

1

DESIGN DOCUMENT: MINI-MIXER

DEPARTMENT OF ELECTRICAL ENGINEERING & COMPUTER
SCIENCE

UNIVERSITY OF CENTRAL FLORIDA
DR. SAMUEL RICHIE

SENIOR DESIGN I

GROUP 14

THOMAS “TJ” BERGENS
TJBERGENS@KNIGHTS.UCF.EDU

WILLIAM “DAVIDSON” TUGGLE
DTUGGLE@KNIGHTS.UCF.EDU

mailto:tjbergens@knights.ucf.edu
mailto:dtuggle@knights.ucf.edu

2

TABLE OF CONTENTS

1. Executive Summary .. 4

2. Project Description ... 5

2.1 Description ... 5

2.2 Motivation .. 5

2.3 Goals and Objectives .. 5

3. Requirements and Specifications ... 6

3.1 Hardware Requirements Specifications ... 6

3.2 Software Requirements Specifications .. 7

4. Realistic Design Constraints ... 8

4.1 Economic and Time-based .. 8

4.2 Environmental, Social, and Political ... 9

4.3 Ethical, Health, and Safety .. 9

4.4 Manufacturability and Sustainability .. 9

5. Research .. 9

5.1 Similar Projects .. 10

5.1.1 Project-Based Solutions .. 10

5.1.2 Commercial Solutions .. 11

5.2 Hardware Component Considerations ... 12

5.2.1 Embedded Controller ... 13

5.2.2 Embedded Server .. 14

5.2.3 Client System .. 15

5.2.4 Hardware Interface .. 16

5.2.5 Power Supply System.. 18

5.2.6 Cooling Method ... 19

5.2.7 Fluid Pump System.. 20

5.2.8 Fluid Storage ... 21

5.2.9 Frame and Enclosure .. 22

5.2.10 Illumination .. 24

5.3 Software Component Considerations .. 24

5.3.1 Embedded Controller ... 24

5.3.2 Embedded Server .. 25

5.3.3 Client System .. 26

5.4 Communications Considerations ... 28

3

5.4.1 Controller-Server ... 28

5.4.2 Client-Server .. 30

6. Relevant Standards .. 30

6.1 Hardware ... 31

6.2 Software and Communications .. 31

6.3 Food and Safety .. 32

7. Design Details .. 32

7.1 High-Level Overview.. 32

7.2 Hardware Components .. 34

7.2.1 Embedded Controller ... 36

7.2.2 Embedded Server .. 37

7.2.3 Client System .. 38

7.2.4 Hardware Interface .. 38

7.2.5 Power Supply System.. 39

7.2.6 Cooling System ... 39

7.2.7 Fluid Pump System.. 39

7.2.8 Fluid Storage ... 40

7.2.9 Frame and Enclosure .. 40

7.2.9 Illumination .. 41

7.3 Software Components ... 42

7.3.1 Embedded Controller ... 42

7.3.2 Embedded Server .. 44

7.3.3 Client System .. 53

7.4 Communications .. 65

7.4.1 Controller-Server ... 65

7.4.2 Client-Server .. 65

8. Prototype Construction and Programming .. 67

8.1 Parts Acquisition and Bill of Materials .. 67

8.2 PCB Vendor and Assembly ... 68

8.3 Preconstruction .. 68

8.4 Final Programming Plan .. 69

8.5 Hardware Construction .. 70

9. Prototype Testing and Verification .. 70

9.1 Hardware Test Environment .. 71

4

9.2 Hardware Test Cases .. 71

9.3 Software Test Environment ... 73

9.4 Software Test Cases ... 73

9.5 Verification ... 74

10. Prototype Operation ... 74

10.1 Setup and Maintenance ... 74

10.2 Usage .. 75

11. Project Management .. 75

11.1 Division of labor ... 75

11.2 Milestones and Scheduling .. 76

11.2.1 Roadmap ... 76

11.3 Budget and Finance .. 78

11.3.1 Estimated Budget .. 78

12. Summary .. 79

13. Appendices ... 80

13.1 Appendix A: Copyright Permissions .. 80

13.2 Appendix B: Works Cited ... 80

13.3 Appendix C: Datasheets .. 81

1. EXECUTIVE SUMMARY

The concept of an autonomous drink mixer has been around for quite some time,
and has been realized in different projects and products. Like many other
concepts, such realizations tend to have their set of advantages and
disadvantages. The Mini-Mixer is a project that tries to maximize the advantages
shared in previous projects, while also trying to minimize the disadvantages. One
of the main factors that is to separate the Mini-Mixer from other similar projects is
the performance to price ratio; a ratio in which the Mini-Mixer will strive to make as
high as possible. Quality is another major factor in the Mini-Mixer, where the
system as a whole will be simple and intuitive to use, all the while being flexible
enough to allow customization that will satisfy a user’s needs. Safety is very
important to the design of the Mini-Mixer; important enough that certain subsystem
designs were heavily influenced by it. Supporting technology that is prevalent was
also a high priority in the design of the Mini-Mixer, with a mobile app specifically
designed to be the primary interface for it. All of these factors were decided to be
integrated into a compact package no larger than the average sized kitchen
appliance.

5

2. PROJECT DESCRIPTION

The idea of the Mini-Mixer was brought about after several brainstorming sessions
while trying to determine a project that was fit for our group’s collective skillsets.
Our basic requirements for such a project was to have something that included a
multitude of modern technologies that are relevant in today’s industries. We
wanted to take these technologies and find a practical way to apply them to a
problem. Once a problem and general solution had been determined, we wanted
to take proposed features and find interesting ways to implement them given the
context of this project.

2.1 DESCRIPTION

The Mini-Mixer is a small appliance designed to be compact, fast, and user-friendly
for everyday use in a kitchen or dinner/garden party setting. The appliance is
designed to automatically mix drinks as quickly and accurately as possible. The
appliance takes advantage of the user’s smart phone to provide a simple, intuitive
interface to create and order drink mixtures on the machine via wireless
communication. The mixture management interface is used to store custom
mixtures, as well as suggest new or popular mixtures for the user to try, based on
what is available in the machine.

2.2 MOTIVATION

As the world inches closer and closer to automation in all facets of the consumer’s
life, there is significant room for improvement in the area of beverage dispensers.
Specifically, there are very few options for a high quality drink mixer that is both
affordable and small enough to carry to different locations such as parties, beach
houses or other “getaway” destinations. A compact drink mixer can serve as both
a household appliance, as well as a novelty at a dinner or garden party. With the
introduction of the mobile smart phone that has come to dominate the tech gadget
market, we can use this to our advantage to provide a “remote” of sorts to the drink
mixer as a means of further adding convenience and features at little to no
additional cost on the part of the design of the machine. This realization opens us
many possibilities to enhance a drink mixing experience, such as the ability to have
user accounts with favorite drinks and the ability to share recipes with friends with
ease.

2.3 GOALS AND OBJECTIVES

The main objective of his project is to design a drink mixer that is small and simple
enough to have as many use cases as possible for the consumer. A one-off
permanent fixture such as Coca-Cola’s Freestyle machine [1] and similar products
is not viable for the everyday consumer. However, these types of machines have

6

become extremely popular at restaurants in recent years due to the combination
of ease-of-use and high level of customization in mixing the drinks. The average
person will only be willing to purchase an appliance such as this if the number of
use cases increases to a point that makes it a reasonable investment for the size
and price point of the appliance. We plan to achieve this by making the unit as
small as possible to become a semi-portable machine that has a robust feature set
suitable for many applications in the consumer’s life.

3. REQUIREMENTS AND SPECIFICATIONS

The following set of requirements specifications are what we will use to define all
functional features in the design of the Mini-Mixer. These requirements
specifications have been carefully selected to reflect the general motivation and
goals outlined in the project description. The requirements specifications have
been divided into two contexts – the hardware and the software specifications.
With each specification, we provide a brief reasoning and insight into the selection
of the requirement specification and how it directly applies to the goals and
objectives of the project.

3.1 HARDWARE REQUIREMENTS SPECIFICATIONS

 The unit will be designed to be very compact – small enough to place on a

tailgate, countertop, or take out to your patio.
 The unit shall have a dry weight of no more than 40 pounds.

 The “mixing” process is to be reasonably fast and should not keep the user
waiting too long.
 The unit should produce a mixed drink from start to finish in no longer than

1 minute.
 The “mixing” process should have good accuracy, with a margin of error that

you could expect from a human bartender.
 The amount of fluid in the components of each mix should have an error of

no more than +/-10%.
 The variety of drinks should be sufficiently large so that the user has enough

choice of mixes that they are not constantly switching out drinks or frustrated
at the lack of options.
 The unit shall provide enough resources to hold six different fluids.

 The unit should have a power rating that is safe for both the branch circuit of
the source as well as for the user. A power rating around the average small
kitchen appliance shall be chosen.
 The unit shall consume no more than 600 Watts of power under load.

 The mixer is meant to be low-cost to be viable in the consumer market. The
prototype should be comparatively low-cost as well.
 The mixer prototype should have a combined total cost of no more than

$800.
 The mixer should be extremely easy to use through a mobile device.

7

 The mixer will be controlled using a mobile device with an application.
 The mixer should be both portable and have a semi-universal bottle

acceptance. These containers should be able to accommodate both standard
750mL spirit’s bottles as well as 1-2 Liter soda bottles.
 The size of the accepted fluid containers shall be no higher than 250mm.

 The mixer should be able to produce a mixture at a chilled temperature that is
appropriate for consumption of cocktails and general fluid mixtures.
 The unit should produce a mixture with an initial temperature of no higher

than 55 degrees Fahrenheit.
 The unit is meant to be semi-portable as well as small enough to fit on common

tabletop areas. With this in mind, we are aiming for a size similar to the common
microwave appliance.
 The unit shall have dimensions no larger than 2-foot Height X 3-foot Width

x 3-foot Depth.
 The unit should be able to accommodate most popular cocktail glass types

including highball, Collins, and martini glasses.
 The unit shall accept a glass size of 6 inches in height and 4 inches in

diameter.
 The unit’s server should be able to accept cocktails submissions from the

mobile device at an acceptable range from the unit. With this in mind, the range
should be acceptable for a kitchen or outdoor gathering setting.
 The unit should be able to accept cocktails orders from a range of up to 20ft.

3.2 SOFTWARE REQUIREMENTS SPECIFICATIONS

 The mobile application is meant to be very user-friendly and simple to use,

while still providing a variety of mixture choices.
 We’re placing a limit of no more than a 4 step process from the application’s

start screen to a drink in the cup.
 The mobile application should be able to create all possible combinations of

the given fluids in the mixing unit.
 The application should be able to create 128 different combinations of the

fluids in the machine.
 The user should be able to adjust the fluid ratios in their mixtures. This must

also be in line with the expected accuracy of our pumps used for the fluids.
 The mobile application should be able to create mixtures in units/steps of

0.5oz.
 The mobile application should limit the total mixture size to a value that satisfies

the cup size, average cocktail size, and expected size of general mixtures that
are otherwise not cocktails.
 We are placing a limit of no more than 8 ounces (~237 milliliters) on the total

mixture size that application can create.
 The time it takes from submission of the mixture until the mixing unit is ready

to begin mixing should be sufficiently fast so that the user is not frustrated with
the wait time.

8

 The total time from submission of the mixture until the machine begins
mixing should be no longer than 1 second.

 The user should be able to store a large number of custom drinks in their profile.
 The maximum allowed custom mixtures for a single user will be limited to

100.
 The user should be able to view a top list of most favorited/popular drinks while

still allowing the application to remain performant.
 The maximum allowed size of the top list will be limited to 100.

 The mobile application should only provide the amount of drinks available to
the machine.
 The application will provide the limit of drinks on the machine, which is 6.

Specifically, the application may only provide options for the current types
of the 6 drinks in the machine at any given time.

 The application should have the ability to suggest drinks to the user, given the
ingredients on hand. This will add a component of exploration and convenience
to the user when they are ready to try something new.
 The client application will need to have the ability to suggest at least 1

mixture to the user, based on available drinks.

4. REALISTIC DESIGN CONSTRAINTS

Realistic Design Constraints are to be carefully considered, as this can greatly
impact the outcome of the design as well as the implementation. Failing to consider
major design constraints can result in complications or failure to implement
components or even entire requirements specifications during the prototype
construction phase.

4.1 ECONOMIC AND TIME-BASED

There is a considerable constraint placed on the Mini-Mixer economically. In order
to produce a system that will be accessible to many people, it must be affordable
enough to manufacture. Even in the home setting, there are still economic
constraints; high power consumption is not attractive, as it will lead to a higher
electric bill. These factors must be taken into consideration when designing the
Mini-Mixer for such a large range of users. The time frame to research, produce,
implement, and test a working prototype of the Mini-Mixer is around a total 20-25
weeks. This is not considering other course loads, work or personal obligations of
the team. This leaves us with a very limited time frame to go from an idea to a
working prototype of the Mini-Mixer. We are considering this to be a fairly
significant time-constraint that must be considered in the scope of the project. Our
team has also been restricted in the human resources that are contributing to this
project. Originally, the Mini-Mixer team consisted of 3 persons: Two Computer
Engineering students and one Electrical Engineering students. Due to unforeseen
circumstances, we are now a team of two Computer Engineers working on the
design of the Mini-Mixer. This poses and issue of limited knowledge surrounding

9

the Electrical Engineering aspects of our design. We also have the obvious human
resource limitations that come with working in a team of two persons. This is
considered a major constraint on our team that we must carefully monitor
throughout the design and implementation of the Mini-Mixer.

4.2 ENVIRONMENTAL, SOCIAL, AND POLITICAL

From an environmental and political standpoint, there are no constraints imposed
on the Mini-Mixer in any capacity. Although there aren’t any social constraints
imposed on the Mini-Mixer per se, there is some converging point between social
and safety that must be considered, and that is on alcoholic beverages. This is
further discussed in Section 4.3.

4.3 ETHICAL, HEALTH, AND SAFETY

One major consideration that arises out of designing and implementing a drink
mixer is that of the risk surrounding serving alcoholic drinks. This actually touches
on ethical, health, and safety issues altogether. We must be aware of the amount
and types of alcoholic beverages we are mixing and dispensing from the machine.
For example, we cannot allow the machine to dispense “too much” alcohol to a
single user in a given time frame. We also must consider the ethical issue of the
age required to drink alcoholic beverages. Ideally, we will need to have
mechanisms in place to prevent minors from being able to dispense alcoholic
beverages at their leisure.

4.4 MANUFACTURABILITY AND SUSTAINABILITY

Manufacturability and sustainability influences the design of the Mini-Mixer
considerably, because in order to satisfy these constraints, the Mini-Mixer must be
designed with modular subsystems. These subsystems must all function properly
at the lowest level, and must be compatible with other subsystems at the high level.
At the highest level, each subsystem must be replaceable. With subsystems that
are both replaceable and compatible with each other, it is possible for them to be
manufactured independently at the same time. For sustainability, the option to be
able to replace a subsystem is critical; without it, it is unlikely to sustain such a
system for a prolonged period of time.

5. RESEARCH

The research behind the Mini-Mixer is a key components of the design process,
particularly in early development. Our research efforts have been used to drive the
design of the Mini-Mixer early on in the process. Specifically, we have been able
to iterate over proposed implementations of our requirements specifications very
quickly by researching all available solutions, as well as previous efforts to tackle
our problem set. We have been able to utilize the findings of similar projects to

10

throw out bad ideas as well as use previous projects as a foundation of inspiration
for the design and implementation of the Mini-Mixer.

5.1 SIMILAR PROJECTS

During the early phase of research, we encountered many different projects that
have attempted to tackle the same problem space. Some of these projects were
the basis for inspiration later in our own design. Some had obvious issues in their
choice of design which allowed us to avoid these approaches very early on. The
projects with complete documentation were particularly helpful in gaining some
insight into the thought process behind their respective implementations in the
problem space. Proper documentation allowed us to study designs as well as part
choices for each feature and even how they fared during the testing phase. We
used these findings in our own research and considerations for the part choices in
our own designs. For this reason, we chose to pursue further research only on
projects that had sufficient documentation for their design and implementation
process.

5.1.1 PROJECT-BASED SOLUTIONS

Under the Sun Drink Mixer was a project designed by students here at the
University of Central Florida that share a similar set of goals to that of the Mini-
Mixer. Its primary purpose is to provide a system that can mix drinks using solar
energy as its power source. Like the Mini-Mixer will be, it is an autonomous device
that can be operated via a mobile phone application. It features a barcode scanner
that allows a user to scan a barcode that will reference a local server to determine
what drink to make. The machine used a gas based solution along with 12 Volt
solenoids to serve as the pumping mechanism. The case was constructed using
plywood, and the fluid bottle compartment used was a large Styrofoam box.

The Automated Beverage Dispenser was a project designed by students at
Georgia Tech. It features a touch screen interface that is drove by a programmable
logic controller running a modified version of VxWorks’s real time operating
system. Relays are used to control the fluid pumps, and liquid level sensors are
used to detect the levels of various fluids used. The hardware for this project was
divided into two units, ‘dispensing unit’ and ‘control unit’. Similar to the Mini-Mixer,
the system takes in a user generated recipe and makes the drink within a
reasonable amount of time. An interesting note is that the cost of this particular
project was over $3000, primarily due to the high priced hardware that was used.
One of Mini-Mixer’s goals is to be reasonably cheap to produce, so practically none
of the hardware used in this project will be used in the Mini-Mixer, although some
of the ideas that incorporated said expensive hardware may be similar to that found
in the Mini-Mixer.

The Automated Drink Mixer project was designed by students at Oregon State
University. Like the other projects discussed, the primary goal was to provide an

11

autonomous system that will make drinks for users. Automated Drink Mixer ‘s other
goals are interesting in that they align pretty close with that of the Mini-Mixer’s.
One immediate goal that stands out drink mixing requirement of under 120
seconds, which is close to the Mini-Mixer’s requirement of a minute or less.
Another goal similar is that of the size and cost constraints; the size constraint of
the Automated Drink Mixer is only two feet taller than Mini-Mixer’s constraint, and
$200 cheaper than Mini-Mixer’s cost. The weight of the Mini-Mixer is to be 10lb
less than the Automated Drink Mixer, which is also similar quantitatively. An
interesting goal specified in this project that was not explicitly handled in Mini-
Mixer’s initial requirements was the maximum voltage level; from a safety
perspective, this is a requirement that addresses both hardware design and safety.
For the Automated Drink Mixer, that maximum was set to 50V. Interestingly, this is
roughly under the minimum voltage that can negate the effects of the human
body’s resistance, which can make the current passing through potentially lethal.
For this reason, a maximum voltage will certainly be taken into consideration
during the design of the Mini-Mixer.

