to their account using 
their credentials and make HTTP requests to the Embedded Server to control the 
Mini-Mixer. The Mini-Mixer will remain in this mode as long as there is a working 
connection to the Access Point.  
 
The hardware implementation of this hybrid method for the Embedded Server will 
require a wireless module capable of ad-hoc or Wi-Fi P2P mode within a Linux 
operating system environment. We also require a device that is capable of 
connecting to a normal WLAN using an Access Point that is generally considered 
to be a home Wi-Fi router. For this, we need to ensure that the module used 
supports the major wireless standards in use as well as the data security 
protocols that are supported and preferred. The wireless standards most 
commonly in use today are IEEE 802.11n (draft), IEEE 802.11g, and IEEE 
802.11b. There are a number of security protocols but we are going to focus on 
two of the most secure and forgo supporting the protocols that may still be in use 



65 
 

but are considered deprecated by the general security community. For this, we 
intend to support Wi-Fi Protected Access (WPA) and its successor, Wi-Fi 
Protected Access II (WPA2). [48] These requirements are going to be achieved 
using USB module for the Beaglebone Black. The module chosen is based on 
the RTl8192/8188CUS Chipset which has Linux drivers capable of this ad-hoc 
mode as well as supports our chosen wireless standards and security protocols. 
[49] [50] On the client side, this functionality is provided by the hardware and 
firmware of the mobile device. In our case, this could be any of the major mobile 
devices and smart phones that have been released in the past several years. We 
have determined that although not all devices will support the Wi-Fi Direct 
standard, we are confident that a sufficient and majority of modern mobile 
devices support this standard, which is appropriate for the Mini-Mixer. [51]  
 

8. PROTOTYPE CONSTRUCTION AND PROGRAMMING 

 
This sections outlines the methods of assembling the prototype as well as 
programming the software. All parts have been sourced from various vendors 
with the choice being heavily influenced by the price of the component. A 
construction plan has been outlined as well as a programming plan and 
roadmap. 
 

8.1 PARTS ACQUISITION AND BILL OF MATERIALS 

 
Each part that will be acquired for the construction of the Mini-Mixer will be 
documented for reference. Parts will be purchased from vendors and websites 
like Adafruit, Digikey, Amazon, eBay, etc. Some electrical components, such as 
resistors and capacitors, are already in possession and will not be purchased. 
These components will be logged for reference, however. The Bill of Materials for 
the Mini-Mixer is as listed below: 
 

Bill of Materials 

Item Name Quantity Description 

1 Atmel ATMega 328P 1 Embedded Microcontroller 

2 BeagleBone: Black 1 Embedded Server 

3 Peristaltic Pumps w/ 
Tubing 

6 Mini-Mixer’s pumps 

4 TI SN75440 
H-Bridge IC 

2 H-Bridge Integrated Circuit for 
pumps 

5 Colored Mechanical Push 
Button 

2 Buttons for user input 

6 TI LM22674 Buck 
Converter IC 

2 Step down buck converter for 
embedded server and controller 

7 Various Enclosure 
Materials 

N/A Miscellaneous Enclosure Materials 

8 eTopxizu AC to DC 12V 1 Mini-Mixer’s Power Supply 



66 
 

20A Power Supply 

9 Adafruit Character 
Display 

1 Character Display for Mini-Mixer’s 
output 

10 5mm LED 6 Indicator lights 

11 Wi-Fi Module 1 Network connectivity 

12 22pF Ceramic Capacitor 2 Crystal load capacitors 

13 100Ω Through-hole 
Resistor 

7 Resistors for LEDs 

14 16MHz Crystal 1 Used as clock for the 
microcontroller 

15 1KΩ Through-hole 
Resistor 

1 For an active low pin on the 
microcontroller 

16 Amber LED Strip 4 For enclosure lighting 

17 Plexiglas Sheets 4 Material the Mini-Mixer’s framing 
will consist of 

18 RTV Silicon 1 Used to weld the plexiglas sheets  

19 Polyethylene Wash 
Bottles (1000mL) 

6 To hold the user’s ingredients 

20 Temperature Module 1 Monitoring the temperature of the 
Mini-Mixer 

21 Peltier Cooler 1 Mini-Mixer’s cooling device 

 
 

8.2 PCB VENDOR AND ASSEMBLY 

 
The Mini-Mixer’s PCB will be constructed by 4pcb.com. They have several 
student discounts, which help with the overall cost of the Mini-Mixer. Specifically, 
the two layer $33/PCB discount will be utilized. The assembly of the PCB will be 
done by the team, preferably in the Senior Design Laboratory; this is to be done 
manually to also reduce the cost of production of the Mini-Mixer. It should be 
noted that lead presents a health and safety concern. To address this concern, it 
was decided that lead free solder will be used to assemble the board. This will 
require equipment that can handle the high melting point for lead free solder; 
lead free solder’s melting point is around 100 degrees Fahrenheit higher than 
leaded solder. Multiple PCB boards will be ordered, in case assembly goes 
wrong and the board is damaged. However, in the final budget component listing, 
only one PCB will be listed, as there will only be one PCB in the Mini-Mixer’s final 
iteration.  
 
