
0

Solar Powered Window Blinds

Group 11

Artis Coleman - Computer Engineer

Sean Diamond - Optical Engineer

Dakota Jordan - Computer Engineer

Stephen Walsh - Electrical Engineer

EEL 4914 – Senior Design I – Summer 2015

1

Table of Contents
1.0 Executive Summary 4

2.0 Project Description 4

2.1 Project Motivation and Goals 4

2.2 Objectives 4

2.3 Requirements Specifications 5

 2.3.1 Hardware Specifications 5

 2.3.2 Software Specifications 6

3.0 Research related to Project Definition 7

3.1 Existing Similar Projects and Products 7

 3.1.1 Motorized Blinds 7

 3.1.2 Solar USB Charger 10

3.2 Relevant Technologies 15

3.2.1 Solar Cells 15

 3.2.1.1 Photovoltaic Technology Considerations 15

 3.2.1.2 Crystalline Silicon Photovoltaics 16

 3.2.1.3 Thin-Film Photovoltaics 17

3.2.2 Display Screens 18

3.2.3 Motors 21

 3.2.3.1 Motors Overview 21

 3.2.3.2 Servo Motors 23

 3.2.3.3 DC Motors: Leeson Motors 24

 3.2.3.4 DC Motor: 13800 RPM 25

 3.2.3.5 12V Motor w/ Drive Shaft 25

3.2.4 Remote Connectivity 26

3.2.4.1 Wi-Fi 26

3.2.4.2 Bluetooth and Zigbee 27

3.2.4.3 RFID/NFC 27

3.3 Possible Architectures and Related Diagrams 28

3.3.1 Microcontroller Units Architecture 28

3.3.2 Motors Architecture 29

3.3.3 Power Distribution Architecture 29

3.3.4 Power Input 30

3.3.4.1 Solar Module Options 30

3.3.4.2 Maximum Power Point Tracking 34

3.3.4.3 Pulse Width Modulation 36

3.3.5 Battery Options 37

3.3.6 Power Output 39

3.3.6.1 Roller Blind Motor 39

3.3.6.2 Microcontroller 40

3.3.6.3 USB Charger 40

3.3.6.4 E-Paper Display 40

3.4 Possible Software Development Environments 41

3.4.1 Embedded Microchip Environments 41

3.4.2 Mobile Application Environments 42

2

4.0 Related Standards 44

4.1 Safety Standards 44

4.2 Reliability Standards 44

4.3 Communications Standards 45

4.4 Programming Language Standards 45

4.4.1 Version Control 45

4.4.2 Version Control Standards 47

4.4.3 Embedded Language Standards 48

4.4.3.1 Naming Conventions 48

4.4.3.2 Blank Lines 48

4.4.3.3 Function Formatting 49

4.4.3.4 Comments 49

4.4.3.5 Conditional Statements 50

4.4.3.6 Miscellaneous 51

4.4.4 Object-Oriented Language Standards 51

4.4.4.1 Naming Conventions 51

4.4.4.2 Blank Lines 51

4.4.4.3 Method Formatting 52

4.4.4.4 Comments 52

4.4.4.5 Conditional Statements 53

4.4.4.6 Miscellaneous 53

4.5 Connector Standards 54

4.5.1 USB Standards 54

4.5.2 Battery Connector Standards 55

4.6 Battery 55

4.7 Design Impact of Relevant Standards 56

5.0 Realistic Design Constraints 57

5.1 Economic Constraints 57

5.2 Time Constraints 57

5.3 Ethical, Health, and Safety Constraints 58

6.0 Project Hardware and Software Design Details 60

6.1 Electrical Hardware 60

6.1.1 Charging Circuit 60

6.1.2 PCB 61

6.1.3 Microprocessor 61

6.1.4 Motor 64

6.1.5 E-paper 65

6.1.6 USB Charger 66

6.1.7 Crystal (24 MHz) 69

6.1.8 Voltage Regulator 69

6.1.9 Antenna Circuit 71

6.1.10 Complete Schematic 72

6.2 Solar Technologies 73

6.3 Embedded Hardware 79

6.4 Mobile Application 81

6.4.1 Coding Language 81

3

6.4.2 Build Environment 81

6.4.3 High Level Architecture 82

6.4.4 Activity Descriptions 83

6.4.5 Use Case Descriptions 84

6.4.6 Mobile Application Screen 85

6.4.6.1 Menu Screen 85

6.4.6.2 Register Device Screen 86

6.4.6.3 System Blinds Screen 87

6.4.6.4 System Status Screen 88

6.4.7 Low Level Design 89

6.4.7.1 Graphic User Interface 89

6.4.7.2 Input/Output 89

6.4.7.3 Mobile Application Prototype 90

7.0 Project Prototype Construction and Coding 97

7.1 Parts Acquisition and BOM 97

7.2 PCB Vendor and Assembly 97

7.3 Final Coding Plan 98

8.0 Project Prototype Testing 100

8.1 Hardware Test Environment 100

8.2 Hardware Specific Testing 101

8.2.1 Stopping Criteria 101

8.2.2 Hardware Test Cases 101

8.2.3 Battery and Controller Testing 103

8.2.4 Voltage Regulation 103

8.2.5 Motor Test 103

8.2.6 LED Test 103

8.2.7 USB Charger 104

8.2.8 Microprocessor Testing 104

8.2.9 Final Test 105

8.3 Software Test Environment 105

8.4 Software Specific Testing 106

8.4.1 Stopping Criteria 106

8.4.2 Software Test Cases 106

9.0 Project Operation 118

9.1 Hardware Operation 118

9.2 Software Operation 118

10.0 Administrative Content 121

10.1 Milestone Discussion 121

10.2 Budget and Finance Discussion 125

Appendices

Appendix A – Copyright Permissions 125

Appendix B – Abbreviations 130

Appendix C – References 131

4

1.0 Executive Summary

This capstone design project will be an adaptation of the traditional window blinds, with

its main feature being the collection of solar energy. Most electricity that powers the

world today comes from the consumption of fossil fuels, a non-renewable resource.

While it is not a current necessity, the world will need to find alternative methods of

electricity generation before our limited resources run out.

This project will introduce just one of many envisioned products that will be commonly

found in residential homes in the future which will collect energy to be stored in a

central power storage unit which will power the entire residence. These central

electricity storage units are essentially large rechargeable batteries, prototypes of which

are already emerging in our current economy (i.e. Tesla's Powerwall).

To this end, our project will modify the traditional residential window blinds. They will

be easy to install and operate, and provide a relatively low-cost energy collector to

complement an energy-efficient residence.

2.0 Project Description

2.1 Project Motivation and Goals

Since the main focus of this project is to provide additional natural energy to a

residence, it is only logical that it should maximize the energy it collects by minimizing

the energy it consumes while still providing features that a consumer expects from a

technologically-advanced product. To this end, the blinds will aim to be lightweight,

relatively low cost, and use minimal energy to perform basic operations such as opening

and closing.

The current state of technological development is seeing an increasing amount of

products developed for the "Internet of Things". These blinds aim to be a member of

this category of products by being interconnected wirelessly with the user’s mobile

device to allow for greater control over their home. Motor operation for these blinds

opens up the ability to extend our focus to making the device easy to operate for the

elderly or disabled who may not be able to use manual operation of traditional blinds.

2.2 Objectives

The main objective of this project is to provide a supplementary power source for an

energy-conscious home. The operation of the product itself will be self-powered so that

it will not use up disposable batteries or require external electricity. Additionally, the

excess energy gained through the solar cells can be stored in a battery for use in other

areas of the home. A USB charge port is included on the product as the only provided

5

interface for accessing this excess energy. However, if a central home battery storage

device is used, it is assumed that it will have additional interface ports to utilize the

energy provided. Multiple installations of this product can provide a significant boost in

the home's electricity reserves.

Secondary objectives include convenient operation of the blinds and external

thermometer. With the ability to open and close the blinds with the push of a button,

this allows for more convenient use of the product. This is an especially useful feature

for disabled persons who may not be able to open and close the blinds manually. Also,

with the use of the mobile application, even less effort is required. Information from the

external thermometer will be displayed on a screen on the product itself, as well as

transmitted to the user's phone.

2.3 Requirements Specifications

2.3.1 Hardware Specifications

A list of hardware specifications has been established in order to clearly define the

product and assist in design of the hardware. These specifications, listed in Table 1,

must be met in order for this project to be considered complete.

Description

1 As many solar cells as possible mounted to the housing

2 Install additional cells on the light-blocking material of the blinds if possible

3 Fit window with width of at least 30 inches

4 Ability to recharge an external battery source

5 Draw energy from either external battery source or directly from solar cells

6 Operation of motor from both buttons and mobile application

7 USB port to act as charging station for USB-compatible devices

8 External thermometer

9 Display screen for thermometer and battery life

10 Communicate wirelessly with mobile phone app

11 Battery source will be interchangeable and not internal

12 Adjustable height to work with multiple window sizes.

Table 1 - Hardware Specifications

6

2.3.2 Software Specifications

A list of software specifications has been established in order to clearly define the

product and assist in design of the software. These specifications, listed in Table 2, must

be met in order for this project to be considered complete.

Description

1 Mobile application to work in Android environment

2 Controls opening and closing of blinds

3 Displays the battery’s current charge and % of maximum

4 Displays temperature read by the external thermal sensor

5
If battery is expending more energy than it's charging, display time remaining

until battery is empty if current rate is maintained

6 Should be able to interact with the blinds from at least 25 feet away

7 Includes secure “sync” option to associate your blinds with your device

8 Track and display charging/discharging statistics

9 Display the rate of battery charging from the solar cells

10 Display time until battery is fully charged

11 Display dollar amount saved based on local energy rates daily and cumulatively

12 Compatible with at least 3 most recent API versions of Android

Table 2 - Software Specifications

7

3.0 Research Related to Project Definition

3.1 Existing Similar Projects and Products

3.1.1 Similar Products: Motorized Window Blinds

Biochemtronics has an article titled “Automatic Window Blinds Controller (PICAXE)”

published on instructables.com [1]. The project involves adding a microcontroller-

powered motor to a regular set of window blinds. Motorized window blinds are

available for sale at home improvement stores; however, they are usually quite

expensive. An inexpensive PICAXE Micro Controller is used for this project and the total

cost of the project is only about $20.00. Biochemtronics used a light dependent resistor

(LDR) to activate the motor and open the blinds when a pre-set level of light is present

on the window. This feature will not be useful in our project because we want the blinds

to be closed when sunlight is present; however, the overall design of the blind controller

is similar to what we want to achieve in our project. The parts list for this project is

shown in Table 3.

Part Manufacturer Cost

PICAXE -08M Micro Controller Spark Fun Electronics $2.95

ULN2003A Darlington Array BG Micro #ICSULN2003 $0.59

DPDT 5.0V Relay BG Micro # REL1106 $1.29

Solarbotics GM3 Gear Motor,

224:1 6V

Solarbotics $5.50

3.5mm Stereo Jack BG Micro #AUDCA017 $0.36

4 X 1.5V AA Battery Holder BG Micro #BAT1068 $0.79

Battery Snap (9V style) BG Micro #BAT1033 $0.25

LM7805T 5.0V, 1A, Regulator BG Micro #REG7805T $0.40

Small Project Box BG Micro #ACS1157 $1.95

Small Proto Board (2 3/8) BG Micro #ACS1433 $0.89

8 Pin Dip Socket BG Micro #SOC1036 $0.10

(2) 16 Pin Dip Sockets BG Micro #SOC1038 $0.08

Light Dependent Resistor Radio Shack #276-1657 (5 pk) $2.99

(2) SPST Switches BG Micro #SWT1043 $0.20

Table 3 - Biochemtronics Automatic Window Blinds Controller BOM

The PICAXE -08M serves as the brain for the controller. This chip is an 8 pin DIP that

features several inputs and outputs, analog to digital converters, a pulse width

modulator, and an IR transceiver. It was originally designed for educational use and is

easy to program. It is also more affordable than other microcontrollers because it runs

on freeware. The LDR attaches to the analog to digital converter (ADC) input of the

PICAXE to monitor the light level outside. The ADC sets a variable to a value between 0

8

and 255 based on the intensity of the light on the LDR. This variable is used to set the

light level at which the PICAXE outputs will turn on

and open or close the blinds. The Darlington Array is used to amplify the

low current of the PICAXE outputs so that they can switch the high currents required by

the relay and motor. The Darlington Array also protects the rest of the circuit from

voltage spikes caused by the inductive loads. The 5 V DPDT relay is used to reverse the

polarity of the motor so that the blinds can both open and close. The pulse width

modulator of the PICAXE can be used to control the motor speed; however, this is not

required when using the Solarbotics gear motor. The circuit diagram for the controller is

shown in Figure 1, printed with permission from Biochemtronics.

Figure 1 - Biochemtronics Light Activated Window Blind Controller

In order for the motor to open and close the blinds a small hole needs to be drilled in

the motor shaft. After removing the rod from the blinds the small hook at the top of the

rod used to open the blinds can be put through the hole that was drilled in the motor

shaft. When the motor is activated it will cause the hook to spin and open and close the

blinds. Position adjustment switches can be added to the circuit in order to manually

open and close the blinds. A 360 servo or stepper motor could be used in place of the

gear motor to increase the position accuracy; however, this would increase the cost of

the project.

9

Once the circuit is constructed the PICAXE needs to be programmed. The code reads the

outside light level from the ADC and defines the levels at which the blinds will open and

close. Code is also included in order to keep the blinds from trying to open again once

they are already open and from trying to close once they are already closed. The open

and close position needs to be adjusted so that the motor will not under or over-rotate.

Connecting a computer to the controller that is mounted to the blinds allows the

variables in the code to be fine-tuned. If the controller gets off track over time the

adjustment buttons can be used to tweak the blinds back to the desired position. A

picture of the completed project is shown in Figure 2, printed with permission from

Biochemtronics. The battery pack is attached to the top of the project box so that the

batteries can be easily replaced or recharged.

Figure 2 - Completed Biochemtronics Project

This project provides a good example of how a simple microcontroller and inexpensive

motor can be used to motorize blinds. There are several adjustments that need to be

made in order for this design to be incorporated in our project. The main difference

between this project and our design is the blind type. We want to use a roller shade

system instead of a conventional blind system with slats. Using a roller blind will allow a

large, bendable solar panel to be attached to the shade. The solar power collected by

the shade could then be used to power the motor as well as the microcontroller and a

built in USB charger. Another feature that we want to incorporate in our project is

remote controllability. This will allow the user to control the blinds using a smart phone

application. The LDR could be repurposed to monitor light levels over a certain period of

time. This will allow a mobile user to monitor the best times for collecting solar energy.

10

3.1.2 Solar Powered USB Charger

Honus has an article titled “How to make a solar iPod/iPhone charger –aka

MightyMintyBoost” published on instructables.com [2]. The project involves converting

an Adafruit MintyBoost charger, which usually runs off of AA batteries, to a solar

powered charger that recharges a lithium polymer battery. The MintyBoost

kit ($19.50) includes the following parts:

• 5V boost

• converter

• 8-pin socket

• 220uF

• power supply capacitors

• 0.1uF bypass capacitors

• 3.3kΩ, 75kΩ, and 49.9kΩ resistors

• 1N5818 Schottky diode

• 10uH power inductor

• USB type A female jack

• 2 x AA battery

• holder

• PCB

11

The Mintyboost is designed to provide a 500mA charge rate to the USB chargeable

device. The 49.9k and 75k resistors are used in order to adjust the bias on the four

pins of the USB so that iPhone charging is supported. Many USB devices that do not

require data transfer will charge with pins 2 and 3 of the USB floating; however, the

iPhone requires these pins to be biased at 2 V to attain a 500mA charge rate. The circuit

diagram of the Mintyboost’s USB pin configuration is shown below in Figure 3, printed

with permission from Honus.

Figure 3 - Mintyboost USB Pin Configuration

The 3.3k resistor is used to improve the high current capability of the boost converter

chip. One of the ceramic capacitors is used in order to stabilize the output voltage as

well as filter out high frequency noise. The other capacitor is used to stabilize the

internal reference of the boost converter chip. The Schottky diode is used to ensure

energy is transferred in only one direction from the battery to the USB port. The boost

(or step-up) converter chip is a DC/DC power converter that has an output voltage

greater than the input voltage. The IC socket protects the boost converter chip and can

easily be replaced if there are any problems with the circuit. The power inductor is used

by the DC/DC converter chip to store and convert power from low to high voltages. The

electrolytic capacitors are used to stabilize the input and output voltages during up-

conversion. They also act to filter low frequency noise. The circuit diagram for the

MintyBoost v3.0 is shown below in Figure 4, printed with permission from Honus.

12

Figure 4 - Mintyboost Circuit Diagram

Once the MintyBoost kit is assembled a 2-pin JST cable can be soldered to the PCB in

place of where the AA battery holder would normally be attached. Figure 5, printed with

permission from Honus, shows the MintyBoost circuit with the added JST cable. The JST

can then be connected to the load output port of the Adafruit USB LiPoly Charger

($17.50), which was specially designed for solar use. If a regular charger were used the

efficiency would be poor due to the charger constantly turning on and off in varying

light conditions. The MCP73871 Voltage Proportional Charge Control chip is used to

draw as much current as possible while maintaining a constant voltage point. Resistors

are used in order to set the voltage point and a large capacitor is used to stabilize the

rapid voltage collapse of the panel. In addition, a Schottky diode charges the capacitor

from the panel and prevents the capacitor from draining back into the panel. If the

amount of power generated by the solar panel where larger a Max Power Point Tracker

(MPPT) circuit would be needed. This circuit uses a DC/DC converter to keep the charger

operating at the maximum power. Since adding the DC/DC converter is expensive and

only increases the efficiency by 30% for small panels a linear converter is the right

choice for this application.

13

Figure 5 - MintyBoost Circuit with Added JST Connector

An additional feature offered by the MCP73871 chip is load sharing. When the panel is

producing power the load current goes directly from the input voltage to the output.

The lipoly battery will supply up to 1.8 A if the current required by the load is higher

than what is provided by the panel. An extra USB mini-B and DC jack are included on the

board so that the battery can be charged when solar energy is not available. Three

indicator LEDs allow the user to easily monitor the status of the charger. The red LED

indicates that there is power connected to the charger, the orange LED indicates when

the battery is being charged, and the green LED indicates when the battery is fully

charged.

The last step for this project is to connect the 3.7 V 2.5 Ah Adafruit LiPoly Battery

($14.95) and the Adafruit 6 V 3.4 W solar panel ($44.95). A 2.1mm terminal block

adapter can be used to connect the panel to the DC jack on the charger. This panel is

made of monocrystalline silicon and has a cell efficiency of 17%. It outputs 6V at 530 mA

and is waterproof, scratch resistant and UV resistant. The lipoly battery can be

connected to the battery port on the charger by a 2-pin JST cable. The output ranges

from 4.2V to 3.7V and has a capacity of 2.5 Ah for a total of about 10 Wh. Protection

circuitry is built in to the battery, which prevents over-charging, over-use, and output

shorts. A 10k Precision Epoxy Thermistor ($4.00) can be added on to the board in order

to monitor the temperature of the battery and shut down charging if the battery

becomes too hot. This is useful if the battery will be used outside. Figure 6 shows how

the LiPoly battery and USB charger connect to the charge controller and Figure 7 shows

the completed project with the solar panel, both figures 4 and 5 printed with permission

from Honus.

14

Figure 6 - Battery and USB Charger Connected to Charge Controller

Figure 7 - Completed Solar USB Charger

This DIY project provides good insight into the kind of circuitry that is needed in order to

construct a solar power USB charger. The parts list for this project is shown in Table4.

The total cost for this project is $100.90. A larger solar panel and battery could be used

in order to scale this project so that more solar energy could be captured and stored.

15

This system would require an MPPT charge controller in order to maximize the amount

of energy transmitted from the solar panel to the battery. A lead acid battery could be

used instead of a LiPoly battery in order to reduce cost.

Part Manufacturer Cost

MintyBoost Kit v3.0 Adafruit $19.50

USB/DC/Solar Lithium

Ion/Polymer Charger v2

Adafruit $17.50

Lithium Ion Polymer

Battery – 3.7v 2500mAh

Adafruit $14.95

Large 6V 3.4W Solar

Panel – 3.4 W

Adafruit $44.95

10K Precision Epoxy

Thermistor

Adafruit $4.00

Total $100.90

Table 4 - Solar USB Charger Parts List

3.2 Relevant Technologies

3.2.1 Solar Cells

3.2.1.1 Photovoltaic Technology Considerations

There are a variety of solar cell technologies to choose from when designing an

application that will use solar energy for power. One of the most important

characteristics to assess is the efficiency of the cells. The efficiency of a solar cell refers

to the ratio of incident light energy to the converted electrical energy. The spectrum of

incident light, semiconductor material used, and device structure all have an effect on

the efficiency of the cells [3]. The most efficient photovoltaic technology should be

chosen so that the most energy can be collected; however, the efficiency is often limited

by cost.

Most solar cells are silicon based because the manufacturing process to produce silicon

wafers is mature [3]. Cells that are made with other materials that are rare to earth,

such as tellurium, can be much more expensive. When selecting a photovoltaic

technology, a tradeoff between efficiency and cost should be considered. The size and

shape of the photovoltaic should also be considered. Certain photovoltaic technologies

use semiconductor wafers, which are very thick compared to alternative thin-film

devices, which can be flexible. Thinner cells may be suitable for applications where

space and weight limitations are present.

16

3.2.1.2 Crystalline Silicon Photovoltaics

Crystalline silicon photovoltaics are currently the most widely used photovoltaic cells on

the market. This technology represents about 90% of the world total photovoltaic cell

production [4]. These cells have high efficiency and can be connected together under

high transmittance glass to produce reliable, weather resistant photovoltaics.

Monocrystalline and polycrystalline silicon are two technologies used to produce the

silicon wafers for these photovoltaics. Figure 8 shows a monocrystalline cell on the left

and a polycrystalline cell on the right.

Figure 8 - Monocrystalline (left) and Polycrystalline (right) Solar Cells

Monocrystalline silicon solar cells yield the highest efficiencies, but are also more

expensive than other photovoltaic technologies. Standard industrial cells yield

efficiencies ranging from 16-18% and high-efficiency cells are capable of efficiencies

greater than 20% [4]. The best research cells are currently capable of 25% efficiency

levels, though the manufacturing technologies needed to create these cells are

expensive and time consuming because specialized equipment is needed. The

Czochralski process is typically used to grow the crystals and the silicon wafers are cut

from cylindrical ingots.

