

Department of Electrical & Computer Engineering

University of Central Florida

C.L.A.I.M

Computerized Luggage and Information Messenger

Group 10

Ernest Jackman - Electrical Engineer
Adrian McGrath - Computer Engineer

Tomasz Pytel - Computer Engineer

Summer 2015

Table of Contents

1 Executive Summary .. 1

2 Project Descriptions .. 3

2.1 Motivation ..3

2.2 Objectives and Goals ...4

2.3 Project Requirements and Specifications6

2.3.1 General Requirements ... 7

2.3.2 Hardware Requirements and Specifications 8

2.3.3 Software Requirements and Specifications 9

2.4 Constraints and Standards 10

2.4.1 Standards .. 10

2.4.2 Hardware Constraints .. 14

2.4.3 Software Constraints ... 14

3 Research Related to Project Definition 17

3.1 Existing similar projects and products 17

3.2 Relevant Hardware Technologies 20

3.2.1 Microcontroller Decision ... 20

3.2.2 RFID Transceiver .. 21

3.2.3 Wireless Communication Technologies 22

3.2.4 RFID Tag .. 22

3.2.5 Power Supply .. 23

3.2.6 Display .. 23

3.3 Relevant Software Technologies 23

3.3.1 Development Languages .. 23

3.3.2 Integrated Development Environments 24

3.3.3 Maven ... 25

3.3.4 Operating Systems ... 25

3.3.5 Miscellaneous Software Tools 26

3.3.6 Miscellaneous Web Tools ... 27

3.4 Miscellaneous Technologies 28

3.4.1 Tag Housing ... 28

3.4.2 Mounting ... 29

3.4.3 Device Housing .. 31

4 Project Hardware and Software Design Details 32

4.1 Overall System Block Diagram 32

4.2 Hardware Design .. 33

4.2.1 HF RFID Tag .. 33

4.2.2 Microcontroller .. 33

4.2.3 RFID Transceiver .. 35

4.2.4 Wi-Fi Integration .. 35

4.2.5 Bluetooth Integration ... 36

4.2.6 Master Central Processing Unit 37

4.2.7 Power Supply ... 38

4.2.8 Monitor Integration ... 38

4.3 Software Design .. 38

4.3.1 Microcontroller Unit Software 38

4.3.2 Java Language Coding Standards 39

4.3.3 Abstraction Software ... 44

4.3.4 Main CPU Software ... 45

4.3.5 Android Stick Software .. 50

4.4 Miscellaneous Design .. 53

4.4.1 Tag Housing Design ... 53

4.4.2 Mounting Design ... 54

4.4.3 Device Housing Design ... 56

5 Design Summary ... 57

5.1 Hardware Design Summary 57

5.1.1 Parts List ... 59

5.1.2 Schematic .. 62

5.1.3 PCB Layout .. 68

5.2 Software Design Summary 70

5.3 Miscellaneous Design Summary 71

5.3.1 Tag Housing ... 71

5.3.2 Carousel Conveyor Mounting 72

5.3.3 Board Housing ... 72

6 Prototype Construction 73

6.1 Parts Acquisition ... 73

7 Project Prototype Testing 74

7.1 Hardware Testing Environment 75

7.2 Hardware Specific Testing 75

7.3 Software Testing Environments 76

7.3.1 Emulators .. 76

7.3.2 Mocked Airline Lookup Service 76

7.3.3 Mocked Passenger Notification Services 77

7.4 Software Specific Testing 77

7.4.1 Microcontroller Testing .. 77

7.4.2 Main CPU Testing ... 79

7.4.3 Android Stick Testing.. 83

8 Administrative Content 85

8.1 Project Milestones .. 85

8.2 Budget & Financing ... 88

8.2.1 Expected Costs ... 88

8.2.2 Financing ... 88

8.3 Advisors .. 90

8.4 Facilities & Equipment .. 90

9 Project Summary .. 91

10 Appendix .. 92

1

1 Executive Summary

Airport terminals are typically crowded in baggage claim areas and lack a certain
ease of use as the passengers stand around anxiously waiting for their luggage to
come out to claim. This group’s project would help alleviate that burden by
attaching RFID tags to luggage and scanning them when they are loaded onto the
baggage carousel. Once the owner of the luggage is identified, they are notified
via either a text message or an airline mobile application. Passengers can be
alerted that their bag is available on the carousel without them having to check
every individual bag as it passes by. A television display mounted next to the
baggage carousels would also be used to show a real-time table of luggage
currently being unloaded and placed in the baggage claim area, as well as the
bags already found on the carousel. This would result in a more orderly luggage
retrieval process, compared to the current chaotic process.

There are no products on the market which address the specific situation our group
is addressing, however some similar products do focus on improving the airport’s
baggage handling system accuracy rather than improving the passenger user
experience. Our project chooses to instead focus on enhancing the passenger
experience while simultaneously providing tracking possibilities for the airport.