The SFSU Drink Mixer was designed by students at San Francisco State
University. Once again, its primary purpose was to be an automated drink mixer
that a user could easily control. The hardware design of this project in theory was
good, but the actual execution and outcome wasn’t as good. The construction used
was an open style wood design, with exposed wiring and tubing. A breadboard
was used, so no permanent design was in place. Only two containers for fluids
were used, and said containers were polycarbonate mason jars. The concept that
was used for fluid level detection was interesting; a differential pressure sensor
was used in order to do so. However, there seemed to be an accuracy issue with
this approach, where the team suggested “better signal conditioning” to mitigate
this. Nevertheless, this approach is interesting and may be further researched for
the Mini-Mixer’s purposes.

5.1.2 COMMERCIAL SOLUTIONS

Bartendro - The Bartendro is a Kickstarter-baked project to develop and
commercialize an automated drink mixing product. [2] Their product uses custom
peristaltic pumps with Arduino-powered PCBs embedded in each pump to control
the flow of liquids to the dispensing area. These are all controlled using a
Raspberry Pi which is used to serve the UI and dispatch commands to each pump.
The hardware and software of the Bartendro is completely open source which
allows for replication and modification. The commercial version of the Bartendro
comes with up to 15 peristaltic pumps Which allows a wide range of drink
combinations. The Bartendro 7 is the closest with respect to features as we
envision with our own design. The Bartendro 7 has a price tag of $2,499.99 which
is far above our cost constraints. The open-source nature of this project allows us
to study and discuss similar functionality for our own design and functional
specifications and requirements. The most interesting takeaway from the design

12

of this solution was their design choice to power each peristaltic pump with an
attached Arduino-powered PCB. This makes for a very expensive pump to sell but
at the same time this allowed for some very interesting features and overall design
choices. For example, having an entire microcontroller for each pump allowed for
embedded illuminating LEDs complete with animations sequences during the
pumping process. This also allowed them to use Ethernet ports to network all of
their pumps together for communications.

Coca-Cola Freestyle Machine - The Coca-Cola freestyle machine is a large
standing machine that vends hundreds of combinations of soda and juice mixtures.
The machine is meant to replace the traditional fountain drink station that
dominates the restaurant industry as well as quick-service stations such as
convenience stores. While the machine’s portability and power requirements are
well out of the range for our project, it is worth noting the easy-to-use interface that
comes with the machine. The freestyle machine sports a massive touch-screen on
the unit, as well as a mobile application as a means of interfacing with the device.
Both of these user experiences are very straightforward and simple to use, while
maintaining an impressive level of drink customization. Both UIs have a similar
interface, with the mobile app offering an accounting feature where a user can
store their own mixes and even share them with others. The UI itself defaults to a
tree-based layout of “bubbles” that represent a main drink type. You can select the
main drink type and proceed down a level in the tree to encounter several variants
of that base drink, including additional flavors as well as diet and caffeine-free
choices. The entire process for selecting any pre-made drink on the machine is no
more than a few steps, with each step simply being a touch event on the screen.
The mobile application offers a way to save favorites of the pre-made mixes for a
user. The user can also create their own drink combinations under a “My Mixes”
menu where they can store and edit their own mixtures. The mixture creation
process is particularly interesting as the user is able to select up to three different
ingredients and adjust their proportions by altering a pie chart using the touch
screen. This makes for a very simple and intuitive interface for creating and editing
drink mixtures.

5.2 HARDWARE COMPONENT CONSIDERATIONS

Our first set of considerations is that of the hardware components. This is arguably
the most important of all component considerations as this drives our core design
which determines things such as power consumption, size, and software
component choices. The chosen hardware components will also determine the
technologies that are available to consider as well. As we are interested in
diversifying our usage of different technologies in the design of the Mini-Mixer, this
will be the primary concern when considering the viable considerations of the
hardware components.

13

5.2.1 EMBEDDED CONTROLLER

The embedded controller is essentially the “meat” of the project and will be
responsible for doing most of the heavy-lifting in the context of actually controlling
other pieces of hardware and producing the main goal of the Mini-Mixer. The
embedded controller is going to be primarily responsible for the control of the
hardware liquid pumps as well as the communication to and from the Embedded
Server. This will include things such as accepting mixing instructions from the
Embedded Server, accepting update requests, and reporting this information back
to the Embedded Server. We will have to consider features such as support for
Pulse Width Modulation (PWM) to control the fluid pumps. The selection of the
controller will need to be carefully selected to be able to support the requirements
of our pumps and the communication between the Embedded Controller and
Embedded Server. The Texas Instruments MSP430 family is one that is rich and
diverse, offering many different generations and series of microcontrollers within
it. The one specific controller that was researched was the MSP430G2553, which
is one of two controllers that comes with the TI LaunchPad. Due to the familiarity
of which the team already has with this particular controller, it has considerable
potential to become the MCU of choice for the MiniMixer. The primary advantage
of this µC is the ease of which it is to program it; there are two main IDE’s that can
be used, each of which providing a certain level of simplicity and control. GCC
supports the MSP430 architecture, which helps in the development process. It
contains 24 GPIO pins, which is a reasonable amount for the price point of this
microcontroller ($2-$4/unit). This particular controller is clocked at 16MHz. The
controller also comes with other nice features, such as two built in 16 bit timers,
support for UART, I2C, and SPI, as well has having 8 built in comparators and a
built in temperature sensor. Because of its affordability, the LaunchPad series has
had a reasonably sized community formed on the internet, with many tutorials and
documentation available. The power consumption of the MSP430G2553 is very
low, which is negligible compared to the rest of the hardware’s power
requirements. Similar to the MSP430 family, the ATMega family also has a large
variety of microcontrollers. Of the family, the primary interest of the team’s
research was the ATMega328 µC. This particular controller was chosen because
it is the same one used on the very popular Arduino Uno. Inherently, it has a
plethora of community support. Many “maker” movements use the Arduino Uno,
some of which have internet video channels specifically for projects utilizing the
Uno. The controller can be programmed with the Arduino IDE, which also has
much support online as well. If necessary, it is possible to program in assembly
with this controller with no additional hardware, and some extra software that can
be acquired for no cost. The 328 has 23 GPIO pins, which like the MSP430 is a
reasonable amount for the price point. Like the MSP430, it contains support for
UART, I2C, and SPI, while also having a built in temperature sensor. The 328 has
a clock rate of 20MHz, which is a small but noticeable difference over the
MSP430’s 16MHz clock rate (assuming each operate at around 1 cycle per
instruction). The MSP430, however, contains more voltage comparators than the
328 does. Perhaps the biggest advantage of this controller is its support for

14

additional hardware due to it being the controller used on the Uno; any hardware
‘shield’ that is compatible with the Arduino Uno is also compatible with the 328.
This brings a lot of opportunities to the project with this much support. The
PIC24FJ64GA002 is a microcontroller offered by Microchip that provides a decent
amount of features and functions. Like both the MSP430 and the ATMega328
controllers previously mentioned, this controller also supports UART, SPI, and I2C
serial communications. It has 21 general purpose input/output pins, which is a bit
lower than either of the previously mentioned controllers, but it makes up for this
by having five 16 bit and two 32 bit timers built in. It is capable of providing 16
MIPS, which is comparable to the other two controllers assuming they operate at
around one cycle per instruction. This controller also contains a 10-bit ADC with
16 channels, supporting 500k samples per second. This controller contains two
voltage comparators, which although less than what the MSP430 provides, is one
more than what the ATMega328 provides. One disadvantage that is not
necessarily the fault of the controller itself is the lack of a programmer bundles with
it. Perhaps most important drawback of the controller is the lack of community
support; although some tutorials for this controller do exist, it is not nearly as
abundant as those tutorials found for the MSP430 and ATMega controllers.

5.2.2 EMBEDDED SERVER

The Embedded Server is the “heart” of the entire system as it is responsible for
handling messages and commands between the Client System and the Embedded
Controller. The Embedded Server will also require all hardware necessary to
facilitate communications for both the Client System and the Embedded Controller.
The Embedded Server will be hosting the server component of our client-server
software stack so we will have to consider hardware choices that will support a
modern web server stack. As communication between the Embedded Server and
Embedded Controller will almost certainly be a form of wired serial
communications, we will have to consider hardware components that support this
directly. We will also require an Embedded Server that is lightweight and can be
portable enough to meet our Requirements Specifications. The Raspberry Pi was
the first viable option that was researched for the embedded server. The second
generation Model B was the model that was chosen for research. This particular
model boasted a quad core 900MHz ARM Cortex A-7, with 1GB of SDRAM and
HDMI support. The second gen model B had 46 GPIO pins, which is more than
enough for Mini-Mixer’s purposes. Power consumption of the Raspberry Pi is
roughly 4W, which is low relative to the power requirements of other components
of the Mini-Mixer. With these hardware specifications, the Raspberry Pi is a strong
possibility to handle the server side requirements of the Mini-Mixer. One other
strong suit of the Raspberry Pi is its large community, with many tutorials on the
internet for all sorts of projects. The BeagleBone was the second option that was
researched for the embedded server. The newest version, BeagleBone Black
(BBB) was researched for the project. It sports a 1GHz ARM Cortex-A8, 512MB of
DDR3 RAM, and 69 GPIO pins. The BeagleBone consumes less power than the

15

Raspberry Pi, at around 2-3W. The BeagleBone also has 65 GPIO pins, providing
even more expandability than the Raspberry Pi. The BeagleBone’s design has
been fully open sourced, with schematics and code available straight from a wiki.
Because the BeagleBone has not existed for as long as the Raspberry Pi, it does
not have nearly as large of a community. In some instances, it can be difficult to
find tutorials for certain applications. Nevertheless, the community is still of
respectable size with a lot of documentation on the community wiki. Overall, the
BeagleBone essentially provides better hardware than what the Raspberry Pi does
with less power consumption.

5.2.3 CLIENT SYSTEM

The client system is the main method by which the user interfaces and controls the
mixing machine. Our considerations are based on ease-of-use as well as the
typical devices that the user has at their disposal. We are most interested on
selecting a client device that meets or exceeds our ease-of-use requirements of
the project. This means selecting a hardware device that the client is familiar with
as well as a device that can host the client software that will meet those needs as
well. Our first consideration is that of the mobile platform. In the case of mobile
devices, the hardware device is almost always tied to one Operating System. This
is an unfortunate outcome of the industry but this will allow us to choose one type
of device and develop a polish and feature-complete application. As the Operating
System is generally not a choice with the hardware vendor, we will be considering
a wide range of hardware devices that will accompany the Operating System of
our choice. However, we must keep in mind the devices that are owned by the
team or have the resources to require, as we must ensure that the Client
Application is fully working through extensive testing. For this reason, we will be
considering only hardware devices that are already available to the team. In effect,
the choice of hardware becomes directly tied to the choice of the Operating
System. The mobile platform is ideal as many mobile hardware devices come
equipped with several different means of communication, mostly being wireless.
However, the devices typically have a wired connection in the form of a Universal
Serial Bus (USB) that can be used for wired serial communications. This is
important to consider as there are some initial setup steps that may be required to
have a working wireless connection. Most of these devices are very light and
portable, which allows the user to walk around while operating the application.
There is a concern about the user sending commands to the drink mixer remotely,
which may result in liquid spillage, though this can be mitigated through software
to some extent. Another hardware consideration for the Client System is that of
the Personal Computer. The advantage of this is we are not necessarily tied to a
single Operating System and can either choose an Operating System of our liking,
or we can choose a Programming Language that will allow us to support all
Operating Systems at once. However, the only personal computer that is likely to
be seen in a setting for the Mini-Mixer is a laptop. This is due to the social settings
that accompany uses of the Mini-Mixer. Despite these setbacks, this is a popular
choice for client communications in several DIY products similar to the Mini-Mixer.

16

5.2.4 HARDWARE INTERFACE

The hardware interface components are comprised of a status indicator of some
fashion as well as some simple input. The hardware interface is not meant to have
significant input and should only cover administrative purposes to keep the
machine as operationally simple as possible. The status indicator is to be used to
show certain states of the device such as connectivity and mixing state with minor
details. The status indicator’s main function is to show a quick-look of the state of
the machine and generally let the user know that the mixing device is on and
working.

Status Indicator - The status indicator is to work as a way for the user to determine
what “state” the machine is in. The status indicators should update in near real-
time and be easy to read or interpret. The status indicator should only display
relevant information regarding the state of our machine. In our case, we are mostly
interested in power, wireless connectivity, and mixing state or progress.

Character Display - Character displays have been in use for a long while and has
matured as a technology over time. Due to the large variety of displays of this type,
the type of microcontroller used to drive the display was chosen to include a
reasonably sized set of this variety; that controller being the Hitachi HD44780
microcontroller. This microcontroller drives a dot-matrix liquid crystal display, and
has become a standard in the industry. Many enthusiasts and hobbyists have
written multiple libraries to simplify usage of this controller through code. One
advantage of this controller is it includes an ASCII character set, leaving less work
for the developer. Another advantage of this controller is that it requires as little as
6 lines to control with no additional hardware. With a shift register, this can be
reduced to 3 lines with no change in functionality. The HD44780 supports 4-bit and
8-bit modes of operation. Although the 4-bit operation requires less active lines, it
also makes programming more difficult. With many GPIO pins available on the
embedded server, the 4-bit mode of operation is likely of no use for the Mini-Mixer.
The controller supports different LCD sizes, from as small as 8x1 (one row of 8
characters) up to 80x8 (8 rows of 80 characters). Due to the low power supply
requirements of this controller (2.7-5V), power consumption is of little concern
relative to the rest of Mini-Mixer’s power requirements.

TFT LCD - TFT technology has existed for some time now, and often is used in
many consumer electronics. Such a display is primarily used as an electronics
functional output, and as of recent, sometimes both input and output. This family
of display technology certainly provides the best quality output of all the types of
displays researched. However, it comes at the price of increased complexity, as
well as a considerable increase of GPIO pins necessary to drive it. Although the
power consumption isn’t as high as other parts of the Mini-Mixer, relative to the
other display types, it is considerably higher. When considering the primary

17

function of the Mini-Mixer, it can be determined that the output display is not what
provides the main functionality; something in which a TFT display is generally
responsible for.

Light Emitting Diodes - The LED display family is the most primitive of today’s
digital display interfaces. Inherently, a display of this nature is very easy to
implement into a project in regard to both the hardware and software aspects. The
LED display family ranges from using single LED’s to different types of segmented
LED displays (7 segment, 9 segment, etc.). Research was constrained to single
and segmented LED displays, because interfacing a more complex LED display
(such as a dot matrix display) would be pointless when a character display could
be used instead. The obvious advantage of using single or segmented LED
displays is, as mentioned before, the ease of which it can be integrated into the
project. Driving single LEDs is trivial, and driving a multi-segment LED display can
be done easily through either hardwiring to a microcontroller and controlled via
software, or using an IC that can decode data from a source and display it
appropriately on the display. Power consumption of these displays is of little
concern relative to the rest of the project. As easy and convenient as these displays
are, they lack in flexibility. Unfortunately, only small amounts of information can be
displayed with single LEDs, and slightly more with multi-segment displays. For this
display to be effective, a considerable amount of thought and experimentation as
to how output would be formatted would be required. It may even be impossible,
depending on the requirements of the rest of the system.

Interface Controls - The interface controls are used by the user to alter the major
states of the machine. This would include things such as powering on and off the
machine, as well as cancelling or confirming the mixing process. Depending on the
approach taken, the interface controls may play a role in activating a “setup” mode,
as would be required in certain cases of communicating between the mixer and
the client’s wireless device.

Touched-Based Controls - Touch-based control schemes have been immensely
popularized by the recent advancements in mobile technology. Due to its user
control simplicity, it is a great way to provide input to an electronic device. With its
popularity, the time it takes the average user to learn how to use the device would
be decreased considerably. Unfortunately, as is often the case, simplifying the user
experience results in a more complicated hardware and software design.
Interfacing the display to an MCU requires more control lines or additional
hardware if said control lines are to be conserved. Device selection would become
limited to those that provide libraries that allow for simplified programming, as
writing an entire library from scratch would be unreasonable and is outside the
scope of this project. Using a touch based interface would almost certainly require
it to be embedded into the display, which would require the display itself to be more
complex. Likely the screen would be a TFT or similar display, which brings an
additional amount of complexity to the project that was described in the TFT
Display portion.

18

Switches and Buttons - Switches and buttons are the most basic digital input
devices used on electronic devices. Due to this, they are very easy to implement
and program in a project. There are a wide variety of switches and buttons, with
differences as little as the color scheme and actuation type, to more important
features such as functionality. Depending on the power supply used it might not
be necessary, but one type of switch that will almost certainly be used for the Mini-
Mixer will be a rocker switch, that will control the main power for the Mini-Mixer.
Pushbuttons can be used in addition to the display to allow the user to view any
pertinent information the Mini-Mixer can provide. A “keypad” could be created with
a matrix of buttons if the design required it.

5.2.5 POWER SUPPLY SYSTEM

Personal Computer Power Supply - There is a general trend in the “make”
movement where electronic enthusiasts and hobbyist use an ATX power supply
for their projects. This is, generally speaking, a fairly cost effective way to supply
a project with the power demands of Mini-Mixer. However, this particular power
supply will not work straight out of box and requires some slight modifications. The
reason behind this is primarily for safety implementations that most PC power
supplies have. One of these is a minimum load requirement, where the power
supply will only supply proper voltage levels if a minimum load is supplied (this
load generally is the motherboard). Most power supplies will not turn on unless a
certain pin from the 24 pin ATX motherboard power connecter is set to ground,
which is another factor that must be taken into consideration. Besides these
requirements, an ATX power supply would server the Mini-Mixer well, as it
provides +/-12V, +/-5V, and +/-3.3V rails; each of these can serve a purpose in the
Mini-Mixer. For instance, the 12V rail could be used with the pumps, while the 5V
and 3V can be used for the embedded server and embedded microcontroller,
respectively.

Custom Design - Although the team consists of two computer engineers, it may
be possible to still design the power supply system. However, this would require
extra research into the total power consumption, as well as other attributes of each
part. The advantage of creating a custom design is it can be built to specifically the
Mini-Mixer’s requirements. This can be done in a number of ways, but will likely
involve a step down transformer, full wave rectifier, a linear regulator, a few
resistors, and a few capacitors. Likely, that circuit would supply the highest rated
voltage the project would require, and for other parts that require less voltage, a
buck converter would be used. What would be difficult to accomplish in designing
a custom power supply is not necessarily satisfying the power requirements for the
Mini-mixer, but the different standards and regulations that are in place for such a
system. Safety would be one major concern, and would be of high importance
during actual research. Some research into other aspects, such as fusing and heat
dissipation, would have to be done as well.

19

5.2.6 COOLING METHOD

The cooling method is to be considered as we would like the mixed drinks to be
cold by the time it reaches the user’s mouth. Several solutions have been
considered based on the requirements of our project as well as the resources that
the average user will have available to them when mixing drinks.