Polycrystalline, or multicrystalline, silicon solar cells are more common than

monocrystalline cells because they are less expensive. Standard industrial cells yield

efficiencies ranging from 15-17% and currently make up about 48% of the world

photovoltaic market [4]. They are produced from metallurgical grade silicon by a

chemical purification process called Siemens process and the wafers are cut from square

ingots. The efficiency of these cells is less than that of monocrystalline cells due to the

presence of grain boundaries, which reduces the overall minority carrier lifetime for the

material [5].

17

Cell module efficiencies for both technologies are about 14%. This is due to the fact that

the square polycrystalline cells have a higher packing factor than the pseudo-square

monocrystalline cells. Wafers for both technologies range in thickness between 160 and

240 ��. Cell modules containing crystalline silicon cells are relatively thick because of

the thickness of the wafer and the glass casing.

3.2.1.3 Thin-Film Photovoltaics

Thin-film photovoltaics are the thinnest and least expensive photovoltaics produced.

Unfortunately, they are also less efficient than traditional crystalline silicon

photovoltaics. These devices are made by depositing thin layers of photovoltaic material

on a substrate. The thickness of the film varies from the nanometer range to the

micrometer range. This is much thinner than the silicon wafers used in crystalline silicon

photovoltaics. When deposited on a flexible substrate, such as plastic, the photovoltaics

can be applied to curved surfaces. Figure 9 shows a thin-film cell that has been

deposited on a flexible plastic substrate.

Figure 9 - Flexible Thin-Film Cell

Amorphous silicon photovoltaics were the first thin-film solar cells to be made

commercially available. They are made by vapor-depositing a 1 �� thick layer of silicon

on a plastic, glass, or metal substrate [6]. Unfortunately, these cells suffer from the

Staebler-Wronski effect which describes the degradation in photoconductivity with

prolonged exposure to intense light [7]. This causes the efficiency of these cells to

decrease over time until a stabilized efficiency is reached. Typical efficiencies for

amorphous silicon modules drop from 10% to 7% due to the Staebler-Wronski effect [6].

Although the efficiencies of these cells are limited, they are still competitive due to their

affordability and flexibility.

Cadmium telluride photovoltaics are another kind of thin-film solar cells that solve the

efficiency problem present in the amorphous silicon technology. First Solar recently

reported its average commercial module efficiency to be 14.7% [8]. This is competitive

with the 14% efficiencies found in polycrystalline silicon modules. Cadmium telluride

cells currently represent 7% of the world photovoltaic market [8]. Although these cells

18

yield high efficiencies at a low cost, there are concerns about both the scarcity of

tellurium and the toxicity of cadmium. Since this technology is newer and somewhat

controversial, it is not as available as amorphous silicon photovoltaics.

3.2.2 Display Screens

Due to the fact that our project will require the use of a display screen to provide a

visual source to output data we must make an analysis of different relevant

technologies. There are currently two major types of display screen technology. First

there is CRT, cathode ray tube, and technology. This is used mostly in older TV models

apparent in the 1980s through 1990s. Over the past few years a newer type of TV

emerged and quickly taken controlled of the display screen market. This technology is

called flat panel displays [12]. This analysis will go over the advantages and

disadvantages in each of the possible display screen technologies.

The first option for a display screen would be a cathode ray tube TV. Even though the

technology used in this device is fairly outdated the price to acquire these devices is

extremely cheap and fairly accessible. However actually using this technology would

bring a lot of disadvantages. Major disadvantages would be its size, weight, and energy

consumption is all considerably large. Building a solar powered blinds project requires

optimization in all of these fields.

The next type of display screen would be using flat panel display technology. Flat panel

displays are the newer of the two technologies and can be found pretty commonly now.

Different models of flat panels exists LCDs, LED, and E-Paper displays are all examples of

a few types of flat panel displays [14]. Using a flat panel display have many advantages

over CRT for example they can be found in various sizes readily, the energy consumption

in flat displays is substantially less, and the weight is much lighter so they can be easily

mounted to the blinds structure.

LCD and LED display screens would be very ideal if the output we choose to display has

constantly changing data. This data would need to be changing every few seconds to

minutes to really benefit from the screens low power consumptions. For instance, if we

displayed the time on the blinds having an LCD or LED screen would be very useful for

energy consumption. Reasons why we would need to consider displaying images or data

that is constantly changing is because LCD and LED screens all have a normally high

refresh rate. This refresh rate is used to update the images on the display. For an

example let's consider that a screen is operating at a 60Hz refresh rate. That’s means

the display is attempting to refresh the screen 60 times per seconds. Which if the

images are not changing is a complete waste of energy. So the previous statement holds

that this type of display would be useful if the display is constantly outputting a different

variety of data. Another option of LED screens would be to use a segmented display but

this would limit what we can output as visual data [13].

19

A new and very appealing technology to use is electronic paper displays. These e-paper

displays allow data to be retained on screens even after the power sources are turned

off completely. This feature is called “bistable” which in practice the display is truing

consuming power only when the display is active (changing). So in contrast to using a

LCD/LED screen where even non changing screens require a refresh rate of even 30

times a second minimal, the e-paper display will be refreshing at a far slower rate and

conserving even more energy. Adding times when we know the images are worth

changing, we could consider even turning of the power to the display utilizing the

bistable feature [9]. A visual representation of the technology can be seen in Figures 10

and 11, reprinted with permission from Persuasive Displays INC [10].

Figure 10 - Two Pigment Ink System

Figure 11 - E-Paper Module Components

In our project let's say for an example we would like to display the charging battery icon,

weather status, and temperature status most of the time these images will not need to

be updated a substantial amount of times. Using an e-paper display would drastically

reduce the energy drain on the system unlike a LCD/LED. The only downside to actually

using an e-paper display is there is a slight increase and price, especially if we wanted to

consider getting a multi-colored display model. Being that it’s a newer technology the

average price is higher than something of similar standards like an LCD/LED.

20

A comparison of various electronic display technologies can be seen in the chart in

Figure 12, reprinted with permission from Persuasive Displays INC.

Figure 12 - Comparison Table of Display Technologies

For this project we decided to go with an e-paper display for practical reasons that the

overall goal of this project is to converse energy and provide an alternate renewable

energy source. The specific e-paper display we are getting will be Persuasive Displays 2.7

E-Paper display. The specific Digikey part number is E1270CS021-ND and its price before

tax is $21.72 [11].

Persuasive Display's 2.7 E-Paper display specifications are shown below in Figure 13,

reprinted with permission from Persuasive Display INC.

21

Figure 13 - General Specifications

3.2.3 Motors

3.2.3.1 Motors Overview

We have been looking for used motorized blinds to see if there is a way to take the

motor out of an old pair and use them for our project. The reason for this is because I

assumed it would be much cheaper to just take apart an old pair of blinds and use the

motor, then pay for a brand new motor. However, as I have been searching through the

internet, it seems that they are approximately the same price and can be quite

expensive. The roller blind motor seems to be the most commonly used motor and

seems to be the most inexpensive. This motor however, only has one point that rotates

that could be used for either opening or closing the blinds. There is no mechanism to

connect to that would allow for the blinds to rotate to open first, and then be opened or

closed. This poses a problem for us because we are trying to do both of these things.

This brings up the idea then, of creating another gear that the motor would crank, that

would adjust the rotation of the blinds as they are being opened or closed. So instead

of doing these two actions separately, they could be done simultaneously and

controlled by a basic blind motor.

These motors seem to range in price anywhere from 70 to over a 100 dollars. This

seems to be a bit expensive for a motor when you could just buy the whole assembly for

22

about 120 dollars. The motor kits that they are selling as well online are about a total of

115 dollars to make and install your own motor.

Originally, we had theorized that a vertical slat design would be the easiest and most

effective to implement for our project. A concept rendering of this design can be seen in

Figure 14, courtesy of BlindsParts.

Figure 14 - Vertical Blinds Concept

The simplest solution that I have found through research, is to just get two separate

small D/C motors, that are pretty inexpensive and will have enough torque to turn the

blinds and then enough to open the blinds all the way. One of the D/C motors will be to

spin the blinds to open the slats. The second motor will be to draw the blinds open all

the way. The motors will have a limit switch that will let the motor spin a certain

amount to stop the blinds from overturning or trying to open them too far.

Just about as we had decided on the blind and motor layout, we saw another

architecture that seems to be the most plausible way to go. This architecture uses a pull

down blind shade which can be automated by a single motor. This will significantly

simplify the process of attaching the motor and it will cut the rice in half as we will only

have to use a single motor instead of two. The shade will still be automated, but it will

only have to be rolled up and down. It will not have to turn and then have to be drawn

open. It also takes away from more potential points of failure as well as cutting the

power that will be needed to open these blinds. Figure 15 depicts a sample of the

assembly we are anticipating of having for our project design.

23

Figure 15 - Motor for Rolling Shades Architecture

As shown in the figure above, after we have obtained the motor, we will also need to

have the mounting brackets. These will be custom fitted for the window that the

system will be installed into. The housing we will use will have to be a small form fitting

enclosure which means that our PCB will have to be a smaller PCB and the amount of

components we can hide in the enclosure is limited. Most importantly we will have to

make sure that the mounting brackets are installed correctly and securely so that the

blinds will not fall out of the wall. This is a major deal because we can’t have any safety

issues and we don’t want the system to fall and get damaged from the wall.

3.2.3.2 Servo Motors

Looking into the option of using a servo motor, it seemed to be a bit of overkill. The

price for this motor seemed financially unaffordable. This motor is retailed at six

hundred and twenty dollars. This is very high compared to some other options. The

motor is definitely more than enough to get the job done though. It has enough power

to turn the blinds and to open the blinds all of the way.

The motor has the some of the following specs. The power that is used to run this

motor seems to be way too unattainable. It requires four hundred watts of power to

run. The rated voltage for this part is one hundred and fifty volts. This motor has a

rated speed of five thousand revolutions per minute. This is more than enough for this

project especially with a peak speed of eight thousand revolutions per second. The

torque is much more than believed to be needed at twenty inch pounds [15].

The motor seems to be a bit heavier than what would be desired. It weighs in at a little

bit over three and a half pounds. This is a little too heavy since there will be two of the

motors in these blinds, as one would be motor to turn the blinds, and one would be to

open the blinds all of the way. The motors need to be mounted in a fixture on the wall

24

which means that a lighter motor would be desired as to not stress the fixture mounted

in the wall.

After looking at all of these specs on this servo motor, it is apparent that it is not the

right motor for this project. It is too big and bulky and is very unaffordable and uses too

much power for our solar powered power supply.

3.2.3.3 DC Motors: Leeson Motors DC Motor-.05 - .1HP, 12-24V, 1750-4200RPM, TENV,

Sq. flange

This next motor is a D/C motor that seemed to be a bit more affordable than the servo

motor that was previously looked at. This motor is priced at approximately one

hundred and thirty five dollars. This motor also offers a square mounting surface on the

sides of it that make it much easier to mount inside of a housing. This motor has a

horsepower of one half to approximately one. This is once again, more than enough to

do the job we need it to in our project. The revolutions per minute are seventeen

hundred and fifty [16]. This is still overkill on the blinds. The blinds can open much

slower if needed to. The working voltage is also much more attainable because the

voltage required to run this is in the range of twelve to twenty four volts. A drawback

on this motor that was the same as the servo motor is that the motor weighs four

pounds. So adding eight pounds into the fixture hanging from the wall is going to loosen

the mounting mechanism overtime much faster than a lighter motor.

This motor is also very large. It is almost half of a foot. This is another drawback

because we do not want the fixture on the wall to be too bulky. This motor having been

still too expensive, too large, and weighing too much will not be a motor that will be

used to work with our project. This motor can be seen in Figure 16, courtesy of Leeson

Motors.

Figure 16 - Leeson Motors's DC Motor

25

3.2.3.4 DC Motor – 13800 RPM 3VDC 350mA

This motor seems to have a lot more promise than the previous motors that have been

looked into. This motor is much more affordable to say the least. This motor is retailed

at only a dollar thirty nine. The only issue that may be ran into with this motor is that

the motor may not have enough torque, but this will have to be determined later on in

the testing procedure.

3.2.3.5 12V Motor with Drive Shaft

This motor seems to be the closest to what we have been looking for. It is a motor that

is designed specifically for motorized blinds and is used to roll up the blind shade. The

housing on the motor is long like a tube and it is a relatively low-profile housing for this

motor. It seems to be pretty easy to install and looks like it will get the job done. It is a

twelve volt low powered motor too, which is exactly what we were looking for since we

are running our entire project off of our battery. The smaller than amount of power

used is, the better. Also, this motor is rated to pull up a load of up to six pounds.

This seems to be way more than enough for a thin blind shade with a solar panel that

just has a film on it. The torque rating on the motor is .7 nm which seems to be a

perfect amount for this project. It is also able to rotate at thirty four revolutions per

minute. The standby current for the motor is eighteen milliamps and the most current it

can possibly draw is twelve hundred milliamps which is when it stalls [17]. The normal

current draw when in operation is approximately eight hundred milliamps. This is

definitely viable since we will have a battery that is sixty watt hours. The tube length for

the motor comes in any size from twelve inches to anything larger. This definitely

seems to be the right motor for us and our needs for this project. A breakdown of parts

for this motor can be seen in Figure 17.

Figure 17 - Drive Shaft Motor

26

3.2.4 Remote Connectivity

A wireless connection will be required to communicate between our device and a

mobile phone equipped with the corresponding application. There are several different

options available to us to accomplish this goal: Wi-Fi, Bluetooth, or Zigbee [18]. While

power consumption is an important focus of the product, we will not require an

"always-on" connection so this may not be the defining factor for which connection

method we choose to take. Because of this, we will also need to take into account other

metrics in addition to power consumption such as range, interference, security, and

bandwidth. These metrics have been gathered and compiled into Table 5 for easy

comparison [19].

Connect

Method

Active Power

Consumption

Idle Power

Consumption

Max

Range

Security Interference Bandwidth

Wi-Fi 750 mW negligible 32-95

m

WPA2 Minimal at

2.4 GHz

54 Mb/s

Bluetooth 100 mW negligible 10 m CRC Minimal at

2.4 GHz

1 Mb/s

Zigbee 80 mW negligible 10 m AES &

CTR

with

CTM

Minimal at

2.4 GHz

250 kb/s

Table 5 - Comparison of RF Specifications

3.2.4.1 Wi-Fi

Common Wi-Fi frequency ranges are around 2.4 GHz and 5 GHz. The main benefit in the

2.4 GHz system is that it has a longer wavelength meaning it can bend around corners a

little better than its 5GHz equivalent. This makes it good for large homes or apartment

buildings. However, since the 2.4 GHz standard is more common, it is prone to

interference it here are multiple other routers using the same frequency within a certain

proximity. It is also prone to interference from other devices such as cell phones.

If we choose to use a Wi-Fi chip on our microcontroller, it will require the user to

purchase and set up their own wireless router. Also, it would take significantly more

power to operate than either Bluetooth or Zigbee options. It also takes additional steps

to set up through a router. The main benefit of this is the significantly longer range. If

it's connected to a router, it can potentially be accessible from anywhere that has a

wireless connection. However, the power drain from Wi-Fi does not make this a good

option.

27

3.2.4.2 Bluetooth and Zigbee

Bluetooth and Zigbee are both very similar in terms of power consumption, range, and

security protocols. However, with Zigbee being the newest standard to enter the

remote connectivity lineup, there are still problems to be worked out. Some of these

problems include interoperability [20] and a lack of development resources.

Bluetooth has a new standard they refer to as Bluetooth Low Energy (BLE). BLE has a bit

lower range and bandwidth than traditional Bluetooth technology, but we will not be

requiring frequent or large data transfer between the MCU and mobile application. We

also expect it to be used from within the same room as the blinds. Additionally,

Bluetooth technology has been around for many years, so there are ample resources

available on the web to assist us in software development. For all of these reasons, we

will choose to go with a Bluetooth connection for convenience and power consumption.

3.2.4.3 RFID

Our project will require a "sync" feature that will allow the user to register the device

with their mobile phone in order to control operation of the blinds with the mobile

application. One of the methods being considered for this synchronization is a radio

frequency identification (RFID) chip. The RFID tag would be located inside the control

housing for the blinds and the phone would act as the RFID reader.

A product that uses RFID to connect to smart phones is Assa Abloy Hospitality Mobile

Access (formerly VingCard Elsafe). This technology allows the user to make a reservation

at a participating hotel location through their mobile app. When the user arrives at the

hotel, they can just go straight to their room where an RFID-compatible locking

mechanism is installed on the door. The user simply has to put the phone in proximity to

the door to unlock the door and the check-in process is completed automatically [23].

The main focus for us in Assa Abloy's product is its compatibility with RFID technology.

Specifically, it uses near-field communication (NFC) which utilizes the high frequency

band of RFID [21]. This requires very close proximity between the tag and the reader,

approximately 4 inches. Additionally, NFC communication can go both ways since either

device can act as a tag or reader. This may allow us to display a "synced" notification on

the integrated display screen on the blinds.

Additionally, smart phones that are NFC compatible can be used as electronic wallets as

well. There is an increasing number of retail checkout card scanners that support the

use of NFC cards to pay for products. This is usually indicated by a prompt similar to,

“Tap or swipe your card”. The “tap” portion of this is enabled through the use of NFC

built into a chip on certain credit cards. The technology in compatible smart phones can

be used in the same manner.

28

Compatibility might be a problem for using NFC technology with our mobile phones.

However, cell phones from most major manufacturers such as Acer, BlackBerry, HTC, LG,

Motorola, Nokia, and Samsung have come equipped with NFC capabilities for several

years now [22]. One notable exception to this are that all iPhones older than the iPhone

6. This is not a major setback for us since we are currently only planning to support

Android devices with our mobile application. Also, NFC is supported after Android 2.3.3,

SDK version 10, which was released on February 9, 2011. As we can see in Figure 1, the

amount of people that would not be able to use this feature is only 0.3% (Froyo) of

Android users (as of June 1, 2015) [24].

Figure 18 - Android API Distribution as of June 1, 2015

One feature of the Android API is that a setting can be specified to only allow Google

Play to display the application to users with NFC-compatible phones. However, we will

still keep it in Google Play even for non-compatible phones for publicity.

3.3 Possible Architectures and Related Diagrams

3.3.1 Microcontroller Units Architecture

There are several possibilities when deciding on a microcontroller unit. The first

consideration is the type of architecture to use. At the highest level, the possible MCU

architectures we have to consider are the Von Neumann architecture and the Harvard

architecture, with Von Neumann being the older of the two. The main difference is the

way the memory is set up [26].

Getting more specific, some common MCUs are MSP430, 8051, PIC, AVR, and ARM. We

want to use the newer Harvard architecture for this project because it is the more

popular of the two in modern microcontrollers, and it would provide us with more

relevant experience for future projects. MSP430 uses Von Neumann architecture, so we

will rule that out as one of our possibilities. Older ARM units use Von Neumann as well

[24]. This leaves us with 8051, PIC, AVR, and newer ARM processors.

29

Out of these four remaining architectures, AVR and ARM are the newest. As a result,

they are generally faster than the 8051 and PIC MCUs [28]. Additionally, 8051 and PIC

have small stack space and can be a bit challenging for C programming [29]. Assembly

programming is still viable, but would take a bit more time.

Focusing on AVR and ARM, we can see that both are very good options. There are

multiple free compilers available for both, and they're both very widely used in modern

applications. However, AVR is designed specifically for use with video codecs and for use

in devices such as Apple's iPod. ARM on the other hand, has a wide range of uses and is

heavily used in smart phones. As a very flexible and powerful option, we choose to go

with an ARM MCU. Also, since ARM processors are used in a wider variety of products in

the current economy, this would provide us with good experience which is highly

probable to be used in future applications.

The ARM processor has more processing capabilities than we require for this project. If

we were developing this product for actual marketing for a company, I would probably

not use the ARM because of the (slightly) extra power consumption and additional cost.

However, we want the learn how to use the ARM processor to allow us to explore

future opportunities and careers.

3.3.2 Motors Architecture

Eagle and LtSpice will be the programs that we will be using to design our schematic for

our board. Each part will have its own library with its own package, device and

schematic symbol. We will be aiming to use 603’s as much as possible because the

cavity in the blind housing is relatively small, so we will try to make the board as small as

possible. There will not be very many parts on the physical PCB layout since we will be

using a battery controller externally to charge the battery from the solar energy. The

only circuits on the board itself will be the regulation circuit from the battery to the

necessary voltage to operate the micro and to charge any USB device that will be

plugged in as well as operate the motor.

3.3.3 Power Distribution Architecture

The basic power distribution layout is shown below in Figure 19. The solar module is the

only power input into the battery. A solar charge controller will be necessary in order to

maximize the amount of power being input into the battery and also to provide

protection circuitry for the solar module input and load outputs. The loads include the

roller blind motor, microcontroller, USB charger, and e-paper display. Appropriate

circuitry will be required to deliver the correct amount of power to each sub-system and

to protect each load from receiving too much power. Since the solar module will only

charge the battery during the day, the loads should be chosen to draw as little power as

possible while still accomplishing the desired function.

30

Figure 19 - Power Dissipation Architecture

3.3.4 Power Input

3.3.4.1 Solar Module Options

There are a variety of solar cell technologies to choose from when designing an

application that will collect solar energy. These include monocrystalline silicon,

polycrystalline silicon, and amorphous silicon photovoltaics. Crystalline silicon

photovoltaics are non-flexible and would need to be installed to blinds having large

vertical or horizontal slats. The advantage to using crystalline silicon photovoltaics is

that they yield higher efficiencies. This means they will provide more power to the

battery for every hour of incident sunlight using the same amount of space. The size of

each module would need to match the size of each slat. The modules could be

connected in series or in parallel in order to increase the output voltage or current of

the system. Amorphous silicon photovoltaics are flexible and can be attached to roller

shades, but are less efficient than crystalline photovoltaics. Several larger modules could

be used and attached directly to the back of the shade. This would reduce the complex

wiring necessary when using crystalline photovoltaics.

31

ML Solar carries a set of 40 3”x6” polycrystalline photovoltaics for $33.95. These cells

are shown below in Figure 20, printed with permission from ML Solar. Each cell has an

average power of 1.8 W operating at a maximum voltage of 0.5 V and a maximum

current of 3.6 A. These cells can be connected in series in order to achieve the higher

voltage necessary for charging a 12 V lead acid battery. A voltage of 13.5 to 13.8 V is

recommended for charging a 12V lead acid battery; however, the charge controller will

regulate the voltage to match that of the battery if the voltage of the solar module

exceeds that of the battery. Using 30 of these cells connected in series will provide a

total average power of 54 W operating at a maximum voltage of 15V and a maximum

current of 3.6A.