 

8.3 PRECONSTRUCTION 

 
There will be a preconstruction phase before beginning actual construction of the 
Mini-Mixer. During the preconstruction phase, some small tests will be conducted 
so that data can be collected and be statistically analyzed in a manner that will 



67 
 

provide meaningful results. One test that will be done will be to run the pumps to 
find a relationship between the flow rate of the pump and the time elapsed. This 
data will be utilized to program a function that will convert the amount of ounces 
in an ingredient to the amount of time necessary to let the pumps run. Another 
test, similar to the previously described test, is to run the pumps to find a 
relationship between the flow rate of the pump and the frequency of the PWM 
signal used for the input. This is important to determine, as this will allow for a 
balance between speed of dispersing and safe usage of the pumps. 
 

8.4 FINAL PROGRAMMING PLAN 

 
The software development process is one of the most important areas of 
planning in the construction of the prototype. In the case of the Mini-Mixer, the 
development team involved in the software development also must develop the 
hardware as we are limited in human resources. For this reason, we are taking 
careful consideration in how we approach the software implementation process 
and how it correlates to the needs of our hardware development. We have three 
major software packages that are connected to each other to implement our 
functionality. However, we have two software developers to delegate resources 
to each software package. The design of the software is in such a way that all 
three software packages could be developed concurrently if we had more human 
resources. Due to our constraints, this forces us to prioritize two software 
packages initially if we wish to continue to develop concurrently. As we are under 
a time constraint, and our software packages are designed to be modular, we 
have elected to continue to develop at least two software packages concurrently 
during the implementation of the Mini-Mixer prototype. We initially considered 
Agile and its derivative development methods as a consideration for 
implementing our prototype. However, the requirement to deliver a working 
product very early in the development process would be a strain on our small 
team. Instead, we have decided to pursue a more traditional model that the Agile 
methods take some of their philosophy from. The software development process 
we will be following for the Mini-Mixer prototype will be the Iterative and 
Incremental Build Model. [52] This model has similarities to the Agile methods 
but with less of a focus on delivering a high-featured product early in the 
development process. This method also allows for developers to work on multiple 
software packages at the same time, with little interference between modules. 
This process allows for our team to manage risk by refactoring at any point of 
failure during each build increment. This is particularly important as we have 
identified some issues regarding the known specifications of our fluid pumps and 
the expectations of the unknown specifications. We are acquiring our fluid pumps 
from a third-party, so the datasheets for the fluid pumps are not immediately 
available aside from some limited information from the vendor. Due to reasons 
stated in the hardware design section, we have decided to continue to pursue 
these pumps for their immediate advantages. However, the exact accuracy and 
timing of the fluid pumps are unknown and will require a certain degree of testing 
and iteration to meet our requirements specifications. The incremental build 



68 
 

process can address these issues very nicely as we can adjust for these 
unknowns on-the-fly without affecting other software packages in the prototype. 
In our implementation, the first two increments have been chosen to be the 
Embedded Controller and the Embedded Server, due to their close relationship 
and the ability to debug client logic as needed directly from the Embedded 
Server. These two increments will be development in parallel, along with their 
communications model which could be thought of as a third increment. Once the 
requirements of at least one increment are satisfied, work on the Client System 
will begin, along with the increment for the communications between the Client 
System and Embedded Server. This build model allows us to backtrack on any 
increment in the case that the design requirements change or an unexpected 
issue arises that forces us to redesign components of the system.  
 

8.5 HARDWARE CONSTRUCTION 

 
As mentioned in an earlier section, the construction of the prototype will be done 
in an iterative process. For one of the first iterations, the enclosure will be 
constructed with wood, and will be left semi-open for ease of access to various 
parts. A standard cooler will be used to house the various components of the 
prototype in this early iteration. This cooler will be picked so that the Peltier 
cooler may be easily swapped in and out as necessary when conducting testing. 
The Embedded Server will simply be mounted in a similar manner as it will be in 
the final build, with the difference being the prototype’s mounting will not be a 
semi-permanent mount. The Embedded Controller will also have similar 
mounting to that of the Embedded Server. Due to the cheap cost of the 
Embedded Controller’s microcontroller, the prototype will initially feature this 
controller built on a breadboard, and then as the iterations progress, transitioned 
into a protoboard. One of the last iterations will switch to use the PCB as 
opposed to the protoboard. At least one SN754410 H-Bridge IC will be used to 
test several of the peristaltic pumps, to ensure parallel and sequential pumping 
work as intended. The two LM22674 buck converters will be used to power the 
Embedded Controller and the Embedded Server in early iterations, as will the 
final ones. These buck converters will not be prototyped on a breadboard, but 
rather on a protoboard; the reason behind this is because of the current 
limitations of a breadboard. Several amps of current will be necessary to run 
several pumps at once, of which a breadboard’s internal metal strips cannot 
handle without overheating and possibly melting the plastic around it. The 
SN754410 will also be constructed on a protoboard as opposed to a breadboard 
for these reasons.  
 