Thermoelectric Cooling - An initial consideration that was researched included a
thermoelectric cooling solution, using a Peltier plate with heat sinks and fans. Upon
investigating further, some solutions that are typically used for cooling CPUs and
other small electronics were considered. [3] [4] [5] These plates run on a 12V
source at 5-10 amps which is in the area of our power requirements for our pumps.
To meet our power requirement, this would be a very careful choice to make as
this type of solution would contribute around ten percent to our total power
requirements. The units are typically around 500 grams in weight so the added
weight to our unit is minimal which is excellent for our portability requirements. This
would also require a custom fitting where air ports will need to be machined and
the entire assembly will need to be mounted in a particular way to cool the air
inside of the unit.

Refrigerant-based Cooling - The more traditional solution to cooling our
ingredients is the use of a refrigerant-based system. These systems are extremely
common in home appliances as well as automotive air conditioning. The air
conditioning system for this method includes a refrigerant compressor, a
condensing element and an evaporating element at the very least. Such miniature
systems exist for our size constraints such as the R134a Compressor from
Purswave Technology. [6] However, these systems consume anywhere from 250-
350 Watts of power on a 12 Volt power supply. This type of cooling system would
easily become the heaviest user of power in the entire product. In addition, the
compressor, evaporator, and condenser can collectively weigh several pounds
when the system is fully charged with refrigerant. As we have strict power and
weight limits, this is a major concern. In addition, these parts will need to be
assembled separately which would require careful orientation of all components,
with the connections requiring a blowtorch to connect the copper endpoints. We
would then need to have the system tested and our team has no experience in this
area so this is a major issue when considering this solution.

Ice-based Cooling - The most straight-forward solution considered for the project
is using ice-based cooling for the drinks. This could take the form of either applying
the ice around the drink containers within the machine, or requiring the user to
place ice cubes in their cup before or after the mixing process. This would require
the user to have a source of ice that is reasonably close to the mixer. In the case
of cooling the drinks within the Mini-mixer, the user would be required to have a
fairly large amount of ice to fill this entire area. We would also need to consider a

20

drain pan or port for the melted ice. The enclosure design would also have to be
considered for this as we would require very easy access for placing and removing
ice from the machine. The simplest case using ice-based solutions is to have the
user fill the cup with their desired amount of ice before mixing. A couple issues
arise out of this. First, the user would have to ensure the drink does not overflow
or that they can confirm that the dispensed amount will pour into their glass without
issue. We would also need to guarantee an ice source. As our target uses cases
are for house parties and general kitchen use, we have a reasonable guarantee
that the user has an ice-maker from their freezer, or is storing ice within their
freezer. This method uses much less ice than filling the Mini-Mixer directly as well.

5.2.7 FLUID PUMP SYSTEM

Arguably the most important hardware component of the entire mixing system is
the choice of the fluid pumps. There are a wide array of pump types and sizes.
Due to monetary and size constraints, we are restricting our considerations to the
“micro pump” variety. That is – small pumps that are around the size that can be
held with a single human hand and are light, cheap, low-power, and pump on the
order of at least a few ounces of liquid per minute.

Peristaltic pump - Peristaltic pumps are a type of fluid displacement pumps that
is suited for all kinds of fluids. This is mainly due to the fact that no mechanical
parts ever touch the fluid, as the fluid is only ever in the supplied tubing at all times.
This has several advantages that allow the fluid to not be contamination by internal
parts of a pumping system. The pump works by usually having a spinning roller
press against a sub-section of the fluid tubing in a circular pattern, causing the fluid
to be pushed out of one end, and collected in the other. This makes the pump self-
priming as a low pressure vacuum is created on the pumping side. Small pumps
with flow rates around 100 Milliliters per minute are inexpensive and low-powered,
typically operating at 12 Volts at around a few hundred milliamps. Another great
advantage to these types of pumps are they tend to be very accurate, with error of
flow rates in the single percentage range. [7] [8] This makes it very ideal for our
project as we can have a large number of these inexpensive pumps in a small and
low-powered environment. One major disadvantage is the cost; most pumps tend
to increase dramatically if we need to go over a flow rate of 100 Milliliters per
minute.

Gear Pump - One popular pump type consideration is that of the gear pump. A
gear pump uses circulating gear to create displacement of the fluid. These types
of pumps are very popular with vicious fluids, such as oil, and other fluids that you
might find in a combustion engine. These pumps are not very accurate – to such
an extent that it was difficult to find a geared micro pump that actually specified a
rate of flow. Of the pumps that do specify a rate of flow, we typically see the
specification in units of gallons per hour, which also speaks to the accuracy and
precision of the pumps not being ideal at all. These pumps operate around the 12V
range which is ideal. However, the current draw tends to be much higher in the

21

range of 1-2 amps as compared to peristaltic pumps that operate under 1 amp of
current. The pumps are also very cheap with a price range around 25 percent lower
than what can be found with peristaltic pump offerings. These pumps are not self-
priming, which is a major concern as this would require either a gravity-fed fluid
input, or priming by the user – both of which will ultimately require more work on
the part of the user and makes for a less-than-friendly drink mixer. Additionally,
there is a health and safety concern surrounding cleaning the gearing and cross-
contamination of fluids, both of which are major issues when dealing with
consumable beverages. [9] [10] [11]

Gas Pump - Gas Pumps are a very popular option in the beverage service
industry. Gas-driven pumps are known for robust delivery within fountain drink
stations that are seen in nearly every facet of the food service industry. Gas pumps
are called as such due to them being driven by a form of gas, usually carbon
dioxide. The pumps are self-priming and have flow rates on the order of several
ounces per second. The major concern of the pumps with respect to our project is
the added necessity of a gas source. This is a very heavy component that adds to
both the size and weight of the mixer. This would also require the user to routinely
replace or refill the carbon dioxide canister for continued operation. [12]

Solenoid Valve - Another consideration for fluid delivery was the implementation
of a solenoid valve to manage the flow of the liquid. These pumps work by opening
and closing an electronic valve to start or stop the flow of fluids. The pumps operate
in the 12 Volt range with a current draw around 1-2 Amps. [13] The pumps do not
tend to be gravity-fed and would require pressurization of the fluids in some form.
This of course would require a gas compressor and we are met with some of the
same issues that plague the gas-powered pump solution, specifically regarding the
increased weight and size of the device as well as the increased maintenance
required by the user.

5.2.8 FLUID STORAGE

The fluid storage selection is an important component of how the user interacts
and maintains the device. The selection should reflect our goals of being very
simple to use while still covering the required functionality of the device. The liquids
are to be sourced by the user which means in most cases the user will have bought
the beverages and flavoring in bottled-form from a store. Therefore, we must
consider storage solutions that interface well with transferring fluids from one
container to another. Safety is of most concern with storage; the fluids shall never
come into contact with anything other than the pump tubing, to prevent possible
contamination. The storages used should be either replaceable or easy to wash
and reuse.

22

5.2.9 FRAME AND ENCLOSURE

The framing is what will house and mount all hardware components of the mixing
device. The options available to us are vast in the scope of our size and weight
requirements. Similar projects have found creative, and sometimes simple,
solutions to house their mixing design. Not only does the framing determine the
housing for the components, but the mount points and physical configuration of all
hardware components as well. We would like to consider frames and enclosures
that are very simple to assemble and can be modified on-the-fly. That is – we would
like the ability to iterate over the arrangement and configuration of our hardware
components without compromising the constructions of the frame and enclosure
itself. This will allow us to test different approaches to the physical configuration as
well as allow room for modifications or adjustments should any unforeseen issues
arise. We will consider a few approaches based primarily on the aesthetics, price
point, and ease of assembly.

Wooden-enclosed Frame - One consideration for the framing is an enclosed,
wooden frame. The main advantage to this is wood being relative cheap and
available in many different types. This would be an enclosure matching our
dimensions of the requirements specifications using a wood type appropriate for
the Mini-Mixer, ensuring that it is food-safe and fire-resistant. We would also want
to consider wood types that are not prone to water damage as the enclosure will
consist mostly of containers of liquid. One great advantage to using a wooden
enclosure is the ability to adjust or refine the design of the enclosure very quickly,
as it would only require re-mounting components by driving them into the wood at
different locations. Wood is also strong while being fairly easy to manipulate. There
are many different types of tools to form wood into virtually any way imaginable.
However, any assembly beyond basic geometric shapes is entering carpenter
territory, for which our team has no experience. In addition, wood tends to be very
heavy and can allow us to reach our weight limit very quickly. We would also have
to ensure the outside of the wood is sanded and treated properly to prevent user
from hurting themselves with splinters or cuts due to unfinished wood. Although
not crucial to the functionality of the system, aesthetics are of concern with a wood
based enclosure; much time would be spent to make the enclosure look as
professionally presentable as possible. This could potentially take a lot of trial and
error testing, which would consume even more time.

Steel Rod Open Layout - Another consideration for the framing is by using an
assembly of steel rods or tubing to create a scaffold of sorts to mount all
components of the Mini-Mixer. This would bring up an immediate concern of the
chilling the mixtures. This would require an external cooler to store the ingredients
or the user would have to rely on ice-based solutions or a pre-chilled ingredient.
Another concern is keeping the hardware and electrical components protected
from the liquid components. When using a scaffold frame, there isn’t much room
to separate the fluid pumping system away from the electrical components. We
would also be concerned about the client’s immediate access to the electrical

23

components of the device. Durability is another concern as many fragile
components of the Mini-Mixer will be exposed to both the user and the environment
around it. The joints to connect the steel rods would have to either be specially
machined or 3D-printed. However, the major advantage of this framing is the
simplicity and reduced weight of the Mini-Mixer compared to other considerations.

Copper-pipe Open Layout – Similar to the Steel Rod Open Layout, we also have
the choice of using small diameter (one half inch) copper tubing to construct and
open layout configuration. One major advantage to this configuration is the fact
that copper tubing is already a standard use case for commercial and home water
distribution systems. This means that we can find standard sizes at nearly every
major hardware store. Specifically, we have the advantage of using an array of
copper fittings to form our framework with ease. [14] This allows us to iterate over
our design at any point of the implementation process by simply running to a
nearby hardware store and picking up new parts. This would also be beneficial
should we encounter sudden issues or have parts of the frame damaged during
the implementation. Copper piping and fittings are very popular so we have the
added advantage of these construction materials being relatively inexpensive
compared to other considerations. With the respect to aesthetics, the shiny copper
finish is a beautiful touch to the look of the project, adding a sharp, elegant look to
the design with very little effort. Similar to the framing choices, we have several
different solutions at our disposal regarding the containment of the liquids. Most of
our pump considerations are self-priming, so we will focus on solutions that do not
necessarily provide a gravity-fed input to the pumps. The main concern behind
liquid containment is ensuring that we are using food-safe material for the
containers. This gives an obvious bias towards pre-constructed containers as we
can verify their compliance by using only FDA-approved containers.

Self-contained Ingredients - The use of self-contained ingredients – that is using
the container the ingredients are originally purchased in, is an obvious choice that
can be considered. This comes with the advantages that the user can just open
the container and place it inside the machine. When the user is done mixing, they
can just remove the container and place it somewhere for storage with very little
work. However, the user would be limited in what ingredients to use by the space
limits within the mixing machine. We would also have to ensure our ingredient
extraction method is nearly universal for all types of bottles and sizes.

Uniform Containers - Another consideration is using a uniformly-sized container
for the ingredients. This would allow for careful selection of the size and materials
used to be easy to handle and clean. This would also allow the choice of a
container size that uses the maximum amount of space within the machine. A
major disadvantage is that the user would have to transfer their ingredients from
the purchased bottle to our containers. We would have to ensure our containers
allow the transfer of liquid with as little issues as possible. The user may want to
save any leftover ingredients so we would require the container to be practical for
storage as well. A major design requirement of the containers would be selection

24

of a form-factor and material that is approved by health & safety standards and
can handle many different types of liquids with little risk of cross-contamination.

5.2.10 ILLUMINATION

Illumination in the project refers to lights on the Mini-mixer that are primarily
focused on aesthetics. This leaves us with a wide range of approaches to
implementing the feature. The placement and type of Illumination is going to
heavily rely on the choice of the machine’s enclosure.

5.3 SOFTWARE COMPONENT CONSIDERATIONS

The software components of the Min-Mixer embody all of the logic required to
operate the machine and fulfill the requirements specifications. The major
components have been modularized into the Embedded Controller, Embedded
Server, and Client System. These are three logical modules that encompass all
functionality of the Mini-Mixer. The Embedded Controller is responsible for taking
mixing commands and controlling the liquid pumps. The Embedded Server is
responsible for handling the drinks database and facilitating a user accounting
system. The Client System is mostly responsible for the User Interface for the client
to control the Mini-Mixer.

5.3.1 EMBEDDED CONTROLLER

Assembly - Second to machine code, assembly coding is as low level as a
developer can get with an embedded controller. Due to this, the assembly code for
each embedded controller may differ depending on architecture differences.
Nevertheless, assembly provides more control than any other higher level
language. Because of this, however, programming becomes more arduous and
can potentially take a multiple amount of time longer to implement a process
versus a higher level language. Programming in the controller’s assembly could
introduce a learning curve depending on what is used. Certain factors, such as
instruction orthogonality, also can have an effect on how certain systems are
programmed. Although it is true that in some cases assembly code can provide
much quicker code than a compiler can, with the advancement and improvement
of compilers over the last several decades, this is a rare occurrence. For the most
part, assembly will only be used if and where absolutely necessary for the Mini-
Mixer.

The C Programming Language - Although originally not intended, C is the most
commonly used programming language for embedded controllers. Its immediate
advantages over assembly automatically make it attractive to the vast majority of
embedded system developers. From ease of readability, to pointer manipulation
and structure support, C has many strengths. Tasks that would be rather difficult

25

in assembly can be done in a fraction of time with C. Because of how long C has
existed, as well as how much it has been used, many compilers exist for it. In other
words, the chances of finding a microcontroller that does not have an associated
C compiler for it is very, very slim. Due to the team’s familiarity with C, it is probable
that it will be the choice of language to program the MCU for the Mini-Mixer. It is
relatively easy to also do inline assembly within C code, which brings in any
advantages assembly might have.

The C++ Programming Language - While C is the most used language for
embedded systems, C++ in the past decade has been gaining ground as an
alternative. Because of its object oriented attributes, it allows for easier code
structuring and flow than C. Although this definitely improves the workflow for a
developer, it comes at the cost of resource management; generally speaking,
resources are constrained on an embedded controller. C++, if the developer is not
careful, is not as resource conservative as C is. This can cause major issues
depending on the application; however, for the purposes of the Mini-Mixer, the
issues that would arise would likely not be of much concern. While an object
oriented language would be well suited to the task of the embedded server, it is
hard to determine whether it would be as well suited for the microcontroller. There
might not be much advantage to abstracting the hardware out into its own class,
depending on what and how much hardware is being used. For this reason, C++
might be considered as a possible language for the µC, but with preference
towards C.

The Ada Programming Language - Unlike C or C++, Ada is an object oriented
programming language that was originally designed with the intent to be used for
embedded systems. Ada’s primary focus is to produce safe and stable code
through detecting possible errors during compile time vs run time. For this reason,
Ada is often used in critical systems where failure can result with devastating
consequences. Ada provides interoperability with other languages, which can be
advantageous in multiple scenarios. However, when considering the intended
usage for the Mini-Mixer, Ada does not seem as well suited for its purposes as
does C. Compared to C++, however, Ada may be a viable alternative. In the event
that it is deemed necessary to use an object oriented language for the Mini-Mixer,
further evaluation will be necessary to decide between the two.

5.3.2 EMBEDDED SERVER

The Embedded Server can be thought of as the “heart” of the software components
in the project. The Embedded Server is responsible for interfacing with the Clients
and the Embedded Controller. Since the Client and Embedded Controller do not
directly communicate with each other, the Embedded Server is a key component

26

of the entire software system. As the user’s only interaction with the system is from
the Client’s point of view, the Embedded Server will be the endpoint for all
commands sent and received from the Mini-Mixer. Our goal is to create a set of
API endpoints that can be used by any type of client and does not rely on our
choice of client, should we decide to support multiple types of clients or change
the client in the future. As the choice of Operating System usually depends entirely
on the hardware choice of the Embedded Server, we have to be careful when
consideration platform-dependent languages. For this reason and in an attempt to
keep each component of the project as modular as possible, we will be considering
languages and frameworks that are as cross-platform as possible. Due to our
limited time and development resources, we will only be considering programming
languages for which the team has non-trivial experience.

Python with Django Framework - A major consideration of software choice is
Python using the Django framework. [15] [16] Specifically, an app built on top of
Django called Django REST Framework will be considered. [17] Django REST
framework incorporates a RESTful (Representational State Transfer) design
approach to API programming. The REST architecture operates on the client-
server model which lines up exactly with our project’s implementation. The
architecture is to be stateless which means that all data required to respond to a
request is sent in a single request. This also means that the state of the session is
handled entirely by the client, although this cannot be true in some cases (e.g.,
Client authentication). There are several other requirements to RESTful design,
though these are the most relevant to our project. The Django framework itself
provides us with an Authentication and Accounting backend which are the most
important features that would be used by the framework for our project. The Django
REST Framework gives us those advantages of Django along with a robust
framework for building a complete API. Part of the team has intermediate
experience with this software stack which will be a factor in consideration.

Java with Dropwizard Framework - A similar approach to the Django stack, the
Java programming language with an API framework such as Dropwizard is being
considered due to the team’s familiarly to Java through our academics. [18]
Dropwizard is another RESTful API framework that can be used to develop API
endpoints for our application. [19]
 However, this would require us to either build our own Accounts and
Authentication systems, or make use of another third-party SDK.

5.3.3 CLIENT SYSTEM

The client system component of the Mini-Mixer is the remote control of the entire
mixing solution. Careful consideration must be taken on this component to cover
as many general uses cases for the user as possible. We must also maintain a
balance of chosen platform(s) with respect to our collective background
knowledge, hardware resources, and time constraints that are present in this

27

project. Of most concern is the time constraints when considering the size of our
team and project will force us to choose to focus on one platform to provide the
best user experience with the prototype.

Mobile Platform - The mobile and handheld platform is a major consideration for
our choice of the client component. However, our hardware choice of a client will
dictate the programming language and SDKs that will need to be used as each
hardware vendor is usually tied to a specific language and SDK and in some cases,
the platform required to develop with. The mobile platforms are ideal as many
devices come with several forms of wireless communication, including Wi-Fi,
Bluetooth, and NFC. These communications are almost always supported very
well in the form of the SDK for the particular mobile platform. This allow us to
explore many different methods of communicating with the drink mixer that suits
our needs.