Figure 20 - ML Solar 3”x6” Polycrystalline Cells

Blocking diodes will need to be used in order to keep the current flowing in the correct

direction. Bypass diodes will also be needed in order to bypass a cell that is shaded.

Figure 21 shows how the cells can be connected in series when using the blocking and

bypass diodes.

Figure 21 - Connecting Solar Cells in Series

Five cells can be connected in series on each of six vertical 6” slats. This will create six

9W modules that can be connected in series to form the final 54 W module. This module

32

will be capable of capturing the amount of energy capable of being stored by the 60Wh

battery in about 1.1 hours under ideal lighting conditions. While the amount of power

capable of being captured by these cells far exceeds that of the amorphous silicon cells,

the wiring required would be more intricate and blinds with large slats would need to be

used.

Sunpower carries a set of 20 6”x6” monocrystalline photovoltaics for $89.99. These cells

are shown below in Figure 22, printed with permission from cicibizhk (eBay). Each cell

has an average power of 3.3 W operating at a maximum voltage of 0.58 V and a

maximum current of 5.93 A. Similar to the polycrystalline cells, these cells can be

connected in series in order to achieve the higher voltage necessary for charging a 12 V

lead acid battery. Using 18 of these cells connected in series will provide a total average

power of 59.4 W operating at a maximum voltage of 10.4 V and a maximum current of

5.93 A. The charge controller will need to be able to boost the voltage and drop the

current in order to safely charge the battery. Three cells can be connected in series on

each of the six vertical 6” slats. This will create six 9.9 W modules which can be

connected in series to form the final 59.4 W module. This module will be capable of

capturing the amount of energy capable of being stored by the 60Wh battery in one

hour under ideal lighting conditions.

Figure 22 - Sunpower 6”x6” Monocrystalline Cells

Powerfilm makes a series of rollable, amorphous silicon panels, which come in a variety

of sizes. They are made using a proprietary roll process, which makes them much more

flexible then other thin film technologies. The R-14 model is 14.5”x42” and costs

$185.99. This panel is shown in Figure 23, printed with permission from FlexSolarCells.

The panel has a total average power of 14 W operating at a maximum voltage of 15.4 V

and a maximum current of 900 mA. A blocking diode is built into the unit to prevent

back charging. If more power is desired, panels can be connected in parallel to achieve a

higher current. The voltage of the panel is ideal for charging the 12 V lead acid battery

being used to store energy. This module will be capable of capturing the amount of

energy capable of being stored by the 60Wh battery in 4.29 hours under ideal lighting

conditions. Although the panel is more expensive and less efficient than the crystalline

silicon modules, the rollable nature of the product would allow for it to be easily

attached to a roller shade. This would drastically reduce the amount of solder

connections needed, which reduces the amount of failure points in the system. The

33

panel also weighs 0.98 lbs, which will not put much stress on the motor used to roll the

shade.

Figure 23 - Powerfilm R-14

In order to maximize the power capable of being captured by the system while

maintaining the roller shade design, a combination of crystalline solar cells and

amorphous silicon solar panels can be used. The 3.3 W 6”x6” monocrystalline

photovoltaics can be attached to the back of the 6”x6”x36” housing unit used to store

the battery and circuit boards. Connecting six of the cells in series would produce 20.6

W operating at a maximum voltage of 3.48 V and a maximum current of 5.93 A. Adding

the 14 W amorphous silicon rollable solar panel brings the total power of the system to

34.6 W. This system will be capable of capturing the amount of energy capable of being

stored by the 60Wh battery in 1.73 hours under ideal lighting conditions. A diagram of

the system described is shown in Figure 24.

34

Figure 24 - Crystalline and Amorphous Silicon Design

3.3.4.2 Maximum Power Point Tracking

Maximum Power Point Tracking (MPPT) compares the output voltage of the solar

module to the terminal voltage of the battery. From this information, the maximum

power that can be output by the solar module into the battery is calculated. The

optimized voltage is then selected in order to maximize the current flowing into the

battery. The efficiency is increased most when temperatures are below average. A 20-

45% power gain in winter and a 10-15% power gain in summer can be achieved when an

MMPT is used [30].

35

The MMPT circuit is a high frequency DC-to-DC converter. It takes the DC input from the

solar modules and converts it to high frequency AC signal. It then runs the AC signal

through a transformer and a rectifier to convert it back to a different DC voltage and

current that matches the battery voltage. Since light and temperature conditions vary

continuously throughout the day most MMPT charge controllers are now digital

microprocessor controlled devices. Several companies make MPPT charge controllers

with varying costs, peak efficiencies, speeds, max panel voltages, battery voltages, and

max load currents.

The Genasun GV-5 is a 65W 5A MPPT solar charge controller for lead-acid batteries. An

image of this controller is shown in Figure 25, printed with permission from Genasun.

The controller costs $75.00 and has a maximum recommended panel power of 65 W.

Inputs include a 27 V maximum panel voltage input, a 12 V battery input and a load

input with a continuous rated load current of 5 A. Although it is rated for 27 V, a 22 V

maximum panel voltage is recommended under standard operating conditions. The

minimum battery voltage for normal operation is 7.2 V and the maximum input current

is 9A. A computer controlled four-stage battery charging profile is used in order to

increase the battery life and maximize capacity. This includes an absorption voltage of

14.2 V, a float voltage of 13.8 V, and a load disconnect voltage ranging from 11.4 to 12.5

V. A battery temperature compensator is also included which adjusts the voltage at a

rate of -28mV/�. The controller utilizes an MPPT tracking speed of 15 Hz in order to

adapt quickly to changing light conditions. This results in an electrical efficiency of 96%-

99.85% and a tracking efficiency of 99+%. The controller uses ceramic components

instead of electrolytic components in order to increase the product lifetime. A 10-year

warranty is included with purchase. The GV-5 consumes 0.150 mA when operating and

0.125 when asleep. It weighs only 2.8 ounces and has dimensions of 4.3”x2.2”x0.9”. A

built-in electronic protection circuit cuts power when a short circuit is detected. This

will protect the controller from damage if the polarity of any of the inputs is mistakenly

reversed.

Figure 25 - Genasun GV-5

36

Genasun also makes the GV-4 and the GV-10, which are similar controllers that are

designed for smaller and larger panel powers respectively. The GV-4 costs $65.00 and

has a maximum recommended panel power of 50 W. The GV-10 costs $109.00 and has a

maximum recommended panel power of 140 W. Inputs include a 27 V maximum panel

voltage input and a 12 V battery input. There is no load input on either of these

controllers. The warranties on the GV-4 and GV-10 are five years, which is half the

warranty of the GV-5. All of the other characteristics of these charge controllers are

identical to those of the GV-5 [31].

3.3.4.3 Pulse Width Modulation

A pulse width modulation (PWM) charge controller is less expensive than an MPPT

controller and is more ideal for small systems. It can be used if the solar module voltage

is matched to that of the battery under normal operating conditions. Unlike the MPPT

controller, which operates at above the battery voltage, the PWM operates at the

battery voltage. It performs best in warm weather and when the battery is near full [32].

In PWM charging method the charge controller sends out a short charging pulse of

energy to the battery. The controller then checks the state of the battery to determine if

more pulses should be sent and how wide the pulses should be. If the battery is fully

discharged the controller will send out longer pulses at a steady rate. When the battery

is nearly full the pulses will become shorter and shorter. The controller checks the

charge of the battery between pulses and adjusts the pulse accordingly.

The Morningstar SS-6L-12V is a 12 V 6 A PMW solar charge controller. An image of this

controller is shown in Figure 26, printed with permission from MorningStar. The

controller costs $45.00 and has a maximum recommended panel power of 72 W. Inputs

include a 30 V maximum panel voltage input, a 12 V battery input, and a load input with

a continuous rated load current of 6 A. The controller consumes 8 mA when operating

which is many times more than the MMPT controller. The minimum battery voltage for

normal operation is 1 V and the load in-rush capability is 45A. A four-stage battery

charging profile is used in order to increase the battery life and maximize capacity. This

includes an absorption voltage of 14.1 V, a load disconnect voltage of 11.5 V and a load

reconnect voltage of 12.6. A battery temperature compensator is also included which

adjusts the voltage at a rate of -30mV/�. A 5-year warranty is included with purchase. It

weighs 8 oz. and measures 6”x2.2”x01.3”. A built-in electronic protection circuit

protects the controller from overload, short-circuit, and high voltages from the solar and

load inputs as well as high voltages from the battery.

37

Figure 26 - Moringstar SunSaver-6

Morningstar also makes the SS-10L-12V, which is a similar controllers that is designed

for larger panel powers. This controller costs $55.00 and has a maximum recommended

panel power of 120 W. Inputs include a 30 V maximum panel voltage input, a 12 V

battery input, and a load input with a continuous rated load current of 10 A. The

controller consumes 8 mA when operating which is many times more than the MMPT

controller. The minimum battery voltage for normal operation is 1 V and the load in-

rush capability is 65A. All of the other characteristics of these charge controllers are

identical to those of the SS-6L-12V.

3.3.5 Battery Options

When selecting a battery to use for solar energy storage it is important to consider the

cost, lifetime, size, environmental impact, and reliability of the different technologies

available. A deep cycle battery is required for applications where the battery will be

regularly discharged at a low rate over several hours. This is in contrast with a shallow

cycle, or starter, battery, which delivers a high power pulse over a short period of time.

The battery selected for this project will have to be a deep cycle battery because USB

charging will require the battery to be discharged at a low rate. Two battery chemistries

that are commonly used for solar energy storage are lead acid and lithium-ion. Lead acid

batteries are the best option when working with a limited budget because they are

more affordable than lithium-ion batteries.

Lead acid batteries can be divided into two main types: flooded and sealed. Flooded

lead acid batteries are more affordable than sealed lead acid (SLA) batteries; however,

they require upright orientation to prevent leakage, a ventilated environment, and

routine maintenance. SLA batteries can be further divided into GEL and absorbed glass

mat (AGM) categories. AGM batteries are more common because they offer higher

current rates and display long life cycles when discharged less than 60% between

recharges [33]. They are also less expensive than GEL batteries. GEL batteries have

38

longer life cycles than AGM and perform better in higher temperature environments.

Lithium-ion batteries are the best option when a high life cycle is desired. They are more

expensive than lead acid batteries; however, they are lightweight and less sensitive to

variations in temperature.

The Powerizer 12 V 5Ah LiFePO4 rechargeable battery costs $79.95. This battery has a

built in PCB to protect it from being overcharged (>15.6 V), over discharged (<8.8 V), or

over drained (>40~60 A). An LED indicator is also built in which shows the capacity

status. The battery is rated to have a cycle life of greater than 1000 cycles. The

maximum charging rate is 2.5 A and the maximum discharging rate is 10 A. The battery

measures 3.5”x2.8”x3.98” and weighs 1.48 lbs. It has T1 terminal connectors.

The Universal Power Group UB250 12 V 5Ah SLA AGM rechargeable battery costs $9.93.

The battery is rated to have a cycle life of 200 cycles when the battery is discharged

100%, 500 cycles when the battery is discharged 50%, and over 1200 when the battery

is discharged 30% before recharging. The lifetime for this battery is shown graphically in

Figure 27, printed with permission from UPG. The battery measures 3.54”x2.76”x3.98”

and weighs 3 lbs. It has F1 terminal connectors.

Figure 27 - Cycle Life vs Depth of Discharge for UB250 Battery

The lithium-ion battery is about eight times more expensive than the lead acid battery

with similar specifications; however, there are several safety features that are built in to

the lithium-ion battery that are not included in the lead acid battery. Since a solar

charge controller will be used regardless of the battery chemistry the added circuitry of

39

the lithium-ion battery that provides protection from overcharging, over discharging,

and over draining is unnecessary. There is no indicator on the lead acid battery to show

the capacity status; however, a simple battery monitor chip could be implemented such

as the Maxim DS2438 Smart Battery Monitor. The 8-pin DS2438 is shown in Figure 28,

courtesy of Maxim, and costs less than $5.00. It features a battery temperature sensor,

battery voltage and current meters, and an integrated current accumulator. The voltage

meter can be used for defining the end-of-charge and end-of-discharge voltages. The

current accumulator keeps a running total of all current going into and out of the

battery [34].

Figure 28 - Maxim DS2438

The cycle life for the lithium-ion battery is about twice that of the lead acid battery

when the battery is discharged 50% before it is recharged. If the lead acid battery is only

discharged 30% before it is recharged then the lifetime is about the same as the lithium-

ion battery. If the battery will be discharged completely every night then it would be

most beneficial to spend more upfront on the lithium-ion battery. If the battery will be

discharged less than 50% before it is recharged then the lead acid is a much more

affordable option. Even if the lead acid battery needed to be replaced up to seven times

in the time that it would take the lithium-ion battery to retire it would still be the more

economical option; however, it would have a larger environmental impact. It is

important to correctly recycle batteries of all chemistries in order to reduce the

environmental impact.

3.3.6 Power Output

The load output of the charge controller will be connected to the PCB which will be

designed to deliver a specified amount of power to each of the loads. The loads include

the roller blind motor, the microcontroller, the USB charger, and the e-paper display.

3.3.6.1 Roller Blind Motor

Roller blind motors operate at 12 V and draw around 1 A of current when operating. The

standby current for the motors is around 20 mA. Higher standby currents are typical for

40

motors with radio controllers. Since the motors operate at 12 V there is no need to

convert the voltage for this load. A resistor will need to be used in order to limit the

amount of current that is required for the motor to work when the radio control is

activated. The value of this resistor will depend on which roller blind motor is chosen.

3.3.6.2 Microcontroller

The Atmel SAM3N00A is one of the low power options available by Atmel. Normal

operation requires 1.62-3.6 Volts, with a power consumption of 3 �� in backup mode

and 5-15 �� in wait mode. Table 6 shows the active power consumption of the remote

connectivity options available.

Remote Connectivity

Technology

Active Power

Consumption

Wi-Fi 750 mW

Bluetooth 100 mW

Zigbee 80 mW

Table 6 - Remote Connectivity Power Consumption

3.3.6.3 USB Charger

The biasing of the four USB pins is important when deciding on what kind of devices will

be capable of charging. Pin 1 is defined as Vcc and is always biased at 5V. A 5V voltage

regulator will be needed in order to reduce the 12 V battery voltages to 5 V. The TI

L7805 voltage regulator will maintain a fixed output voltage of 5V with a maximum

output current of 1.5 A. Pin 4 is defined as ground and is always connected to ground.

The charging port of a USB chargeable device contains hardware that detects when a

charger is connected. Traditional USB ports have a maximum output of 0.5A; however,

newer devices are capable of using higher currents, which results in faster charging

times. Pins 2 and 3 are defined as the data pins. Pin 2 is the negative data pin and pin 3

is the positive data pin. If the data pins of a charger are left floating then the device will

default to the traditional 0.5 A rate. If the data pins are shorted then the device will be

capable of drawing larger currents. This current will depend on the resistors used.

3.3.6.4 E-Paper Display

Figure 29 shows the recommended operational conditions for the Pervasive Displays 2.7

inch E-paper display. This is a bit higher than expected, but the statistics themselves are

a bit misleading. The reason we chose to go with the e-paper display over some other

options is that it only requires power to change the display. All figures displayed on the

screen will persist even without any power. This is perfect for our project because the

only time we need to update the screen is when there is a temperature change or a

significant change in the battery charge.

41

Figure 29 - Operational Conditions for E-paper Display

3.4 Possible Software Development Environments

3.4.1 Embedded Microchip Environments

Since we will be using an ARM microcontroller unit, we will need development software

that is compatible. First, we will need to find out what language would be best to use.

There are several languages we could use such as assembly, C, C++, Pascal, Basic, Java,

and some others. However, when developing for an MCU, we will want to focus on

assembly or C for portability and efficiency reasons. With C being a more intuitive

language than assembly, we will go with that language instead. Most modern compilers

can translate C language to the MCU almost as efficiently as writing optimal assembly

code directly. The only reason to ever really program an MCU with assembly anymore is

if the response time of the application needs to be as real-time as possible, such as with

some devices used in the medical field or the military.

Now that we have decided to use the C software language, we will need an IDE that

supports both C and ARM. There are many choices, but we will consider the following:

• Code Composer Studio

• Crossworks

• DS-5 (Eclipse plugin)

42

• Keil MDK

Code Composer Studio has limitations on its free software, and still requires an

annoying download and setup process for it. Crossworks does not appear to be very

user-friendly. Keil MDK appears to function well and without much of a learning curve.

DS-5 has a free community version, which is a plugin for the Eclipse IDE. This is an

alluring option because we have used the Eclipse IDE for Java development during

previous courses using Java.

We decided to go with the Code Composer Studio for our embedded software

development. At first, the DS-5 plugin seemed like a good option, but upon reflection it

seemed that it might cause more complications. The risk of delaying our project

development is not worth the convenience and familiarity it may give. Since Code

Composer Studio is specifically geared toward MCU programming, it should handle any

of our requirements without any unforeseen complications. We have also used it in

previous courses, but to a lesser extent and not as recently. Even so, even a limit

experience with the program should help to ease the transition to a new IDE and help

the development process go more smoothly.

3.4.2 Mobile Application Environments

The mobile application for this project will be developed for Android devices. The core

programming language we decided to use is either Java or C#. With this in mind a few

software development platforms can be considered.

First on the list is Google’s recently revamped Android Studio. This would serve as the

best ideal development program if we would choose Java as the primary application

development. Reason being it supports the development of android apps, has a vast

amount of resources and guides to help prevent problems, and is directly related with

android’s creators. With Android Studio’s built in features like intelligent code editor,

GitHub integration, multi screen app development, virtual devices, and Android builds.

Having all of these features in one platform can save the developers the trouble of

exporting code and upload the different builds [36].

Another considerable software development platform for the mobile application would

be Xamarin. Xamarin is another platform developed and managed by a software

company called Oracle. This platform utilizes C# as the core programming language

instead of common languages like Java, Objective C, and Swift used in most other

mobile application development platforms. Other features in Xamarin are built in user

interfaces, API Access, and the Xamarin Test Cloud. If we were to choose Xamarin the

developers would be required to learn and use C#. This is not a bad thing but can set

them back as they would need to have experience and knowledge. Not having this

experience can create a possible learning curve but the developers will have an

opportunity to both learn and use a new programming language and platform [35].

43

Another benefit of Xamarin would be the increase in accessibility of the mobile

application. This is because Xamarin allows iOS development readily unlike Android

Studio. The disadvantage is that it cost money to actually place the application on

Apple’s Appstore. This is just a consideration though since we actually have no planned

to develop or even place on the Appstore. So this is more so a feature that is only nice

to have.

The last option for a mobile development platform is Eclipse IDE. This one would require

the most behind the scenes setup to get started but allows many of the same features

as the other two platforms.

For our mobile platform since we are planning to use Xamarin we will have an

abundance amount of resources fully at our disposal.

44

4.0 Related Standards

Standards greatly affect how new technologies are spread in the United States. The

purpose of forming standards is to simplify product development and to ensure safety in

the development and use of new products. Standards make products more

interoperable, which can lead to faster development and cost reduction. Many

standards will be utilized in our project including safety standards, reliability standards,

communication standards, programming language standards, connector standards, and

battery standards. Some of these standards will be pre-established by organizations

such as IEEE, ANSI and UL and others will be project specific. Below are a few of the

standards that will be used in our project.

4.1 Safety Standards

Table 7 lists the safety standards relevant to our project. As always, safety is a primary

concern in any project. Our project does not involve any hazardous materials or sharp

objects, but safety should always be considered when working with electrical parts. For

example, the housing in which the electronics and the rolled up canvas will be housed

will possibly reach high temperatures since it will be in direct contact with the window,

at least on one sight. We have to consider the fact that this may pose a fire hazard.

Standard Description

IEC 61508

Functional safety of electronic and programmable

safety-related systems.

NFPA 70 National Electrical Code that specifies safe

electrical design, installation, and inspection to

protect people and property from electrical

hazards.

UL 50 Performance requirements for enclosures to

provide a degree of protection to personnel

against incidental contact with enclosed

equipment

UL 62109-1 Describes standard for safety of power converters

used in photovoltaic power systems.

Table 7 - Safety Standards

4.2 Reliability Standards

Table 8 lists the reliability standards relevant to our project. The purpose of a project

would be meaningless if the product is not designed to be reliable. In this case, our

largest reliability risk will be the solar cells we use to absorb energy from the sun. We

45

will need to know the exact characteristics of our cells in order to properly utilize them

and ensure maximum performance and, therefore, reliability.

Standard Description

UL 61215 States requirements for testing crystalline silicon

photovoltaic modules to determine the electrical

and thermal characteristics, which are used to

determine if the module is capable of withstanding

prolonged exposure to a specified climate.

UL 61646 States requirements for testing thin-film

photovoltaic modules to determine the electrical

and thermal characteristics, which are used to

determine if the module is capable of withstanding

prolonged exposure to a specified climate.

Table 8 - Reliability Standards

4.3 Communications Standards

Table 9 lists the standards for communications. The three possible protocols we would

be using are either Wi-Fi or Bluetooth, as well as RFID.

Standard Description

IEEE 802.11b Defines wireless-networking specifications up to

11 Mbits/s using a 2.4GHz band (Wi-Fi).

IEEE 802.15.1 Defines wireless medium access control and

physical layer specifications for wireless personal

area networks (Bluetooth).

IEEE 802.15.4f Defines protocol for active RFID and sensor

applications

Table 9 - Communications Standards

4.4 Programming Language Standards

In reference to the standards of the programming languages we are following many of

the standardizations of ISO/IEC 9899:2011 also known C11. However for personal

preferences below are some case specific guidelines the developers will be responsible

for following at all times.

4.4.1 Version Control

In order to handle the version control of the mobile application development the

developers plan to integrate a code collaboration tool into the development cycle.

There are quite a few collaboration tools to choose from but we are going to limit the

46

choices to the following four tools only: Beanstalk App, Cloud9, GitHub, and Jira [37].

This following discussion will analyze the advantages, disadvantages, and the overall

cost association with using these tools.

A distributed software company called Wildbit makes the Beanstalk App. This

company’s focus is to improve the way web apps are built, ran, and deployed. The

overall ideal behind the beanstalk app is to create a hosting service that can offer and all

GitHub and SVN version control, developer collaboration tools, and deployment tools.

Beanstalk is also packed full with multiple useful features designed to help developers

track code changes, error tracking, and deploy working code [38].