9. PROTOTYPE TESTING AND VERIFICATION 

 
The goal of the prototype testing and verification phase of development is to 
ensure that the Mini-Mixer will meet all requirements specifications. Each set of 
tests are divided up into hardware and software components, much like the initial 



69 
 

requirements specifications. For each set of tests, we will define the testing 
environment(s) and the tools or equipment required for the set of tests. We will 
define a “test” as follows: 

 Each test will map directly to a requirements specification.  
 A one-to-one relationship will be enforced between the tests and 

requirements specifications.  
 Each test will be performed on the individual component or the smallest 

subset of components possible first. 
 A final run of all tests will be performed on the prototype system as a 

whole.  
 The tests will follow a pass or fail procedure following the results of the 

individual and system-wide tests.  
 

9.1 HARDWARE TEST ENVIRONMENT 

 
The hardware test environment will almost exclusively be within the Senior 
Design Lab where hardware development will also occur. The consumer 
environment does not differ much from the Senior Design Lab which allows us to 
cover all test cases within the Lab. The tools required for these test cases will be 
the following: 

 Scale. 
 Timer. 
 Measuring Glass. 
 Wattmeter. 
 Calculator.  
 Personal Computer. 
 Measuring Tape.  
 Thermometer. 

 
 

9.2 HARDWARE TEST CASES 

 
The following are test cases mapped to each specification requirement. The test 
procedure will follow the given requirement with an implicit pass or fail result. 

 
 The unit shall have a dry weight of no more than 40 pounds. 

 The unit shall be placed on a scale and weighed to ensure its total weight, 
neglecting any installed fluids, to not exceed 40 pounds.    

 The unit should produce a mixed drink from start to finish in no longer than 1 
minute. 
 A timer will be used to determine the time required to mix a given drink. As 

mixtures can vary significantly due to the customization involved, we will 
require an average to be calculated from a series of tests. The series of 
tests will involve mixtures from the range of one ingredient all the way up 
to the maximum of six ingredients. Each mixture will be timed three times 
to get an accurate average for the time it takes for a particular number of 



70 
 

ingredients to be mixed. These will then be average together to arrive at 
the final value for average time to mix a drink. This value must be under 
one minute. 

 The amount of fluid in the components of each mix should have an error of no 
more than +/-10%. 
 A glass of a known size will be used to measure the mixture produced by 

the Mini-Mixer. Due to the high level of customization, we will require an 
average error to be calculated. This will be calculated from a series of 
tests performed over the range of mixes from minimum ingredients (one 
ingredient) to maximum ingredients (six ingredients). A series of three 
tests will be performed for each mixture of ingredients. A calculated 
percentage of error will be made from each test using the glass of known 
size. These will then be average together to arrive at a final average 
value, which will either pass or fail our requirement specification. 

 The unit shall provide enough resources to hold 6 different fluids. 
 This requirement specification can be tested by simply counting the 

containers for fluids in the Mini-Mixer, with a pass or fail result.  
 The unit shall consume no more than 600 Watts of power under load.  

 A wattmeter will be used to measure the power of the Mini-Mixer while 
under a mixing load. The test passes if the power consumption remains 
under 600 Watts and fails otherwise. 

 The mixer prototype should have a combined total cost of no more than 800 
dollars USD.  
 This test will pass or fail by simply calculating the total cost of the bill of 

materials. The test will fail if the total bill of materials exceeds 800 dollars 
USD. 

 The mixer will be controlled using a mobile device with an application.  
 This test will encompass the connectivity and the ability to send 

commands to the Mini-Mixer from the mobile application. This means that 
the connectivity must be valid in both Setup mode and Normal operating 
mode. As we are communicating between the Mini-Mixer and the Client 
device using HTTP implementations, our test will be to send a HTTP 
request to the Mini-Mixer in both setup mode and normal operating mode. 
The test will pass if both cases provide a HTTP response from the Mini-
Mixer. 

 The size of the accepted fluid containers shall be no higher than 250 
millimeters. 
 A metric ruler will be used to test this specification requirement. Each of 

the six fluid containers will be measured to ensure they are no taller than 
250 millimeters, with a pass or fail result.   

 The unit should produce a mixture with an initial temperature of no higher 
than 55 degrees Fahrenheit.  
 A liquid thermometer that is industry calibrated will be used to test this 

case. The final mixture’s temperature will be measured immediately after 
production, with a pass or fail result. 



71 
 

 The unit shall have dimensions no larger than 2-foot Height X 3-foot Width x 
3-foot Depth. 
 A ruler will be used to test this case. The Mini-Mixer will be measured by 

height, width, and depth upon complete assembly of the prototype. This 
will have a pass or fail result. 