The goal of the system would be to read data from RFID chips located on tags
attached to the luggage to communicate with the airline. The information for
identifying the owner of the bag would be found on the RFID chip. The passenger’s
airline would then be asked to notify the passenger that their bag has arrived. This
would be accomplished by a RFID transceiver scanning the RFID tags, and the
data would be sent to a microcontroller which would in turn send it over to another
device over a wireless connection. This new device would then communicate with
the airline’s web services to request that they notify the appropriate owner of the
bag. The notification of the owner would be handled by the airline service, and the
received data would then be transmitted to a connected monitor. This monitor will
be wirelessly connected as well and will display the real-time luggage data to
passengers waiting in the baggage claim area. The system would be robust
enough to handle communication with different airlines to accurately identify the
luggage owners. This system would be mounted so as to utilize the empty space
above existing carousel systems. The system will be powered by a plug to an outlet
in the setup environment.

2

Shown in Figure 1-1 is the basic operation the group has designed as our solution.
At Step 1, the luggage is loaded onto the conveyer track by the airline’s ground
crew. At Step 2, the luggage is scanned immediately before it travels into the
baggage claim area. The scanned data is sent to the Master CPU, as illustrated
by Step 3. After the luggage is scanned, the television display is updated to include
the newly scanned bag, as illustrated by Step 4. After the television is displayed,
the owner of the bag is notified by their airline via a text message or a mobile app
notification that their bag is available on the carousel, as illustrated by Step 5.
Lastly, at Step 6, the passengers picks up their luggage in the baggage claim area.

Figure 1-1 - Projected system mounting and process

3

2 Project Descriptions

2.1 Motivation

Noticing that the baggage claim system is one of the most crowded and
unmanaged processes in modern airline travel, this senior design group decided
to utilize RFID technology to find a solution to the problem. With the system in
place, passengers would gain a certain ease of use in baggage claim areas when
they receive a notification signaling for pick-up rather than crowding the airport
carousels looking for their bags. They would be able to go about their business
getting food, taking care of their children, making a call, etc., without worrying
about whether their luggage has been offloaded yet. Not only would the
passengers have less stress in the pick-up process, but the location of the bags
could be determined if they were misplaced for some reason. Even though there
are a few similar RFID systems being worked on, those systems are tailored more
for the benefits of the airports and airlines rather than the benefits of the
passengers.

By adding a new way of customer interaction and an up to date notification system,
we can provide a better experience at the airport for everyone. According to the
Transportation.gov’s May 2015 Air Travel Consumer Report, baggage is the 3rd
highest category for consumer complaints [1]. As such, this device will lower and
alleviate this kind of discrepancy. Providing this service for a severely outdated
luggage claim system would further push innovation to the next level upon
completion and yield positive results.

With the added benefit of creating a viable solution to this dilemma, the group was
eager to learn about the different technologies and how they would work in
conjunction with each other. Having known about the existence of RFID
technology, the group was curious about how data was actually read from the RFID
chips with the RFID Receivers. The Raspberry Pi was a tool some of the group
members wanted to experiment with prior to the project, and found great use of
making it relevant to the implementation. The group has had no experience
working with wireless serial devices and was keen on how a wireless serial device
piconet configuration can be implemented and how it would function. Building a
microcontroller board and power supply was a great challenge to test the
cumulative knowledge of the group’s electrical engineers. The design process of
a product from start to finish including the documentation, prototype and testing
was a worthy learning experience for the group as well.

4

2.2 Objectives and Goals

The group’s primary goal is to create a system that scans RFID tags mounted on
luggage, identifies the owner, and notifies the owner while being robust enough to
handle any number of airlines and work on many different carousel systems. This
will be accomplished by first researching the relevant technologies and then
developing or utilizing them as needed.

The system must be able to scan and decode rfid’s accurately. This will be
accomplished by the power output of the RFID scanning unit and RFID tag size.
These combined factors will contribute to the overall range and accuracy of the
system through use of either extended radiation range from the scanning antenna
or larger receiving pad of the tag.

The system must also perform with minimal delay. Proper communication of the
serial data stream from the scanning unit to the main host controller. Since the
main host unit will be primary a wireless system, all data streams to the video
display, airline, and RFID scanner must be synchronized accordingly to minimize
any delays inherent to the transmission of data along a serial line.

The system must run on a continuous power supply. Due to the nature of an airport,
regardless of whether the airport is regional or international, the system is
expected to run for an entire day with little to no downtime. Some airports can have
upwards of 150 flights at peak hours, which means at any time, our system will
need to be operational.