Google Android - The Google Android operating system is a major consideration
for our client choice. This would require uses of the Android SDK, which is based
on Java. There is an immense amount of documentation, both first-party and third-
party, on developing applications for the Android operating system. There is also
the added advantage that our team is very familiar with the Java programming
language and already has some novice experience in developing Android
applications.

Apple iOS - The choice of Apple’s iOS for the operating system would constrain
us entirely to the Apple ecosystem. This requires an Apple OS X operating system
to develop with the iOS SDK. We would also be required to develop our software
with the Objective-C or Swift programming languages. Although iOS is one of the
two major mobile operating systems, our team does not currently have the
resources to purchase and develop for this device.

Native PC Application - A native PC Application was an initial consideration. This
opens us to many different software stacks to implement the system. However,
native PC applications are generally platform-dependent and would limit us to
larger devices such as Desktop and Laptop Computers. We can mitigate the
platform dependence by choosing a language that runs on a virtual machine, such
as Java, but we would still be limited in the scope of devices that we can support.
In addition, the development time required for a native PC application can be as
much, or more, than development for a mobile device.

Native Web Application - A Web Application was another consideration for
implementing the client interface. This is an application that can be loaded from
the server and run in a computer browser using elements of Hypertext Markup
Language (HTML), JavaScript, and Cascading Style Sheets (CSS). This would
likely require nothing more than a device with a browser. This means that we could
cover both mobile and larger platforms with a single codebase. However, this

28

requires extensive experience in this area as the web page would have to be
responsive and automatically adjust to many different screen sizes and input types.

5.4 COMMUNICATIONS CONSIDERATIONS

The communications considerations for the Mini-Mixer are regarding the
communications hardware and protocols between the distinct hardware
components within the Mini-Mixer system. This includes the communication
between the Embedded Server and Client system as well as that of the Embedded
Server and Embedded Controller. As the Embedded Server and Embedded
Controller are going to be physically close to each other as they will be housed
within the Mini-Mixer, we will mainly consider physically wired means of
communications as this is generally the cheaper and more reliable solution for
close-range communications. The Embedded Controller will likely be a type of
microcontroller so we will need to have a distinct focus on serial communications
between the Embedded Controller and Embedded Server, as this is one of the
most straight-forward and most popular means of communications with this type
of hardware configuration.

5.4.1 CONTROLLER-SERVER

The communications selection surrounding the embedded controller and server is
fairly important as it dictates what hardware to use for the controller and server.
This is especially important as our choice of communications will depend on our
I/O pin resources we have on both the controller and server. As the method of
communication isn’t entirely important, due to the devices being close together and
data transfer being relatively small and not time-sensitive, we have considered a
wide range of interesting mediums to consider for the project.

RS-232 w/ UART – As one of the oldest and most used standards for establishing
serial communication, RS-232 is an immediate consideration for Embedded
Server to Embedded Controller communications. It has a distinct advantage of
being practically ubiquitous amongst most current day microcontrollers, all the
while avoiding being resource demanding by only requiring two lines for
communication with another device; namely, the Tx and Rx lines. With the UART
hardware, most of RS-232 is taken care of. A simple sequential ASCII based
command set could be devised and implemented relatively easily using RS-232
and UART, making it all the more appealing.
Bluetooth and Bluetooth LE - Bluetooth and its low energy derivative(LE), is a
wireless standard operating in the 2.4 GHz area that is mainly used for short-
distance wireless communications. The range of Bluetooth varies somewhat
depending on the environment and devices used to implement the standard.
However, the range is typically under ten meters from the host. A Bluetooth host
can connect several clients at once, so it is sometimes referred to as an
implementation of a Wireless Personal Area Network (WPAN). There are many

29

different transport protocol implementations over the Bluetooth Standard. Two of
the most popular that we have looked at for consideration are Radio Frequency
Communications (RFCOMM) and Logical Link Control and Adaptation Protocol
(L2CAP). L2CAP is a packet-based protocol that allows for guaranteed delivery. It
can be altered for best-effort mode, however. The packet size varies up to 64
kilobytes and the packet itself can be formatted to the programmer’s requirements.
[20] L2CAP offers two flow control modes that resemble that of Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP) over Internet Protocol
(IP). Enhanced Retransmission Mode (ERTM) is a retransmission mode that gives
the protocol a reliable communication channel similar to that of TCP. Streaming
Mode (SM) has no retransmission or flow control and is mean to be a “best-effort”
protocol, much like that of UDP. It was worth considering Bluetooth with L2CAP
transport solely due to the fact that L2CAP has similarities to TCP/UDP for which
the team is already familiar. RFCOMM is a protocol specifically crafted to emulate
RS-232 serial communications. [21] RFCOMM itself is actually an implementation
over the L2CAP layer. As RFCOMM is meant to be a drop-in replacement for serial
communications, the implementation is very similar to what you would expect from
wired RS-232 equivalents. Our team chose to consider RFCOMM due to our
familiarity and experience with wired RS-232 communications. As the total amount
of commands required to pass to and from the server and controller is relatively
low, RFCOMM can be considered a solid choice as the serial commands would be
simple to define and makes the overall communications between the hardware as
simple as possible.

Wi-Fi - Wi-Fi is an implementation of a Wireless Local Area Network based on the
Institute of Electrical and Electronics Engineers’ (IEEE) 802.11 standards [22]. The
most popular transport protocol used with the Wi-Fi implementation is the
Transmission Control Protocol/Internet Protocol (TCP/IP). This allows us to use a
set of standards and protocols that we are already familiar with from developing
and using web applications as well as from academic studies. However, a wireless
protocol isn’t entirely necessary as both the controller and the server are within
close proximity. In addition, the commands being transported are very simple and
would not require the large amount of overhead that comes with designing and
implementation a communications solution over Wi-Fi. We would also have to
ensure that both the server and the controller implement compatible Wi-Fi
hardware modules, which is particularly concerning for the embedded controller as
this would consume many digital pins on the board.

Serial Peripheral Interface - Serial Peripheral Interface (SPI) is another serial
data protocol primarily used for communication between microcontrollers and
other embedded devices. [23] The protocol itself is a de facto standard so vendors
may choose to implement the protocol differently. The protocol is synchronous and
is configured in a master/slave format. The designated master can communicate
with several slaves in a synchronous format. Communication between the master
and its slaves is done using a Slave Select (SS) line for each slave. This ensures
both the direction of transfer and the selected device that data is being transferred.

30

5.4.2 CLIENT-SERVER

The client-server communications are the means of communication between the
client interface and the embedded server. To meet our connectivity requirements,
the communications will need to be wireless and have a range that is suitable for
our specifications. This will mostly constrain us to the popular wireless
communications implementations as the Client System will be mobile and
physically detached from the Mini-Mixer. We will also be limited by the common
wireless configurations that are offered in the popular mobile hardware
components. We will consider two of the most popular methods of wireless
communication, as their hardware availability, maximum range, and data
throughput meet or exceed our requirements specifications.

Bluetooth and Bluetooth LE - Bluetooth is again considered as a means of
communication between our hardware components. In this case, the range (~10
meters) of communication meets our requirement of being able to control the Mini-
Mixer from a distance. This would require the design and implementation of serial
commands between the client and server. As the server would be hosting several
different resources such as user accounts and custom mixes, it may not be ideal
to use this method of communication due to the complexity of the commands
required.

Wi-Fi - Wi-Fi is another communication method to consider when dealing with
client-server communications. With this, we can simply use existing TCP/IP
protocols with HTTP requests to deliver content. In this manner, the Embedded
Server can be treated as a normal Web Server and the client as any Internet-
capable device. This is the traditional method of client-server configurations as
HTTP is designed specifically for this type of communication. This would also open
up the possibility of being able to remotely configure the Mini-Mixer from the client
device itself. This would require the use of Wi-Fi P2P mode between the server
and client. However, this would eliminate the difficulties in setting up the Mini-Mixer
in different network environments. This is a major advantage to the user and brings
Wi-Fi to the forefront of our considerations.

6. RELEVANT STANDARDS

The relevant standards in the context of our project are something to consider as
these underlying standards are what dictate the construction, features, and
operation of the hardware and software components that we will be considering.
While our project is not directly affected by these standards for the most part, we
do need to be aware of them and how they interact with the various components
of the Mini-Mixer. The standards of most concern to us would be the health and
safety standards surround the storage and dispensing of consumable liquids. This

31

is an area that we are more or less directly responsible for ensuring we are within
compliance as there are legal implications to not conforming to these standards if
our prototype were to become a consumer product.

6.1 HARDWARE

When dealing with mechanical pumps and the rubber tubing required to pump and
carry liquids through the pump itself, we must consider a standard that has been
created specifically for those situations. The ASTM D2000 standard is used to
standardize rubber products in automotive applications. [24] In our case, the
automotive application is the fluid pump with the rubber product being that of the
rubber tubing. This standard is focused on testing methods for the integrity of the
material in various environmental conditions, including compression, extreme
temperatures, tension, stiffening at low temperatures, among many other
scenarios. We will need to ensure that the tubing we use to interface with the
mechanical pumps will comply with this standard. The Mini-Mixer will contain
several hardware components that will need to be assembled on a Printed Circuit
Board (PCB). Because of this, we must consider the standard that accompanies
the designs of PCBs. In this case, this is the IP-2221A standard. [25] This is a
generic standard that details everything surrounding PCB design. This includes
materials, general requirements, physical properties, electrical properties, thermal
management, assembly, and quality assurance among many other topics. We will
have to keep this standard in mind when designing our PCB(s).

6.2 SOFTWARE AND COMMUNICATIONS

The Mini-Mixer will consist of a number of different hardware components that will
need to interact with each other in some way. Some hardware components are a
large distance away so even wireless communication standards will need to be
considered. One wireless standard we will have to consider when designing the
Mini-Mixer is the IEEE 802.11 set of standards. [26] These are a complete set of
specifications and standards that define a wireless local area network (WLAN) over
a specific set of frequencies. It is crucial to consider this standard if we are going
to be communicating using hardware equipment over the bands that IEEE 802.11
specifies. Another standard to consider is that of the Bluetooth Core Specification.
[27] This standard defines the protocols and physical layers that are behind the
Bluetooth technology. This would typically be an alternative to the Wi-Fi set of
standards when considering this for the Mini-Mixer. For physical communications,
we must consider the RS-232 (EIA-232) standard for serial communications. [28]
This is the basis of most serial communications, defining the protocol and
transmission of data in point-to-point connections.

32

6.3 FOOD AND SAFETY

The Mini-Mixer contains a number of components that will be used to handle
various stages of mixing liquids. These liquids are going to be almost immediately
consumed by a user. For this reason, we have to consider Food handling
standards that define the requirements and specifications for the equipment that
will be handling these liquids. The first standard to consider is NSF International
Standard/American National Standard 170. [29] This standard is essentially a
glossary of terms that defines food equipment terminology that is to be found in
subsequent standard specifications. This is important as it serves as a definitive
reference for any terminology used in this family of standards so that there is no
ambiguity. Another standard to consider is the NSF/ANSI 2 standard. [30] This
contains a set of requirements detailing the materials, design, and assembly for
equipment that handles food products. This is the main standard to consider when
handling our liquids in the Mini-Mixer. Specifically, we must ensure that the
materials used from the containers, tubing, connections, pumps, and dispenser
are all within compliance of this standard. We will also need to ensure that that the
Mini-Mixer complies with some of the cleanliness requirements within the standard.

7. DESIGN DETAILS

In this section, we describe the design details of the implementation of the
components of the Mini-Mixer. This includes all hardware components as well as
any software components that compliment them. Each component of the hardware
and software system was carefully chosen to meet our design goals through the
requirements specifications. We also took careful consideration of the relevant
standards of each component as well as the design constraints that have been
imposed on us in the context of this project.

7.1 HIGH-LEVEL OVERVIEW

The design of the Mini-Mixer system has been made to be a modular as possible
with each component having a specific purpose in the system. Ideally, we would
like the entire system to follow the design principle of modular systems, where
specific modules can be switched out, upgraded, modified, or replaced with little
to no effort necessary. This essentially means that the components choices of one
module should not impact that of another module, given the inputs and outputs of
each module still match. This design approach allows for a cleaner design with the
ability to iterate or modify the design in the future, including making it hackable by
the user. One of the most important aspects of this choice of design is the ability
to parallelize the development of the prototype using the resources of our team.
The Mini-Mixer will comprise of four major subsystems:

 Embedded Controller System

 Embedded Server System

33

 Client System

 Liquid Controls System

The Embedded Server system is essentially planted in between all of the other
systems so we will review this first as a basis for the other major components. The
Embedded Server is responsible for controlling and communicating between the
other major systems, namely the Client System and Embedded Controller System.
The Embedded Server is responsible for storing all user accounting information as
well as available ingredients and all drink mixes created by the users. The
Embedded Server will have serial communications functionality for the wired
communications between itself and the Embedded Controller. These
communications are responsible for sending the ingredients list along with the
proper ratios to the Embedded Controller for further processing. The Embedded
Server will also play a key role in the Setup process of the Mini-Mixer. The Server
will need to maintain the state of connectivity between both the Client(s) and the
Access Point. The Server will also be responsible for updating the Temperature
status of the drink container by utilizing a temperature sensor connected to one of
its input/output ports. The Client System encompasses the client device(s),
software, and connectivity used to communicate with the Mini-Mixer. The Client
System will use a popular wireless communications standard to both setup and
use the Mini-Mixer. The Client System will include the Client Interface that will be
used to control and command the Mini-Mixer. Using the Wireless transceiver on
their device, the user will be able to connect to the Mini-Mixer through the provided
Client Application on their device. The Client Application will have a Login Interface
used to authenticate with a user’s given credentials and be greeted with their
personal Drink Menu. At the Drink Menu, the user will be able to create, edit,
remove drinks. The Drink Menu will include a status indicator of the Mini-Mixer for
various things such as mixing state and connectivity. The Embedded Controller
System is responsible for the actual dispensing of the mixed drink. The Embedded
Controller System will have an embedded microcontroller used to control the
pumps for dispending liquid. There will be 6 pumps – one for each ingredient in the
Mini-Mixer. Each pump will be connected to their individual liquid containers
through food-safe tubing. Each pump will be connected in one direction to the
microcontroller. Each pump will also be connected to a half h bridge; this half h
bridge is connected to the pump, the microcontroller, the 12V power supply. The
microcontroller will have a serial transceiver which will be interfaced with the serial
transceiver of the Embedded Server. This will serve as a means of communication
between these two components. The Embedded Controller is expected to receive
instructions for each liquid pump which includes how much liquid is required from
each fluid container for the drink mix. The Embedded Controller will then determine
the optimal sequence of pumping and begin the mixing process. The embedded
controller is expected to report back to the Embedded Server when each pump
has begun and completed the pumping process. From the user’s point-of-view, the
usage of the Mini-Mixer will be straightforward. The user will handle all controls of
the Mini-Mixer from within our provided mobile application. At first use, the user
will simply need to connect directly to the Mini-Mixer and will be guided through a

34

fairly quick setup mode, where the setup is very similar to what users encounter
when setting up a home router or connecting to a new secure Access Point. Once
done, the user can connect back to their normal Home Access Point and begin
using the Mini-Mixer. The user will only need to login with the mobile application
and immediately have the ability to view and modify their own personal mixed
drinks. When the user needs to modify the drinks within the Mini-Mixer, they can
enter a settings mode where the current (if any) designated drinks for each slot will
be presented.

7.2 HARDWARE COMPONENTS

The hardware components of the Mini-Mixer are divided up into several modules.
The Embedded Controller, Embedded Server, and Client System will more or less
cover all hardware required to implement the software of the Mini-Mixer. These
systems can be thought of as the hosts for the logic of the Mini-Mixer system. The
remaining hardware components are external to these devices and help provide
the functionality needed to implement the requirement specifications. To get an
idea of how all of the hardware components fit together to form the Mini-Mixer, a
hardware block diagram has been constructed in Figure [7.1] to illustrate the
associations between the different hardware components being considered.

35

Figure [7.1]

At its core, the Mini-Mixer is comprised of six liquid pumps that will be driving the
mixing process. These pumps will be driven by an Embedded Controller that will
receives instructions and send commands to the pumps during the mixing process.
The Embedded Controller will receive commands from the Embedded Server. The
Embedded Server will store the drinks database as well as the user accounts
associated with them. The Embedded Server is responsible for facilitating the
communication between the Embedded Controller and the Client System. The
Client System is a wirelessly connected mobile device that will be used as a User
Interface for the client using a mobile application.

36

7.2.1 EMBEDDED CONTROLLER

The embedded microcontroller of choice for the Mini-Mixer is the ATMega 328P,
which provides many GPIO pins and known hardware support due to it being used
for the Arduino Uno. UART will be used for communication between the
BeagleBone. This only requires two pins to be used; namely, pins 2 and 3 on the
microcontroller (Rx and Tx). 6 pins of the 328P are capable of providing a PWM
signal to the peristaltic pumps; this works out well since 6 peristaltic pumps are
used in the Mini-Mixer. Providing power to the 328P will be done by using a buck
converter that is connected to the 12V power supply. A buck converter is used as
opposed to a linear regulator due to its relatively high efficiency. Both the
schematic and the PCB layout of the controller were designed in Eagle. Pictured
in Figure [7.2] is the schematic of the controller:

Figure [7.2]
The hardware used for the 328P is as follows:

 Atmel ATMega 328P

 16 MHz crystal

 2x 22pF ceramic capacitors

 10kΩ through-hole resistor

 100Ω through-hole resistor

 Green 5mm LED

An external crystal was chosen instead of utilizing one of the internal clocks in the
328P due to the reason that the internal clock is much less accurate than the

37

crystal. The two capacitors are equally as important, as they are required to
provide a load for the crystal. The 10kΩ resistor is tied from ground to an active
low pin on the 328P to prevent the controller from resetting itself continuously. The
100Ω resistor is used in conjunction with the LED to provide a visible status on the
state of the controller (state being ‘On’ or ‘Off’). The EAGLE schematic of the 328P
with the two SN754410 H-Bridge IC’s is shown in Figure [7.3]:

Figure [7.3]

7.2.2 EMBEDDED SERVER

The BeagleBone: Black (referred to as BeagleBone throughout this section) was
decided to be used as the embedded server for the Mini-Mixer, with its open source
advantages. It will be running the pre-installed Debian distribution; this distro was
chosen due to it being the default operating system on all BeagleBone’s, and due
to its support, is likely one of the more stable operating systems available for it.
The status indicator hardware will be controlled with several of the BeagleBone’s
GPIO pins, while communication to the microcontroller (as previously stated) will
use two GPIO pins.