 The unit shall accept a glass size of 6 inches in height and 4 inches in 
diameter.  
 A ruler will be used to test this case. Glass sizes that do not exceed these 

dimensions will be measured and then placed under the dispenser of the 
Mini-Mixer to ensure the dispenser is centered directly over the glass. A 
pass or fail result will follow. 

 The unit should be able to accept cocktails orders from a range of up to 20 
feet.  
 A ruler will be used to measure a radius around the Mini-Mixer within the 

test environment. The Mini-Mixer will be setup to be ready to mix and pour 
a drink. A test user will stand at 20 feet from the Mini-Mixer and place a 
mixing order. This will be performed at 4 points around the radius of the 
Mini-Mixer. A pass or fail will result from each test with the entire test 
failing if one in the series of tests fails.  

 

9.3 SOFTWARE TEST ENVIRONMENT 

 
The software test environment will be located at the team member’s homes, 
school, or any location with their personal computer. Since the software 
packages are mostly modular, this allows development to occur concurrently and 
independently of each team member. The hardware test environment will also be 
utilized when physical testing of the software logic with the hardware will be 
required. The following tools are required for these test cases: 
 Personal Computer. 
 Timer.  
 Counter. 
 Measuring Glass. 
 

9.4 SOFTWARE TEST CASES 

 
 We’re placing a limit of no more than a 4 step process from the application’s 

start screen to a drink in the cup.  
 This will be tested by usage of the mobile application once a user is 

logged in. The user will start from the home screen to place and start an 
order. The number of steps required should be no more than 4 or the test 
will fail.  

 The application should be able to create 128 different combinations of the 
fluids in the machine. 
 This test can be verified by calculating the total number of possible 

ingredient combinations given the number of ingredients in the machine.  



72 
 

 The mobile application should be able to create mixtures in units/steps of 
0.5oz.  
 This will be tested by using a measuring glass to ensure a single pump is 

able to produce mixtures in the appropriate units. Each pump will be 
tested individually as well as together with steps equaling the total size 
limit for a single glass.  

 We are placing a limit of no more than 8 ounces (~237 milliliters) on the total 
mixture size that application can create. 
 The application will have unit test cases to ensure that the recipe creation 

cannot create a drink size larger than 8 ounces.  
 The total time from submission of the mixture until the machine begins mixing 

should be no longer than 1 second.  
 A timer will be used to time from the point of an order start until the pumps 

start physically pumping. The test passes if the time is within 1 second 
and fails if it is over 1 second.  

 The maximum allowed custom mixtures for a single user will be limited to 
100.  
 A unit test case will be used to attempt to create over 100 mixtures for a 

single user. The unit test case will then retrieve a list of the owner’s 
recipes. If the recipe count is over 100, the test fails. Otherwise, the test 
passes.  

 The maximum allowed size of the top list will be limited to 100.  
 A unit test case will be created to create greater than 100 custom drinks 

and then retrieve a list of the top drinks. The test fails if the list is greater 
than 100 recipes and passes otherwise.  

 The application will provide the limit of drinks on the machine, which is 6. 
Specifically, the application may only provide options for the current types of 
the 6 ingredients in the machine at any given time.  
 A unit test case will be created to ensure that an order cannot be placed 

unless all ingredients are fulfilled either by the user or the Mini-Mixer.  
 The client application will need to have the ability to suggest at least 1 mixture 

to the user, based on available ingredients.  
 A unit test case will be created to request a suggested recipe. The test 

passes if at least one recipe is returned and fails otherwise.  
 

9.5 VERIFICATION 

 
Verification is required to ensure each subsystem functions as intended. Initial 
verification of the Embedded Server to Embedded Controller communication will 
be done through connecting to the Embedded Server with a computer via SSH, 
and issuing commands to the Embedded Controller with a serial terminal 
emulator. As the prototype build progresses, this test will further validate more 
subsystems; for instance, when testing a set of commands to run two pumps in 
parallel, not only is the communication between the Embedded Server and the 
Embedded Controller verified, but the functionality of the pumps, as well as the 
hardware driving and powering the pumps is verified. This verification process 



73 
 

will evolve to include the mobile app and software on the embedded system that 
will autonomously issue the commands to the controller.  
 

10. PROTOTYPE OPERATION 

 
The operation of the prototype has been designed to be as simple as possible for 
the user in a home environment. We have also designed a set of procedures for 
the initial setup of the Mini-Mixer to ensure that the device can be setup with as 
little hassle as possible. There are also a few maintenance procedures required 
for safety and intended operation of the machine. The usage of the Mini-Mixer 
itself is almost entirely handled through the mobile application using a menu and 
step-based approach for viewing, creating, editing, and mixing the user’s drinks.  
 

10.1 SETUP AND MAINTENANCE 

 
From the perspective of the user, the only real setup that will be required is to 
plug the Mini-Mixer into an AC outlet, and set up the Wi-Fi connection on the 
Mini-Mixer. Maintenance will be conducted by enforcing a periodic flow rate 
calibration when the user requires dispensing to be very accurate. The user will 
be responsible for refilling and cleaning the ingredient containers, as well as 
ensuring that the containers are securely placed inside the Mini-Mixer’s 
designated compartment. The user will also have to ensure that the tubing is 
properly fixed inside each the containers. 
 