A concern for the system is that it must comply with all health and safety
regulations. The RFID scanner can have adjustable power output and needs to be
adjusted accordingly to maintain a safe hazardous radiation pattern of less than
10 mW per centimeter squared area of radiation. Any more than this, and it fails
government regulations for safe levels of hazardous exposure to human flesh.
When presented in an industrial area, where those exposed are properly trained
and warned, regulations are reduced to allow longer exposure amounts, so long
as the area is properly labeled and employees informed.

This device will also need to comply with all environmental regulations. Radiation
devices will not contain frequency above the visual light spectrum where ionization
of the air may occur. This will prevent harmful effects that my spark or burn objects
passing under the radiation area. Also, no lead or lithium internal battery will be
used in this design that may cause fire or explosion. This device may accept any
unwanted external voltage, and a proper fuse should be in place for circuit
protection.

The product should be operational out of the box with some assembly to the
mounting of the devices. Each module will be self-contained in a box, with external
plug connections as needed. This limits the installation process to mounting the

5

scanning box and the processing unit to within range of each other for
communication. An external antenna to the scanning box will need to be mounted
to an overhang above the conveyer track, this will allow for a better scanning area,
and provide some options for mounting of the device box, should the place of
scanning not be near a power source. Distances between antenna and scanning
unit, and scanning unit to processing unit is dependent on environmental
conditions of interference and physical mounting constraints of the area the device
will be deployed in.

The cost of product must be reasonable, but the cost of production is highly
dependent on the scanning device used, as higher frequency with better range
and detection incur a larger upfront cost in chip/antenna design.

The system should allow free passage of all objects through the scanning area,
while also being able to scan tags through thick objects. Based on the device
chosen, the range and penetration of the scanner to detect tags is determined by
power output, frequency, and local interference. Correct selection of a device is
needed, so that it can scan far enough away to allow proper flow of objected
underneath it. It also needs to not be overpowered, or underpowered, to do the job
it’s designed to do. As underpowered would cause missed tag information, and
overpowered could cause a health and safety hazard.

The system should operate with correct procedures for the access and use of
personal information. The tag data should only be collected and sent to the correct
devices and authorities. The device should not randomly broadcast data or allow
unwanted interception of unknown signals that could overwrite incoming data with
false or unwanted information.

6

2.3 Project Requirements and Specifications

Required Specifications

Goals
Met

Requirement Justification

6 Must meet airport transmission
standards

Regulation of frequency use and
transmission of specific data from
the RFID: ISO/IEC 18000-3 and
ISO/IEC TR 24729-1:2008

1 RF Receiver must accurately
scan the RFID chip 95% of the
time

In order to ensure customer
satisfaction

1,2 System must accurately identify
who the luggage belongs to
95% of the time

So the system is able to contact
the correct person

2,8 Must notify the correct recipient
with a maximum delay of 60
seconds.

In order to ensure customer
satisfaction

7,9 Must not exceed funds of
$2,000 to construct

So the system can sell for more
than the cost of manufacturing.

3,8 Will use wall outlet to power
scanners and microcontroller.

Must be able to run continuously.

4,5 Must not have any negative
impact on the environment or
personal

Do not want to cause any harm

10 Must meet size requirements to
allow clearance for luggage

Clearance so all packages passing
by the scanner goes unobstructed.

4,5 Must not emit any harmful
radiation and is safe to handle

Do not want to cause any harm

11 Information the system
transmits must be secure and
not allow unauthorized access.

Secure information is required to
prevent any unauthorized data
retrieval

7

Goals and Objectives:
1) System must be able to scan and decode rfid’s accurately.
2) System must perform with minimal delay.
3) System must run on a continuous power supply.
4) Must comply with all health and safety regulations.
5) Must comply with all environmental regulations.
6) Must comply with all legislature and US laws and regulations as of 2015.
7) Product should be operational out of the box with some assembly required.
8) Must be able to operate 24/7 in an airport environment
9) Cost of product must be reasonable
10) Able to allow free passage of all objects through the scanning area.
11) Operate with correct procedures for the access and use of personal information

2.3.1 General Requirements

After identifying the base objectives and goals, the functionality of each component
of the system was outlined.

Each RFID tag attached to luggage should be able to be picked up by the RFID
receiver. Due to the nature of the carousel system and mounted receiver distance,
the tag type should be at bare minimum of high frequency in order to be within the
power transmission range of the system.

The RFID transceiver, the key component behind the RFID technology, would
need to be able to scan a certain type or a variety of RFID tags for the data contents
of each chip. Considering that RFID chips can be passive or active, the group
decided that having the RFID receiver configured to scan for passive chips would
be the best option. RFID technology relies on the transmission of power to the
RFID chips. This functionality could potentially be hazardous if dangerous levels
of power are transmitted.