38

7.2.3 CLIENT SYSTEM

Mobile Device - The mobile hardware device of choice is any device running the
Android Operating System. This is due to the team having extensive hardware
resources for this OS. This includes current popular mobile phone models,
previously older popular phone models, newer mobile tablets, as well as older
mobile tablets. Due to almost all devices that run Android having Wi-Fi capability,
supporting such devices as inputs to the Mini-Mixer will be fairly straightforward.
The app will be designed to not be resource intensive, which will help support older
phones and laptops. An approach will also be taken to keep the size of the app to
a minimum, once again appealing to a wide variety of users that may have minimal
amounts of space on their devices.

Personal Computer - The Personal Computer will likely be supported with the
Mini-Mixer by means of using a modern internet browser (i.e. Firefox, Chrome,
SeaMonkey, etc). Using standard internet technologies and languages, a wide
variety of modern browsers will be supported. Inherently, any computer capable of
using said modern internet browser will be supported by the Mini-Mixer.

7.2.4 HARDWARE INTERFACE

Status Indicator - The status indicator will be composed of a mixture of two
technologies previously researched; LED’s and a character display. Several LED’s
will be used to provide immediate information in regards states of the system that
are relatively easy to describe. Such states include “On”, “Mixing”, “Ready”. These
will be controlled by the embedded server via GPIO pins. The LED’s to be used
will be standard 5mm sized ones, of various colors dependent on the
representation. An LED will be used to indicate the Wi-Fi mode in which the Mini-
Mixer is currently in. The character display to be used will be utilizing the HD44780
controller, making it relatively easy to program. The display will be controlled by
the embedded server using six GPIO pins. The specific display to be used is the
Adafruit 16x2 RGB backlight LCD display [31]. The character display will provide
various prompts and feedback from the Mini-Mixer that the user will be able to
clearly read.

Interface Controls - Most of the user interaction with the Mini-Mixer will be done
via client device, but it is important to provide some on-device controls. There will
be two buttons attached to the surface of the Mini-Mixer; one will be used to cancel
a mix, and another will be multi-purpose depending on the state in which the Mini-
Mixer is in. The buttons will be color differentiated, and both will feature a
mechanical actuation, thereby providing tactile feedback allowing the user to know
that he or she has pressed the button in a sufficient manner. Button usage will be
handled by the embedded server using two GPIO pins.

39

7.2.5 POWER SUPPLY SYSTEM

It was determined with the power consumption of the Mini-Mixer that a 12V, 20A
power supply would be best suited to satisfy said consumption. For this, an
eTopxizu switching power supply will be used. [32] From there, various devices
will receive power; 6 half-H bridges will receive power for each respective pump.
Two LM22674 buck converters will be connected to the power supply, each
providing a 5v output that will be connected to the BeagleBone and the ATMega
328P. These buck converters were chosen for their efficiency; according to TI, with
the expected power consumption of the Mini-Mixer, an efficiency of roughly 70%
can be expected. An advantage of the LM22674 is that it has a “mode” that
supports a 5V output without additional hardware. Generally, for a voltage lower
than 5V, a voltage divider would be required that could potentially waste more
energy through heat.

7.2.6 COOLING SYSTEM

The cooling system will consist of a small air-to-air thermoelectric system powered
by a Peltier plate. This system will be acquired and is expected to run on 12 Volts
and consume anywhere from 70-90 Watts. The Embedded Server will control and
monitor this cooling system, ensuring it keeps the contents of the Mini-Mixer within
acceptable temperature ranges.

7.2.7 FLUID PUMP SYSTEM

The fluid pump system will be implemented using 12 volt peristaltic pumps capable
of pumping 500 milliliters per minute with impressive accuracy. The exact accuracy
of the particular pumps sourced is not specified, but similar sized pumps used in
DIY solutions such as the Bartendro cite an accuracy of less than 10 milliliters for
a single serving drink. This lines up directly with our requirements specifications
and we hope to achieve the same or better results with our own peristaltic pumps.
The pumps have an estimated current draw of around 500 milliamps which is well
within our power requirements for the Mini-Mixer. The pumping system will consist
of 6 peristaltic pumps – one for each ingredient. As mentioned in the research
section, these pumps have the inherent advantage of avoiding ingredient
contamination by never coming into contact with the ingredients themselves. The
pumps themselves are Pulse Width Modulated (PWM) to control the flow of fluid.
We aren’t very concerned with the variable rate of flow when starting the pumping
process, though this may come as an advantage when stopping the pumps to
avoid splashing of a full drink cup by gradually slowing the pump down with PWM.
It should be noted that the relationship between the frequency of the PWM signal
and the flow rate of the pump is not linear; experimentation will be required to
determine what ranges of frequencies give near linear relationships. Each pump
will require at least one digital I/O pin for each direction of flow. In our case, we
only care about one direction of flow so only one digital I/O pin will be required for

40

each pump on the MCU. Each pump will be drove using a Half-H driver; these will
be provided via two TI SN754410 IC’s. These devices support a PWM input, which
is what several of the GPIO pins on the embedded controller will be used for.
Safety diodes are built into the integrated controller, which will help prevent
damage to the IC. Each half-h bridge supports up to 1000 milliamps of current,
which satisfies the 500 milliamp requirement for the peristaltic pump.

7.2.8 FLUID STORAGE

Fluid storage is important to the Mini-Mixer, as the containers used must fit within
the space constraints. The containers themselves must be safe to use, to conform
to all food safety standards. Taking these factors into consideration, it was decided
that 1000ml polyethylene wash bottles would be used. These bottles are
translucent, which make it easy for the user to determine fluid levels in the Mini-
Mixer. The material used in the bottle is safe; the same material is used in many
consumer bottled beverages and such. The caps on the bottles would have to be
modified to allow the pump tubing to reach the bottom; the cap itself, however
would remain as a component of the container. This cap makes it easy to secure
the tubing in place, while also providing a convenient way to refill and/or wash the
container after usage. The Mini-Mixer will have a designated compartment that will
house each of these containers; this compartment will be designed in such a
manner that allows each container to sit securely yet be easily removed when
necessary.

7.2.9 FRAME AND ENCLOSURE

The Mini-Mixer will be designed with a Steampunk inspired theme. The frame will
be built using Plexiglas. Plexiglas was chosen as the material for the frame as it is
translucent and gives the Mini-Mixer a sleek, professional-like look, all the while
being relatively abundant in the event a mistake occurs. To weld individual
Plexiglas pieces, RTV (room temperature vulcanization) silicon will be used. The
dimensions of the Mini-Mixer will be 3’x’3’x2’, intended to be in the shape of a
rectangular prism. A top view illustration of the Mini-Mixer can be seen in Figure
[7.4]. The ingredient containers and pumps will be housed towards the back of the
Mini-Mixer, whereas the electronic will set in the middle, more towards the front of
the Mini-Mixer. Holes will be drilled in order to make connections between the
electronic enclosure and the pumps. The electronic enclosure will try to be water
repellant, with a goal to become as close to waterproof as possible. Plexiglas can
be slightly challenging to work with, due to its tendency to crack. For this reason,
a certain construction approach will be adopted to avoid cracking. This approach
includes: drilling incrementally to a desired hole size, leaving the protective sheet
on the glass until construction is finished (or whenever removal is necessary), and
using the correct blades when attempting to cut the Plexiglas. Copper tubing will
be used to direct the pump tubing to the front of the Mini-Mixer, where the
ingredients will be dispensed.

41

Figure [7.4]

7.2.9 ILLUMINATION

The illumination is the addition of lighting on the Mini-Mixer as part of an added
aesthetic effect and to make the Mini-Mixer appear more interactive and animated.
The illumination will be dynamic and controlled by the Embedded Server. The
Embedded Server will be responsible for changing the state of the illumination
depending on the mixing state of the Mini-Mixer. A combination of LED’s and cold
cathode tubes will be used to provide this lighting experience. Strips of amber
LED’s will be lined around the Mini-Mixer, giving a distinctive, ambient feel to it.
Our group has chosen to illuminate the Mini-Mixer using Amber Waterproof
Flexible LED Strip Lights. [33] The lights will be placed on the bottom trim of the

42

Mini-Mixer. The lights will be illuminated when the machine is turned on. The Mini-
Mixer will flash the lights during a mixing process to have the machine appear more
animated.

7.3 SOFTWARE COMPONENTS

The software components are the logic behind the Mini-Mixer and are what power
the features of the Embedded Controller, Embedded Server, and Client System.
As such, the actual software driving these components are divided are
modularized for each component. The overall design of these components
revolves around the client-server software architecture. The client would be the
Client System and the server is the Embedded Server. Nearly every user
input/output is carried out on the client-side of this setup and the server is used to
handle the rest. The notable exceptions to this are the actual dispensed drink, the
user’s installed ingredients, and the hardware reset and power buttons on the Mini-
Mixer.

7.3.1 EMBEDDED CONTROLLER

The embedded controller will be programmed using the C programming language.
This language was chosen due to the high availability of resources on the MCU as
well as being a higher-level language than the alternative. This is important as the
software will need to precisely control several different pumps at virtually the same
time, while also communicating with and accepting commands from the Embedded
Server. The commands sent from the embedded server to the embedded controller
will be sent serially via UART. The embedded server will generate a request in
controller will parse and then control the pumps in the intended manner. A top-
down approach was taken into the design of the software for the embedded
controller. This design approach was selected because it synthesizes a large
partition of other high level sub-systems into a functional higher-level system with
a systematic, programmable backend. As previously stated, there are 6 pumps;
each pumps will be differentiated from each other by use of a single character
letter. For ease of usage, these letters will be the first 6 letters of the English
alphabet: “A”, “B”, “C”, “D”, and “E”. Only uppercase letters will be used for this
purpose, for advantages later seen in parsing. There are two modes of dispensing
that the Mini-Mixer will user; namely, a “parallel” mode and a “sequential mode”.
As the names suggest, the parallel mode runs two or more pumps at the same
time, while the sequential mode runs at one pump at a time. This is advantageous
for two reasons; one reason being that having pumps running at the same time
with the parallel can help cut down the time it takes to make the drink (depending
on the recipe, the time cut can be significant). The other reason is that with a
sequential mode, certain recipes that call for each ingredient to be poured one at
a time to get the “layered” color effect can be done. Aside from these two main
reasons, another advantage can be found by bringing the two modes together; it
is possible to create a drink quickly while providing a good mix by using both modes

43

to create the desired drink. The Mini-Mixer will utilize both modes in a sequential
manner, first dispensing all ingredients that will run in parallel, and then dispensing
all ingredients that will be done sequentially. This design decision allows for the
advantages of both while providing an easy yet effective manner to implement said
design. Each command that is sent from the embedded server to the controller is
simplified down to a single ASCII character, for ease of implementation and
debugging purposes. Every drink request issued from the embedded server to the
embedded controller will always begin with an ‘R’ command, representing a new
request. From there, two numbers will be sent; each indicating the amount of each
ingredient that corresponds to the two pump modes. From there, each ingredient
and its amount will follow sequentially, where the ingredient will correspond to the
alphabet character labeled pump responsible for dispensing it, followed by a float
corresponding to the amount of each ingredient (measured in ounces). After as
many pumps and their associated ingredient amount as specified parallel pumps
has been supplied by the embedded server, the same process is done for the
sequential ingredients and pumps. When the final sequential pump and ingredient
amount is, a status echo is sent to the embedded server, where the embedded
server will issue the final command, “S”, to start the drink mixing. An example drink
mix request from the embedded server to the embedded controller would look like
the following:

R 2 3 A 1.1 B 0.4 F 3.0 E 2.7 D 0.8 S

This sequence of commands would start a drink request with two ingredients, “A”
and “B”, dispensed in parallel, while the other three ingredients are sequentially
dispensed in the order in which the commands were issued from the embedded
server. Following the top-down design pattern, we observe what happens during
each dispense mode for a drink mix request. The parallel dispense mode has a
set containing a various number of pumps, each with their own amount of a
corresponding ingredient. The approach taken for dispensing is to let each pump
start at the same time, and periodically check to see how long each pump has
been running for. The duration of time the pump has been activated will roughly
correspond to the amount of liquid dispensed in a linear relationship. During initial
setup, using each amount of ingredient to determine an approximate running time
for each pump, float variables that correspond to end times will be set that will be
used for the previously mentioned periodic checking. Once an end time has been
met or exceeded, the associated pump will be shut down. The sequential mode for
dispensing is more straightforward; each pump will operate for the duration
corresponding to the amount of the ingredient said pump is dispensing. As
mentioned previously, it will be done in the order in which the commands were
issued from the embedded server. The pumps will be represented in the
controller’s software as structs named “Pump”. Each pump will contain a char
corresponding to the pump’s label, a float for the amount of ounces it will dispense,
and a time that represents how long the pump is to run for. An example of this
struct would look like the following:

44

typedef struct _Pump {
char nme; //name of pump
float amt; //amount of ingred
float time; //time pump will run for
} Pump;

During the initialization for the parallel mode, an array of Pumps will be created to
store each Pump associated with the parallel mode. This will allow for ease of
management and control, as well as reducing the length of code required. This
array of Pumps will be sorted from longest time to the shortest time to allow the
pump with the longest time start first. This action might not be necessary, as it is
possible that the time with which a pump can be turned on may be short enough
that the sorting would provide negligible, or even more costly results. If the sorting
is used, a basic bubble sort algorithm will be utilized. The bubble sort algorithm
was chosen because the set of elements (pumps) to be sorted is extremely small;
small enough that a more efficient algorithm would bring no noticeable
improvement. When a pump is started or stopped, the action that occurs by doing
so is not instantaneous; attempting to do so would harm the pump. For this reason,
PWM is used to slowly step up or down the speed of the pump. To implement this,
specific functions will be required to achieve a “smooth” transitioning in place of
abruptly supplying or killing power to the pump. The speed of shutting down the
pump will vary, depending on if it is the last pump to be used for dispensing; the
reason for this is to avoid chaotic dispersing that could potentially cause a mess.
The two dispense functions will also facilitate communication between the
controller and Embedded System, providing feedback as to the status as the
pumps, which the Embedded System can then use to provide a status to the user
through both the on board status indicators and the user mobile phone
app/website.

7.3.2 EMBEDDED SERVER

From a high level perspective, the Embedded Server will be responsible for taking
a user created recipe (or a recipe already present on the server), and converting it
into a set of simple ASCII character commands that will be sent to the Embedded
Controller via UART. Bidirectional communications will happen between the two to
ensure proper operation. The Embedded Server will also be responsible for
controlling and monitoring the temperature for the thermoelectric cooling system
in the Mini-Mixer. This is an important subsystem, as it keeps the ingredients cool
enough to not go bad. The Embedded server will also control the character LCD
and the various LEDs in the Mini-Mixer, both important in relaying status
information to the user physically. Much of the power of Debian Linux will be
leveraged to handle all of these subsystems together with just the Embedded
Server. The Embedded Server will be implemented using the Python programming
language with the Django REST Framework on the Linux operating system. Our

45

team is most familiar with Python so this was a natural fit for the Embedded Server.
We also have the advantage of the robust standard library that comes packaged
with Python. There is also the extremely popular Python Package Index repository
which supplies an easy-to-use tool to download and install third-party Python
libraries and applications. The Django REST Framework was chosen as we have
decided to use a client-server configuration with the traditional request-response
lifecycle. The Django REST Framework allows us to implement a clean API using
the best programming practices outlined by the REST methodologies. We also
have the huge advantage of the Django base framework which gives us a
structured MVC architecture to build out our application in the most modular way
possible. The Django framework also provides us with built-in administration and
accounting features, so that we can easily define our accounting scheme and have
an account management interface ready-to-go. Should we choose to later pursue
other platforms or multiple platforms for the client system, our Embedded Server
will require almost no additional development as is granted by the use of the REST
methodologies.

Service Discovery and Wireless Configuration – The Mini-Mixer will implement
service discovery using the Zero-configuration networking (zeroconf) standard. A
Python third-party library simply named zeroconf will be used to implement service
announcing over both Wi-Fi P2P in Setup Mode and the normal Wi-Fi WLAN
connection in the Normal Mode. [34]. The actual configuration of the wireless
interface on the Beaglebone Black is somewhat complex so a popular Linux tool
called iw will be used to configure the wireless interface for both Setup and Normal
modes. [35] The iw tool will be accessed directly from a Django app using Python’s
built-in subprocess module to run iw by calling the Linux command. The
subprocess module allows us to run Linux commands safely while capturing exit
status codes and error messages from standard output to handling directly within
the Django app. As the Embedded Server will be implemented using RESTful API
design, we can describe the entire functionality of the Embedded Server by
describing each API endpoint. The calls to the REST API will be made by the client
using a uniform resource locator (URL) over HTTP when connected to the same
LAN as the Embedded Server. The API can be described using the uniform
resource identifier (URI) as RESTful design is dictated around defines “resources”
and the actions that can be applied to them. The API will be described by defining
each resource as a URI and describing all methods and their function for each
resource. An entire resource will be defined in requests and response using the
standard JSON format. [36] JSON is a specific Internet Media Type [MIME] that
helps to standardize the file format between communications on the Internet. [37]
The official MIME type of JSON is known as “application/json” and is what we will
be using for all requests and responses that require the transmission of resources.
[38]

/connection – The connection resource defines the Mini-Mixer’s wireless
connection configurations. The connection resource properties are defined in
Table [7.1] as shown:

46

Property Name Value Description

id Integer A unique id of the connection
configuration.

networkName String The SSID of the network, if
applicable.

securityType String The type of wireless security
being used. Can be WPA or

WPA2.

password String The pre-shared password for the
connection, if applicable.

networkType String The type of network connection.
Can be p2p or wlan.

isActive Boolean Defines whether the given
network is the currently

connected network.

Table [7.1]

Methods are provided for the Client to view and change the configuration as
needed. The available methods are as follows:

Connection: get – This method will be used to retrieve the current wireless
connection settings (if any) of the Mini-Mixer. This will typically be used to display
the current connection details to the user while in Setup Mode. The HTTP request
may look like the following:

GET /connection/details/{Connection id}

The optional property {Connection id} can be the id of a Connection resource. If
no property is specified, then all connections are returned in the response body
as an array of Connection resources.

Connection: create – This method is used to create a new connection
configuration. The HTTP request looks like the following:

POST /connection/add

The POST request body should contain at least one Connection resource to be
added. The HTTP response code will return 200 if the configuration was
successfully saved and a HTTP response code 500 otherwise.

Connection: edit – This method provides the ability to edit current connection
configurations saved on the Mini-Mixer. The HTTP request looks like the following:

PUT /connection/edit

47

This method simply requires an existing Connection resource in the request body.
The Connection resource id is required and all other parameters are optional,
depending on the data to be updated.

Connection: delete – This method gives the ability to remove Connection
resources from the wireless configuration of the Mini-Mixer. The HTTP request
looks like the following:

DELETE /connection/delete

This request requires a request body with a Connection resource id. The HTTP
status code will return 200 if successful. If the specified configuration is active or
does not exist, the HTTP status code will be 500.