10.2 USAGE 

 
Usage of the Mini-Mixer will be a very simple process, where a drink request can 
be made with customization in four steps or less. The Mini-Mixer is controlled 
almost entirely using a mobile device.  
Requirements: 

 Mobile device with the Android Operating System capable of Wi-Fi 
connections.  

 Home router.  
 The Mini-Mixer Client Application.  

 
Simply open the Mini-Mixer app from your device. If this is the first time, a toast 
will appear saying that a Mini-Mixer is not connected. Touch the “Setup” button 
and you will be directed through the setup process. Ensure that the Mini-Mixer 
and you home router is both turned on and have your wireless access details 
ready. Once the router has been setup, you should be met with a connected 
toast once you return to the login screen of the application. Ensure that your 
mobile device is connected to your home router. If you haven’t already, you will 
need to register an account with the Mini-Mixer by touching “Register”. Fill in the 
details and you will be prompted to login. Once inside the application, you will 
see a main status menu with general information about your Mini-Mixer. The 



74 
 

menu on the top left will direct you to your Drinks, management interface, and 
suggested drinks. You can use the floating button at the bottom right to create a 
new drink or get started with placing an order. To exit the application, you can hit 
the “back” key and the application will exit and return to your home screen. 
 

11. PROJECT MANAGEMENT 

 
The project management section encompasses all facets dealing the 
administration surrounding the design and implementation of the Mini-Mixer. This 
includes the most important components such as the division of labor, the 
intended milestones, and the available budget for the Mini-Mixer prototype.  
 

11.1 DIVISION OF LABOR 

 
As the team responsible for the Mini-Mixer only consists of two Computer 
Engineering undergraduates, the division of labor will be divided roughly in half. 
The following table illustrates each team member, and what his division of labor 
corresponds to: 
 
 

Thomas Davidson 

Embedded Server Programming 

 Wi-Fi (hardware, setup) 

 Client-Server 
communications 

 

Embedded Controller Programming 

 Pump control 

 Server-Controller communications 

Mini-Mixer Client 

 Mobile phone application 
(Android) 

 Web browser support 

Hardware Assembly 

 Prototyping on 
breadboards/protoboards 

 PCB Assembly 

 Subsystem integration 

Mini-Mixer Frame Construction 

 Various roles 

Mini-Mixer Frame Construction 

 Various roles 

 
Both members have “Mini-Mixer Frame Construction” listed, as the specific roles 
have yet to be determined. Keep in mind that this is a high level overview that 
could be broken down into a much larger table, but to conserve space, has been 
abstracted to this table. 
 

11.2 MILESTONES AND SCHEDULING 

 
The milestones and schedule provided will serve as a means to pace the work of 
the group and ensure that the project is complete given the limited time 
constraints. We are also intending on following a software development plan of 



75 
 

incremental and iterative implementation of each major module. This philosophy 
has been carried over to the implementation of the hardware throughout the 
scope of the roadmap as well. The roadmap has been carefully planned to 
consider the goals and objectives of each semester, as well as the time off 
between each semester including holidays and weekends.  
 

11.2.1 ROADMAP 
 
The roadmap will be our guide for delegating resources and tasks throughout the 
life of the prototype development. The roadmap is designed to accommodate the 
iterative and incremental design process, particularly at the beginning of the 
prototype implementation.  
Roadmap 
Summer 2015 May 31, 2015 – August 3, 2015 (roughly 10 weeks) 
 
NOTE:  * denotes a project milestone 
Week 1 (May 31, 2015 – June 6, 2015) 

 Completion of the Initial Project and Group Identification Project 
Document. * 

 Initial project research. 
 

Weeks 2 - 5 (June 7, 2015 – July 4, 2015) 

 Conduct research for the project to form a “body of knowledge”. This 
research can be divided in such a manner that will include the following: * 

o The documentation of senior design projects similar to the Mini-
Mixer. 

o Real products available on the market that are relevant to the 
design of the Mini-Mixer. 

 Pertinent hardware (microcontrollers, pumps, valves, etc.) discovered from 
said similar projects and products. 

 Software methodologies, implementations, and testing procedures that 
relate to the Mini-Mixer. 

 Towards the end of this four-week period, a transition from general 
research (i.e. possible microcontrollers) to more specific research (i.e. 
which microcontroller) will occur, which will lead into the next time block. 
  

Week 6 (July 5, 2015 – July 11, 2015) 

 Select parts and do extensive research on them, documenting all findings. 
* 

 Each member begins to write their own portion of the Final 
Documentation. 
 

Weeks 7 - 9 (July 12, 2015 – July 25, 2015) 

 Each member continues to write up their part of the Final Documentation, 
researching and collaborating when necessary.  