The microcontroller's primary function will include the need to receive and transmit
the RFID tag data. The microcontroller will receive the RFID tag data from the RFID
receiver, and wait for further instruction. The single board computer will send out
a wireless serial device broadcast signal requesting the RFID tag data. After
receiving the signal, the microcontroller will transmit the RFID tag data contents
via a wireless serial device to the single board computer.

8

The single board computer will function as the central hub for the different
components of the system. It is tasked with the handling of all data
communications. It will utilize a wireless serial device to broadcast a data request
signal to the microcontroller. After receiving the data on the same device, the single
board computer will pass the data along to the mocked servers via Wi-Fi. The
wireless serial device will then broadcast the new data to the Android Stick device.

The Android Stick needs to be able to receive data via a wireless serial device
from the single board computer, prepare the data for display, and send the
information to the TV to be displayed.

The mocked services simply need to be able to receive data from the single board
computer, identify the owner based on the RFID tag’s contents, and notify the
passenger who owns the scanned luggage. These services will be run by the
airlines, and therefore the airlines are responsible for notifying the owner of the
bag that the luggage has arrived on the carousel belt. It is up to the specific airline
whether they wish to notify the passenger with a mobile application push
notification, by sending a text message directly, or by using some other form of
notification.

2.3.2 Hardware Requirements and Specifications

Required functions of the project include the ability to scan an RFID tag and
wirelessly transmit this data to a receiving computer to process the information for
display on a monitor and provide notification through text message. To accomplish
this task, a radio frequency transceiver is required to read tag data. This data will
then be passed to a microcontroller unit, which will pass the RFID information to a
wireless broadcasting unit. The microcontroller will also control the status and
operation of the RFID scanner and wireless serial communication port.

Along with the communication node of the RFID scanner, a master node is needed
for overall data extraction from each scanner, this master node will be attached to
the master unit, a single board computer. Further wireless communication will also
be required for connection with standard internet protocols on the computer side,
in order to communicate with the host airline for passenger notification purposes.
Other connections will include video screen updates through hard wire or other
wireless broadcast technology to provide visual confirmation of the tag data to the
user.

Power requirements for this device will revolve around the need for a possible

24/7 operation with little to no downtime. It will be operated in both backroom

industrial and front room commercial environments.

9

2.3.3 Software Requirements and Specifications

2.3.3.1 Microcontroller Specifications

The Microcontroller should be configured to send data via Bluetooth to the
carousel’s Single Board Computer.

2.3.3.2 Single Board Computer Specifications

The Single Board Computer should be configured to hold the host airport’s IATA
code, as well as the baggage carousel number the Single Board Computer is
operating for. It should also be configured to have internet access, using an airport-
provided Wi-Fi connection. The Single Board Computer should also be configured
to receive incoming Bluetooth connections from up to two Microcontroller Units.

2.3.3.3 Android Stick Specifications

The Android Stick should be configured to be connected to the Single Board
Computer’s Bluetooth access point. It should also be configured to run the
specified software application in Single Application Mode.

10

2.4 Constraints and Standards

2.4.1 Standards

Standard Description

ISO/IEC TR 24729-1:2008 Radio frequency identification for item
management

ISO/IEC 18000-3:2010 13.56 MHz

Title 47 - Chapter I - Subchapter
A - Part 15 - Subpart C

Intentional Radiators

IEEE 802 local area and metropolitan area networks

IPC-2615 Printed Board Dimensions and Tolerances

IPC-2612 Sectional Requirements for Electronic
Diagramming Documentation

IPC-2221 Generic Standard on Printed Board Design

ISO 9000/9001 Quality Management

IPC-7351B Generic Requirements for Surface Mount
Design and Land Pattern Standards

IPC-4562 Metal Foil for Printed Wiring Applications

IEC 60695 Flammability Testing

IEC 60112 Insulation testing

ISO 527 plastic tensile properties

ISO 178 plastic flexural properties

ISO 8256 plastic impact strength

ISO 180 plastic Izod impact

ISO 179 plastic charpy impact

Table 2-1 - Standards

11

2.4.1.1 Performance

This device needs to be able to scan tags at a rate equal to conveyer belt speed.
With an average speed of 90 feet per minute or half a meter a second, at least two
to three tags per meter of track will need to be accurately sampled. A tag reading
faster than one tag per second will allow for each tag attached to a luggage bag to
be scanned as it rotates around the carousel.

This device will also need to communicate all tag data without drop of information
when being wirelessly transmitting to each of the dependent substations for
processing and display

2.4.1.2 Functionality

Must scan RFID chip, transmit RFID chip data via query to airline database. Must
receive airline database information to display. This system should process
information continuously, and show real-time data of recent scanned tag to a
display.

2.4.1.3 Economics

Produced cheaply but with reliable and hardy parts that can last a long time, while
still providing reliable consistency in detection and system stability. Must be
economically viable to implement in real world applications.