Connection: set – This method is used to set the new configuration of the wireless
module on the Mini-Mixer. The HTTP request looks like the following:

POST /connection/set

The request body should contain a Connection resource with at least the
Connection id property. This method will return a HTTP status code 200 if the
specified Connection resources exists and will immediately set the new
connection. If the connection does not exist, a HTTP status code 500 will be
returned and the Mini-Mixer will keep the current wireless configuration.

/user – The user resource describes the user accounting methods of the Mini-
Mixer. This includes authenticating to the Mini-Mixer with an existing account,
creating a new account, requesting basic profile information as well as updating
that profile information. The user resource properties are defined in Table [7.2] as
shown:

Property Name Value Description

id Integer The user’s unique id.

username String The username of the
client.

password String The password of the
user.

Table [7.2]

The available methods are as follows:

User: register – This method is used to register new users with the currently
connected Mini-Mixer. The HTTP request is as follows:

POST /user/register

48

The HTTP request requires a User resource with at least the username and
password. A 200 response will be returned upon successful creation along with
the User resource in the response body. If the username already exists, a 500
HTTP status will be returned.

User: login – This method is used to authenticate with the Mini-Mixer and obtain
an authorization token to be used in future requests. The HTTP request is as
follows:

POST /user/login

The request body must be a User resource with at least the username and
password in order to authenticate. The request response will have HTTP code 200
and an authorization token in the response body if login was successful. The
request response will return HTTP status 500 with an error message in the
response body if the login was unsuccessful.

/ingredients – The ingredients resource is used when the client needs to view the
current ingredients inside the Mini-Mixer or manage the configuration of each
ingredient. This resource will also be used to add or remove ingredients from the
Mini-Mixer. The ingredients resource properties are defined in Table [7.3] as
shown:

Property Name Value Description

id Integer The id of the ingredient.

name String The name of the
ingredient.

amount Integer The initial amount of the
ingredient, in units.

amountLeft Integer The estimated remaining
amount of ingredient left
in the container, in units.

type String The type of ingredient
being used.

location Char The location of the
ingredient in the Mini-

Mixer. Can also denote
an ingredient placed in

storage.

unit String The type of unit in
amounts.

Table [7.3]

The available methods are as follows:

Ingredients: list – This method will list the ingredients entered into the Mini-Mixer
according to the filtered parameters. The HTTP request is the following:

49

GET /ingredients/list

The HTTP request accepts a request body containing any one of the parameters
of an ingredient resource. The HTTP response will contain one or more Ingredient
resources that match the parameters specified.

Ingredients: add – This method will add an ingredient to the internal list of the
Mini-Mixer. The HTTP request is as follows:

POST /ingredients/add

The HTTP request accepts an ingredient resource with a required name
parameter. The request response will return HTTP status 200 and the full
Ingredient resources in the response body. An HTTP status 500 will be returned if
there is a duplicate-named ingredient.

Ingredients: edit – This method provides the ability to edit or update a particular
ingredient in the Mini-Mixer. The HTTP request looks like the following:

PUT /ingredients/edit

This method requires an existing Ingredients resource with at least the Ingredient
id parameter in the request body. The HTTP request response code will return 200
with the full Ingredient resource if successful. Otherwise, a HTTP status code of
500 will be returned.

Ingredients: delete – This method allows Ingredients to be removed from the
Mini-Mixer database. The HTTP request looks like the following:

DELETE /ingredients/delete

This request requires a request body with an Ingredients resource id. The HTTP
status code will return 200 if successful. Otherwise, the HTTP status code will
return 500.

/sensor – The sensor resource is used to provide information on the state of the
Mini-Mixer. The sensor resource properties are defined in Table [7.4] as shown:

Property Name Value Description

type String The type of sensor
metric.

status Boolean The current status of the
sensor metric.

metric Integer The metric value for the
given sensor.

Table [7.4]

50

The status methods include metrics such as internal temperature of the Mini-Mixer,
state of the internal cooling unit, current uptime of the machine, as well as other
metrics that are found to be useful or novel in nature. The available methods are
as follows:

Sensor: list – This method will return a list of Sensor resources. A sensor resource
can be a fluid pump, temperature sensor, uptime, or wireless connection state and
strength. The HTTP request is as follows:

GET /sensor/list

The HTTP request body can contain a Sensor resource with at least the Sensor id
to filter sensors. If no request body is sent, the response will return a list of Sensor
resources with a 200 HTTP status response. Invalid requests will return a HTTP
response code 500.

/recipes – The recipes resource is the endpoint used for everything surround the
drink mixes owned by the authenticated user. This is also where the user can add,
edit, remove their own recipes. The resource will also serve as a way to find the
top used recipes on the Mini-Mixer and provide suggestions for new recipes for the
user. The connection resource properties are defined in Table [7.5] as shown:

Property Name Value Description

id Integer The unique id of the recipe.

description String A brief description of the recipe.

ingredients[] List A list of ingredient ids and their
quantities for the recipe.

creator String The username of the recipe’s
creator.

name String The name of the recipe.

ordered Integer The number of times the recipe
has been ordered since creation.

Table [7.5]

The available methods are as follows:

Recipes: list – This method will list the ingredients entered into the Mini-Mixer
according to the filtered parameters. The HTTP request is the following:

GET /recipes/list

The HTTP request accepts a request body containing any one of the parameters
of a recipes resource. The HTTP response will contain one or more recipes
resources that match the parameters specified.

51

Recipes: top – The method will provide a list of the Top (up to 100) most popular
recipes on the current Mini-Mixer. The HTTP request is as follows:

GET /recipes/top

The HTTP request requires no request body and will return a HTTP response code
200 and list of ordered Recipe resources in the response body.

Recipes: suggest – This method will be used to suggest a recipe to the user given
the ingredient entered into the Mini-Mixer and using a third-party API for
suggestions. The API being use is Absolut Drinks Database. [39] The specific
components of the API being used is the Filtering capabilities built into the Drinks
resource of the API. The HTTP request is the following:

GET /recipe/suggest

The request requires no request body and will return one or more Recipes
resources in the response body.

Recipes: add – This method will add a recipe to the internal list of the Mini-Mixer.
The HTTP request is as follows:

POST /recipes/add

The HTTP request accepts an ingredient resource with a required name
parameter. The request response will return HTTP status 200 and the full Recipes
resources in the response body. An HTTP status 500 will be returned if there is a
duplicate-named Recipe.

Recipes: edit – This method provides the ability to edit or update a particular
ingredient in the Mini-Mixer. The HTTP request looks like the following:

PUT /recipes/edit

This method requires an existing Recipes resource with at least the Recipes id
parameter in the request body. The method also requires the currently logged in
user to be the creator of the recipe. The HTTP request response code will return
200 with the full recipes resource if successful. Otherwise, a HTTP status code of
500 will be returned.

Recipes: delete – This method allows Ingredients to be removed from the Mini-
Mixer database. The HTTP request looks like the following:

DELETE /recipes/delete

52

This request requires a request body with a recipes resource id. The recipe is also
required to be created by the currently logged in user. The HTTP status code will
return 200 if successful. Otherwise, the HTTP status code will return 500.

/mixer – The mixer resource is used to control and send commands that describe
the actual physical mixing functions of the Mini-Mixer. The mixer resource
properties are defined in Table [7.6] as shown:

Property Name Value Description

queuePosition Integer The position of the recipe
order in the mixing queue.

recipe Nested object The object representing
the recipe to be mixed.

isMixing Boolean Whether the drink is
currently being mixed.

timeLeft Integer The estimated time left
until the order is complete.

orderId Integer A unique identifier for a
given order.

customerId Integer The unique Id of the user
who placed the order.

Table [7.6]

This is where the user can initiate a mix given a recipe, manage the mixing queue,
or perform actions such as starting and stopping the mixing process. The available
methods are as follows:

Mixer: getQueue – This method will return the Mixer’s queue as well as filter the
queue given a Mixer resource parameter. The HTTP request is as follows:

GET /mixer/queue/list

The HTTP request may contain a Mixer resource with at least one resource
parameters with the response being a full list of Mixer resources that were filtered
from the queue using the request parameters. Otherwise, the response will contain
the entire queue as a list of Mixer resources.

Mixer: order – This method is used to place an order on the Mini-Mixer. The HTTP
request is as follows:

POST /mixer/order/create

The request body must contain the recipe parameter for a successful order. If
successful, the HTTP response code will be 200 and the response body will
contain the full Mixer resource for the order. Otherwise, the HTTP status will return
500.

53

Mixer: cancel – This method will cancel a current order in the queue, by stopping
the mix if the order is currently being made, or removing the order from the queue.
The HTTP request is the following:

DELETE /mixer/order/cancel

The HTTP request body must contain the order ID and the order must have been
created by the currently logged in user. A 200 HTTP response code will return if
the order cancel was successful. Otherwise, a 500 HTTP response code will be
returned.

Mixer: start – This method is used to begin the actual mixing process. The HTTP
request is the following:

POST /mixer/order/start

The HTTP request body must contain the order ID being started. The order will
only start mixing if it is at the top of the queue and the user who placed the order
is starting it. A HTTP status code of 200 will be returned if this is the case. A HTTP
status code of 500 will be returned otherwise.

7.3.3 CLIENT SYSTEM

Mobile Platform - The mobile platform of choice will be the Android Operating
System. This has mainly been chosen over other considerations due to our team’s
familiarity with Java. The Android Operating System also boasts and very
comprehensive SDK to implement our application. The development environment
is also not limited to one single platform, as is the case in other considerations.
The entire development stack is completely free of charge, which the exception of
publishing to Android’s Play Store, should we choose to do so. This is a major
advantage for us when we consider our monetary constraints. We are also pleased
with the User Interface design guidelines that are provided by Google. This is a
great learning resource as our team does not have extensive knowledge in the
area of UI/UX design. The design of the Client Interface will closely follow Google’s
Material Design guidelines [40]. The Client System will be described using states
of the mobile application and mockups as illustration for each state. The major
states of the mobile applications are as follows:

 Setup Mode.
 Login and Account Creation.
 Home Screen.
 Top Drinks.
 Suggested Drinks.
 Ingredient Manager.
 Create a Drink.
 Edit and Manage My Drinks.

54

Login and Account Creation – Consider that the Mini-Mixer has been newly
unboxed and the user is preparing to operate the machine. Once the Mini-Mixer
has been unboxed and plugged into a power supply, the user will download and
install the Mini-Mixer mobile application on their Android device. Once the
application is started, the user will be met with the initial login screen. In the
background, the client application will attempt to discover any Mini-Mixer service
over the currently connected network. It was considered to allow the application to
discover services on both the current connected network and services in range of
Wi-Fi P2P, but this would cause the user to get disconnected from their current
network and possibly lose connectivity. Mini-Mixer discovery will be implemented
using Zero-configuration networking (zeroconf). [41] Zeroconf uses Domain Name
Service (DNS) based service discovery to broadcast registered services to clients
using standard DNS queries. This is extremely beneficial as the client application
requires no initially-stored or preprogrammed information about the Mini-Mixer that
it would like to connect to. This type of setup even allows multiple Mini-Mixer’s to
be chosen that are within the client’s wireless range. The client application will
implement the support for this service discovery using the available classes in the
Android API provided by NsdManager for Normal or Operating Mode. [42] [43] The
features provided by zeroconf will allow us to announce a unique name for a given
Mini-Mixer as well as the service type and port. If no service is discovered on the
currently connected network, the application will notify the user with a toast
message and provide an optional action to go to Setup Mode, as shown in Figure
[7-5]:

Figure [7-5]

In the case that the user did not enter setup mode from the toast, or simply missed
the opportunity before the toast disappeared, there is an alternative way to access
setup mode. The user can touch the action overflow icon at the top right of the

55

login screen to be provided with a menu as shown in Figure [7.6], which provides
access to setup mode as well as some information about the application.

Figure [7.6]

In the case that the user is connected to a Wi-Fi network with at least one Mini-
Mixer service, a toast will appear indicating that a Mini-Mixer was discovered, with
an optional action to show a list of available Mini-Mixers as shown in Figure [7.7]:

Figure [7.7]

56

The user may then either choose to login, register or show the Mini-Mixer’s that
have been found. All of these actions will lead to a bottom sheet being displayed
so that the user may select and connect the Mini-Mixer of their choosing. The
“show” action button will simply allow the user to select a Mini-Mixer to then either
Login or Register. The Login and Register buttons will display the bottom sheet,
but will then attempt to connect to the Mini-Mixer and then carry out their respective
functions. The mockup in Figure [7.8] illustrates what the bottom sheet may look
like for these actions.

Figure [7.8]

Setup Mode – In the case that this is the first time a user is setting up their Mini-
Mixer, the Setup Mode will be selected from the login screen either through a toast
message or the dropdown menu. If the user is currently using their Wi-Fi device,
the application will prompt the user with a dialog warning of network disconnection
as it switches over to Wi-Fi P2P as shown in Figure [7.9]:

57

Figure [7.9]

Once confirmed, the application will proceed to initiate service discovery while
showing an indefinite progress bar on the screen in the same position as the Setup
Mode confirmation dialog. The client application will implement the support for this
service discovery using the available classes in the Android API, provided by
WifiP2pManager for Setup Mode. Once the service discovery is complete, a
bottom sheet will appear with all discovered Mini-Mixers. The user will select a
Mini-Mixer to setup and the application will proceed to the setup page. The setup
page will contain fields for SSID, Security Type, and Password for the user to enter
for their given home router.

Home Screen – The home page is the default landing page for a user after they
have logged into the Mini-Mixer. The home page contains status indicators for the
Mini-Mixer including internal temperature, wireless signal, and current mixing
state. The home screen will also show the current mixing queue of order drinks
and progress on any currently mixing drinks. From the home screen, the
hamburger menu can be accessed to select other components of the application,
such as settings, top drinks, suggested drinks, and the ingredient manager. The
home page will also contain a floating action button, which will be present on all
screens of the application. [44] The floating action button will be used to create,
edit, and place drink orders very quickly. A flowchart of the process is shown in
Figure [7.10]:

58

Figure [7.10]

Top Drinks – This screen will contain a list of top 100 drinks on the Mini-Mixer.
The hamburger menu and the floating action button will be present as well to aid
in navigation away from this screen. The top drinks will be displayed as a list of
Card Components. [45] The card component for each recipe will contain two
actions – order recipe and add to the user’s current recipes. The card can be
expanded on touch into Content Blocks which will provide additional details about
the selected recipe. The process flowchart is shown in Figure [7.11]:

59

Figure [7.11]

Suggested Drinks – The suggested drinks tool will provide an overlay with a card
component containing a suggested drink from available ingredients. The card
overlay can be refresh for a new recipe to be suggested until the user is satisfied
or wishes to exit the tool. The process flowchart is shown in Figure [7.12]:

60

Figure [7.12]

61

Ingredient Manager – The ingredient manager is the interface that can be
accessed from the hamburger menu which will be used to manage entered
ingredients as well as moving ingredients from storage to a designated pump. The
ingredient manager will consist of a screen using mobile tab components to
differentiate between pumping stations and storage. [46] Each tab will be labeled
with the pump id with one tab designated ingredients in storage. The tabs
designating liquid pump spot will have a main card displaying the current ingredient
as well as a list of smaller cards below it with available ingredients. The user only
needs to select a smaller card to switch out an ingredient at a given liquid pump.
The process is shown in a flowchart of Figure [7.13]:

62

Figure [7.13]

63

Create a Drink – The drink creation tool can be accessed from either the
navigation button or the hamburger menu. The drink creation tool will feature a list
of at least default two discrete sliders that are divided into five parts. Beside each
slider will be a selection list for each available ingredient that has been entered
into the Mini-Mixer. A floating button at the bottom of the sliders list will be used to
add more ingredients if needed, up to a maximum of six total discrete sliders. The
drink can be named at the top of the screen which will contain a title text field and
a “done” button which will create and save the drink. A description of the drink can
be added below the discrete sliders within a test field. A flowchart of the process
is shown in Figure [7.14]:

Figure [7.14]

Edit and Manage My Drinks – The drink manager can be accessed by either the
floating action button or the hamburger menu. The drink manager will consist of a
list of cards containing the drinks owned by the user of the application. The user
can touch the card to provide more information in an expanded form. The user can
also use the edit and order action buttons to be taken to the drink creation/editing
screen or ordering screen, respectively. The flowchart for the Drink Manager is
shown in Figure [7.15]:

64

Figure [7.15]

65

Personal Computer Platform - The personal computer platform is another client
that we will be pursuing to some extent. This is mainly due to the fact that the
Django REST Framework has a built-in feature where API endpoints have
automatically generated views – in our case web pages. While not entirely practical
or operational from a user’s standpoint, this makes for a great debugging and
testing platform to support, should we allow users to develop their own client
applications in the future. The Interface for the PC will be provided by the mostly
automatically generated Web Browsable API. [47] The Web Browsable API will
mostly serve as a convenient point for experienced user to hack with the
Embedded Server and create their own applications and experiences aside from
the provided mobile client system. For our purposes, the Web Browsable API will
serve as a software testing point for our test cases as well as during our iterative
phases of our programming plan for the Mini-Mixer software.

7.4 COMMUNICATIONS

The communications between the hardware components has to facilitate each
component appropriately without compromising the performance or capability of
each component. We have a unique challenge in our Mini-Mixer implementation
as we would like to both initially setup the Mini-Mixer as well as normally operate
the machine exclusively using wireless technologies available to our hardware
choices. With this in mind, we have chosen the communications methods carefully
for each pair of hardware components.

7.4.1 CONTROLLER-SERVER

The controller-server communications will be facilitated by UART hardware over
serial RS-232 standard communications. The commands being passed between
the Embedded Controller and Embedded Server are small and simple and can be
defined elegantly as serial commands. The UART connections only require two
pins on each device, one for transmission (Tx) and one for receiving (Rx). This is
ideal as we have a number of pumps and other sensors that will be accommodating
the available pins on our MCU. ASCII character commands will be sent in a
sequential manner from the Embedded Server to the Embedded Controller, with
possible parity bit checking to determine if data transmission was successful.
Unlike I2C, acknowledgement is not supported natively with UART; however, it is
possible to emulate the behavior to ensure that the controller properly receives the
commands. Certain functions will be written to facilitate this communication
between controller-and server even further.

7.4.2 CLIENT-SERVER

The client-server communications will consist of a mixed-mode operation with a
Wi-Fi module on the Embedded Server. The mixed-mode operation is divided into
two modes:

66

 Wi-Fi WLAN Mode, or Normal Operating Mode.
 Wi-Fi P2P Mode, or Setup Mode.