76 
 

 By the end of week 9, the Final Documentation will be written in its 
entirety, only subject to slight revisions thereafter. * 
 

Week 10 (July 26, 2015 – August 1, 2015) 

 All final revisions are made during the last week.  

 The Final Documentation is finished no later than August 1st. * 
 
Fall 2015 August 24, 2015 – December 5th, 2015 (roughly 15 weeks) 
 
Weeks 1-4 (August 24, 2015 – September 17, 2015) 

 Completion of working prototype of main unit (hardware, software). * 

 Initial testing of working prototype. 

 Initial documentation. 
 

Weeks 5-8 (September 18, 2015 – October 18, 2015) 

 Begin designing final version of the main unit. 

 Continued testing and documentation. 

 User mobile application development begins, with testing integrated into 
the testing of the main unit to streamline the process. 
 

Weeks 9-12 (October 18, 2015 – November 14, 2015) 

 Final development and testing conducted for the main unit and user 
application. 

 By the end of week 12, the project is declared finished as a working unit. * 

 Any pertinent documentation written during weeks 1-12 is integrated into 
the Final Documentation from Summer 2015. * 
 

Weeks 13-15 (November 15, 2015 – December 5, 2015) 

 All required documentation is prepared and finish before December 5th, 
2015. 

 The presentation is created, revised, prepared, and delivered. * 
 

 

11.3 BUDGET AND FINANCE 

 
The budgeting section outlines the total estimated cost of all parts mentioned in 
the Bill of Materials. We have a requirement set for the total cost to not exceed a 
threshold, which is considered our budget for the Mini-Mixer prototype.  

11.3.1 ESTIMATED BUDGET 
 
The estimated budget is used to give a good estimation of each part given our 
acquisition sources, estimated shipping and handling, as well as room for 
additional parts and materials should the prices fluctuate over time.  
 



77 
 

Part Quantity Price Total 

Atmel ATMega 
328P 
 
BeagleBone: 
Black 
 
Peristaltic Pumps 
w/ Tubing 
 
TI SN75440 
H-Bridge IC 
 
 
Full ATX 
Computer Case 
 
Thermaltake 
500w PSU 
 
 
Various LEDs 
 
Wi-Fi Module 
 
Various 
Electronic 
Components 
 
Peltier Cooler 
 
14Oz Bottles 
 
PCBs 
 
 

1 
 
 
1 
 
 
6 
 
 
3 
 
 
 
 
1 
 
 
1 
 
 
N/A 
 
1 
 
 
N/A 
 
 
1 
 
1 
 
3 

$2.50 
 
 
$50 
 
 
$30 
 
 
$2.75 
 
 
 
 
$120 
 
 
$24 
 
 
$15 
 
$12 
 
 
$0.00 
 
 
$25 
 
$1 
 
$34.66 

$2.50 
 
 
$50 
 
 
$180 
 
 
$8.25 
 
 
 
 
$120 
 
 
$24  
 
 
$15 
 
$12 
 
 
$0.00 
 
 
$25 
 
$6 
 
$104 
 

 Total                                                                                        $540.75                                    
 

12. SUMMARY 

 
The Mini-Mixer, as detailed in this document, is an autonomous drink mixer that 
strives to provide the best performance for the price point, while conforming to all 
safety and design standards. Combined with an aesthetically pleasing look and a 
relatively small form-factor, the Mini-Mixer will be the ideal appliance for any drink 
mixing necessities. The Mini-Mixer was designed with keeping a simple, intuitive 
interface in mind, while at the same time making such an interface contain 



78 
 

features that provided enough customization to suit any user’s taste. With 
impressive speed and accuracy, users will be very satisfied with what the Mini-
Mixer can provide. The Mini-Mixer uses safe, removable containers that are 
washable, for the sake of convenience. Compatibility is a large factor in the 
success of Mini-Mixer, to which the Mini-Mixer will support mobile devices, as 
well as personal computers. Cost of operation was also taken into consideration 
for the Mini-Mixer, with design choices geared towards power efficient devices to 
lower the overall power consumption of the system. The design of the Mini-Mixer 
utilized both electrical and computer engineering disciplines; this convergence of 
disciplines within the project was necessary from both a functional and practical 
standpoint. With only a team of two computer engineering undergraduates, this 
project has proven to be a challenging yet rewarding one. The design approach 
of the Mini-Mixer, overall, utilized a top-down approach that allowed for 
subsystem modularity; this resulted in benefits for several different constraints. 
This approach also allowed for flexibility of part selection, which is likely what 
contributed to producing a low budget. Overall, with all of the design decisions 
taken to fulfill the most goals and constraints, the Mini-Mixer will exceed all 
expectations, and effectively raise the bar for project based autonomous drink 
mixing solutions. 
 

13. APPENDICES 

 
The following are additional resources that were required to conduct research as 
well as develop this document.  
 

13.1 APPENDIX A: COPYRIGHT PERMISSIONS 

 
All diagrams and figures present in this document are original creations by the 
Mini-Mixer team unless noted in the figure description. 
 