2.4.1.4 Energy

The primary power source is a five volt input, the small scanner chip will be
regulating its own 5 to 3.3 volts, and the Bluetooth will sample off a regulator chip.
Maximum current draw of the scanning chip is 150 mA, with the Bluetooth requiring
close to half the amount for continuous operation at 65 mA. Combined current draw
from the system would then be at the most 215 mA. The microcontroller will be
running off the internal regulator of the scanning chip. Since the msp430 in high
frequency operation will only draw up to 4 mA, the internal regulators 20mA draw
limit is enough to support this device, and is within the max current draw of the
primary input of 150mA.

12

2.4.1.5 Environmental

ABS plastics used in the construction of the circuit board project cases are known
to release harmful chemicals when subjected to high temperatures. Under normal
room temperatures no known harmful effects are released into the environment.

2.4.1.6 Health and Safety

Radiation from the scanning unit is regulated to 10 mW per cubic centimeters of
exposed flesh to prevent radiation burn from energy propagation. Inhalation of
toxic fumes from the project cases should they be exposed by high thermal
temperature also provides a health hazard if directly inhaled while melting or on
fire. Shock hazard can occur under certain conditions if any of the power lines
should become damaged or shorted.

2.4.1.7 Legal

Must query the airline database but never directly access it. Must not impede the
security of data being transmitted or received. May not infringe on any copyright
laws. May not breach any data security.

2.4.1.8 Maintainability

Ability to run 24/7 with little to no need for external contact. Minimum maintenance
of removal of dust, and proper maintenance of power cables.

2.4.1.9 Manufacturability

Due to the simple single board design, the scanning unit is able to be manufactured
and installed into a simple case. This case can them be mounted into a multitude
of positions, with the external antenna being the only device that needs to be close
to the conveyer system. The single board computer for the main processing can
be produced by another company for creation and programing of the board. Each
unit once manufactured is installed by mounting directly to an available surface
near its respective peripheral.

13

2.4.1.10 Operational

It needs to operate within airport, commercial and industrial sections. Where the
industrial section will need to be able to handle possible weather conditions if
located close to, or directly in outside temperatures/conditions. In the commercial
section, standard room temperature operation of the central processing unit or
lower would be ideal for the operation of the single board computer.

Potential impacts on the device include extreme conditions of temperature, power
surges, high impact forces, potential flooding dependent on conveyer positioning
with ground floor.

2.4.1.11 Reliability and Availability

System must be reliable in its ability to scan every tag presented under the scanner
and process the tag information in an accurate and timely manner. The display
information must also be displayed and updated correctly. The system must send
out a notification upon the luggage bag arrival.

2.4.1.12 Social and Cultural

Promptly notify passenger when their luggage is scanned and identified to provide
better time management for the passengers. This allows the passengers the
freedom to buy gifts, talk with family, and perform other activities at their leisure
instead of waiting at or crowding the conveyor carousel systems.

2.4.1.13 Usability

For physical mounting of the devices, each unit will be incase in an enclosure that
can be mounted directly to a flat structure. Each device is wireless, and allows for
placement in a variety of locations.

Must be easy to assemble and get operational out of the box. Simple clamp/bolts,
followed by plug and play operation of the software.

The software must be easily updatable with customer information to connect to
their respective devices for external communication.

14

2.4.2 Hardware Constraints

Power out of the device is regulated by government standards as a health and
safety factor. The device will need to be able to scan through luggage without
causing harm to workers nearby.

Placement of the scanning antenna is limited by airport construction and conveyor
design, ability to allow luggage to pass freely underneath with no obstruction is a
mandatory requirement.

2.4.3 Software Constraints

2.4.3.1 Compatibility Constraints

2.4.3.1.1 Java ME Embedded Constraints

The Java ME Embedded 8.1 Runtime Environment is a small subset of the Java
Standard Edition. It does not contain nearly as much functionality as the Java
Standard Edition, so knowing what functionality is not provided is important for
development. It is also important to note that any third-party libraries which require
the use of packages not available in Java ME Embedded 8.1 will be incompatible
for our system. It is necessary to use Java ME Embedded 8.1 instead of the Java
Standard Edition because of the Single Board Computer’s limited resources.

Java ME Embedded 8.1 comes with many of the basic packages from the Java
Standard Edition. Most noticeably, all graphical packages are not available. They
are not available because Java ME Embedded 8.1 is headless, so the group will
be unable to create a graphical user interface for the Single Board Computer. The
package for input and output is greatly reduced, as Java ME Embedded only
supports input and output with basic data streams.

Unlike Java Standard Edition, the language package is trimmed down and doesn’t
contain some classes necessary for reflection. The math package from the Java
Standard Edition, which contains a few classes for managing numbers larger than
the maximum values for integers and doubles are not available in Java ME
Embedded. The net package, which contains many of the classes necessary for
network communication is also gone. Our group will need to use the Oracle
supplied HTTP Client API to gain access to the functionality we need to
communicate with the host airline’s webservices.