Beanstalk’s pricing plans varies depending on the needs of the projects and developers.

However they do offer a free plan that is available for the first two weeks of a

subscription. The prices for continuing use after the end of the two weeks go for $15 per

month up to 200 per month. There are also two different levels of pricing plans. One

being made for freelancers and startups that as the prices increase the only changes in

the plans are to the total storage space, repositories, users, and servers. The other level

is made for businesses and enterprises that add more features altogether to the plans.

These features are bonuses like added security tools, priority support, and custom

backups. For our projects development this added features may be a little bit extreme in

terms of what we actually plan to build for the mobile application [39].

Overall Beanstalk is a great tool the developers can use to code and work together. With

features like version control, code editing using their built in editors, and many more.

The only downside is that the tool costs money monthly to use during the development

phase.

The next tool for discussion is called Cloud9. This code collaboration tool differs from

the other tools by the fact that it is more so like a cloud based IDE. This feature also

makes Cloud9 have the ability to have real time coding and chatting unlike most of the

other tools [43]. Cloud9 is able to do this by actually creating developer environments

that can support a variety of languages we will b using to Cloud9 offer a free account

with limited features and at max one premium workspace. The developers may be able

to function completely with just a free account alone. However if not the pricing for

Cloud9 base plans start at $9 per month going up to $79 per month for large plans [44].

This base plan will offer enough resources for sure to operate with minimum efficiency.

One of the most popular if not the most popular collaboration software tool available is

GitHub. With the ability to work with the tool almost anywhere GitHub possesses a huge

amount of advantages over its competition. Built as an open source platform so many

companies have also built on add-ons or even integrated GitHub's services into their

own products. With powerful collaboration tools, ability to perform code reviews along

with code management, issue tracking, and completely free access to the entire feature

without a paid plan GitHub may be the best pick as far as an all-in-one collaboration

47

tool. The only disadvantage to using GitHub is the free plan limits the developers to a

public repository. This means anyone can access the project to view our files of even use

our code and work. The only way to gain access to a private repository is if we choose an

upgraded plan starting at $7 per month. All of their plans each offer unlimited

collaborators and public repositories. The only things that change as the prices increase

is the total amount of private repositories available to the collaborators. The plan we

intend to purchase would be the micro level plan that offers 5 private repositories. Also

GitHub offers education discounts to even reduce the monthly costs even more [42].

Last but not least is Jira. Jira is a project management software product for collaborative

development. It is made by a company called Atlassian, which specializes in making an

assortment of products for developers trying to work together. The purpose of using Jira

in contrast with some of the other collaboration tools is that it’s great for planning,

tracking, and reporting progress of the developers [40]. This is a great product for the

developers who plan to use agile methodologies. The features built into Jira are

knowledge management, development workflow, continuous integration, and real-time

collaboration. Jira offers a free 7 days then prices vary depending on if you choose to be

a cloud based or server based system. Cloud based systems range from $10 to $1,000

per month while server based systems range from $10 to $24,000 per month. The prices

increases are as more users join your team it costs more monthly. All of the other

features do not change. For the amount of developers for our project we would only

need a plan costing $10 per month if we were to proceed and use Jira as a program

management tool [41].

After considering all of the tools we decided that we would be using GitHub to handle

our version control needs. We will be using the micro plan level. This plan will cost us

normally $7 per month. However one of the developers in our project already owns an

upgraded plan and has an extra private repository that we can use for this project. In

doing so, we will be able to save us the cost of paying $7 per month in our project

budget. Additionally, since we will be able to use a private repository, we can ensure

that our intellectual property will not be vulnerable to others. It is important to protect

the privacy of our work to avoid potential plagiarism claims if another group of people

decide to steal our research and claim us as the violators.

4.4.2 Version Control Standards

The following list contains all of the version control coding preferences the developers

must adhere too.

• The naming convention to keep track of forks in the repositories is as follows:

o Ex: [1.00]ClassName.filetype

• A scenario of every time we upload a file with new changes, we will increment

the version count of the name of the file. If the original file name is

48

[1.01]ClassName.filetype. After commiting code changes we would then upgrade

the version count of the file to [1.02]ClassName.filetype.

o Ex: Original = [1.01]ClassName.filetype

 New = [1.02]ClassName.filetype

• In order to avoid working on the same files at the same time we will follow this

rule in certain scenarios. If we ever have to switch over the file we’re working on,

we’ll formalize everything to the next version. So instead of [1.XX], we’ll push it

to [2.XX] so we don’t have conflicting changes in the same file.

4.4.3 Embedded Language Standards

The developers are to abide by these standards set below at all times for the purpose of

standardizing all code in the C language for embedded programming of the projects

hardware applications.

4.4.3.1 Naming Conventions Standards (Embedded Programming)

Follow these naming conventions to ensure the developers know what the variable

scope is along whether it’s a function of file being used.

• Constants will use all caps.

o Ex: int CAPS = 1000;

• Constants will use underscores to replace the spaces in the name.

o Ex: int ALL_CAPS = 1000;

• Functions will use camel case with the first word always lowercase.

o Ex: functionNamesLikeThis();

• File names will be camel case with the first word always uppercase.

o Ex: FileNameLikeThis();

• Variable names will be all lowercase.

o Ex: int lemons = 0;

• Variable names will use underscores to replace the spaces in the name.

o Ex: int num_of_lemons = 0;

• All names should be descriptive enough to leave no ambiguousness to the other

developers when reviewing code during a code review.

4.4.3.2 Blank lines Standards (Embedded Programming)

The use of blanks line should be standardize in a way the developers can easily scan the

code to search and find what they are looking for. These rules should always be used in

the following cases to ensure that the minimum extra white space will be in the code.

49

• Three lines inclusive should be in between sections in order to help separate the

two areas of code.

o Ex: After a method and before a new method there should be blank lines.

• One line break may be used to separate code inside of a function or method

whenever it would improve readability.

o Ex: Immediately after variable declarations and conditional statements

• All return statements will be separated from the code by a line break.

o Ex: A code sample is shown below

int main(){

 printf(“Hi”);

 return 0;

}

• In all other cases there should be no line breaks unless it falls into one of the

categories listed above.

4.4.3.3 Function Formatting Standards (Embedded Programming)

All functions in the code are to be standardized by the following rules.

• Immediately after naming or declaring a function an open bracket is to follow.

Then an immediate line break wit the content of the function starting one indent

inside of the previous indent mark. The closing bracket will be placed on a new

line with the same indentation level as the original indentation at the beginning

of the function.

o Ex: A code sample is shown below

private double functionNameHere(int some, int variable){

 printf(“Group: “); // Some example code

 printf(“11“); // Indented like this

 return 0;

} // The closing brackets will always be on a newline.

4.4.3.4 Comments Standards (Embedded Programming)

The developers should avoid using multi line comments and follow these standards in

regards to comments

• Each file will have multiple section headers (done with the built-in commenting

syntax) in the following format:

o Ex. A code sample is shown below

 //***

 //* Title of section, e.g. Header, Constants, Main Loop, or Functions *

 //* Up to two lines of text inside - Centered *

 //* *

50

 //***

• Every function will have a description of what it does, as well as a short

description of each input and output (avoid using global variables besides

constants), pass all inputs and outputs to/from the main loop with function calls

and returns:

o Ex: A code sample is shown below

 // Prints text to the screen

 // x: The text that is to be printed

 void printToScreen(String x) {

 printf("%s\n", x);

 }

• Besides the section headers and the function headers, all other developer

comments will be end-of-line comments. First apply three spaces after the code.

Then “//” followed by a space. Then immediately after the space you can type

the details you wanted to address in the comment.

o Ex: A code sample is shown below

 printf(“Hello World”); // Print statement for Hello world

4.4.3.5 Conditional Statements Standards (Embedded Programming)

All types of statements and loops should be written as follows.

• First the type of statement or loop should be written. Then a space will follow

separating the type from the opening parentheses. After the comparison

statements are made a closing parentheses should be placed. Then a space will

be in between the closing parentheses and the opening bracket.

o Ex: A code sample is shown below

for (i = 1; i < 10; i++) {

 printf("i = %d",i);

}

• If statements, for loops, and while loops along with any other types shall be

written with a space in between each of the elements and the operator inside of

the parentheses.

o Ex: A code sample is shown below

if (a = b) {

 a++;

}

• If they use brackets the open bracket should follow the closing parentheses with

a space in between them. They closing bracket should be on a newline lined up

with the beginning conditional statement indentation.

51

4.4.3.6 Miscellaneous Standards (Embedded Programming)

These are miscellaneous standards for embedded programming that did not fit into any

other specific areas.

• Try to avoid lines longer than 100 characters. This standard depends on the IDE

we choose. Also this character count does not include comments.

• General progression: header > libraries > global variable declaration > main loop

> function calls

4.4.4 Object-Oriented Language Standards

The developers are to abide by these standards set below at all times for the purpose of

standardizing all code in the object-oriented language for mobile programming of the

projects software applications.

4.4.4.1 Naming Conventions Standards (in object-oriented language)

Follow these naming conventions to ensure the developers know what the variable

scope is along with whether or not it is a function or file being used.

• Constants will use all caps.

o Ex: int CAPS = 1000;

• Constants will use underscores to replace the spaces in the name.

o Ex: int ALL_CAPS = 1000;

• Methods will use camel case with the first word always lowercase.

o Ex: methodNamesLikeThis();

• Class names will be camel case with the first word always uppercase.

o Ex: FileNameLikeThis();

• Variable names will be all lowercase.

o Ex: int lemons = 0;

• Variable names will use underscores to replace the spaces in the name.

o Ex: int num_of_lemons = 0;

• All names should be descriptive enough to leave no ambiguousness to the other

developers when reviewing code during a code review.

4.4.4.2 Blank lines Standards (in object-oriented language)

The use of blanks line should be standardized in a way the developers can easily scan

the code to search and find what they are looking for. These rules should always be

used in the following cases to ensure that the minimum extra white space will be in the

code.

52

• Three lines inclusive should be in between sections in order to help separate the

two areas of code.

o Ex: After a method and before a new method there should be blank lines.

One line break may be used to separate code inside of a function or

method whenever it would improve readability.

o Ex: Immediately after variable declarations and conditional statements

• All return statements will be separated from the code by a line break.

o Ex: A code sample is shown below

int main(){

 printf(“Hi”);

 return 0;

}

• In all other cases there should be no line breaks unless it falls into one of the

categories listed above.

4.4.4.3 Method Formatting Standards (in object-oriented language)

All functions in the code are to be standardized by the following rules.

• Immediately after naming or declaring a method an open bracket is to follow.

Then an immediate line break with the content of the method starting one

indent inside of the previous indent mark. The closing bracket will be placed on a

new line with the same indentation level as the original indentation at the

beginning of the method.

o Ex: A code sample is shown below

private double methodNameHere(int some, int variable){

 printf(“Group: “); // Some example code

 printf(“11“); // Indented like this

 return 0;

 } // The closing brackets will always be on a newline.

4.4.4.4 Comments Standards (in object-oriented language)

All types of statements and loops should be written as follows.

• Each file will have multiple section headers (done with the built-in commenting

syntax) in the following format:

o Ex. A code sample is shown below

 //***

 //* Title of section, e.g. Header, Constants, Main Loop, or Functions *

 //* Up to two lines of text inside - Centered *

 //* *

 //***

53

• Every function will have a description of what it does, as well as a short

description of each input and output (avoid using global variables besides

constants), pass all inputs and outputs to/from the main loop with function calls

and returns:

o Ex: A code sample is shown below

 // Prints text to the screen

 // x: The text that is to be printed

 void printToScreen(String x) {

 printf("%s\n", x);

 }

• Besides the section headers and the function headers, all other developer

comments will be end-of-line comments. First apply three spaces after the code.

Then “//” followed by a space. Then immediately after the space you can type

the details you wanted to address in the comment.

o Ex: A code sample is shown below

 printf(“Hello World”); // Print statement for Hello world

4.4.4.5 Conditional Statements Standards (in object-oriented language)

All types of statements and loops should be written as follows.

• First the type of statement or loop should be written. Then a space will follow

separating the type from the opening parentheses. After the comparison

statements are made a closing parentheses should be placed. Then a space will

be in between the closing parentheses and the opening bracket.

o Ex: A code sample is shown below

for (i = 1; i < 10; i++) {

 printf("i = %d",i);

}

• If statements, for loops, and while loops along with any other types shall be

written with a space in between each of the elements and the operator inside of

the parentheses.

o Ex: A code sample is shown below

if (a = b) {

 a++;

}

• If they use brackets the open bracket should follow the closing parentheses with

a space in between them. They closing bracket should be on a newline lined up

with the beginning conditional statement indentation.

4.4.4.6 Miscellaneous Standards (in object-oriented language)

These are miscellaneous standards for embedded programming that did not fit into any

other specific areas.

54

• Try to avoid lines longer than 100 characters. This standard depends on the IDE

we choose. Also this character count does not include comments.

• If you have to break up a method call to multiple lines, indent up to the start of

the function call + 8 spaces (not an indent). Also this character count does not

include comments.

• General progression: header > libraries > global variable declaration > main loop

> function calls

• Avoid using multi-line comment notations

o Ex: A code sample is shown below

 /*

 * Avoid using this format if possible. This commenting notation is not

 * standardized between all languages and IDEs

 */

• Always use end of the line comments or refer back to the top of the list.

4.5 Connector Standards

4.5.1 USB Standards

Table 10, below, shows a list of relevant standards for the Universal Serial Bus.

Standard Description

UL 6703

Outline of Investigation for Connectors for Use

in Photovoltaic Systems

ANSI C119.6-2011 Standard for electrical connectors used in non-

sealed, multiport connector systems rated 600

V or less for aluminum and copper conductors.

USB Battery Charging 1.2

Compliance Plan

Defines standards used for USB chargers.

Table 10 - USB Standards

55

4.5.2 Battery Connector Standards

Table 11, below, shows a list of relevant standards for the battery connector.

Standard Description

IEEE 937-2007

Recommended Practice for Installation and

Maintenance of Lead-Acid Batteries for

Photovoltaic (PV) Systems

IEEE 1013-2007 Recommended Practice for Sizing Lead-Acid

Batteries for Stand-Alone Photovoltaic (PV)

Systems

IEEE 1361-2014

Guide for Selecting, Charging, Testing, and

Evaluating Lead-Acid Batteries Used in Stand-

Alone Photovoltaic (PV) Systems

IEEE 1526-2003

Recommended Practice for Testing the

Performance of Stand-Alone Photovoltaic

Systems

Table 11 - Battery Connector Standards

4.6 Battery Standards

Table 12, below, contains IEEE standards are relevant to our project regarding batteries.

Table 12 - Battery Standards

Standard Description

IEEE 937-2007

Recommended Practice for Installation and

Maintenance of Lead-Acid Batteries for

Photovoltaic (PV) Systems

IEEE 937-2007

Recommended Practice for Installation and

Maintenance of Lead-Acid Batteries for

Photovoltaic (PV) Systems

IEEE 1013-2007 Recommended Practice for Sizing Lead-Acid

Batteries for Stand-Alone Photovoltaic (PV)

Systems

IEEE 1361-2014

Guide for Selecting, Charging, Testing, and

Evaluating Lead-Acid Batteries Used in Stand-Alone

Photovoltaic (PV) Systems

IEEE 1526-2003

Recommended Practice for Testing the

Performance of Stand-Alone Photovoltaic Systems

56

4.7 Design Impact of Relevant Standards

Implementing the standards listed above will make the project safer to the end user.

Using products that are compliant with the NFPA 70 standard will ensure the electronics

will not introduce any hazardous conditions that could result in fire.

The UL 50 will be considered when selecting the 6”x6”x36” enclosure that the

electronics will be stored in. This will ensure that users are protected when incidentally

coming into contact with the enclosure.

The UL 62109-1 standard will be considered when selecting boost converters, the

charge controller, and other power converters used in the solar module sub-system.

UL 61215 and UL 61646 will be used when selecting the photovoltaics for the project.

This will ensure that any crystalline silicon or thin-film photovoltaics will be able to

provide reliable power in the specified installed environment.

The Wi-fi and Bluetooth standards will be used in order to determine which remote

connectivity method is most suitable for the project. Additionally, the RFID standard will

be used when designing the security sub-system for the project.

UL 6703 will be used in order to choose compliant connectors used in the solar module

sub-system. This includes the connections from the solar module to the charge

controller, the charge controller to the battery, and from the charge controller to the

PCB.

The USB Battery Charging 1.2 Compliance Plan will be used in order to choose the pin

assignment for the USB charger so that it operates in accordance with the standard. The

battery standards will be used as a guide for selecting the appropriate battery size for

the project, charging the battery, and testing the battery to ensure it is performing well.

57

5.0 Realistic Design Constraints

5.1 Economic Constraints

There are some economic issues to take into account when designing the product for

this project. We currently do not have any sponsorship for this project, so all expenses

will be paid by members of the team. The electronic pieces do not seem to be much of

an issue, but the solar cells will be the largest expense that we will have to take into

consideration.

One way we have been able to lower the cost of the solar cells is to use less of the

flexible strips and more of the solid crystalline ones. The crystalline cells are much

cheaper, but the only place we can fit them into our design is on the housing, which has

limited exposure to the window. If we use only the crystalline strips, we estimate that it

would not be able to gather enough energy on its own to meet our requirements. As a

result, we have decided to use a combination of the two architectures to maximize the

energy gathering while trying to minimize cost.

Another effect of economic constraints can be seen in our choice of blinds. We had

originally decided to use a vertical blind design that would operate with two motors,

one to rotate the blinds open and another to pull them to the side. We discovered that

it would be cheaper, not to mention easier to implement, to use a rolling shade instead.

The rolling shade operates only on one motor and has a more simple design, which will

reduce the overall cost of our project.

Financial constraints have also affected our software design decisions as well. We had

originally conceived of this product to be a complement to the Apple HomeKit [45].

However, to develop mobile applications for Apple, you have to get a license which

costs $99 per year [46]. This is a decent price if you are a very active developer and will

be producing multiple applications annually. However, we would only have plans to use

the license for this project and the cost was a big detriment to developing the

application on Apple’s platform. Android, on the other hand, is free to develop as long

as it is not distributed through the Google Play store. If we wish to put the application

on Google Play it is only a $25 one-time registration fee [47]. Because of this, among

other reasons, we have decided to develop the mobile application for Android.

5.2 Time Constraints

The time constraint is also a large factor in our design choices. We only have one

semester to build this product. This means we have to build/buy the canvas, housing,

and motor. We also have to acquire all the parts for our PCB and have it all integrated

into the board. We also have to attach and wire all the solar cells to the blinds and get

the charge controller working properly. We also expect some possible complications

58

with the USB charger being able to charge at appropriate speeds across different phone

models.

All of those physical requirements must be met within our completion milestone of

November 30th. In addition to that, we will have software development going on

concurrently. We will need to program the microcontroller to handle all the mechanical

operations, and also to process commands from the mobile application. We will also

have to develop the mobile application itself.

These requirements and our time constraints have compounded into affecting our

design decisions in order to meet our deadline with a finished product. Instead of

building everything from scratch, we will most likely buy a do-it-yourself roller blinds kit

which will include the housing and motor. We may still need to replace the motor to fit

our needs. Instead of soldering the parts to the PCB ourselves, we will also be sending

out the parts to a third party to integrate them all for us (at additional cost). We also

considered the fact that a data link may be required for the USB charger to determine

the optimal current to maximize charge time for a cell phone, but due to time

constraints we may have to use a set current for all devices and just ground the data

pins.

As far as the software development goes, it has been affected by the time constraints as

well. We hope to be able to include additional features in our program such as pulling

weather reports from the internet to determine optimal sun exposure at different times

and dates. We also would like to be able to display the rate at which the battery is

charging at any point in time, and hopefully be able to display a graph for up to a month

of charging history. However, these are superfluous features, and we must first get basic

operations working first. Given enough time, this product could turn out to be very

impressive.

The limited time given to complete this project has also affected our chances to learn

more about new technology. We are fortunate to be able to learn about e-paper and

get more hands-on experience with RFID, but we had hoped to be able to expand our

skill set more than that with this project. We had hoped to be able to learn a different

object-oriented language to use in the development of the mobile application,

preferably C#, but we may end up having to do the development with Java just because

we are already familiar with that language.

5.3 Ethical, Health, and Safety Constraints

This project contains risks that must be handled and taken with major consideration.

This portion of the document will analyze the ethical, health and safety risks associated

with the operation of Solar Blinds.

59

To answer the question why we decided to pursue such a device as Solar Blinds is

because we along with everyone else see that the demand for a new fuel source is at an

all time high. Seeing that the issues on air pollution and the ozone layer disappearing

are always on the news. It’s quite alarming that nothing can really be down about it until

a new easily accessible resource is found. Therefore the overall goals of this present a

device that can be used to reclaim some of the nature resources and turn them into an

energy source we can use at our own disposal.

This product will be designed to operate on a small scale most likely for a normal

everyday house. It can easily be converted into a project that will work will what large

company skyscrapers that face the sun most of the day but since very few of them exist

where we are located we will limit the project to everyday households.

The only health risks associated with the development of this device are the use of

batteries for storing the information. In the section describing the use of batteries will

elaborate more on how we decided to counteract this design constraint.

Safety to the user is something that must not be taken lightly. To handle this design

constraint we plan to adhere to the standards described by professionals when we

actually begin building and coding the hardware and software applications. We must

also ensure that the parts that we have out sourced to be developed also adhere to the

same engineering standards to ensure the proper requirements are met.

60

6.0 Project Hardware and Software Design Details

6.1 Electrical Hardware

Figure 30 is a diagram displaying how all the different components of the project will be

connected. As we can see, everything goes directly through the PCB. The PCB is the

heart of our project, so it is important that we design it properly and that it is completed

as soon as possible. This will be a potential bottleneck in our development, so it is

something we will have to give special attention as we go into the next semester

working on this project.

Figure 30 - Hardware Block Diagram

6.1.1 Charging Circuit

When the sunlight hits our solar panel and begins to send a voltage across these

terminals, we will need to regulate the current and voltage that will be running through

the battery at any given time. This voltage will be fluctuating throughout the day and

can reach voltages much higher than the batteries and can harm the battery if it is not

regulated correctly. We have considered many different options to charge our battery

correctly and safely.