13.2 APPENDIX B: WORKS CITED 

 
[1] http://www.coca-colafreestyle.com/home/ 
[2] https://github.com/partyrobotics/bartendro 
[3] http://www.adafruit.com/products/1335 
[4] http://www.ebay.com/itm/Thermoelectric-Peltier-Refrigeration-Semiconductor-
Cooling-System-DIY-Kit-Cooler-/261792872834 
[5] http://www.ebay.com/itm/New-Refrigeration-Thermoelectric-Peltier-Double-
Fan-Cooling-System-Kit-Cooler-/261793842155 
[6] http://www.purswave.com/101339-5573/201793_253554.html 
[7] http://www.adafruit.com/products/1150 
[8] http://www.ebay.com/itm/281697619068 
[9] https://www.sparkfun.com/products/10455 
[10] http://www.amazon.com/3-12V-Water-Pumping-Electric-RS-
360SH/dp/B00D82W60O 

http://www.coca-colafreestyle.com/home/
https://github.com/partyrobotics/bartendro
http://www.adafruit.com/products/1335
http://www.ebay.com/itm/Thermoelectric-Peltier-Refrigeration-Semiconductor-Cooling-System-DIY-Kit-Cooler-/261792872834
http://www.ebay.com/itm/Thermoelectric-Peltier-Refrigeration-Semiconductor-Cooling-System-DIY-Kit-Cooler-/261792872834
http://www.ebay.com/itm/New-Refrigeration-Thermoelectric-Peltier-Double-Fan-Cooling-System-Kit-Cooler-/261793842155
http://www.ebay.com/itm/New-Refrigeration-Thermoelectric-Peltier-Double-Fan-Cooling-System-Kit-Cooler-/261793842155
http://www.purswave.com/101339-5573/201793_253554.html
http://www.adafruit.com/products/1150
http://www.ebay.com/itm/281697619068
https://www.sparkfun.com/products/10455
http://www.amazon.com/3-12V-Water-Pumping-Electric-RS-360SH/dp/B00D82W60O
http://www.amazon.com/3-12V-Water-Pumping-Electric-RS-360SH/dp/B00D82W60O


79 
 

[11] http://www.spelchek.com/12v-24v-dc-gear-pump-for-carbonated-soft-drinks/ 
[12] http://www.xylemflowcontrol.com/beverage-dispensing/air-operated-
diaphragm-pumps/n5000-series-n5000-series-pump.htm 
[13] https://www.sparkfun.com/products/10456 
[14] http://www.homedepot.com/b/Plumbing-Pipes-Fittings-Copper-Pipe-
Fittings/N-5yc1vZbuu2 
[15] https://www.python.org/ 
[16] https://www.djangoproject.com/ 
[17] http://www.django-rest-framework.org/ 
[18] https://www.java.com/en/ 
[19] http://www.dropwizard.io/ 
[20] https://developer.bluetooth.org/TechnologyOverview/Pages/L2CAP.aspx 
[21] https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx 
[22] http://standards.ieee.org/about/get/802/802.11.html 
[23] http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/technical_note/DM00054618.pdf 
[24] http://www.astm.org/Standards/D2000.htm 
[25] http://www.ipc.org/toc/ipc-2221a.pdf 
[26] http://standards.ieee.org/about/get/802/802.11.html 
[27] https://www.bluetooth.org/en-us/specification/adopted-specifications 
[28] http://www.ti.com/lit/an/slla037a/slla037a.pdf 
[29] http://standards.nsf.org/apps/group_public/download.php/174/NSF_170-07-
Watermarked.pdf 
[30] http://www.nsf.org/newsroom_pdf/NSF_2-2012_-_watermarked.pdf 
[31] https://www.adafruit.com/products/399 
[32] http://www.amazon.com/eTopLED-Single-Output-Switching-Low-
cost/dp/B004OWUP5U 
[33] http://www.amazon.com/Super-Bright-Waterproof-Flexible-
Lights/dp/B005EQROYK 
[34] https://pypi.python.org/pypi/zeroconf/0.15.1 
[35] http://drvbp1.linux-foundation.org/~mcgrof/rel-html/iw/ 
[36] https://tools.ietf.org/html/rfc7159 
[37] https://tools.ietf.org/html/rfc2045 
[38] https://www.iana.org/assignments/media-types/media-types.xhtml 
[39] http://addb.absolutdrinks.com/docs/ 
[40] https://www.google.com/design/spec/material-design/introduction.html 
[41] https://tools.ietf.org/html/rfc6763 
[42] http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-
direct.html#discover 
[43] http://developer.android.com/training/connect-devices-
wirelessly/nsd.html#discover 
[44] http://www.google.com/design/spec/components/buttons-floating-action-
button.html# 
[45] http://www.google.com/design/spec/components/cards.html 
[46] http://www.google.com/design/spec/components/tabs.html 
[47] http://www.django-rest-framework.org/topics/browsable-api/ 