The Remote Method Invocation package is not available, and the security package
has extremely limited existing functionality. Depending on our security needs, the
group may need to use on one of Oracle’s security APIs. The group also doesn’t
have access to any of the sql, xml, or time packages. Several APIs exist for some
of these functionalities, which the group may need to use.

15

2.4.3.1.2 Single Board Computer Configuration File

The Single Board Computer is in charge of knowing which Microcontroller Units
and which Android Sticks it can communicate with. It is also in charge of knowing
the security credentials it needs to access the airport’s wireless network. This
information is determined by a configuration file located in the Single Board
Computer. This file will need to be configured by the customer for each individual
Single Board Computer. The Single Board Computer program does not have user
interface capabilities, and the Android Sticks the Single Board Computer will be
using needs to be configured before it can use them, the customer is constrained
with how they are able to modify the configuration file. In order to modify the
configuration file, the customer will need to remove the physical SD Card from the
Single Board Computer and plug it into a compatible computer with a monitor and
keyboard. The customer will then need to run the ConfigurationWizard file on the
SD Card and go through the wizard to configure the various settings and devices.

The customer will need to configure the Bluetooth devices in the configuration file.
In the wizard, the user should enter the Bluetooth device UIDs found in the
packaging for the individual scanner and Android Stick units.

2.4.3.2 Single Board Computer Operating System Constraints

The Single Board Computer should run an operating system capable of utilizing
the Java Embedded Micro Edition 8.1 Runtime Environment. Ideally, the Single
Board Computer should run, at minimum, a version of the Embedded Linux series.

2.4.3.3 Customer Required Software Implementations

2.4.3.3.1 Overview

The customers for the group’s product (i.e. Airlines) will be expected to implement
some web services on their systems. The customers are responsible for notifying
the passengers that their bags are available. By allowing the customer to
implement this functionality on their own, the customer is able to choose which
method of notifying the passengers they feel would be best. Some customers may
choose to notify the passengers via a text message to their cell phone, while other
customers may prefer to implement the notifications in their existing mobile
applications.

16

2.4.3.3.2 Implementation Requirements

The implementation of the notification system should be a RESTful web service
which accepts json payloads. An example of the incoming payload can be found
in Figure 2-1 below.

Figure 2-1 - Incoming json payload example

The identification value will contain the baggage identification information which
was provided to the system when the bag was originally checked in. The formatting
for the identification value depends on what the customer originally provided. The
flight value will contain the flight identification information which was provided to
the system the bag was originally checked in.

The formatting for the flight value depends on what the customer originally
provided. The arrivalAirport value will contain the arrival airport for the bag which
is configured on the carousel’s CPU. The formatting for the arrivalAirport value will
be the three-letter IATA code for the arrival airport. The carousel value will contain
the number for the carousel the bag was scanned on, which is configured on the
carousel’s CPU. The formatting for the carousel value will depend on what the
customer configured for the CPU. The time value will contain the UTC time for
when the bag was scanned. The formatting for the time value will be combined
date and time ISO 8601 extended format.

17

3 Research Related to Project Definition

3.1 Existing similar projects and products

Even though RFID technology stems from the 1980s, it has not been as widely or
prominently utilized in modern times as one would expect. There are several
noteworthy products that are similar to this group’s project solution. However, even
though there are a few similar systems being worked on, those systems are
tailored more for the benefits of the airports and airlines rather than the benefits of
the passengers. This group plans to focus on a solution more suited for the
passenger’s benefit.

The Hong Kong International Airport (HKG) has started using only RFID Baggage
tags as early as 2009 for all of the bags that leave the airport every day. This RFID
system has been proven to yield an improved handling capacity compared to the
standard paper tag bar code system used in place today [2]. These RFID tags are
encoded with unique ID numbers, 3 letter IATA code describing the destination
airport, as well as the date and flight number. This specific ID number links to the
back end baggage handling systems the passenger’s information.

Air France-KLM launched an eTag in 2014 which includes two e-ink displays.
Partnered with the eTrack system which makes use of GSM, GPS, and Bluetooth
technology enables the luggage to be easily tracked by any smartphone. This
system was designed to benefit the airlines as well as the passengers and allows
linking of different luggage bags to an account which can then be used for a
streamlined check-in progress [3]. A sample of this product can be seen below, in
Figure 3-1.