One of the ways we have considered is buying an aftermarket, already built battery

charger from solar cells to a lithium battery. This will eliminate any errors that we could

make by designing a circuit ourselves that will be quite complicated to ensure maximum

power efficiency. Also given the short time that we have to design, build and test this

project, it is much easier going with an already made battery controller that eliminates a

61

lot of time to build and test. We have decided to go with the Gena Sun Gv-5 65W 5A

Solar Charge Controller with MPPT, which can be seen in Figure 31. This controller

monitors the voltage fifteen times per second and continues to keep a steady output

voltage and current [48].

Figure 31 - Genasun Solar Charge Controller

6.1.2 PCB

Eagle is the medium we will be using to create our PCB Layout and create all of our

gerbers to send out to the manufacturers for our PCB board. We will design all of the

individual parts of the components into separate libraries with their own package,

symbol and device names. We can then take these parts and drop them into a

schematic that will look like our previously laid out schematic in LtSpice. This will drop

all of our components on a PCB board and then we will have to place them and route

each part. The PCB board will be as small as possible to reduce cost and be able to fit in

the housing we need it to fit into. We will delete out many of the layers from Eagle as

we will not need all of these layers that they give us. Also, we will not need to do a

panel drawing for our boards because we will not be ordering our boards by panel, but if

this ever went into mass production, there would have to be a panel layout made as

well as just the board layout.

The program we will be using to prototype our board is LtSpice. This program has you

design in parts into different files and then allows you to bring them together and build

schematics. This allows us to build an accurate model of our schematic and assign the

necessary pins and voltages to all of the different components that we will need in our

PCB and our project design. You can also run mock circuits and simulate how the circuit

will work when completed and put together.

6.1.3 Microprocessor

The first part that was designed in is the CC2640. This is a microprocessor that supports

bluetooth and has enough I/O pins to complete the job that we need it to complete.

This micro will have a crystal hooked up to it, as well as a voltage of three volts to power

62

the micro. This voltage will regulated down from twelve volts to three through a linear

voltage regulator. There will also be a motor hooked up to this micro that will spin in

two different directions depending on which pin of the motor is pulled high or low. Also

attached to this micro will be a display that is called an e-paper. This is a display that

uses very low amount of power because it only updates when told to, and it will hold

the display for hours without having to use barely any power at all. The display

resembles something of an etch-a-sketch. This is the display that will be showing the

temperature outside. The temperature pin will also be hooked up to the micro and

there will be a regulated five volts on the e-paper as well. The pinout for the CC2640 is

shown in Figure 32 [49].

Figure 32 - CC2640 Pinouts

This micro has more than enough digital and analog I/O pins to get the job done. The

micro also has a ARM Core processor in it which seems to be a bit overkill, but it is good

experience to learn how to code. This micro also needs a twenty four mega-hertz

crystal to operate. Usually microcontrollerss need some external capacitors but this

specific micro has internal capacitors to tune the crystal. In the LtSpice design for this

part, there is the outline of the part which is a square and there are the 32 pins that are

63

attached to them. The pins are all named the same as the pinout above. The spice

model is depicted in Figure 33.

Figure 33 - LTSpice Pinout of CC2640

Designing this part into Eagle isn’t as simple as most parts are to draw into Eagle. This

part, since it is a microprocessor, has a much smaller pitch than most parts and the pads

were shaped oddly. They were not your standard looking rectangular pads. The pads

looked like a rectangle with a rounded top as shown in Figure 34. Also, another

specification that made this part a bit more involved into creating into eagle is that the

package has a ground pad directly under it and has a pattern of vias that need to be

followed. This pattern is crucial for the correct heat sinking of the part.

Figure 34 - Eagle CC2640 pins

Figure 35 is the actual package drawn into the eagle libraries so we can use it on the PCB

board itself. The pins and all the package design was created by following the datasheet

as closely as possible.

64

Figure 35 - Eagle PCB Board

6.1.4 Motor

The next part that was designed into the library in LtSpice was the motor. A screenshot

of the motor as represented by LtSpice can be seen in Figure 36. This motor is operated

by applying a high voltage from the micro on one of the I/O pins to turn the motor on

and either spin the motor clockwise or counterclockwise as labeled below in the picture

of the motor.

Figure 36 - LTSpice Motor Representation

These pins were hooked up to the I/O pins labeled eight and nine in the schematic of

the CC2640. These are just digital I/O pins to either supply a high or a low.

65

6.1.5 E-Paper

This was the next complicated to design into the LtSpice model next to the

microprocessor. This element of our project will be used to tell the current temperature

of the outside air and also display the charge of the battery from time to time. This

display works very uniquely compared to many other displays. This will use

significantly less power than other displays because it doesn’t need constant current like a

seven segment display to keep the LED’s lit. This display writes only when told to and

can hold the image that has been written for a long period of time after being written to

without having to be updated for awhile. This keeps power consumption down on this

display and this is a major advantage seeing that we are using a battery operated

controller.

Figure 37 - LTSpice E-Paper Representation

This schematic symbol in Figure 37 represents the twenty pins on e-paper sub board.

The e-paper plugs into a PCB sub board, shown in Figure 38, which has pin outs that will

be connected to the micro on our PCB board. The pinouts for the sub board are also

included in Figure 38.

66

Figure 38 - PCB Sub Board and Pinouts

http://www.digikey.com/product-detail/en/S1144CS021/S1144CS021-ND/5046794

6.1.6 USB Charger

We have designed in a Universal Serial Bus into LtSpice, as can be seen in Figure 39, and

have assigned it the necessary pins s a typical USB device. This USB is the charger to

charge any non-apple phone. The only pins that are connected in the schematic are the

Voltage pin and the Ground pin. This will allow phones to charge but at a slower rate as

to not drain the battery too fast.

Figure 39 - LTSpice USB Charger Representation

67

There is another option we have explored instead of buying a battery charging

controller. This is designing our own circuit that will regulate the voltage of the solar

panel and keep the battery charging at a constant current. The challenge would be

doing this the most efficient way. The best way to design the circuit ourselves would be

to use a current limiting diode and a Zener diode. The current limiter diode would be in

series with the solar panel voltage and it would drop the necessary voltage across the

diode to supply a constant rated current to charge the battery at a constant current no

matter what the solar panel voltage is at. The Zener diode would be connected in

parallel with the battery that will be charging because it will keep the voltage in check

that the battery is charging too as to make sure it doesn’t over charge the battery. The

battery will continue to charge until it hits the voltage of the Zener diode and then it will

allow the current to run through the Zener diode and keep the battery from

overcharging.

In Figure 40, we can see the diode that keeps the current constant. It does so by

dropping the necessary voltage across it. This will continue to regulate the current until

it hits a threshold that it will not be able to regulate the current anymore.

Figure 40 - LTSpice Current Stabilizing Diode

Figure 41 shows the schematic that could be used to charge the battery at a constant

current and protect the battery from overcharging. The constant current diode as

previously described will keep the correct current to charge the battery no matter the

voltage across the solar panel. The zener diode takes care of protecting the battery

from overcharging and damaging the cells in the battery.

68

Figure 41 - LTSpice Current Stabilizing Circuit

Figure 42 is a USB jack which is a connector for the USB charger that we will be adding

to our circuit. This will most likely have its own PCB board because it will be attached

off board so it is easily accessible for the user to plug their phone in and access the

phone while it is charging. This part is a through hole part that is also attached at a

ninety degree angle. This will make it easier to plug into and have the USB board

condescended easier in its own separate little housing.

Figure 42 - Eagle USB Charge Port

69

6.1.7 Crystal (24 MHz)

The 24 MHz crystal is hooked up to our micro via the two inputs for the twenty

megahertz crystal. The LtSpice representation of this part is displayed in Figure 43.

Usually a crystal needs to have some capacitors hooked up to it to let it oscillate

correctly, but this micro has internal capacitors so there is no need to connect external

capacitors.

Figure 43 - Eagle 24 MHz Crystal

This is the crystal that we will be using for the micro to operate with. The schematic

symbol is one that we drew up to represent the crystal and separate it from the other

parts. It uses a Y to designate the crystal because there is no other part that uses this

prefix and it is a commonly used notation for the crystal on many types of PCB boards.

The package that we are using for the crystal can be seen in Figure 44. It is the same for

all the different values of crystals from the supplier we are purchasing it from. The

micro itself can also be ran off of a 32 KHZ crystal, but we have not yet gotten to do any

testing so we don’t know if this is a better choice or not. But it will be a very easy thing

to fix if we need to swap crystal values.

Figure 44 - Eagle 32 KHz Crystal

6.1.8 Voltage Regulator

The last element that was designed into LtSpice to complete the schematic was the MCP

1702 Linear Voltage regulator, shown in Figure 45. There were two different linear

regulators that had to be added to the schematic. One of the linear regulators was a

twelve volt to 3 volt regulator to power the micro itself. The second linear regulator

that was added was the twelve volt to five volt regulator. This regulator is used to

regulate the five volts to power our USB and power our e-paper display.

70

The packages for the two regulators are the same as well as the same pin out, they just

are ordered with different part numbers to get the two different desired outputs. Pin

one is the ground, while pin two is the Voltage in pin and Pin three is the Voltage out

pin. So in the case of the three volt regulator, the Voltage out pin would have the

desired three volt output [50].

Figure 45 - Eagle's Representation of MCP 1702 Pins

The diagram in Figure 46 is a layout of the regulators pins and the package.

Figure 46 - Voltage Regulator Pins and Package

The MCP 1702 is another component that had to be added into our library. We were

able to draw it up in Eagle, as can be seen in Figure 47. This component is going to have

two different devices that will have the same symbol for the schematic and the same

layout for the PCB.

There are two different values of the regulators which is the reason why there will be

two different devices. The first device will be the version of the MCP 1702 that will be a

linear regulator that regulates from twelve volts to three volts. The second device will

be another version of the MCP 1702 that will regulate the twelve volts to five volts. The

packages will be the same for each of these.

71

Figure 47 - Eagle Representation of MCP 1702

6.1.9 Antenna Circuit

The diagram in Figure 48 shows different options for the circuit that can be used for the

different antenna schemes. We have looked into the different ones, but we are not

sure which one we are going to use for our current design. We have ordered an

evaluation board to test the schemes of the antenna circuit setup, so after we have

gotten our hands on it and can test the different types of ways to hook up the antenna,

then we will finalize our decision on which circuit to use.

The first type of antenna circuit we can choose from is the Differential Operation circuit.

This type of circuit is the most favored because it is the best performance wise, but it

requires external biasing which can take up more board space and may be a bit more

costly. The Single-ended Operation is another option we have to consider and it is

biased internally and has the lowest power consumption which seems like something

that we want the most. This seems to be the option that most suits our needs because

it uses the least amount of power to run, but once again we will need to wait to test the

different schemes because since it uses less power, it may not have the same range as

the other option and we made need the range depending on how far the Bluetooth

reaches [51].

72

Figure 48 - Antenna Configurations

6.1.10 Complete Schematic

The schematic in Figure 49 shows all of the required connections from all of the

previous components that were designed into this LtSpice Schematic. Together, this

schematic should be able to do all of the functions that we were hoping to complete

correctly and most efficiently. The only parts that will have to be tested to add to this

schematic is the antenna circuit which we will have to experiment with to see which one

we would like to choose, and a few different connections to the e-paper display.

The pinouts were displayed on Digikey on the sub board [52], but there was no

documentation as to what pins need to be hooked up where and what pins do what

other than the one word descriptions of the pins function. So once again, when we get

our hands on these boards and can test some of the functions of these pins, then we will

be to finish all of the connections to the micro to have it operate correctly and be able

to be written to from the code in the micro.

73

Figure 49 - Complete Schematic Represented in Eagle

The Eagle Schematic is being built and all the parts we need for the schematic have been

designed in. The only parts we are waiting to put into the library is the e-paper display

because there is still a lot of testing that has to be done to know what needs to be

connected on it to operate correctly. We will only be using a header though for the

schematic and PCB layout because the e-paper display uses a ribbon cable to connect

the display to the board. The header will then be hooked up to the micro correctly once

we find which functions we will need to hook up from the display. The PCB has not yet

been assembled for this reason nor has the finished and completed schematic. We still

have a lot of testing to do before we finalized the PCB layout and the schematic itself

but this is a pretty good start.

6.2 Solar Technologies

In order to maximize the power capable of being captured by the system while

maintaining the roller shade design, a combination of crystalline solar cells and

amorphous silicon solar cells will be used. The crystalline solar cells The total power of

the system will be 34.6 W.

Sunpower 3.3 W 6”x6” monocrystalline photovoltaics will be attached to the back of the

6”x6”x36” project box used to store the battery and circuit boards. A set of 10 of these

cells can be purchased on eBay for $46.99. Connecting six of the cells in series produces

a 20.6 W solar module operating at a maximum voltage of 3.48 V and a maximum

current of 5.93 A. The cells will need to be tabbed using 2mm x 0.15mm tabbing wire

(MISOL 10m: $6.28 on Amazon), a rosin flux pen (MG Chemicals 835-P: $8.95 on

Amazon), and lead-free silver solder (Trakpower Rosin Core Lead Free Silver Solder:

74

$11.93 on Amazon). A DC-DC boost converter will be needed in order to step up the

voltage of the solar module to match that of the amorphous silicon solar module. This

will allow the two modules to be connected in parallel without suffering significant

power losses. The DC-DC LTC1871 step up module will work well for this conversion. The

circuit costs $10.04 and allows a user to select the input and output voltages. Table 13

shows the specifications of this device.

Measure Value

Input voltage 3.5 – 30 V

Maximum output power 100 W

Output voltage 3.5 – 30 V

Maximum input current 10 A

Power consumption 15 mA

Table 13 - LTC1871 Specifications

The output of the LTC1871 will have a maximum voltage of 15.4 V and a maximum

current of 1.34 A. Figure 50 shows the complete diagram of the monocrystalline solar

module including the boost converter.

Figure 50 - Monocrystalline Solar Module

The Powerfilm R-14 rollable amorphous silicon solar module measures 14.5”x42” and

costs $185.99. The panel has a total average power of 14 W operating at a maximum

voltage of 15.4 V and a maximum current of 900 mA. Adding the 14 W amorphous

silicon rollable solar panel brings the total power of the system to 34.6 W. Connecting

the modules in series provides a maximum voltage of 15.4 V and a maximum current of

2.24 A. A diagram of the system described is shown in Figure 51.

75

Figure 51 - Combined Solar Module

This system will be capable of capturing the amount of energy capable of being stored

by the 60Wh battery in 1.73 hours under ideal lighting conditions. The Universal Power

Group UB250 12 V 5 Ah SLA AGM rechargeable battery will be used for the project. The

battery costs only $9.93 which is much more affordable than the equivalent lithium-ion

batteries on the market. The battery is rated to have a cycle life of 200 cycles when the

76

battery is discharged 100%, 500 cycles when the battery is discharged 50%, and over

1200 when the battery is discharged 30% before recharging. Assuming the battery is

discharged to 50% every night and recharged to 100% of its capacity each day, the

battery should last about 500 days before it needs to be replaced. Although the lifetime

of the lithium-ion battery would be about twice as long, it costs eight times as much as

the lead acid battery. Thus, the lead acid battery is the more economic choice. The

nominal capacity of the battery varies with the discharge current. Figure 52 shows this

relationship graphically. If the loads require a constant high current then the battery will

perform much worse than 5 Ah.

Figure 52 - Nominal Capacity vs Discharge Rate for SLA Battery

The battery measures 3.54”x2.76”x3.98” and weighs 3 lbs, which will fit well in the

6”x6”x36” project box. The maximum charge current for the battery is 0.35C where C is

the number of cells in the battery. A 12 V SLA has six cells, so the maximum charge

current for this battery is 2.1 A. This is slightly less than the 2.24 A maximum output

current of the solar module. The charge controller will need to be designed to limit the

output current of the solar module so that the maximum charge current of the battery is

not exceeded.

The Genasun GV-5 65W 5A MPPT solar charge controller for lead-acid batteries will be

used. The controller costs $75.00 and has a maximum recommended panel power of 65

W. Inputs include a 27 V maximum panel voltage input, a 12 V battery input and a load

input with a continuous rated load current of 5 A. Although it is rated for 27 V, a 22 V

maximum panel voltage is recommended under standard operating conditions. This is

well above the 15.4 V designed output voltage of the solar module. The minimum

battery voltage for normal operation is 7.2 V. The maximum input current is 9A which is

2

2.5

3

3.5

4

4.5

5

5.5

0 0.5 1 1.5 2 2.5 3 3.5

N
o

m
in

a
l

C
a

p
a

ci
ty

 (
A

h
)

Disharge Rate (A)

Nominal Capacity vs Disharge Rate

77

well above the 2.24A maximum output current of the solar module. A computer

controlled four-stage battery charging profile is used in order to increase the battery life

and maximize capacity. This includes an absorption voltage of 14.2 V, a float voltage of

13.8 V, and a load disconnect voltage ranging from 11.4 to 12.5 V. A battery

temperature compensator is also included which adjusts the voltage at a rate of -

28mV/�. The controller utilizes an MPPT tracking speed of 15 Hz in order to adapt

quickly to changing light conditions. This results in an electrical efficiency of 96%-99.85%

and a tracking efficiency of 99+%. The controller uses ceramic components instead of

electrolytic components in order to increase the product lifetime. A 10-year warranty is

included with purchase. The GV-5 consumes 0.150 mA when operating and 0.125 when

asleep. It weighs only 2.8 oz. and measures 4.3”x2.2”x0.9”. A built-in electronic

protection circuit cuts power when a short circuit is detected. This will protect the

controller from damage if the polarities of any of the inputs are accidentally reversed.

Table 14 shows the bill of materials for the complete solar sub-system.

Manufacturer Item Seller Price

Sunpower 3.3 W 6”x6”

Monocrystalline Solar

Cells (10)

eBay $46.99

MISOL 2mm x 0.15mm Tabbing

Wire (10 m)

Amazon $6.29

MG Chemicals 835-P Rosin Flux Pen Amazon $8.95

Trakpower Rosin Core Lead-Free

Silver Solder

Amazon $11.93

DROK DC-DC LTC1871 Step Up

Module

GearBest $10.04

Powerfilm R-14 Rollable Solar

Module

FlexSolarCells $185.99

Universal Power

Group

UB250 12 V 5 Ah SLA

AGM Battery

1000Bulbs $9.93

Genasun GV-5 MPPT Charge

Controleller

Genasun $75.00

Total $355.12

Table 14 - Solar Sub-System Bill of Materials

Figure 53 shows the diagram of the complete solar sub-system. This connects all of the

solar cells together and with the housing.

78

Figure 53 - Complete Solar Sub-System

79

6.3 Embedded Hardware

As discussed previously, in section 3.4.1, we decided to use ARM architecture. With one

of the main goals of this project focusing on energy efficiency and power conservation,

these will need to be large factors into our decision on a MCU. In addition to an MCU,

we also know that we will need remote connection capability.

A good energy-efficient option presented itself in the Atmel SAM3N00A. This utilizes the

ARM Cortex-M3 architecture, which falls into the category of Harvard architectures used

by ARM. It is also one of the low power options available by Atmel. Normal operation

requires 1.62-3.6 Volts, with power consumption shown in Figure 54, courtesy of Atmel.

Figure 54 - SAM3N00A Power Consumption

The SAM3N00A does not have remote connection capability. In order to achieve this,

we will require an additional module to supply this functionality. Atmel has several chips

available for this. The most energy-efficient Wi-Fi module by Atmel is the ATWILC1000,

whose power consumption can be seen in Figure 55, courtesy of Atmel.

Figure 55 - ATWILC1000 Power Consumption

An alternative to the Atmel MCU is the CC3200 made by Texas Instruments. The CC3200

uses an ARM Cortex-M4 core. The main advantage of this chip over Atmel's is that it has

a built-in WiFi module. This would significantly reduce the time and effort required for

installation of the MCU and setup of WiFi. The tradeoff with this chip is that it uses more

80

power than the Atmel. The active power consumption for the CC3200 can be seen in

Figure 56, courtesy of Texas Instruments.

Figure 56 - CC3200 Active Power Consumption

As we can see, the current can reach pretty high values while the chip is active. The

power consumption for the CC3200 while in sleep mode can be seen in Figure 57,

courtesy of Texas Instruments.

Figure 57 - CC3200 Sleep Power Consumption

For Wi-Fi Options, the Atmel is the better choice as far as power-consumption is

concerned. However, for Bluetooth options, Atmel does not have any Bluetooth

modules to connect to its MCUs. However, Texas Instruments has six wireless MCUs

with Bluetooth capability built-in. Of these six chips, the lowest-power option is the

CC2640 which is marketed as "ultra-low power wireless MCU for Bluetooth Smart". The

current usage of the CC2640 can be seen in Table 15, courtesy of Texas Instruments.

81

Active Idle Standby Shutdown Reset Held

1.45 mA

+ 31 µA/MHz
550 µA 1 µA 0.15 µA 0.1 µA

Table 15 - CC2640 Power Consumption

Clearly, the Bluetooth MCU is hundreds of times more power-efficient than the Wi-Fi

option. We will be using the CC2640 for our project, more specifically, the

CC2640F128RHBR because it is the cheapest model at the sacrifice of a few pins. With a

remaining 32 pins, we should not run into any problems.

6.4 Mobile Application

This section of the report will establish the concepts of operation for the Solar Blinds

mobile application. Described below are the design details and processes in the mobile

application design. We will be discussing which coding language is used and

environment it will be built in, the high level architecture, and the specific features and

functionality of the mobile application at a low level.

6.4.1 Coding language

For our mobile application system the developers choose to pursue the development of

the Solar Blinds application using C# as the primary language. If time constraints are

going to be too strict then we will have to fall back to using Java since we are more

familiar with it.

Mobile applications are normally developed in an object-oriented language, and we feel

that expanding our experience into a new programming language will be a great benefit

to us. Up until now, we have only been taught MIPS assembly, C programming, and Java

programming as part of our standard curriculum. Although C# may not be much

different from Java, it is used for many different uses and potential employers would be

happy to see that we have prior experience in this language.

6.4.2 Build Environment

The build environment of the mobile application will be attempted in the free version of

Xamarin Studio. This environment allows the developers to use C# as their primary

language which that choose to work with. All source code and any other files will be

managed using Xamarin Studio and preexisting folder structure since it is able to readily

deploy code into working app bundles.

82

6.4.3 High Level Architecture

For our application’s high level architecture we will be using a mix of layering and

repository styles. The layering style representation is used because the data will have to

go through multiple layers and processed individually at each specific layer. Upon

reaching the lowest layer, the I/O, Bluetooth, NFC, and RFID Management components

will begin to interface with the actual mobile device and Solar Blinds. When the

information is finally processed it will go to the user layer which can branch out into

many differ states depending on the option screens selected. Using a GUI an assortment

of screens will be used to display the different menu items the users can select from the

home screen.