http://www.spelchek.com/12v-24v-dc-gear-pump-for-carbonated-soft-drinks/
http://www.xylemflowcontrol.com/beverage-dispensing/air-operated-diaphragm-pumps/n5000-series-n5000-series-pump.htm
http://www.xylemflowcontrol.com/beverage-dispensing/air-operated-diaphragm-pumps/n5000-series-n5000-series-pump.htm
https://www.sparkfun.com/products/10456
http://www.homedepot.com/b/Plumbing-Pipes-Fittings-Copper-Pipe-Fittings/N-5yc1vZbuu2
http://www.homedepot.com/b/Plumbing-Pipes-Fittings-Copper-Pipe-Fittings/N-5yc1vZbuu2
https://www.python.org/
https://www.djangoproject.com/
http://www.django-rest-framework.org/
https://www.java.com/en/
http://www.dropwizard.io/
https://developer.bluetooth.org/TechnologyOverview/Pages/L2CAP.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx
http://standards.ieee.org/about/get/802/802.11.html
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/technical_note/DM00054618.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/technical_note/DM00054618.pdf
http://www.astm.org/Standards/D2000.htm
http://www.ipc.org/toc/ipc-2221a.pdf
http://standards.ieee.org/about/get/802/802.11.html
https://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.ti.com/lit/an/slla037a/slla037a.pdf
http://standards.nsf.org/apps/group_public/download.php/174/NSF_170-07-Watermarked.pdf
http://standards.nsf.org/apps/group_public/download.php/174/NSF_170-07-Watermarked.pdf
http://www.nsf.org/newsroom_pdf/NSF_2-2012_-_watermarked.pdf
https://www.adafruit.com/products/399
http://www.amazon.com/eTopLED-Single-Output-Switching-Low-cost/dp/B004OWUP5U
http://www.amazon.com/eTopLED-Single-Output-Switching-Low-cost/dp/B004OWUP5U
http://www.amazon.com/Super-Bright-Waterproof-Flexible-Lights/dp/B005EQROYK
http://www.amazon.com/Super-Bright-Waterproof-Flexible-Lights/dp/B005EQROYK
https://pypi.python.org/pypi/zeroconf/0.15.1
http://drvbp1.linux-foundation.org/~mcgrof/rel-html/iw/
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc2045
https://www.iana.org/assignments/media-types/media-types.xhtml
http://addb.absolutdrinks.com/docs/
https://www.google.com/design/spec/material-design/introduction.html
https://tools.ietf.org/html/rfc6763
http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html#discover
http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html#discover
http://developer.android.com/training/connect-devices-wirelessly/nsd.html#discover
http://developer.android.com/training/connect-devices-wirelessly/nsd.html#discover
http://www.google.com/design/spec/components/buttons-floating-action-button.html
http://www.google.com/design/spec/components/buttons-floating-action-button.html
http://www.google.com/design/spec/components/cards.html
http://www.google.com/design/spec/components/tabs.html
http://www.django-rest-framework.org/topics/browsable-api/


80 
 

[48] 
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2
F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farn
umber%3D1375945 
[49] http://www.adafruit.com/products/814 
[50] 
http://www.realtek.com/products/productsView.aspx?Langid=1&PFid=48&Level=
5&Conn=4&ProdID=274 
[51] https://www.wi-fi.org/product-finder-results?categories=4 
[52] http://www.softdevteam.com/Incremental-lifecycle.asp 
 

13.3 APPENDIX C: DATASHEETS 

 
Atmel ATmega 328P (Microcontroller) 
http://www.atmel.com/Images/doc8161.pdf 
 
T.I. SN754410 (H-Bridge) 
http://www.ti.com/lit/ds/symlink/sn754410.pdf 
 
T.I. LM22674 (Buck Switch) 
http://www.ti.com/lit/ds/symlink/lm22674.pdf 
 
HITACHI HD44780 (Character Display Controller) 
https://www.adafruit.com/datasheets/HD44780.pdf 
 
BeagleBone Black (System Reference Manual) 
http://www.adafruit.com/datasheets/BBB_SRM.pdf 

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farnumber%3D1375945
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farnumber%3D1375945
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farnumber%3D1375945
http://www.adafruit.com/products/814
http://www.realtek.com/products/productsView.aspx?Langid=1&PFid=48&Level=5&Conn=4&ProdID=274
http://www.realtek.com/products/productsView.aspx?Langid=1&PFid=48&Level=5&Conn=4&ProdID=274
https://www.wi-fi.org/product-finder-results?categories=4
http://www.softdevteam.com/Incremental-lifecycle.asp
http://www.atmel.com/Images/doc8161.pdf
http://www.ti.com/lit/ds/symlink/sn754410.pdf
http://www.ti.com/lit/ds/symlink/lm22674.pdf
https://www.adafruit.com/datasheets/HD44780.pdf
http://www.adafruit.com/datasheets/BBB_SRM.pdf