Figure 3-1 – eTag and eTrack devices

“Permission Pending”

A company in the United Kingdom by the name of ReboundTAG has created
permanent RFID luggage tags for airlines [4]. This tag has two microchips, where

18

one tag is used for identification, which remains permanent and can be used to
help automate the check-in process. The other one is re-writable so that airlines
can write new flight information on each trip. This tag can also be tracked with
Worldtracer to locate the luggage and identify owner of its whereabouts. This is a
pretty similar product to the group's approach, however it includes an additional
tag that houses the passenger’s personal information. For security reasons the
group would like to limit the tags to one microchip and be re-writable so they could
be reused as a smarter economical option. A sample of this product can be seen
below, in Figure 3-2.

Figure 3-2 – ReboundTAG tag

“Permission Pending”

Vanguard ID Systems has created a different permanent RFID luggage tag called
the ViewTag [5]. A prominent feature of this tag is its functionality with the owner’s
cellphone, in which the location of the luggage can be checked using the tag’s QR
code or NFC embedded module housed in the tag itself. The ViewTag utilizes
Bluetooth and an RFID reader located on the loading belt of an airplane. After
scanning the tag, the luggage owner receives a confirmation message, resulting
in updates of the location on-board flights, connecting flights, and final
destinations. A sample of this product can be seen below, in Figure 3-3.

19

Figure 3-3 – ViewTag tag

“Permission Pending”

Qantas, Australia’s largest airline, has developed the Next Generation Check-In
program, or NGCI for short, which uses RFID technology to simplify the check-in
process and essentially allows for self-service [6]. Using the Q Card, passengers
may check-in simply by touching it against a Q Card Reader, after which they
receive a confirmation message and the Q Card becomes their boarding pass. The
Q Bag Tag is simply an alternative to the normal paper tags and has the usual data
and barcode on it. A sample of this product can be seen below, in Figure 3-4.

Figure 3-4 – Q Bag Tags and Q Card

“Permission Pending”

20

3.2 Relevant Hardware Technologies

A microcontroller will convey information from the RFID scanner to the wireless
transmitter for external processing of the data. This chip will pass information and
handle all status and command issues for the control and error handling of the
RFID scanner and wireless communication.

A RFID transceiver will be used for powering the passive tags and receiving their
stored data. A wireless communication chip will be used for transmitting data
gathered by the RFID transceiver to the base master unit.

A single board computer will be used as the master unit for controlling the slave
scanner units containing the RFID scanner, controller, and wireless
communication device. A WiFi transceiver will be used for relaying decoded
information on the master unit to external sites for text message service. Another
wireless unit will be used for updating an external monitor with decoded information
for user display.

3.2.1 Microcontroller Decision

The microcontroller needs to have the ability to pass data from the RFID scanner
to the wireless communication chip. This is accomplished through either a
parallel or serial communication between the chip and the device it is going to
communicate with.

On top of the transfer of the data from one device to the next, the microcontroller
also needs to be able to process any error and status messages flagged by the
RFID scanner of the wireless serial device. Most of these functions can be
accomplished through the use of LED lights that can be attached to the
microcontroller and programed to indicate status values.

It will also need to accept commands being sent to the serial device and properly
send these commands to the RFID scanner to control scan power, on/off status,
and any other status and setting requested by the master unit. This will need to
be handled by the communication set up by the devices for bidirectional
communication.

21

3.2.2 RFID Transceiver

The RFID reader/writer will be required to have enough power to scan through
luggage and provide proper power out to achieve the needed minimum transmit
power to the RFID tag.

The larger the RFID scanner is, in regards to power out, the longer the range of
the system. This is due to degradation of the radio signal through freespace,
limiting the scanning distance. Another factor is the frequency of the transceiver:
the lower the frequency, the longer the wavelength and the better the penetration
through surfaces, but at a reduced peak power per cycle. So a shorter wavelength
offer more power per cycle, but the higher frequency wavelength will suffer less
penetration through thicker materials.

An example of an UHF RFID scanner can be found below in Figure 3-5, indicating
the ThingMagic board, where a manufacturer has constructed and tested with
specified antennas to be properly tuned and regulated by government standards
for the long range radiation for tag scanning. For smaller projects, the chip found
below in Figure 3-6 can be used to generate an HF RFID scanner, but is would
require that the antenna and scanning device to be tested for proper radiation
patterns.

The size and power of the RFID transceiver will be dependent on the
location and any obstruction it will need to scan through.

Figure 3-5 - UHF ThingMagic Read/Write Board

“Permission Pending”

Figure 3-6 - TI HF RFID Chip

“Reprinted with permission from Texas Instruments”

22

3.2.3 Wireless Communication Technologies

Two types of communication is required for this project, a serial communication
and a Wi-Fi communication. The primary communication will be serial data
transmission from the RFID scanning unit to the master unit, and another serial
communication line from the master unit to the monitor. The other type of
communication will be for integration to a standard Wi-Fi router for internet or local
database connection to transmit needed information for the text message
notification system.