This makes the GUI one of the highest levels the data will reach. This is because the

opening screen actually will be displaying the data to the user but it will not allow users

options to make changes to the solar blinds data internally. The data will only be

represented in these screens. The user will use the GUI to send signals to get or push

data to the Solar Blinds. The only options the user will have on the opening screen is to

enter the app or double press the back button to close the app. At the menu layer the

scheme will become linear in manner since its starts to act a repository for the differ

types of data being pass to and from many different classes. The diagram in Figure 58

shows how all of the interaction between the mobile application and the physical

components will take place.

83

Figure 58 - Major Components and System Interfaces

6.4.4 Activity Descriptions

The activity diagram shows all of the user’s actions they are able to accomplish using the

mobile application and the Solar Blinds together are shown in Figure 59. These actions

also represent the requirements needed to take this action and scenarios when the

actions are available to be used by the user. If the user attempts any unpermitted

actions the mobile application will inform the user that there is an error and show the

steps that are needed to fix this.

84

Figure 59 - Activity Diagram of the Mobile Application

6.4.5 Use Case Descriptions

This system will allow a user to operate directly with the Solar Blinds via our mobile

application. In order to do this, the user must maintain certain requirements and cannot

alter these specified procedures. Any user can access the mobile application by simply

opening it up and view the menus. However if the user attempts to do anything besides

just viewing the menu the action will fail. This is because in the use case the user can

open the application and view menu but when they do those tasks they must connect

the device. This is to prevent anyone from randomly controlling the Solar Blinds without

proper authorization. When registering the device the user will have two options they

can either select connect their device or disconnect their device. Remember though in

order to actually operate the blinds the user must be connected to the Solar Blinds. This

is why in the use case diagram in Figure 60 includes "connect device" for any action that

will either operate or show the internal data of the Solar Blinds.

85

Figure 60 - Use Case Diagram of the Mobile Application

6.4.6 Mobile Application Screen

6.4.6.1 Menu Screen

After showing the app cover screen the user will be taken directly to the menu screen

without the need of user input. The menu screen shown in Figure 61 will act as the GUI

navigation point to reach all of the other features of the mobile application. All of the

buttons will feature a normal state and an active. The buttons shown on the menu

screen will be:

• Register Device

• System Blinds

• System Status

86

Figure 61 - Menu Screen Concept

6.4.6.2 Register Device Screen

This screen, shown in Figure 62 will allow the user the ability to register the Solar Blinds

device and mobile application with their mobile phone in order to view the output

information and to send data back to the Solar Blinds with their mobile device. Using

NFC and Bluetooth technology pressing on the buttons will initiate the mobile

application to begin sending signals via Bluetooth to the Solar Blinds. The buttons shown

on the register device screen will be:

• Connect Device

• Disconnect Device

87

Figure 62 - Device Sync Screen Concept

6.4.6.3 System Blinds Screen

This screen, shown in Figure 63, will be used to actually control the blinds from your

mobile application. When the mobile application is connected to the Solar Blinds the

screen will indicate the current status of the blinds with a green dot (shown in the

appendix). Pressing the button will switch between the two possible states. If the Solar

Blinds are already in the open state pressing the open button again will do nothing. This

is to prevent malfunction on the motors. The buttons shown on the system blinds

screen will be:

• Open Blinds

• Close Blinds

88

Figure 63 - Solar Blinds Screen Concept

6.4.6.4 System Status Screen

This screen, shown in Figure 64, will be used to display the status of the internal

components of the Solar Blinds system. The user would not be truly interacting directly

with the Solar Blinds device at this point because the mobile application will only be

receiving data as opposed to before when it was doing both. The buttons shown on the

system blinds screen will be:

• Battery Level

• Temperature

• Charging Status

89

Figure 64 - System Status Screen Concept

6.4.7 Low Level Design

6.4.7.1 Graphic User Interface

This handles all of the graphics displayed. The different screens were broken down more

in depth above please reference them to see more information about them. The input,

output, attributes and actions associated are:

• Inputs: Sensors (touchscreen technology), Solar Blinds Statuses

• Outputs: Graphics of the Solar Blinds data and statuses

• Attributes: The different screens

• Actions: Display all of the graphic data onto the mobile application screens

6.4.7.2 Input/Output

This handles the raw data collection and sends it to the other components in the

system. Like for an example the touchscreen sending information to the Solar Blinds

90

when the user presses the close blinds button on the System Blinds screen. The input,

output, attributes and actions associated are:

• Inputs: Data from the device in regards to the touch screen, Bluetooth, RFID and

NFC

• Outputs: The data in form of graphic representation and forms to be transferred

via Bluetooth, RFID, and NFC

• Attributes: Touch sensor

• Actions: Get the data from the device and send to the read of the system

6.4.7.3 Mobile Application Prototype

This section contains a graphical overview of the potential design for the Solar Blinds

mobile application. This prototype includes images of the mobile application along with

the screens representing the active state buttons (toggled on) on each of the buttons

that can be used to take the user to another screen or even cause an interaction signal

to be sent to the Solar Blinds or the mobile application. All of these screens are

discussed in detail in the 9.2 Software Operation section of the report.

91

 Figure 65 - App Cover/Intro Screen Figure 66 - Main Menu

The mobile application's cover screen is shown in Figure 65. This will be displayed when

the app starts and is displayed until the application loads.

In Figure 66, next to the cover screen, is a concept of the main menu. The menu screen

of the mobile application provides a GUI for the main navigation of the mobile

application.

92

 Figure 67 - Sync Screen Figure 68 - Blind Control Menu

The register device screen in Figure 67 is used to connect or disconnect the user's

mobile device. The green button represents that the button is currently being pressed.

The system blinds screen in Figure 68 is where the user will go to open and close the

blinds. Likewise here, the green button represents it is being pressed.

93

 Figure 69 - System Status Menu Figure 70 - Battery Menu

The system status screen in Figure 69 provides the user with navigation button to the

battery level, temperature, and charging status of the mobile application. The green

button represents that it is being pressed.

The battery level screen in Figure 70 shows the current battery level of the solar blinds

system. The battery has 5 states that can be shown to the user. The state displayed here

represents a fully charged battery.

94

 Figure 71 - Temperature Menu Figure 72 - Battery State Menu

Figure 71 shows the temperature screen. This screen will show the user the current

outside temperature. We would also like to implement real-time weather updates from

the internet if time permits.

The charging status screen in Figure 72 shows the user if the blinds are currently

charging or discharging energy. The battery would be discharging energy if there is less

power incoming from the solar cells than is being expended to power the various

functions. While a phone or other electronic device may be charged through the USB

port, the battery of the blinds will display as discharging here.

95

Figure 73 - Mobile Application Block Diagram

In Figure 73, we have a block diagram which shows the basic configuration of the entire

mobile application. This is a visual representation of the connections between the

various screens in the application and their various functions.

Table 16 is a list of responsibilities for each portion of development for the application.

The work will be divided between our two computer engineers, but much collaboration

is anticipated.

96

Block Name Responsible member Input / Output

Main Menu Dakota Input - Touch input from a touch screen

Output - A success or fail message and

changing the application screen to the next

menu

Battery

Menu

Dakota Input - Not Applicable

Output - Status of the battery

Blinds Menu Artis Input - A button toggle on a touchscreen

device that can switch between open and

close.

Output - A success or fail message and the

physical device (solar blinds) opening or

closing the blinds.

Lighting

Menu

Artis Input - A button toggle on a touchscreen

device that can switch between on and off.

Output - A success or fail message and the

physical device (solar blinds) turning on or off

the lights.

Temperature

Menu

Dakota Input - Not Applicable

Output - Status of the temperature sensor

Table 16 - Mobile Application Software Development Assignments

97

7.0 Project Prototype Construction and Coding

7.1 Parts Acquisition and Bill of Materials

Shown below in Table 17 is the bill of materials for this project. This consists of all of the

costs and parts that will be used in the production of our design.

Part Manufacturer Cost

3.3 W 6”x6” Monocrystalline Solar Cells (10) Sunpower $ 46.99

2mm x 0.15mm Tabbing Wire (10 m) MISOL $ 6.29

835-P Rosin Flux Pen MG Chemicals $ 8.95

Rosin Core Lead-Free Silver Solder Trakpower $ 11.93

DC-DC LTC1871 Step Up Module DROK $ 10.04

R-14 Rollable Solar Module Powerfilm $ 185.99

UB250 12 V 5 Ah SLA AGM Battery Universal Power Group $ 9.93

GV-5 MPPT Charge Controller Genasun $ 75.00

PCB Assembly OSH Park $ 30.00

Microcontroller CC2640F128RHBR Texas Instruments $ 13.08

Bluetooth Module (on MCU) Texas Instruments $ ---

Wiring Retailer $ 10.00

MintyBoost USB Charger Adafruit $ 19.50

E-paper Display $ 21.72

Total: $ 449.42

Table 17 - Bill of Materials and Manufacturers

7.2 PCB Vendor and Assembly

We have been considering many different options on what to do to order and populate

our PCB board. We will be using Eagle to design our schematic and PCB layout. As far as

vendors go for sending out the PCB board to be made, here are some of the vendors we

are considering: Sunstone, Avanti Circuits, OSH Park, PCB Pool, Olimex, and PCB Train.

Each of these vendors all make PCB prototype boards but some do at much higher cost

and some make them at much longer lead times.

Sunstone seems to be a bit pricey with a cost for two boards that are zero to nine

square inches being about a hundred dollars, but the lead time of these boards are only

a week. Avanti doesn’t provide a price until the actual board has been submitted, but

the standard lead time on these boards is about two weeks.

OSH Park seems to be a reasonably priced option as well, even though the lead time

seems like it will be over two week. OSH Park says that the boards will ship under

twelve days of receiving the order. This means that all though they may ship within

twelve days, there is still added time for the delivery. The cost for these boards though

98

for two layers is only five dollars per square inch which is much cheaper than the other

options we have seen thus far.

PCB Pool offers four two by two PCB boards for a total price of eighty dollars. This

doesn’t seem too bad if we need multiple boards which would be nice for testing in case

something goes wrong and we need more boards. The lead time for these boards is

about the average of what I have been finding as it is about two weeks.

Olimex seems like it would’ve been a good company to have used, but if you try to go to

their website, it is down. They seem to only operate during certain months out of the

year.

PCB Train seems to be the most expensive. The cost of manufacturing PCB boards starts

at two hundred euros as a baseline price. This in American dollars is about two hundred

and twenty one dollars. This seems much more expensive than our other options unless

we were creating a board that was much more intricate than this.

It seems as of right now, the best option as far as lead times and price will be OSH Park.

This will be the company that we will be sending our PCB out to.

Figure 74 is the list of the components that we will need for the PCB Assembly. They

were put into an excel spreadsheet and have the attached symbols that will appear on

the actual PCB boards Silkscreen Layer.

Figure 74 - PCB Components List

7.3 Final Coding Plan

Table 18 in this section will outline the calendar for the completion of different parts of

the mobile application. The developers will be responsible for ensuring that they meet

99

all of the following deadlines in order to provide ample amount of time for code

reviews, testing, debugging, and optimization.

Since we will be using agile methods for development as the developers are coding they

will also be testing and verifying the mobile application both virtually and physically. In

case any issues arise during development is can be addressed and alterations can be

made then and there if deemed necessary. This way the mobile application will be full

testing by the end of November.

Week Task
Due

Date

1 Finalize design prototype 8/28

2 Complete navigation screen 9/4

3 Complete the toggle states for the buttons along with how they are

to be implemented

9/11

4 Complete the android device connection setup 9/18

5 Analysis report go back and ensure completion of tasks 9/25

6 Complete the setup for opening and closing the blinds 10/2

7 Complete the setup to pull in data from the Solar Blinds 10/9

8 Analysis report go back and ensure completion of tasks 10/16

9 Ensure all tasks are in testing complete. If tasks are not in that state

reassign them to developers.

10/23

10 Refractor and optimize the code 10/30

Table 18 - Final Coding Plan

100

8.0 Project Prototype Testing

Once our project has been completed, there will be a necessary procedure that needs to

be followed to make sure all aspects are working right. There are many parts to this

project and if any individual ones fail, the whole project will not work correctly.

8.1 Hardware Test Environment

A 3’x4’ model window will be built using two-by-fours and a pane of glass. The solar

shade unit will be mounted to the inside of the glass. This will allow the unit to be

moved around and tested under various light conditions. The following environments

will be used to test the window.

• Window facing east

• Window facing west

• Window facing north

• Window facing south

• Window facing directly up

• Window angled at 30 relative to the ground

• Window angled at 45 relative to the ground

• Window angled at 60 relative to the ground

• Window angled at 90 relative to the ground

• Glass pane on

• Glass pane removed

A battery capacity meter will be used to measure the amount of energy that is added to

the battery under each test condition. A two-hour time window will be used for each

test condition. The quality of available light should be the same for each test. The data

captured in each of these tests can be compared in order to find which environment is

most effective for capturing light. When the window is facing east it will capture energy

earlier in the day and when the window is facing west it will capture energy later in the

day. When the window is facing north or south the light will not be as intense in the

morning or in the evening, but should be more consistent throughout the day. By

testing the window at different angles relative to the ground we will be able to calculate

the loss in solar panel efficiency as a function of angle. The solar panel will perform best

when it is facing directly up because the angle of incidence to the sun is 90°. As the

angle is increased relative to the ground the efficiency should decrease. The final test is

comparing the efficiency of the solar panel when the glass pane is on to when the glass

pane is removed. The solar panel should yield higher efficiencies when the glass pane is

removed because some of the incident light will be reflected when the glass pane is on.

101

8.2 Hardware Specific Testing

The Hardware test effort is a critical to ensure the project is running at optimum

performance. Our testing efforts will also ensure the project will not malfunction and

cause harm to anyone that is using the product in a real life scenario. This portion of the

report will be describing our projects test environment and procedures for testing the

Solar Blinds hardware systems. We are going to be describing the objective for each

hardware activity and what’s expected to be accomplished from it. The hardware code

will be programed in Code Composer. After completion of the testing we will compile a

list of all of the bugs and flaws that we have found throughout the code for the software

application testing. The details listed below will show what we expect will occur in the

software.

8.2.1 Stopping Criteria

The testing procedures must be continued non-stop unless a specific problem occurs

that hinders further testing. These stopping criteria may be either functionality wise or

cosmetic. Once the bugs or issues are isolated the tester should make well-documented

notes about what exactly occurred, when they occurred and there best assumption as

to why they are happening. Before moving on to the next the tester should consult with

a developers or the builder to make sure the issue is not a simple fix. If it is have the

developer or the builders fix the issue and redeploy the code or hardware.

Once all of the test cases are passed the code and hardware will be considered

deliverable. This state means that there are no known bugs or issues to our knowledge

and all of the system is fully working.

8.2.2 Hardware Test Cases

This section will provide a step-by-step procedure for each test case that will occur

during the software testing activity. The test cases format will all be standardized into

the following format.

Test Objective: Define the test case’s goal.

Test Description: Define the step-by-step guidelines.

Test Conditions: Define any specific conditions that should be applied to the

environment when testing.

Expected Results: Define the resulting actions that should be seen by the tester.

Table 19 - Example Table of a Test Case

Following the format of Table 19, the following Tables 20-24 describe the various test

cases which we will explore in order to test that our device's hardware functions

properly. This testing will be done at the end of all hardware development toward the

end of October 2015. See the milestones in section 10.1 for more details.

102

Test Objective: Ensure the Solar Blinds turn on

Test Description:

Using solar energy make the Solar Blinds turn on

Test Conditions: See test environment

Expected Results: The Solar Blinds should turn on.

Table 20 - Test Case: Power On

Test Objective: Make sure the Solar Blinds display screen turns on and functions

Test Description:

• After the Solar Blinds turns on ensure the Solar Blinds display screen is

functioning

• Ensure the screen displays all of the correct details

Test Conditions: See test environment

Expected Results: The application cover screen will be displayed.

Table 21 - Test Case: Display Screen Functions

Test Objective: Verify the USB charger functions and capabilities

Test Description:

• Check and make sure the USB charger is outputting the correct amount

of the energy

• Ensure the charger is able to charge a device

Test Conditions: See test environment

Expected Results: The USB charger is supposed to be able to power a small device via

a USB cable.

Table 22 - Test Case: USB Charger Functions

Test Objective: Ensure that motors are able to fully open the blinds

Test Description:

• Used the mobile application to send a signal to the Solar Blinds to open

them.

• Used the manual option to send a signal to the motors to open the

blinds.

Test Conditions: See test environment

Expected Results: The Solar Blinds motors should be able to open the blinds

Table 23 - Test Case: Retracting the Blinds

103

Test Objective: Ensure that motors are able to fully close the blinds

Test Description:

• Used the mobile application to send a signal to the Solar Blinds to close

them.

• Used the manual option to send a signal to the motors to close the

blinds.

Test Conditions: See test environment

Expected Results: The Solar Blinds motors should be able to close the blinds

Table 24 - Test Case: Lowering the Blinds

8.2.3 Battery and Controller Testing

To test that the battery controller is charging the battery correctly, we will need to leave

the solar panel film out in the sun for an extended period of time and have it hooked up

to the battery controller which is in turn supposed to be charging the battery. We can

let it continue to charge for some time, and as it is charging, we can use a voltmeter and

make sure that it is charging correctly and that the battery controller and the battery

itself is working right.

8.2.4 Voltage Regulation

After the battery and the controller have been verified to be working correctly, we need

to net move to the regulation part of the circuit on the board itself. We need to make

sure that everywhere specified in the schematic, there is the correct voltage on each

node there. Once this has all been verified and we know that there is enough voltage

being applied to each node, then we will move on to test the motor.

8.2.5 Motor Test

First, we need to check the motor by itself. We should see that if we just apply the

voltage correctly the D/C motor should spin one way continually until it either hit the

limit switch or we disconnect the voltage being applied to it. Next, we need to apply the

voltage in the opposite direction, and see if the motor itself spins the opposite way.

Once all this has been verified, then we know that the motor itself is working correctly

so anything else that goes wrong with the motor later on in the project, we know isn't

caused from the motor itself not functioning correctly. We will wait until later to check

to see if the motor is correctly operated by the micro.

8.2.6 LED Test

The next section of our project that there is to test is the LED lights that will illuminate

and draw steady current from our battery source. We need to test the LED’s

104

individually first to make sure that they were all put in correctly and that none were put

in backwards. This is a common mistake and the LED will never light if the LED is put in

backwards. To test this, we will have to apply a voltage to the strip of LED’s we are going

to use and power. This will allow us to see the LED’s all lit up. Once we have tested

these by themselves, we know that there are no physical defects in the LED’s

themselves. Later on in the testing procedure, we will use the micro to turn these LED’s

on and off.

8.2.7 USB Charger

The next step in the testing procedure is to test the USB charger itself. This is going to

be the number one power consumer in our project. It is going to use 5V and draw about

1 A to charge phones at a quicker rate. This can be tested by checking the voltage on

the USB header itself and making sure that it is five volts. Also, we can make sure that a

phone or iPad or any device that is plugged in is charging. Also, we need to make sure

as we are charging any device that is plugged into the USB slot, that the battery isn’t

draining to fast. We need to make sure that our battery is large enough and has enough

capacity that it can supply the correct current and voltage needed to charge any of the

devices plugged into that port.

8.2.8 Microprocessor Testing

This is the most complicated and extensive testing that will be done in our project. The

micro is the heart of the whole project. First, we need to make sure that the I/O pins we

are working with are functioning correctly and are doing exactly what we are telling

them to do. A way for us to check this, is to tell the micro to put a high or a low on a

certain pin, and making sure we see the pin itself go high or low using a multimeter. This

will ensure that the pins that we think we are talking to, are indeed the correct pins we

are talking to. This is important because we can be telling the micro to pull the wrong

pin low and we can do something we didn't intend to do, or we can actually hurt the

circuit itself.

After we have verified that we can correctly target the pins that we need to assert a

high and a low on, then we can start testing the pins that the motor is hooked up to.

We need to make sure that we can assert a high on the right pins to turn the motor on

in the direction we want it to spin to either rotate the blind open or closed. Once we

have verified that we can assert highs and lows on our motor in the spots that we need

to and can have it turning the blinds, we need to check the second motor and make sure

that the motor is going to act the same way for drawing the blinds open and closed.

This all comes before we are able to start testing the motors with the limit switch

capability. Either we will need to test the limit switch so once the blinds rotate or open

enough, they stop, or we will need to timeout how long it takes and assert a high or a

low on that pin for however long.

105

Once all of that is verified and working correctly, we need to verify that the LED strip can

be turned on and off as well. This will be tested by seeing if we can apply a high or a low

depending on the design and seeing the LED’s turn on or off. If this is successful, we will

have successfully tested our micro and all of its processes.

8.2.9 Final Test

For the final testing after all of the individual parts have been tested, we will test the

project as a whole. We will take the blinds and install them in a window in one of our

houses. After they have been installed, we will let the blinds sit for one full day. This

will allow us to see how much energy we can expect on a random day. After the day has

past, then we will measure the amount of charge we have gathered in our battery.

After we have checked the charge, we will begin trying to drain it. We will operate the

blinds open and closed, and see how much charge is left. Then, we will charge one of

our phones. After this has been accomplished, we will see how much charge once again

is left in the battery. At the end of this test, we will also light the LED’s and see how

much capacity is left unused in the battery. This will give us a ballpark of what to expect

from a random day of sun and how much capacity it takes to run each part of our

project.

We will continue this test over multiple days as to capture the amount of charge that

will be gathered from various weather conditions. Some days will be cloudier than

others and some days will be sunnier than others. Also, the heat may also play a role in

how much charge is lost to thermal energy. This will all be tested over a week or so and

the results will help us learn the limits of our creation.

8.3 Software Test Environment

Using agile methodologies the developers will be coding the mobile application and

testing the functionality of the code as they progress through the development of code.

Initially most of the testing may be done via Xamarin Cloud. Xamarin Cloud allows us the

ability to test the functionality of the mobile application on multiple different android

operating systems easily even if with do not have the physical devices ourselves. For the

testing with physical devices we have the following devices readily available:

• Samsung Galaxy Note 4

• Sony Xperia Z3V

• Access to test models from Verizon

Additionally, we can use Genymotion as another platform for testing our application.

Xamarin includes the capability of virtual testing on multiple platforms, but it does so

through a cloud server system. This may introduce some potential complications related

to typical internet latency which would skew test results. Genymotion can be installed

locally so latency is not an issue.