We are taking advantage of Android’s built-in Wi-Fi P2P mode support of our Client
System in order to implement a seamless setup mode for the Mini-Mixer. In this
mode, which will be activated by a “reset” physical input on the machine, the
machine will disconnect from any current Wi-Fi access points and enter the Wi-Fi
P2P mode with a preset PIN/passphrase. Once the “reset” input has been
activated on the Mini-Mixer, the client should be able to enter a “setup” mode and
connect to the Mini-Mixer serving as the host. At this point, the user will enter in
information about their Access Point for the Mini-Mixer to connect and submit the
connection settings to be applied. The Mini-Mixer’s server will accept this request
with the new/modified connection settings and apply them to the WLAN interface
of the Embedded Controller. At this point, the Mini-Mixer will have dropped out of
“Setup Mode” and entered “Normal Operation” mode, ceasing any P2P connection
with client. If the settings are successful, the Mini-Mixer will indicate a “connected”
status on its indicator. If not, the Mini-Mixer will indicate a “failed” status on the
indicator and go back into “Setup” mode for the client system to attempt to apply
new settings. Setup Mode is only activated when the Mini-Mixer cannot connect to
an access point after leaving Setup Mode or if the user manually activates the
physical “reset” input on the Mini-Mixer. Normal Operation mode will begin once at
least one successful Setup has been completed. At this point, the Mini-Mixer is
connected to an Access Point of the user’s choosing in the traditional manner as
most Wi-Fi devices are accustomed to. Once in this mode, it is up to the client to
connect their device to the same Access Point, at which point the user may enter
the application and login to their account using their credentials and make HTTP
requests to the Embedded Server to control the Mini-Mixer. The Mini-Mixer will
remain in this mode as long as there is a working connection to the Access Point.

The hardware implementation of this hybrid method for the Embedded Server will
require a wireless module capable of ad-hoc or Wi-Fi P2P mode within a Linux
operating system environment. We also require a device that is capable of
connecting to a normal WLAN using an Access Point that is generally considered
to be a home Wi-Fi router. For this, we need to ensure that the module used
supports the major wireless standards in use as well as the data security protocols
that are supported and preferred. The wireless standards most commonly in use
today are IEEE 802.11n (draft), IEEE 802.11g, and IEEE 802.11b. There are a
number of security protocols but we are going to focus on two of the most secure
and forgo supporting the protocols that may still be in use but are considered
deprecated by the general security community. For this, we intend to support Wi-
Fi Protected Access (WPA) and its successor, Wi-Fi Protected Access II (WPA2).
[48] These requirements are going to be achieved using USB module for the
Beaglebone Black. The module chosen is based on the RTl8192/8188CUS
Chipset which has Linux drivers capable of this ad-hoc mode as well as supports
our chosen wireless standards and security protocols. [49] [50] On the client side,

67

this functionality is provided by the hardware and firmware of the mobile device. In
our case, this could be any of the major mobile devices and smart phones that
have been released in the past several years. We have determined that although
not all devices will support the Wi-Fi Direct standard, we are confident that a
sufficient and majority of modern mobile devices support this standard, which is
appropriate for the Mini-Mixer. [51]

8. PROTOTYPE CONSTRUCTION AND PROGRAMMING

8.1 PARTS ACQUISITION AND BILL OF MATERIALS

Each part that will be acquired for the construction of the Mini-Mixer will be
documented for reference. Parts will be purchased from vendors and websites like
Adafruit, Digikey, Amazon, eBay, etc. Some electrical components, such as
resistors and capacitors, are already in possession and will not be purchased.
These components will be logged for reference, however. The Bill of Materials for
the Mini-Mixer is as listed below:

Bill of Materials

Item Name Quantity Description

1 Atmel ATMega 328P 1 Embedded Microcontroller

2 BeagleBone: Black 1 Embedded Server

3 Peristaltic Pumps w/
Tubing

6 Mini-Mixer’s pumps

4 TI SN75440
H-Bridge IC

2 H-Bridge Integrated Circuit for
pumps

5 Colored Mechanical
Push Button

2 Buttons for user input

6 TI LM22674 Buck
Converter IC

2 Step down buck converter for
embedded server and controller

7 Various Enclosure
Materials

N/A Miscellaneous Enclosure
Materials

8 eTopxizu AC to DC 12V
20A Power Supply

1 Mini-Mixer’s Power Supply

9 Adafruit Character
Display

1 Character Display for Mini-Mixer’s
output

10 5mm LED 6 Indicator lights

11 Wi-Fi Module 1 Network connectivity

12 22pF Ceramic Capacitor 2 Crystal load capacitors

13 100Ω Through-hole
Resistor

7 Resistors for LEDs

14 16MHz Crystal 1 Used as clock for the
microcontroller

15 1KΩ Through-hole
Resistor

1 For an active low pin on the
microcontroller

68

16 Amber LED Strip 4 For enclosure lighting

17 Plexiglas Sheets 4 Material the Mini-Mixer’s framing
will consist of

18 RTV Silicon 1 Used to weld the plexiglas sheets

19 Polyethylene Wash
Bottles (1000mL)

6 To hold the user’s ingredients

20 Temperature Module 1 Monitoring the temperature of the
Mini-Mixer

21 Peltier Cooler 1 Mini-Mixer’s cooling device

8.2 PCB VENDOR AND ASSEMBLY

The Mini-Mixer’s PCB will be constructed by 4pcb.com. They have several student
discounts, which help with the overall cost of the Mini-Mixer. Specifically, the two
layer $33/PCB discount will be utilized. The assembly of the PCB will be done by
the team, preferably in the Senior Design Laboratory; this is to be done manually
to also reduce the cost of production of the Mini-Mixer. It should be noted that lead
presents a health and safety concern. To address this concern, it was decided that
lead free solder will be used to assemble the board. This will require equipment
that can handle the high melting point for lead free solder; lead free solder’s melting
point is around 100 degrees Fahrenheit higher than leaded solder. Multiple PCB
boards will be ordered, in case assembly goes wrong and the board is damaged.
However, in the final budget component listing, only one PCB will be listed, as
there will only be one PCB in the Mini-Mixer’s final iteration.

8.3 PRECONSTRUCTION

There will be a preconstruction phase before beginning actual construction of the
Mini-Mixer. During the preconstruction phase, some small tests will be conducted
so that data can be collected and be statistically analyzed in a manner that will
provide meaningful results. One test that will be done will be to run the pumps to
find a relationship between the flow rate of the pump and the time elapsed. This
data will be utilized to program a function that will convert the amount of ounces in
an ingredient to the amount of time necessary to let the pumps run. Another test,
similar to the previously described test, is to run the pumps to find a relationship
between the flow rate of the pump and the frequency of the PWM signal used for
the input. This is important to determine, as this will allow for a balance between
speed of dispersing and safe usage of the pumps.

69

8.4 FINAL PROGRAMMING PLAN

The software development process is one of the most important areas of planning
in the construction of the prototype. In the case of the Mini-Mixer, the development
team involved in the software development also must develop the hardware as we
are limited in human resources. For this reason, we are taking careful
consideration in how we approach the software implementation process and how
it correlates to the needs of our hardware development. We have three major
software packages that are connected to each other to implement our functionality.
However, we have two software developers to delegate resources to each
software package. The design of the software is in such a way that all three
software packages could be developed concurrently if we had more human
resources. Due to our constraints, this forces us to prioritize two software packages
initially if we wish to continue to develop concurrently. As we are under a time
constraint, and our software packages are designed to be modular, we have
elected to continue to develop at least two software packages concurrently during
the implementation of the Mini-Mixer prototype. We initially considered Agile and
its derivative development methods as a consideration for implementing our
prototype. However, the requirement to deliver a working product very early in the
development process would be a strain on our small team. Instead, we have
decided to pursue a more traditional model that the Agile methods take some of
their philosophy from. The software development process we will be following for
the Mini-Mixer prototype will be the Iterative and Incremental Build Model. [52] This
model has similarities to the Agile methods but with less of a focus on delivering a
high-featured product early in the development process. This method also allows
for developers to work on multiple software packages at the same time, with little
interference between modules. This process allows for our team to manage risk
by refactoring at any point of failure during each build increment. This is particularly
important as we have identified some issues regarding the known specifications of
our fluid pumps and the expectations of the unknown specifications. We are
acquiring our fluid pumps from a third-party, so the datasheets for the fluid pumps
are not immediately available aside from some limited information from the vendor.
Due to reasons stated in the hardware design section, we have decided to continue
to pursue these pumps for their immediate advantages. However, the exact
accuracy and timing of the fluid pumps are unknown and will require a certain
degree of testing and iteration to meet our requirements specifications. The
incremental build process can address these issues very nicely as we can adjust
for these unknowns on-the-fly without affecting other software packages in the
prototype. In our implementation, the first two increments have been chosen to be
the Embedded Controller and the Embedded Server, due to their close relationship
and the ability to debug client logic as needed directly from the Embedded Server.
These two increments will be development in parallel, along with their
communications model which could be thought of as a third increment. Once the
requirements of at least one increment are satisfied, work on the Client System will
begin, along with the increment for the communications between the Client System
and Embedded Server. This build model allows us to backtrack on any increment

70

in the case that the design requirements change or an unexpected issue arises
that forces us to redesign components of the system.

8.5 HARDWARE CONSTRUCTION

As mentioned in an earlier section, the construction of the prototype will be done
in an iterative process. For one of the first iterations, the enclosure will be
constructed with wood, and will be left semi-open for ease of access to various
parts. A standard cooler will be used to house the various components of the
prototype in this early iteration. This cooler will be picked so that the Peltier cooler
may be easily swapped in and out as necessary when conducting testing. The
Embedded Server will simply be mounted in a similar manner as it will be in the
final build, with the difference being the prototype’s mounting will not be a semi-
permanent mount. The Embedded Controller will also have similar mounting to that
of the Embedded Server. Due to the cheap cost of the Embedded Controller’s
microcontroller, the prototype will initially feature this controller built on a
breadboard, and then as the iterations progress, transitioned into a protoboard.
One of the last iterations will switch to use the PCB as opposed to the protoboard.
At least one SN754410 H-Bridge IC will be used to test several of the peristaltic
pumps, to ensure parallel and sequential pumping work as intended. The two
LM22674 buck converters will be used to power the Embedded Controller and the
Embedded Server in early iterations, as will the final ones. These buck converters
will not be prototyped on a breadboard, but rather on a protoboard; the reason
behind this is because of the current limitations of a breadboard. Several amps of
current will be necessary to run several pumps at once, of which a breadboard’s
internal metal strips cannot handle without overheating and possibly melting the
plastic around it. The SN754410 will also be constructed on a protoboard as
opposed to a breadboard for these reasons.

9. PROTOTYPE TESTING AND VERIFICATION

The goal of the prototype testing and verification phase of development is to
ensure that the Mini-Mixer will meet all requirements specifications. Each set of
tests are divided up into hardware and software components, much like the initial
requirements specifications. For each set of tests, we will define the testing
environment(s) and the tools or equipment required for the set of tests. We will
define a “test” as follows:

 Each test will map directly to a requirements specification.
 A one-to-one relationship will be enforced between the tests and

requirements specifications.
 Each test will be performed on the individual component or the smallest

subset of components possible first.
 A final run of all tests will be performed on the prototype system as a whole.
 The tests will follow a pass or fail procedure following the results of the

individual and system-wide tests.

71

9.1 HARDWARE TEST ENVIRONMENT

The hardware test environment will almost exclusively be within the Senior Design
Lab where hardware development will also occur. The consumer environment
does not differ much from the Senior Design Lab which allows us to cover all test
cases within the Lab. The tools required for these test cases will be the following:

 Scale.
 Timer.
 Measuring Glass.
 Wattmeter.
 Calculator.
 Personal Computer.
 Measuring Tape.
 Thermometer.

9.2 HARDWARE TEST CASES

The following are test cases mapped to each specification requirement. The test
procedure will follow the given requirement with an implicit pass or fail result.

 The unit shall have a dry weight of no more than 40 pounds.

 The unit shall be placed on a scale and weighed to ensure its total weight,
neglecting any installed fluids, to not exceed 40 pounds.

 The unit should produce a mixed drink from start to finish in no longer than 1
minute.
 A timer will be used to determine the time required to mix a given drink. As

mixtures can vary significantly due to the customization involved, we will
require an average to be calculated from a series of tests. The series of
tests will involve mixtures from the range of one ingredient all the way up to
the maximum of six ingredients. Each mixture will be timed three times to
get an accurate average for the time it takes for a particular number of
ingredients to be mixed. These will then be average together to arrive at the
final value for average time to mix a drink. This value must be under one
minute.

 The amount of fluid in the components of each mix should have an error of no
more than +/-10%.
 A glass of a known size will be used to measure the mixture produced by

the Mini-Mixer. Due to the high level of customization, we will require an
average error to be calculated. This will be calculated from a series of tests
performed over the range of mixes from minimum ingredients (one
ingredient) to maximum ingredients (six ingredients). A series of three tests
will be performed for each mixture of ingredients. A calculated percentage
of error will be made from each test using the glass of known size. These

72

will then be average together to arrive at a final average value, which will
either pass or fail our requirement specification.

 The unit shall provide enough resources to hold 6 different fluids.
 This requirement specification can be tested by simply counting the

containers for fluids in the Mini-Mixer, with a pass or fail result.
 The unit shall consume no more than 600 Watts of power under load.

 A wattmeter will be used to measure the power of the Mini-Mixer while under
a mixing load. The test passes if the power consumption remains under 600
Watts and fails otherwise.

 The mixer prototype should have a combined total cost of no more than 800
dollars USD.
 This test will pass or fail by simply calculating the total cost of the bill of

materials. The test will fail if the total bill of materials exceeds 800 dollars
USD.

 The mixer will be controlled using a mobile device with an application.
 This test will encompass the connectivity and the ability to send commands

to the Mini-Mixer from the mobile application. This means that the
connectivity must be valid in both Setup mode and Normal operating mode.
As we are communicating between the Mini-Mixer and the Client device
using HTTP implementations, our test will be to send a HTTP request to the
Mini-Mixer in both setup mode and normal operating mode. The test will
pass if both cases provide a HTTP response from the Mini-Mixer.

 The size of the accepted fluid containers shall be no higher than 250
millimeters.
 A metric ruler will be used to test this specification requirement. Each of the

six fluid containers will be measured to ensure they are no taller than 250
millimeters, with a pass or fail result.

 The unit should produce a mixture with an initial temperature of no higher than
55 degrees Fahrenheit.
 A liquid thermometer that is industry calibrated will be used to test this case.

The final mixture’s temperature will be measured immediately after
production, with a pass or fail result.

 The unit shall have dimensions no larger than 2-foot Height X 3-foot Width x 3-
foot Depth.
 A ruler will be used to test this case. The Mini-Mixer will be measured by

height, width, and depth upon complete assembly of the prototype. This will
have a pass or fail result.

 The unit shall accept a glass size of 6 inches in height and 4 inches in diameter.
 A ruler will be used to test this case. Glass sizes that do not exceed these

dimensions will be measured and then placed under the dispenser of the
Mini-Mixer to ensure the dispenser is centered directly over the glass. A
pass or fail result will follow.

 The unit should be able to accept cocktails orders from a range of up to 20 feet.
 A ruler will be used to measure a radius around the Mini-Mixer within the

test environment. The Mini-Mixer will be setup to be ready to mix and pour
a drink. A test user will stand at 20 feet from the Mini-Mixer and place a

73

mixing order. This will be performed at 4 points around the radius of the
Mini-Mixer. A pass or fail will result from each test with the entire test failing
if one in the series of tests fails.

9.3 SOFTWARE TEST ENVIRONMENT

The software test environment will be located at the team member’s homes,
school, or any location with their personal computer. Since the software packages
are mostly modular, this allows development to occur concurrently and
independently of each team member. The hardware test environment will also be
utilized when physical testing of the software logic with the hardware will be
required. The following tools are required for these test cases:
 Personal Computer.
 Timer.
 Counter.
 Measuring Glass.

9.4 SOFTWARE TEST CASES

 We’re placing a limit of no more than a 4 step process from the application’s

start screen to a drink in the cup.
 This will be tested by usage of the mobile application once a user is logged

in. The user will start from the home screen to place and start an order. The
number of steps required should be no more than 4 or the test will fail.

 The application should be able to create 128 different combinations of the fluids
in the machine.
 This test can be verified by calculating the total number of possible

ingredient combinations given the number of ingredients in the machine.
 The mobile application should be able to create mixtures in units/steps of 0.5oz.

 This will be tested by using a measuring glass to ensure a single pump is
able to produce mixtures in the appropriate units. Each pump will be tested
individually as well as together with steps equaling the total size limit for a
single glass.

 We are placing a limit of no more than 8 ounces (~237 milliliters) on the total
mixture size that application can create.
 The application will have unit test cases to ensure that the recipe creation

cannot create a drink size larger than 8 ounces.
 The total time from submission of the mixture until the machine begins mixing

should be no longer than 1 second.
 A timer will be used to time from the point of an order start until the pumps

start physically pumping. The test passes if the time is within 1 second and
fails if it is over 1 second.

 The maximum allowed custom mixtures for a single user will be limited to 100.
 A unit test case will be used to attempt to create over 100 mixtures for a

single user. The unit test case will then retrieve a list of the owner’s recipes.
If the recipe count is over 100, the test fails. Otherwise, the test passes.

74

 The maximum allowed size of the top list will be limited to 100.
 A unit test case will be created to create greater than 100 custom drinks

and then retrieve a list of the top drinks. The test fails if the list is greater
than 100 recipes and passes otherwise.

 The application will provide the limit of drinks on the machine, which is 6.
Specifically, the application may only provide options for the current types of
the 6 ingredients in the machine at any given time.
 A unit test case will be created to ensure that an order cannot be placed

unless all ingredients are fulfilled either by the user or the Mini-Mixer.
 The client application will need to have the ability to suggest at least 1 mixture

to the user, based on available ingredients.
 A unit test case will be created to request a suggested recipe. The test

passes if at least one recipe is returned and fails otherwise.

9.5 VERIFICATION

Verification is required to ensure each subsystem functions as intended. Initial
verification of the Embedded Server to Embedded Controller communication will
be done through connecting to the Embedded Server with a computer via SSH,
and issuing commands to the Embedded Controller with a serial terminal emulator.
As the prototype build progresses, this test will further validate more subsystems;
for instance, when testing a set of commands to run two pumps in parallel, not only
is the communication between the Embedded Server and the Embedded
Controller verified, but the functionality of the pumps, as well as the hardware
driving and powering the pumps is verified. This verification process will evolve to
include the mobile app and software on the embedded system that will
autonomously issue the commands to the controller.

10. PROTOTYPE OPERATION

The operation of the prototype has been designed to be as simple as possible for
the user in a home environment. We have also designed a set of procedures for
the initial setup of the Mini-Mixer to ensure that the device can be setup with as
little hassle as possible. There are also a few maintenance procedures required
for safety and intended operation of the machine. The usage of the Mini-Mixer itself
is almost entirely handled through the mobile application using a menu and step-
based approach for viewing, creating, editing, and mixing the user’s drinks.