106

Regardless of which software we use, we will be able to thoroughly test the

compatibility of our application on multiple devices. This will allow us to see any critical

flaws that may be related to API that has been deprecated, as well as the scalability of

our GUI.

8.4 Software Specific Testing

The software test effort is a crucial part of the projects software development process.

Testing our software will ensure the mobile application is functioning correctly. This

portion of the report will be describing our projects test environment and procedures

for testing the Solar Blinds mobile application. We are going to be describing the

objective for each software activity and what’s expected to be accomplished in our

application. The mobile application will be specifically for the Android mobile operating

system only since we will only be deploying the application for Android. After

completion of the testing we will compile a list of all of the bugs and flaws that we have

found throughout the code for the software application testing. The details listed below

will show what we expect will occur in the software.

8.4.1 Stopping Criteria

The testing procedures must be continued non-stop unless a specific problem occurs

that hinders further testing. These stopping criteria may be either functionality wise or

cosmetic. Once the bugs or issues are isolated the tester should make well-documented

notes about what exactly occurred, when they occurred and their best assumption as to

why they are happening. Before moving on to the next the tester should consult with a

developer to make sure the issue is not a simple fix. If it is have the developer fix the

issue and redeploy the application.

Once all of the test cases are passed the code will be considered deliverable. This state

means that there are no known bugs or issues to our knowledge and all of the

application is fully working.

8.4.2 Software Test Cases

This section will provide a step-by-step procedure for each test case that will occur

during the software testing activity. The test cases format will all be standardized into

the following format.

107

Test Objective: Define the test case’s goal.

Test Description: Define the step-by-step guidelines.

Test Conditions: Define any specific conditions that should be applied to the

environment when testing.

Expected Results: Define the resulting actions that should be seen by the tester.

Table 25 - Example Table of a Test Case

Following the format of Table 25, the following Tables 26-52 describe the various test

cases which we will explore in order to test that our device functions properly. This

testing will be done at the very end of all development toward the end of November

2015. See the milestones in section 10.1 for more details.

Test Objective: Click on the application icon on the android device.

Test Description:

Using a virtual or physical android device click on the application icon

Test Conditions: See test environment

Expected Results: The android device should open the Solar Blinds Application.

Table 26 - Test Case: Opening the Application

Test Objective: Make sure the application cover screen appears when the application

start.

Test Description:

After clicking on the application icon the application cover screen should appear

automatically.

Test Conditions: See test environment

Expected Results: The application cover screen will be displayed.

Table 27 - Test Case: View the Application Cover

Test Objective: View the menu screen of the Solar Blinds mobile application.

Test Description:

After the cover screen the mobile application should display the Solar Blinds menu

screen automatically.

Test Conditions: See test environment

Expected Results: The Solar Blinds menu screen should be displayed automatically.

Table 28 - Test Case: View the Menu Screen

108

Test Objective: Ensure that double pressing the back button from the view menu

screen exits the application.

Test Description:

Double press the device’s back button to exit the application from the view menu

screen

Test Conditions: See test environment

Expected Results: The mobile application should close after the double press.

Table 29 - Test Case: Exit Application

Test Objective: Confirm that the application transitions to the correct screens

Test Description:

Click on the view menu screen in the following order:

Case 1)

• Register Device

• System Blinds

• System Status

Case 2)

• System Blinds

• Register Device

• System Status

Case 3)

• System Blinds

• System Status

• Register Device

Test Conditions: See test environment

Expected Results: The screens should always change to and display the correct

screens.

Table 30 - Test Case: Transition Between Screens

109

Test Objective: Ensure clicking on the System Status button takes the user to the sub

screens.

Test Description:

1. Click on the System Status button.

2. Verify the mobile application displays the sub screens

a. Battery Level

b. Temperature

c. Charging Status

3. Click on each of the previously listed screens in the following order:

Case 1)

• Battery Level

• Temperature

• Charging Status

Case 2)

• Temperature

• Battery Level

• Charging Status

Case 3)

• Temperature

• Charging Status

• Battery Level

Case 4)

• Charging Status

• Temperature

• Battery Level

Case 5)

• Charging Status

• Battery Level

• Temperature

4. Verify that clicking on each button activates the button toggle.

Test Conditions: See test environment

Expected Results: The user will be able to navigate to each of the listed sub system

status screen. On each button press the button should be displayed in the active

state.

Table 31 - Test Case: Navigate through System Status Submenus

110

Test Objective: When the user presses on a button the button should toggle to the

active state.

Test Description:

Press on the buttons of different menus to see the buttons change state.

Check the buttons on the following screens to verify the states.

• Menu

• Register Device

• System Blinds

• System Status

Test Conditions: See test environment

Expected Results: Verify the buttons change to a to a green button on press.

Table 32 - Test Case: Verify the Toggle Buttons

Test Objective: The users device should connect directly to the Solar Blinds system

Test Description:

• Navigate to the Register Device screen by following this path:

o Menu > Register Device

• On the Register Device screen click on the Connect Device button

• Verify the button toggle and the Connect Device button displays its

active state

• Verify that a success message is giving when the devices sync

Test Conditions: See test environment

Expected Results: The devices should connect with each other. The connect device

button should display the active state button when toggled.

Table 33 - Test Case: Register Device Successfully Syncs

Test Objective: The users device should disconnect directly to the Solar Blinds system

Test Description:

• Navigate to the Register Device screen by following this path:

o Menu > Register Device

• On the Register Device screen click on the Disconnect Device button

• Verify the button toggle and the Disconnect Device button displays its

active state

• Verify that a success message is giving when the devices disconnects.

Test Conditions: See test environment

Expected Results: The devices should disconnect with each other. The disconnect

device button should display the active state button when toggled.

Table 34 - Test Case: Register Device Successfully Disconnects

111

Test Objective: The users device should receive a success message from connecting a

device.

Test Description:

Once the mobile application receives the success signal from the Solar Blinds it should

display “The Solar Blinds and your mobile device are now connected”.

Test Conditions: See test environment

Expected Results: The users device should receive a success message from connecting

a device.

Table 35 - Test Case: Success Message from Connecting Device

Test Objective: Device should receive a success message from disconnecting a device.

Test Description:

Once the mobile application receives the success signal from the Solar Blinds it should

display “The Solar Blinds and your mobile device are now disconnected”.

Test Conditions: See test environment

Expected Results: The users device should receive a success message from

disconnecting a device.

Table 36 - Test Case: Success Message from Disconnecting Device

Test Objective: The users device should receive a fail message from connecting a

device if the following scenarios are present.

Test Description:

• The device NFC technology is not turned on or not available.

• The device Bluetooth technology is not turned or not available.

• The devices are too far apart.

• There is an error sending the signal

Test Conditions: See test environment

Expected Results: The users device should receive a fail message from connecting a

device if the listed scenarios are present.

Table 37 - Test Case: Fail Message from Connecting Device

Test Objective: The users device should receive a fail message from disconnecting a

device if the following scenarios are present.

Test Description:

• There is an error dropping the connection.

• If the device is in the following scenario it will automatically be

disconnected.

o Bluetooth technology is turned off or not available

o The devices are two far apart

Test Conditions: See test environment

Expected Results: The users device should receive a fail message from disconnecting a

device if the listed scenarios are present.

Table 38 - Test Case: Fail Message from Disconnecting Device

112

Test Objective: The users device should receive a success message from opening the

blinds.

Test Description:

Once the mobile application receives the success signal from the Solar Blinds it should

display “The Solar Blinds have been successfully opened. Enjoy the sunlight”.

Test Conditions: See test environment

Expected Results: The users device should receive a success message from opening

the blinds.

Table 39 - Test Case: Verify the Success Message from Opening Blinds

Test Objective: The users device should receive a success message from closing the

blinds.

Test Description:

Once the mobile application receives the success signal from the Solar Blinds it should

display “The Solar Blinds have been successfully closed. Welcome to the dark side”.

Test Conditions: See test environment

Expected Results: The users device should receive a success message from closing the

blinds.

Table 40 - Test Case: Verify the Success Message from Closing Blinds

Test Objective: The users device should receive a fail message from opening the

blinds if the following scenarios are present.

Test Description:

• The device NFC technology is not turned on or not available.

• The device Bluetooth technology is not turned or not available.

• The devices are too far apart.

• There is an error sending the signal

Test Conditions: See test environment

Expected Results: The users device should receive a fail message from opening the

blinds if the listed scenarios are present.

Table 41 - Test Case: Verify the Fail Message from Opening Blinds

Test Objective: The users device should receive a fail message from closing the blinds

if the following scenarios are present.

Test Description:

• The device NFC technology is not turned on or not available.

• The device Bluetooth technology is not turned or not available.

• The devices are too far apart.

• There is an error sending the signal

Test Conditions: See test environment

Expected Results: The users device should receive a fail message from closing the

blinds if the listed scenarios are present.

Table 42 - Test Case: Verify the Fail Message from Closing Blinds

113

Test Objective: Use the mobile application to open the Solar blinds

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Blinds

• On the System Blinds screen click on the Open Blinds button

• Verify the button toggle and the Open Blinds button displays its active

state

• Verify that a success message is giving when the Solar Blinds recognizes

the signal and they begin to open.

Test Conditions: See test environment

Expected Results: The mobile application and the Solar Blinds should connect and a

signal is transmitted between them. The mobile application will display a success

message when the signal is confirmed and the Solar Blinds will begin opening. The

Open Blinds button should display the active state button when toggled.

Table 43 - Test Case: Opening the Solar Blinds

Test Objective: Use the mobile application to close the Solar Blinds

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Blinds

• On the System Blinds screen click on the Close Blinds button

• Verify the button toggle and the Close Blinds button displays its active

state

• Verify that a success message is giving when the Solar Blinds recognizes

the signal and they begin to close.

Test Conditions: See test environment

Expected Results: The mobile application and the Solar Blinds should connect and a

signal is transmitted between them. The mobile application will display a success

message when the signal is confirmed and the Solar Blinds will begin opening. The

Open Blinds button should display the active state button when toggled.

Table 44 - Test Case: Closing the Solar Blinds

114

Test Objective: Use the mobile application to view the Solar Blinds system battery

levels

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Battery Level

• Verify the correct battery levels are being displayed. The options in

battery levels are:

o Full

o Almost Full

o Half Full

o Almost Empty

o Empty

• Verify the words match the image of the battery being displayed

respectively.

Test Conditions: See test environment

Expected Results: The mobile application will display the correct battery levels in

reference to the systems current battery levels

Table 45 - Test Case: View the System's Battery Level

Test Objective: Use the mobile application to view the Solar Blinds system full battery

level.

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Battery Level

• Verify the correct battery levels are being displayed when the battery

level is reading in between 100% - 80%.

• Verify the words match the image of the battery being displayed

respectively.

Test Conditions: See test environment

Expected Results: The mobile application will display the correct battery levels in

reference to the systems current battery levels

Table 46 - Test Case: View the Full Battery Level

115

Test Objective: Use the mobile application to view the Solar Blinds system almost full

battery level.

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Battery Level

• Verify the correct battery levels are being displayed when the battery

level is reading in between 79% - 60%.

• Verify the words match the image of the battery being displayed

respectively.

Test Conditions: See test environment

Expected Results: The mobile application will display the correct battery levels in

reference to the systems current battery levels

Table 47 - Test Case: View the Almost Full Battery Level

Test Objective: To view the Solar Blinds system half full battery level.

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Battery Level

• Verify the correct battery levels are being displayed when the battery

level is reading in between 59% - 40%.

• Verify the words match the image of the battery being displayed

respectively.

Test Conditions: See test environment

Expected Results: The mobile application will display the correct battery levels in

reference to the systems current battery levels

Table 48 - Test Case: View the Half Full Battery Level

Test Objective: Use the mobile application to view the Solar Blinds system almost

empty battery level.

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Battery Level

• Verify the correct battery levels are being displayed when the battery

level is reading in between 39% - 20%.

• Verify the words match the image of the battery being displayed

respectively.

Test Conditions: See test environment

Expected Results: The mobile application will display the correct battery levels in

reference to the systems current battery levels

Table 49 - Test Case: View the Almost Empty Battery Level

116

Test Objective: Use the mobile application to view the Solar Blinds system empty

battery level.

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Battery Level

• Verify the correct battery levels are being displayed when the battery

level is reading in between 19% - 0%.

• Verify the words match the image of the battery being displayed

respectively.

Test Conditions: See test environment

Expected Results: The mobile application will display the correct battery levels in

reference to the systems current battery levels

Table 50 - Test Case: View the Empty Battery Level

Test Objective: Use the mobile application to view the Solar Blinds system

temperature reading levels

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Temperature

• Verify the correct readings are being displayed.

• The mobile application should display only reading in Fahrenheit

degrees.

• Verify the display is standardized to look like the following:

o 74°F

Test Conditions: See test environment

Expected Results: The mobile application should display the Solar blinds temperature

reading in Fahrenheit degrees.

Table 51 - Test Case: View the System's Temperature Reading

117

Test Objective: Use the mobile application to view the Charging Status of the Solar

blinds system.

Test Description:

• Navigate to the System Blinds screen by following this path:

o Menu > System Status > Charging Status

• Verify the correct charging statuses are being displayed.

• When the system is charging the charging status should say:

o The battery is charging

• When the system is discharging the charging status should say:

o The battery is discharging

Test Conditions: See test environment

Expected Results: The mobile application should display the Solar blinds charging

status correctly for the charging state and the discharging state.

Table 52 - Test Case: View the System's Charging Status

118

9.0 Project Operation

9.1 Hardware Operation

The way this project will work is quite simple. The user will take their phone and have it

sync to the blinds if they have a NFC chip in their phone and it will be linked to the

automated blinds. This can then be connected through the Bluetooth chip and be

controlled through an app on the phone. Once the phone has connected to the

Bluetooth chip, you will be able to open and close the blinds with a simple push of a

button. This will either open or retract the blinds based on the position of the blinds at

the point of activation when the button is pushed. When the button is pushed, it will

send a signal to the Bluetooth chip and this will send a signal to the microprocessor.

This then will be translated to the microprocessor that a button was pushed. Depending

on which button was pushed on the app, this will send a signal to the micro that will

either tell the motor to spin clockwise or counterclockwise. The micro will put a high on

the right side of the motor that will tell t to open or close the blinds. The motor will

then run and complete its task.

Also, there will be other functions of these blinds. The blinds will also come equipped

with its own USB charger to charge any non-Apple device. It will pull approximately five

hundred milliamps and have a voltage of five volts across it. This is more than sufficient

to charge any device, even if it takes a bit longer than desired. There will also be

another part of the project that will have a display attached to the micro.

This display comes with its own temperature gauge as well as a display that can be

written to and display what is desired. The temperature gauge will read the current

outside temperature and it will send the results to the micro. We can then update the

display to show what the current temperature is outside. The display is also a special

type of display that will be able to hold whatever has been written to it for a long period

of time. It is said to supposedly be able to hold the written display for a few hours

without drawing barely any current which is ideal for our situation for using a battery

operated circuit.

We will have the display take a temperature reading every few hours as to use the least

amount current possible so we will keep the battery usage as low as possible. We will

also want to display the current charge of the battery at various times throughout the

day as well. This will be achieved by the micro reading the current voltage of the

battery on one of its pins and displaying the current battery charge.

9.2 Software Operation

The operation of the mobile application will be simple and fluent enough for the user to

not require a tutorial and allow easy understanding of what each control accomplishes

119

and how to access them. The mobile application can be downloaded from the play store

for free with little dependencies of the resources of your mobile device.

After downloading the mobile application you can open the application by simply

clicking on the application icon in the application tray. Once the icon has been clicked

the mobile application’s cover screen will appear. This image will be displayed until all of

the application is loaded and ready for interaction of 3 seconds has passed. Once this

screen is gone the user will be presented with the view menu screen and here they will

be presented with the view menu screen and here they will able to navigate to all of the

following sub screens. The buttons listed will each have its own toggle states to inform

the user the mobile application recognizes the users touch input. The active states for all

of the buttons will be that the normal button color changes. The available buttons on

the menu screen are register device, system blinds, and system status.

In order the truly operate and interact with the mobile application and the Solar Blinds

the user must connect their mobile device to the Solar Blinds. To do this the user must

navigate to the register device screen by pressing on the respective button. Once on the

screen the user can choose to connect their device or disconnect it. Pressing connect

device will initiate the mobile devices NFC and Bluetooth technology to establish a

direct connection with the two devices will communicate via Bluetooth. Once the

devices are successfully connected the mobile application will display a informational

alert saying that the procedure was a success. Pressing on the disconnect device button

will initiate the dropping of the active connections between the mobile device and the

Solar Blinds thus disconnecting the two.

The next possible software operation the user can interact with the mobile application is

to control the Solar Blinds via the application. The user must click on the System Blinds

button on the menu screen to be taken to the respective sub screen. On the System

Blinds screen the user will be able to select either open blinds or close blinds. The

mobile application will be developed to not allow the user the option to send multiple

open signals or multiple close signals when the Solar Blinds are already in the respective

states. This prevents the mobile application from potentially cause damage to the

motors and structure of the Solar Blinds. Once one of the buttons is pressed the

application will display the active states for the button and begin to send the signal via

Bluetooth to the Solar Blinds. This signal will get the current state of the blinds and

verify that the state is not in the state the mobile application is trying to make it enter. If

the states do not make the blinds motors will activate and either open or close the

blinds. After finishing the Solar Blinds will send a response signal stating the blinds are

fully open or close. Then the mobile application will display a success alert saying that

the procedure was a success. If the states do match then the Solar Blinds will do nothing

and send a fail signal back to the mobile application. When the mobile application

receives this signal it will alert the user that the blinds may be already in the suggested

state or there was an error sending the signal.

120

The system status screen will mainly provide data details of the Solar Blinds instead of

providing direct user interact. The system status will have the following options the user

can select to view; battery level, temperature, and charging status. Clicking on the

battery level option will transition the screen to display the current Solar Blinds battery

level from being charged by the solar energy. There are 5 different states of the battery

level. The first state is full. This is where the battery level is completely charged. The

mobile application will display this state for the battery if it’s in between the range 100%

- 80% and it will show a full battery icon. The next state is the almost full state. This

state will be displayed if the battery is in between 79% - 60% and it will show a semi full

(75%) battery icon. The next state after that is the half full state. This state will be

displayed if the battery is in between 59% -40% and it will show a 50% full battery icon.

The next state is the almost empty state. This state will be displayed if the battery is in

between 39% - 20% and it will show an almost empty (25%) battery icon. The last state

is the empty state. This state will be displayed if the battery is in between 19% - 0% and

it will show an empty (0%) battery icon. When the battery icon is in the empty state

some of the functionality of the Solar Blinds may be operational due to the low power

reserves.

Viewing the temperature is also another part of the mobile application were the user

has very minimal direct action on the Solar Blinds. Once the transition to this screen the

mobile application will display in Fahrenheit degrees the temperature outside. If

possible we would like to consider adding a weather forecast to this screen along with

some more functionality but those are going to be extra features we would be adding if

we have extra time.

Lastly, the last part of the operational software is viewing the charging status of the

blinds. This screen informs the user on whether or not the Solar Blinds are actually

absorbing solar energy and charging the battery. This screen can be found as the last

button under the system status buttons.

121

10.0 Administrative Content

10.1 Milestones

Our group has set a list of milestones for us to achieve in order to stay on track in our

project development. By completing the sections described by the dates listed, we will

be able to ensure completion and thoroughness of our project by the dates due.

 These milestones have been divided by month for legibility. The milestones for

documentation are set for June 2015 to August 2015 in Tables 53 through 55.

June 2015

Section Complete By

Executive Summary 06/14/2015

Project Motivation and Goals 06/14/2015

Objectives 06/14/2015

Requirements Specifications 06/14/2015

Existing Similar Projects and Products 06/21/2015

Relevant Technologies: Solar Cells 06/21/2015

Relevant Technologies: Display Screens 06/21/2015

Relevant Technologies: Motors 06/21/2015

Relevant Technologies: Remote Connectivity 06/21/2015

Relevant Technologies: Microchip Processors 06/30/2015

Relevant Technologies: Motors 06/30/2015

Relevant Technologies: Power Distribution 06/30/2015

Relevant Technologies: Embedded 06/30/2015

Relevant Technologies: Mobile App 06/30/2015

Standards: Safety 06/30/2015

Standards: Reliability 06/30/2015

Standards: Communications 06/30/2015

Standards: Programming Languages 06/30/2015

Standards: Connectors 06/30/2015

Standards: Battery 06/30/2015

Standards: Design Impacts 06/30/2015

Table 53 - June 2015 Milestones

122

July 2015

Section Complete By

Design Constraints: Economic & Time 07/07/2015

Design Constraints: Ethical, Health, Safety 07/07/2015

Design Details: Electrical Hardware 07/21/2015

Design Details: Mechanical Hardware 07/21/2015

Design Details: Solar Technologies 07/21/2015

Design Details: Embedded Software 07/21/2015

Design Details: Mobile Application 07/21/2015

Prototype: Hardware Test Environment 07/31/2015

Prototype: Hardware Specific Testing 07/31/2015

Prototype: Software Test Environment 07/31/2015

Prototype: Software Specific Testing 07/31/2015

Milestones 07/31/2015

Budget & Financing 07/31/2015

Table 54 - July 2015 Milestones

August 2015

Section Complete By

Competency & Completeness Review 08/01/2015

Finalize Citations 08/02/2015

Finalize Formatting 08/03/2015

Documentation Binding 08/05/2015

Table 55 - August 2015 Milestones

Here, at the beginning of August, we will be ending our work on the documentation and

beginning the work on actually creating our device. This lists of milestones for

development are displayed in Tables 56-58, and only include deadlines by which we

must accomplish various goals. However, it is implied that we will also begin working on

the next section at the due date of the previous section. For example, below we can see

that the battery status display screen of the mobile application will be completed by

September 18th, and starting around that same time will be the development for the

data communication with the MCU.

Since we have four members in our group, we will have a lot of concurrent work going

on in order to complete the project within the time allotted to us (one semester).

Because of this, a lot of the due dates are all intermingled among the different facets of

our group. We have Sean and Stephen working on the "hardware" sections, and Artis

and Dakota will evenly divide the "embedded" and "mobile app" sections, and then

123

whoever is free at the time will be responsible for the "general" categories. The

different sections have been color-coded for easy reference.

September 2015

Category Section Complete By

Mobile App Basic menu operation functional 09/01/2015

General All hardware acquired 09/01/2015

Mobile App RFID sync functional 09/04/2015

Hardware Motor installed into blinds 09/04/2015

Hardware Solar cells mounted 09/04/2015

Mobile App Menus optimized 09/11/2015

Hardware PCB Finished 09/11/2015

Hardware Temperature gauge installed 09/11/2015

Hardware Buttons mounted 09/11/2015

Mobile App Battery status display complete 09/18/2015

Embedded Battery charging operational 09/18/2015

Embedded Manual operation functional (buttons) 09/18/2015

Hardware Charging systems complete 09/18/2015

Mobile App Send/receive data to/from MCU operational 09/25/2015

Embedded Bluetooth connection to phone functional 09/25/2015

Hardware Components wired (temp, buttons, e-paper) 09/25/2015

Hardware E-paper display mounted and wired 09/25/2015

Table 56 - September 2015 Milestones

After the end of September, we have enough of the hardware completed that we can

start focusing more on the software development. We needed the PCB to be assembled

before we can do much with the embedded programming, and we can only do so much

with the mobile application without having a data link with the MCU.

October 2015

Category Section Complete By

Mobile App Motor functions controllable 10/02/2015

Embedded E-paper display operational 10/02/2015

124

Hardware USB charge port installed, wired, and powered 10/02/2015

Mobile App Battery screen complete 10/09/2015

Embedded E-paper displaying battery and temperature info 10/09/2015

Hardware Phone holder mounted to housing 10/09/2015

Mobile App Temperature screen complete 10/16/2015

Embedded USB charge port operational 10/16/2015

Hardware Wooden testing frame assembled 10/16/2015

Mobile App Support for multiple blinds RFID registration 10/23/2015

Embedded Reflect USB connection status on e-paper 10/23/2015

Hardware Blinds able to mount into test frame 10/23/2015

Table 57 - October 2015 Milestones

November 2015

Category Section Complete By

Mobile App Battery statistics added based on past history info 11/06/2015

Hardware Battery charge efficiency tests 11/06/2015

Mobile App Import weather info from internet to temperature screen 11/13/2015

Mobile App UI compatibility across devices achieved 11/13/2015

Hardware Phone charge efficiency via USB tests 11/13/2015

Mobile App Optimizations 11/20/2015

General Demonstration/presentation material compiled 11/20/2015

Mobile App Final software systems test 11/27/2015

General Presentation material completed 11/30/2015

Table 58 - November 2015 Milestones

Unfortunately, we must admit that not all milestones for the research and

documentation portion were completed by the set deadlines. However, this is true for

most projects. We still had all milestones for August complete by the final deadline of

the report submission. We have set additional milestones to help ourselves stay on track

of the actual development of the product with the goal of keeping a tighter schedule

than we did for the research and writing of this report.

We have decided that it would be best to have a finalized product, both in hardware

and software, by the end of November. Although we have not yet received a deadline

125

for project completion at the end of next semester, we feel that a deadline of November

30th will give us adequate time for thorough testing and any necessary modifications

before submission and presentation is due. We are confident that we can meet all of

these milestones without undue strain on our schedules or abilities.

10.2 Budget and Finance Discussion

We decided as a group that our total budget for this project would be $500, but with a

goal of $300 or less. We have no sponsors so we will be paying out of pocket for this

project. However, we also believe that anything worth doing should be done right, so

we will not unnecessarily sacrifice quality for no other reason than expense.

After the final bill of materials was realized, it appears that we did not meet our $300

goal, at least in planning. Fortunately, we were able to keep the cost under the $500

limit which we had set originally. This cost will be divided among the members of the

team. Afterward, one member may buy out the project from the others so they may

keep the final product for their own personal use. We have two members interested in

purchasing the product after completion. This will help to mitigate cost of the project.

Additionally, we may find ways to save on these parts as well. It has been mentioned

that the USB charge kit we have on the bill of materials can be constructed from more

basic parts for a fraction of the cost. We were also unable to find the specific wiring we

would need to connect the various components to the PCB, so only an estimate was

used here. We also believe all of the soldering supplies may not be necessary, as long as

the required equipment is available in the design lab at the university.

126

Appendices

Appendix A: Copyright Permissions

Texas Instruments

Texas Instruments is pleased to provide the information on these pages of the World

Wide Web. We encourage you to read and use this information in developing new

products.

TI grants permission to download, print copies, store downloaded files on a computer

and reference this information in your documents only for your personal and non-

commercial use. But remember, TI retains its copyright in all of this information. This

means that you may not further display, reproduce, or distribute this information

without permission from Texas Instruments. This also means you may not, without our

permission, "mirror" this information on your own server, or modify or re-use this

information on another system.

TI further grants permission to non-profit, educational institutions (specifically K-12,

universities and community colleges) to download, reproduce, display and distribute the

information on these pages solely for use in the classroom. This permission is

conditioned on not modifying the information, retaining all copyright notices and

including on all reproduced information the following credit line: "Courtesy of Texas

Instruments". (http://www.ti.com/corp/docs/legal/copyright.shtml)

Atmel

Materials from this website www.atmel.com and any other website owned, operated or

controlled by Atmel and/or its affiliated or subsidiary companies (together, Atmel) are

owned and copyrighted by Atmel. Unauthorized use of such Materials (e.g., information,

documentation and software), including these Terms, may be a violation of Atmel's

intellectual property rights or other applicable laws. If you agree to these Terms, you

may download (on a single computer), copy or print a single copy of all or a portion of

the Materials for informational, non- commercial, lawful purposes only. You may

distribute free copies of the documentation available at this website only to customers

and prospective customers of Atmel's products. Any other distribution to third parties is

strictly prohibited unless you obtain the prior written consent of Atmel. You may not

modify in any way any of the Materials contained herein, or delete or modify any of

Atmel's copyright, trademark or other proprietary notices.

(http://www.atmel.com/About/legal.aspx)

127

http://genasun.com/all-products/solar-charge-controllers/for-lead/gv-5-pb-5a-solar-

charge-controller/

http://www.ti.com/lit/ds/symlink/cc2640.pdf

https://encrypted-

tbn1.gstatic.com/images?q=tbn:ANd9GcR2C40O_XyoI_K9CtqM0xEoa0mp2ZMvp5lXEVk

bIk-zeSmlUsHo1D15KE8

http://www.ctscorp.com/components/Datasheets/008-0309-0.pdf

http://www.digikey.com/product-detail/en/S1144CS021/S1144CS021-ND/5046794

http://ww1.microchip.com/downloads/en/DeviceDoc/22008E.pdf

ML Solar

From: <sales@mlsolar.com>

Subject: RE: 'diamonds@knights.ucf.edu' submitted the form from your 'Contact Us'

page

Date: August 3, 2015 at 12:09:57 PM EDT

To: <diamonds@knights.ucf.edu>

Hi Sean.

Yes. Feel free to use our images for your school design project. If you have any other

questions please let us know.

ML Solar

Danny

408 583 8101

-------- Original Message --------

Subject: 'diamonds@knights.ucf.edu' submitted the form from your

'Contact Us' page

From: "Contact Form" <contactform@bigcommerce.com>

Date: Sun, August 02, 2015 3:03 pm

To: sales@mlsolar.com

Full Name: Sean Diamond

Hello,

I am a senior engineering student at the University of Central Florida and I am

working on my senior design project. I would like to use a picture of the 3x6 solar

cells from your website in my paper and I wanted to ask to make sure it was

okay. This paper is for a design class and will not be published or used to make

money.

Thank you,

Sean Diamond

128

Morningstar

Sean,

Thank you for contacting Morningstar with your inquiry. You can use any pictures from

our website, but we would appreciate it if you noted that the pictures are courtesy of

Morningstar in your work.

Please let me know if you have any other questions.

Thanks,

Patrick Smith

Technical Sales Engineer, Morningstar Corporation

P: 215-321-4457

E: psmith@morningstarcorp.com

Flex Solar Cells

Sean,

Sure. Just send me a copy of the final report. I'd love to read it.

Best Regards,

Fritz Meitzen

Sales Director

Electrical Engineer

FlexSolarCells.com

P: (512) 680-7034

fritzm@flexsolarcells.com

On Aug 2, 2015, at 5:30 PM, Sean Diamond <diamonds@knights.ucf.edu> wrote:

Hello,

I am a senior engineering student at the University of Central Florida and I am working

on my senior design project. I would like to use a picture of the R-14 model from your

website in my paper and I wanted to ask to make sure it was okay. This paper is for a

design class and will not be published or used to make money.

129

Thank you,

Sean Diamond

Battery Space

Hi Sean,

Yes, it is ok, please indicate the picture is from BatterySpace.com

Best regards,

Jasmine Sun

Batteryspace.com/AA Portable Power

825 S.19th St.

Richmond, CA 94804

Tel: +1-510-525-2328

Fax: +1-510-439-2808

Email: sales@batteryspace.com

Site: http://www.batteryspace.com

We can now provide UN38.3 / IEC 62133 / UL 2054 / CE Test service.

By accepting our order, you agreed to our Sales Agreement

On Sun, Aug 2, 2015 at 3:56 PM, Sean Diamond <diamonds@knights.ucf.edu> wrote:

Hello,

I am a senior engineering student at the University of Central Florida and I am working

on my senior design project. I would like to use a picture of the Powerizer 12 V 5 Ah

LiFePO4 battery from your website in my paper and I wanted to ask to make sure it was

okay. This paper is for a design class and will not be published or used to make money.

Thank you,

Sean Diamond

Pervasive Displays Inc.

---------- Forwarded message ----------
From: "Soren Jorgensen" <soren_jorgensen@pervasivedisplays.com>
Date: Aug 3, 2015 8:55 PM
Subject: Greetings from Pervasive Displays
To: <artiscolemanjr@gmail.com>
Cc:

Hello Artis,

130

Thank you for reaching out to us. Which university do you go to?

Please consider this email as permission to use material we have posted on our website or

on repaper.org as long as the source is credited.

I would personally be interested in reading the report and hope to receive a copy.

Best regards,

Soren Jorgensen

| Soren Jorgensen | Pervasive Displays | Business Development |Portland, OR |
| +1917.553.6304 | Soren_Jorgensen@PervasiveDisplays.com| sjn_chidisp (Skype) |

131

Appendix B: Abbreviations

Below is a list of abbreviations used in this document and their full meanings.

Abbreviation Meaning

DIY Do It Yourself

PCB Printed Circuit Board

USB Universal Serial Bus

Wi-Fi Wireless Internet for Frequent Interface

LED Light-Emitting Diode

MCU Microcontroller Unit

BOM Bill of Materials

BLE Bluetooth Low Energy

RFID Radio Frequency Identification

NFC Near Field Communications, a subset of RFID

GUI Graphic User Interface

132

Appendix C: References

[1] Instructables.com, 'Automatic Window Blinds Controller (PICAXE)', 2015. [Online].

Available: http://www.instructables.com/id/Build-A-Motorized-Window-Blinds-

Controller-For-Les/. [Accessed: 05- Aug- 2015].

[2] Instructables.com, 'How to make a solar iPod/iPhone charger -aka

MightyMintyBoost', 2015. [Online]. Available:

http://www.instructables.com/id/How-to-make-a-solar-iPodiPhone-charger-aka-

Might/. [Accessed: 05- Aug- 2015].

[3]S. Kasap, Optoelectronics and photonics. Boston: Pearson, 2013.

[4]T. Saga, 'Advances in crystalline silicon solar cell technology for industrial mass

production', NPG Asia Materials, vol. 2, no. 3, pp. 96-102, 2010.

[5] Pveducation.org, 'Multi Crystalline Silicon | PVEducation', 2015. [Online]. Available:

http://www.pveducation.org/pvcdrom/manufacturing/multi-crystalline-silicon.

[Accessed: 05- Aug- 2015].

[6] Solar-facts-and-advice.com, 'Amorphous silicon solar cells: Solar Facts and Advice',

2015. [Online]. Available: http://www.solar-facts-and-advice.com/amorphous-

silicon.html. [Accessed: 05- Aug- 2015].

[7]'Staebler-Wronski Effect in Amorphous Silicon and Its Alloys', OPTO-ELECTRONICS

REVIEW, pp. 21-34, 2004.

[8] Energy.gov, 'Cadmium Telluride | Department of Energy', 2015. [Online]. Available:

http://energy.gov/eere/sunshot/cadmium-telluride. [Accessed: 05- Aug- 2015].

[9] Eink.com, 'E Ink: Technology: Electrophoretic Techology', 2015. [Online]. Available:

http://www.eink.com/technology.html. [Accessed: 05- Aug- 2015].

[10] Pervasivedisplays.com, 'Pervasive Displays - Why ePaper (EPD)', 2015. [Online].

Available: http://www.pervasivedisplays.com/technology/home. [Accessed: 05-

Aug- 2015].

[11]P. Displays, 'E1271CS021 Pervasive Displays | E1271CS021-ND | DigiKey',

Digikey.com, 2015. [Online]. Available: http://www.digikey.com/product-

detail/en/E1270CS021/E1270CS021-ND/5046793. [Accessed: 05- Aug- 2015].

[12] Desktop Class - Online Classroom, 'Discuss Different Types Of Display Screens',

2011. [Online]. Available: http://www.desktopclass.com/education/computer-

it/discuss-different-types-of-display-screens.html. [Accessed: 05- Aug- 2015].

[13] PCMAG, 'How to Buy an LCD Monitor', 2015. [Online]. Available:

http://www.pcmag.com/article2/0,2817,2362048,00.asp. [Accessed: 05- Aug-

2015].

[14] HubPages, 'Screen Displays and Types', 2015. [Online]. Available:

http://sdrahcir8.hubpages.com/hub/Screen-Displays-and-Types. [Accessed: 05-

Aug- 2015].

[15] Applied-motion.com, 'V0400-211-C-000 | Applied Motion', 2015. [Online].

Available: http://www.applied-motion.com/products/servo-motors/v0400-211-c-

000?gclid=CjwKEAjwiZitBRCy0pb3rIbG9XwSJACmuvvzQzOH6cBfJrGSHhzrXfUBWESL

lE1E2sY2EzAUOLeb_RoCUMjw_wcB. [Accessed: 05- Aug- 2015].

[16]S. Leeson Motors DC Motor-.05 - .1HP, 'Leeson Motors DC Motor-.05 - .1HP, 12-

24V, 1750-4200RPM, TENV, Sq. flange', Global Industrial, 2015. [Online]. Available:

133

http://www.globalindustrial.com/p/motors/ac-motors-2-phase/dc-motors/motor-

25-tenv-1750-4200rpm-

536f?infoParam.campaignId=T9F&gclid=CjwKEAjwiZitBRCy0pb3rIbG9XwSJACmuvvz

wfAkcTsO3eZcoxMyUIgHq3r4EB38stGEwMGzNFVCghoC7Mvw_wcB. [Accessed: 05-

Aug- 2015].

[17] Rollertrol.com, '12v DC Tubular Motors with Built-in Remote Control', 2015.

[Online]. Available: http://rollertrol.com/store/en/tubular-motors/33-window-

blind-motor.html. [Accessed: 05- Aug- 2015].

[18] Diffen.com, 'Bluetooth vs Wi-Fi - Difference and Comparison | Diffen', 2015.

[Online]. Available: http://www.diffen.com/difference/Bluetooth_vs_Wifi.

[Accessed: 05- Aug- 2015].

[19] Msdn.microsoft.com, 'Wi-Fi power management for connected standby platforms

(Windows Drivers)', 2015. [Online]. Available: https://msdn.microsoft.com/en-

us/library/windows/hardware/dn757332(v=vs.85).aspx. [Accessed: 05- Aug- 2015].

[20]S. Higginbotham, 'ZigBee wants to be the Bluetooth of the internet of things. Too

bad everyone hates it.', Gigaom.com, 2013. [Online]. Available:

https://gigaom.com/2013/08/30/zigbee-wants-to-be-the-bluetooth-of-the-

internet-of-things-too-bad-everyone-hates-it/. [Accessed: 05- Aug- 2015].

[21]J. Thrasher, 'RFID versus NFC: What's the difference between NFC and RFID?', RFID

insider, 2013. [Online]. Available: http://blog.atlasrfidstore.com/rfid-vs-nfc.

[Accessed: 05- Aug- 2015].

[22] NFC World+, 'List of NFC phones', 2015. [Online]. Available:

http://www.nfcworld.com/nfc-phones-list/. [Accessed: 05- Aug- 2015].

[23] Hospitality Net, 'Hospitality Net - ASSA ABLOY Hospitality Revolutionizes Hotel

Security and Convenience with Industryâ€™s Premier Mobile Access Solution',

2015. [Online]. Available: http://www.hospitalitynet.org/news/4070162.html.

[Accessed: 05- Aug- 2015].

[24] Developer.android.com, 'Dashboards | Android Developers', 2015. [Online].

Available:

https://developer.android.com/about/dashboards/index.html?utm_source=suzun

one. [Accessed: 05- Aug- 2015].

[25]2015. [Online]. Available: https://web.eecs.umich.edu/~prabal/teaching/eecs373-

f10/readings/ARM_Architecture_Overview.pdf. [Accessed: 05- Aug- 2015].

[26]2015. [Online]. Available:

http://konstantin.solnushkin.org/teaching_reports/intro_to_hpc/2007/harvard_ar

chitecture.pdf. [Accessed: 05- Aug- 2015].

[27]M. Verle, PIC Microcontrollers. Beograd: Mikroelektronika, 2008.

[28] Ladyada.net, 'PIC vs. AVR smackdown', 2015. [Online]. Available:

http://www.ladyada.net/library/picvsavr.html. [Accessed: 05- Aug- 2015].

[29] Quora.com, 'What is the difference between 8051, PIC, AVR and ARM? - Quora',

2015. [Online]. Available: http://www.quora.com/What-is-the-difference-between-

8051-PIC-AVR-and-ARM. [Accessed: 05- Aug- 2015].

[30] Solar-electric.com, 'What is Maximum Power Point Tracking (MPPT)', 2015.

[Online]. Available: http://www.solar-electric.com/mppt-solar-charge-

134

controllers.html. [Accessed: 05- Aug- 2015].

[31] Genasun.com, 'Genasun MPPT Controllers for Lead-Acid Batteries |

GenasunGenasun', 2015. [Online]. Available: https://genasun.com/products-

store/mppt-solar-charge-controllers/mppt-for-lead-acid/. [Accessed: 05- Aug-

2015].

[32]I. Solarcraft, 'PWM vs MPPT Solar Charge Controllers | Solarcraft', Solarcraft.net,

2015. [Online]. Available: http://solarcraft.net/articles/comparing-pwm-and-mppt-

charge-controllers/. [Accessed: 05- Aug- 2015].

[33] Altenergymag.com, 'A Comparison of Lead Acid to Lithium-ion in Stationary Storage

Applications | AltEnergyMag', 2015. [Online]. Available:

http://www.altenergymag.com/content.php?post_type=1884. [Accessed: 05- Aug-

2015].

[34]2015. [Online]. Available:

http://datasheets.maximintegrated.com/en/ds/DS2438.pdf. [Accessed: 05- Aug-

2015].

[35] Xamarin.com, 'How do I share code across platforms with Xamarin? and other FAQs

- Xamarin', 2015. [Online]. Available: http://xamarin.com/faq. [Accessed: 05- Aug-

2015].

[36]A. Overview, 'Android Studio Overview | Android Developers',

Developer.android.com, 2015. [Online]. Available:

http://developer.android.com/tools/studio/index.html. [Accessed: 05- Aug- 2015].

[37]A. Gajani, '4 Online Collaboration Tools for Developers', Blog.monitor.us, 2015.

[Online]. Available: http://blog.monitor.us/2013/05/cc-in-review-4-online-

collaboration-tools-for-developers/. [Accessed: 05- Aug- 2015].

[38]L. Wildbit, 'Wildbit â€“ We create web products to help business collaborate and

communicate more effectively', Wildbit.com, 2015. [Online]. Available:

http://wildbit.com/. [Accessed: 05- Aug- 2015].

[39]L. Wildbit, 'Beanstalk Plans & Pricing', Beanstalkapp.com, 2015. [Online]. Available:

http://beanstalkapp.com/pricing. [Accessed: 05- Aug- 2015].

[40] Atlassian, 'JIRA - Issue & Project Tracking Software | Atlassian', 2015. [Online].

Available: https://www.atlassian.com/software/jira. [Accessed: 05- Aug- 2015].

[41] Atlassian, 'Pricing | Atlassian JIRA', 2015. [Online]. Available:

https://www.atlassian.com/software/jira/pricing. [Accessed: 05- Aug- 2015].

[42] GitHub, 'Build software better, together', 2015. [Online]. Available:

https://github.com/pricing. [Accessed: 05- Aug- 2015].

[43] C9.io, 'Cloud9 - Your development environment, in the cloud', 2015. [Online].

Available: https://c9.io/. [Accessed: 05- Aug- 2015].

[44] C9.io, 'Cloud9 - Plans and Pricing', 2015. [Online]. Available:

https://c9.io/web/site/pricing. [Accessed: 05- Aug- 2015].

[45] Developer.apple.com, 'HomeKit - Apple Developer', 2015. [Online]. Available:

https://developer.apple.com/homekit/. [Accessed: 05- Aug- 2015].

[46] Developer.apple.com, 'Choosing a Membership - Support - Apple Developer', 2015.

[Online]. Available: https://developer.apple.com/support/compare-memberships/.

[Accessed: 05- Aug- 2015].

135

[47]G. Publishing, 'Get Started with Publishing | Android Developers',

Developer.android.com, 2015. [Online]. Available:

http://developer.android.com/distribute/googleplay/start.html. [Accessed: 05-

Aug- 2015].

[48] Genasun.com, 'Genasun GV-5 65W 5A Solar Charge Controller with MPPTGenasun',

2015. [Online]. Available: http://genasun.com/all-products/solar-charge-

controllers/for-lead/gv-5-pb-5a-solar-charge-controller/. [Accessed: 05- Aug-

2015].

[49] Ti.com, 'CC2640 | Bluetooth / Bluetooth Low Energy | Wireless Connectivity |

Description & parametrics', 2015. [Online]. Available:

http://www.ti.com/product/cc2640. [Accessed: 05- Aug- 2015].

[50]2015. [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDoc/22008E.pdf. [Accessed: 05-

Aug- 2015].

[51]2015. [Online]. Available: http://www.ti.com/lit/ds/symlink/cc2640.pdf. [Accessed:

05- Aug- 2015].

[52]E. Inc, '690-004-621-013 EDAC Inc | 151-1080-ND | DigiKey', Digikey.com, 2015.

[Online]. Available: http://www.digikey.com/product-detail/en/690-004-621-

013/151-1080-ND/806179. [Accessed: 05- Aug- 2015].