10.1 SETUP AND MAINTENANCE

From the perspective of the user, the only real setup that will be required is to plug
the Mini-Mixer into an AC outlet, and set up the Wi-Fi connection on the Mini-Mixer.
Maintenance will be conducted by enforcing a periodic flow rate calibration when
the user requires dispensing to be very accurate. The user will be responsible for
refilling and cleaning the ingredient containers, as well as ensuring that the

75

containers are securely placed inside the Mini-Mixer’s designated compartment.
The user will also have to ensure that the tubing is properly fixed inside each the
containers.

10.2 USAGE

Usage of the Mini-Mixer will be a very simple process, where a drink request can
be made with customization in four steps or less. The Mini-Mixer is controlled
almost entirely using a mobile device.
Requirements:

 Mobile device with the Android Operating System capable of Wi-Fi
connections.

 Home router.
 The Mini-Mixer Client Application.

Simply open the Mini-Mixer app from your device. If this is the first time, a toast will
appear saying that a Mini-Mixer is not connected. Touch the “Setup” button and
you will be directed through the setup process. Ensure that the Mini-Mixer and you
home router is both turned on and have your wireless access details ready. Once
the router has been setup, you should be met with a connected toast once you
return to the login screen of the application. Ensure that your mobile device is
connected to your home router. If you haven’t already, you will need to register an
account with the Mini-Mixer by touching “Register”. Fill in the details and you will
be prompted to login. Once inside the application, you will see a main status menu
with general information about your Mini-Mixer. The menu on the top left will direct
you to your Drinks, management interface, and suggested drinks. You can use the
floating button at the bottom right to create a new drink or get started with placing
an order. To exit the application, you can hit the “back” key and the application will
exit and return to your home screen.

11. PROJECT MANAGEMENT

The project management section encompasses all facets dealing the
administration surrounding the design and implementation of the Mini-Mixer. This
includes the most important components such as the division of labor, the intended
milestones, and the available budget for the Mini-Mixer prototype.

11.1 DIVISION OF LABOR

As the team responsible for the Mini-Mixer only consists of two Computer
Engineering undergraduates, the division of labor will be divided roughly in half.
The following table illustrates each team member, and what his division of labor
corresponds to:

76

TJ Davidson

Embedded Server Programming

 Wi-Fi (hardware, setup)

 Client-Server
communications

Embedded Controller Programming

 Pump control

 Server-Controller communications

Mini-Mixer Client

 Mobile phone application
(Android)

 Web browser support

Hardware Assembly

 Prototyping on
breadboards/protoboards

 PCB Assembly

 Subsystem integration

Mini-Mixer Frame Construction

 Various roles

Mini-Mixer Frame Construction

 Various roles

Both members have “Mini-Mixer Frame Construction” listed, as the specific roles
have yet to be determined. Keep in mind that this is a high level overview that could
be broken down into a much larger table, but to conserve space, has been
abstracted to this table.

11.2 MILESTONES AND SCHEDULING

The milestones and schedule provided will serve as a means to pace the work of
the group and ensure that the project is complete given the limited time constraints.
We are also intending on following a software development plan of incremental
and iterative implementation of each major module. This philosophy has been
carried over to the implementation of the hardware throughout the scope of the
roadmap as well. The roadmap has been carefully planned to consider the goals
and objectives of each semester, as well as the time off between each semester
including holidays and weekends.

11.2.1 ROADMAP

The roadmap will be our guide for delegating resources and tasks throughout the
life of the prototype development. The roadmap is designed to accommodate the
iterative and incremental design process, particularly at the beginning of the
prototype implementation.
Roadmap
Summer 2015 May 31, 2015 – August 3, 2015 (roughly 10 weeks)

NOTE: * denotes a project milestone
Week 1 (May 31, 2015 – June 6, 2015)

 Completion of the Initial Project and Group Identification Project Document.
*

 Initial project research.

77

Weeks 2 - 5 (June 7, 2015 – July 4, 2015)

 Conduct research for the project to form a “body of knowledge”. This
research can be divided in such a manner that will include the following: *

o The documentation of senior design projects similar to the Mini-
Mixer.

o Real products available on the market that are relevant to the design
of the Mini-Mixer.

 Pertinent hardware (microcontrollers, pumps, valves, etc.) discovered from
said similar projects and products.

 Software methodologies, implementations, and testing procedures that
relate to the Mini-Mixer.

 Towards the end of this four-week period, a transition from general research
(i.e. possible microcontrollers) to more specific research (i.e. which
microcontroller) will occur, which will lead into the next time block.

Week 6 (July 5, 2015 – July 11, 2015)

 Select parts and do extensive research on them, documenting all findings.
*

 Each member begins to write their own portion of the Final Documentation.

Weeks 7 - 9 (July 12, 2015 – July 25, 2015)

 Each member continues to write up their part of the Final Documentation,
researching and collaborating when necessary.

 By the end of week 9, the Final Documentation will be written in its entirety,
only subject to slight revisions thereafter. *

Week 10 (July 26, 2015 – August 1, 2015)

 All final revisions are made during the last week.

 The Final Documentation is finished no later than August 1st. *

Fall 2015 August 24, 2015 – December 5th, 2015 (roughly 15 weeks)

Weeks 1-4 (August 24, 2015 – September 17, 2015)

 Completion of working prototype of main unit (hardware, software). *

 Initial testing of working prototype.

 Initial documentation.

Weeks 5-8 (September 18, 2015 – October 18, 2015)

 Begin designing final version of the main unit.

 Continued testing and documentation.

 User mobile application development begins, with testing integrated into the
testing of the main unit to streamline the process.

Weeks 9-12 (October 18, 2015 – November 14, 2015)

78

 Final development and testing conducted for the main unit and user
application.

 By the end of week 12, the project is declared finished as a working unit. *

 Any pertinent documentation written during weeks 1-12 is integrated into
the Final Documentation from Summer 2015. *

Weeks 13-15 (November 15, 2015 – December 5, 2015)

 All required documentation is prepared and finish before December 5th,
2015.

 The presentation is created, revised, prepared, and delivered. *

11.3 BUDGET AND FINANCE

The budgeting section outlines the total estimated cost of all parts mentioned in
the Bill of Materials. We have a requirement set for the total cost to not exceed a
threshold, which is considered our budget for the Mini-Mixer prototype.

11.3.1 ESTIMATED BUDGET

The estimated budget is used to give a good estimation of each part given our
acquisition sources, estimated shipping and handling, as well as room for
additional parts and materials should the prices fluctuate over time.

Part Quantity Price Total

Atmel ATMega
328P

BeagleBone:
Black

Peristaltic
Pumps w/ Tubing

TI SN75440
H-Bridge IC

Colored
Mechanical Push
Button

TI LM22674 Buck
Converter IC

1

1

6

2

2

2

$2.50

$50

$30

$2.75

$0.40

$3.63

$2.50

$50

$180

$5.50

$0.80

$7.26

79

Enclosure
Materials

eTopxizu AC to
DC 12V 20A
Power Supply

Adafruit
Character
Display

Various LEDs

Wi-Fi Module

Various
Electronic
Components

Peltier Cooler

N/A

1

1

N/A

1

N/A

1

$140

$24

$14

$15

$12

$0.00

$25

$140

$24

$14

$15

$12

$0.00

$25

 Total $476.06

12. SUMMARY

The Mini-Mixer, as detailed in this document, is an autonomous drink mixer that
strives to provide the best performance for the price point, while conforming to all
safety and design standards. Combined with an aesthetically pleasing look and a
relatively small form-factor, the Mini-Mixer will be the ideal appliance for any drink
mixing necessities. The Mini-Mixer was designed with keeping a simple, intuitive
interface in mind, while at the same time making such an interface contain features
that provided enough customization to suit any user’s taste. With impressive speed
and accuracy, users will be very satisfied with what the Mini-Mixer can provide.
The Mini-Mixer uses safe, removable containers that are washable, for the sake of
convenience. Compatibility is a large factor in the success of Mini-Mixer, to which
the Mini-Mixer will support mobile devices, as well as personal computers. Cost of
operation was also taken into consideration for the Mini-Mixer, with design choices
geared towards power efficient devices to lower the overall power consumption of
the system. The design of the Mini-Mixer utilized both electrical and computer
engineering disciplines; this convergence of disciplines within the project was
necessary from both a functional and practical standpoint. With only a team of two
computer engineering undergraduates, this project has proven to be a challenging
yet rewarding one. The design approach of the Mini-Mixer, overall, utilized a top-
down approach that allowed for subsystem modularity; this resulted in benefits for
several different constraints. This approach also allowed for flexibility of part
selection, which is likely what contributed to producing a low budget. Overall, with

80

all of the design decisions taken to fulfill the most goals and constraints, the Mini-
Mixer will exceed all expectations, and effectively raise the bar for project based
autonomous drink mixing solutions.

13. APPENDICES

13.1 APPENDIX A: COPYRIGHT PERMISSIONS

All diagrams and figures present in this document are original creations by the
Mini-Mixer team unless noted in the figure description.

13.2 APPENDIX B: WORKS CITED

[1] http://www.coca-colafreestyle.com/home/
[2] https://github.com/partyrobotics/bartendro
[3] http://www.adafruit.com/products/1335
[4] http://www.ebay.com/itm/Thermoelectric-Peltier-Refrigeration-Semiconductor-
Cooling-System-DIY-Kit-Cooler-/261792872834
[5] http://www.ebay.com/itm/New-Refrigeration-Thermoelectric-Peltier-Double-
Fan-Cooling-System-Kit-Cooler-/261793842155
[6] http://www.purswave.com/101339-5573/201793_253554.html
[7] http://www.adafruit.com/products/1150
[8] http://www.ebay.com/itm/281697619068
[9] https://www.sparkfun.com/products/10455
[10] http://www.amazon.com/3-12V-Water-Pumping-Electric-RS-
360SH/dp/B00D82W60O
[11] http://www.spelchek.com/12v-24v-dc-gear-pump-for-carbonated-soft-drinks/
[12] http://www.xylemflowcontrol.com/beverage-dispensing/air-operated-
diaphragm-pumps/n5000-series-n5000-series-pump.htm
[13] https://www.sparkfun.com/products/10456
[14] http://www.homedepot.com/b/Plumbing-Pipes-Fittings-Copper-Pipe-
Fittings/N-5yc1vZbuu2
[15] https://www.python.org/
[16] https://www.djangoproject.com/
[17] http://www.django-rest-framework.org/
[18] https://www.java.com/en/
[19] http://www.dropwizard.io/
[20] https://developer.bluetooth.org/TechnologyOverview/Pages/L2CAP.aspx
[21] https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx
[22] http://standards.ieee.org/about/get/802/802.11.html
[23] http://www.st.com/st-web-
ui/static/active/en/resource/technical/document/technical_note/DM00054618.pdf
[24] http://www.astm.org/Standards/D2000.htm
[25] http://www.ipc.org/toc/ipc-2221a.pdf
[26] http://standards.ieee.org/about/get/802/802.11.html

http://www.coca-colafreestyle.com/home/
https://github.com/partyrobotics/bartendro
http://www.adafruit.com/products/1335
http://www.ebay.com/itm/Thermoelectric-Peltier-Refrigeration-Semiconductor-Cooling-System-DIY-Kit-Cooler-/261792872834
http://www.ebay.com/itm/Thermoelectric-Peltier-Refrigeration-Semiconductor-Cooling-System-DIY-Kit-Cooler-/261792872834
http://www.ebay.com/itm/New-Refrigeration-Thermoelectric-Peltier-Double-Fan-Cooling-System-Kit-Cooler-/261793842155
http://www.ebay.com/itm/New-Refrigeration-Thermoelectric-Peltier-Double-Fan-Cooling-System-Kit-Cooler-/261793842155
http://www.purswave.com/101339-5573/201793_253554.html
http://www.adafruit.com/products/1150
http://www.ebay.com/itm/281697619068
https://www.sparkfun.com/products/10455
http://www.amazon.com/3-12V-Water-Pumping-Electric-RS-360SH/dp/B00D82W60O
http://www.amazon.com/3-12V-Water-Pumping-Electric-RS-360SH/dp/B00D82W60O
http://www.spelchek.com/12v-24v-dc-gear-pump-for-carbonated-soft-drinks/
http://www.xylemflowcontrol.com/beverage-dispensing/air-operated-diaphragm-pumps/n5000-series-n5000-series-pump.htm
http://www.xylemflowcontrol.com/beverage-dispensing/air-operated-diaphragm-pumps/n5000-series-n5000-series-pump.htm
https://www.sparkfun.com/products/10456
http://www.homedepot.com/b/Plumbing-Pipes-Fittings-Copper-Pipe-Fittings/N-5yc1vZbuu2
http://www.homedepot.com/b/Plumbing-Pipes-Fittings-Copper-Pipe-Fittings/N-5yc1vZbuu2
https://www.python.org/
https://www.djangoproject.com/
http://www.django-rest-framework.org/
https://www.java.com/en/
http://www.dropwizard.io/
https://developer.bluetooth.org/TechnologyOverview/Pages/L2CAP.aspx
https://developer.bluetooth.org/TechnologyOverview/Pages/RFCOMM.aspx
http://standards.ieee.org/about/get/802/802.11.html
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/technical_note/DM00054618.pdf
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/technical_note/DM00054618.pdf
http://www.astm.org/Standards/D2000.htm
http://www.ipc.org/toc/ipc-2221a.pdf
http://standards.ieee.org/about/get/802/802.11.html

81

[27] https://www.bluetooth.org/en-us/specification/adopted-specifications
[28] http://www.ti.com/lit/an/slla037a/slla037a.pdf
[29] http://standards.nsf.org/apps/group_public/download.php/174/NSF_170-07-
Watermarked.pdf
[30] http://www.nsf.org/newsroom_pdf/NSF_2-2012_-_watermarked.pdf
[31] https://www.adafruit.com/products/399
[32] http://www.amazon.com/eTopLED-Single-Output-Switching-Low-
cost/dp/B004OWUP5U
[33] http://www.amazon.com/Super-Bright-Waterproof-Flexible-
Lights/dp/B005EQROYK
[34] https://pypi.python.org/pypi/zeroconf/0.15.1
[35] http://drvbp1.linux-foundation.org/~mcgrof/rel-html/iw/
[36] https://tools.ietf.org/html/rfc7159
[37] https://tools.ietf.org/html/rfc2045
[38] https://www.iana.org/assignments/media-types/media-types.xhtml
[39] http://addb.absolutdrinks.com/docs/
[40] https://www.google.com/design/spec/material-design/introduction.html
[41] https://tools.ietf.org/html/rfc6763
[42] http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-
direct.html#discover
[43] http://developer.android.com/training/connect-devices-
wirelessly/nsd.html#discover
[44] http://www.google.com/design/spec/components/buttons-floating-action-
button.html#
[45] http://www.google.com/design/spec/components/cards.html
[46] http://www.google.com/design/spec/components/tabs.html
[47] http://www.django-rest-framework.org/topics/browsable-api/
[48]
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2
F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farn
umber%3D1375945
[49] http://www.adafruit.com/products/814
[50]
http://www.realtek.com/products/productsView.aspx?Langid=1&PFid=48&Level=
5&Conn=4&ProdID=274
[51] https://www.wi-fi.org/product-finder-results?categories=4
[52] http://www.softdevteam.com/Incremental-lifecycle.asp

13.3 APPENDIX C: DATASHEETS

Atmel ATmega 328P (Microcontroller)
http://www.atmel.com/Images/doc8161.pdf

T.I. SN754410 (H-Bridge)
http://www.ti.com/lit/ds/symlink/sn754410.pdf

https://www.bluetooth.org/en-us/specification/adopted-specifications
http://www.ti.com/lit/an/slla037a/slla037a.pdf
http://standards.nsf.org/apps/group_public/download.php/174/NSF_170-07-Watermarked.pdf
http://standards.nsf.org/apps/group_public/download.php/174/NSF_170-07-Watermarked.pdf
http://www.nsf.org/newsroom_pdf/NSF_2-2012_-_watermarked.pdf
https://www.adafruit.com/products/399
http://www.amazon.com/eTopLED-Single-Output-Switching-Low-cost/dp/B004OWUP5U
http://www.amazon.com/eTopLED-Single-Output-Switching-Low-cost/dp/B004OWUP5U
http://www.amazon.com/Super-Bright-Waterproof-Flexible-Lights/dp/B005EQROYK
http://www.amazon.com/Super-Bright-Waterproof-Flexible-Lights/dp/B005EQROYK
https://pypi.python.org/pypi/zeroconf/0.15.1
http://drvbp1.linux-foundation.org/~mcgrof/rel-html/iw/
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc2045
https://www.iana.org/assignments/media-types/media-types.xhtml
http://addb.absolutdrinks.com/docs/
https://www.google.com/design/spec/material-design/introduction.html
https://tools.ietf.org/html/rfc6763
http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html#discover
http://developer.android.com/training/connect-devices-wirelessly/nsd-wifi-direct.html#discover
http://developer.android.com/training/connect-devices-wirelessly/nsd.html#discover
http://developer.android.com/training/connect-devices-wirelessly/nsd.html#discover
http://www.google.com/design/spec/components/buttons-floating-action-button.html
http://www.google.com/design/spec/components/buttons-floating-action-button.html
http://www.google.com/design/spec/components/cards.html
http://www.google.com/design/spec/components/tabs.html
http://www.django-rest-framework.org/topics/browsable-api/
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farnumber%3D1375945
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farnumber%3D1375945
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1375945&url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9453%2F30009%2F01375945.pdf%3Farnumber%3D1375945
http://www.adafruit.com/products/814
http://www.realtek.com/products/productsView.aspx?Langid=1&PFid=48&Level=5&Conn=4&ProdID=274
http://www.realtek.com/products/productsView.aspx?Langid=1&PFid=48&Level=5&Conn=4&ProdID=274
https://www.wi-fi.org/product-finder-results?categories=4
http://www.softdevteam.com/Incremental-lifecycle.asp
http://www.atmel.com/Images/doc8161.pdf
http://www.ti.com/lit/ds/symlink/sn754410.pdf

82

T.I. LM22674 (Buck Switch)
http://www.ti.com/lit/ds/symlink/lm22674.pdf

HITACHI HD44780 (Character Display Controller)
https://www.adafruit.com/datasheets/HD44780.pdf

BeagleBone Black (System Reference Manual)
http://www.adafruit.com/datasheets/BBB_SRM.pdf

http://www.ti.com/lit/ds/symlink/lm22674.pdf
https://www.adafruit.com/datasheets/HD44780.pdf
http://www.adafruit.com/datasheets/BBB_SRM.pdf