3.2.4 RFID Tag

The RFID tag to be used in the system will need to be a passive RFID tag
programmed with related information provided by the airline for display and text
message notification. The size of the tag will determine the range in which it may
be powered from. The larger the tag, the more surface area the antenna will have.
This larger antenna provides a large surface area for transmitted RF power across
the coils of the antenna powering up the RFID chip. Once powered, the antenna
is then used to broadcast the encoded data stored within the chip to the receiving
unit.

Example tags come in many shapes and sizes, as shown below in Figure 3-7. The
tags can come in a multitude of sizes of square and rectangular shapes, along with
circle shapes to match whatever object it is to be attached to.

Figure 3-7 - RFID Tags

“Reprinted with permission from Texas Instruments”

23

3.2.5 Power Supply

The power supply needs to provide enough power to run the transmission side of
the RFID scanner. Depending on the RFID scanner used, this can be upwards of
five watts of continuous power out on high end devices, to a few milliwatts on
smaller devices. This means if the system was to be operated on a 24/7 basis, the
required power for just the transmission of power to the RFID tags would require
a constant power supply. The master central processing unit will also be operating
multiple wireless transceivers. It will not be provided much downtime in its
operation while the system is on, as the master unit will be giving commands to
the slave scanners and gathering information to be processes from them.

3.2.6 Display

A monitor or television compatible with the current technology in wireless video
transmission, either internally, via a network connection to a server, or externally,
through video codec devices. The display will need to be updated with real time
data provided by the master unit on each tag scanned. This display will need to be
large enough to accommodate font sizes where all personnel viewing it will be able
to see the displayed information from a distance, and sturdy enough to be present
in a commercial environment.

3.3 Relevant Software Technologies

3.3.1 Development Languages

3.3.1.1 C

The C language is basic enough for controlling data flow and managing status
information. For this project, the C language would be ideal for use in the RFID
scanning unit.

This program will be used in the microcontroller units. It should be developed to be
able to take the raw data from the RFID Receiver and send it via the wireless serial
device to the master central processing unit. The program will also need to accept
data from the serial communication device in order to control the operation of the
RFID scanning chip, and send status information back to the processing unit.

24

3.3.1.2 Java

While the C language will work on an embedded system of small size, the large
amount of data handling and the need for the communication synchronization of
multiple devices at the same time requires the use of a more robust operating
system and programming language. The Java Programming Language is able to
be tailored to run specific devices while allowing a broad range of programing to
send the data between the interconnected devices. The devices will include the
master central processing unit, and the wireless broadcast unit for updating a
monitor with tag information.

3.3.1.3 PHP

The mocked web services, which will be used for testing and demoing, will be
developed in PHP for simplicity. PHP is a server-side programming language, and
one of the most commonly used languages for implementing quick, basic, and
session-less RESTful webservices. While PHP would most likely not be robust
enough for a commercial implementation, it is more than adequate for the needs
of the group’s testing environment.

3.3.2 Integrated Development Environments

3.3.2.1 Eclipse IDE

The Eclipse IDE will be used as the group’s Integrated Development Environment
for the Java Software, the Android Software, and the PHP Software. This
Integrated Development Environment allows the group to develop our large range
of languages on a single platform. Eclipse also allows the group to run emulators
and virtual machines directly within the IDE. Eclipse allows the group’s developers
to configure coding standards, which can be shared by exporting and importing
various configuration files, and it has full support for the group’s source control
needs. Eclipse has extremely detailed support for Maven and the Android SDK,
making it an ideal candidate for the group’s needs. Since it is such a commonly
used IDE, finding tutorials and assistance for most portions of the project will be
easy to do.

3.3.2.2 Code Composer Studio

Code composer offers support across all Texas Instrument devices, and is
available for free or limited use for most all of their device chips. Using this software
will allow for not only the writing but step by step debug control of each relative
debug board provided by the company.

25

3.3.3 Maven

Apache Maven will be used as the build automation tool for the Master CPU’s
software, as well as the software for the wireless broadcasting of monitor
information. Maven allows the group to manage library dependencies easily
between our developers, because of its standardized configurations and because
it automatically downloads the specified versions of dependent libraries for our
developers from the Maven 2 Central Repository. These automated features
greatly reduce potential mistakes our developers may make during builds and
source control. The build tools within Maven also allow the group to configure our
unit tests to run prior to build completion. If any of our unit tests in the system fail
as a result of source code changes during the build, the build will fail and we will
be notified of what tests failed. Configuring all of our unit tests to automatically run
as a precondition for build success means we can greatly reduce any breaking
bugs which may arise due to source code changes.

3.3.4 Operating Systems

Having never worked with linux based boards before, the group had a wide variety
of operating systems to choose from to utilize. The top few that were up for
consideration for their respective abilities were all Linux based.

The OpenELEC operating system and RaspBMC are tailored to have straight out
of the box media center operating system adaptations. Since the group did not
require this functionality for the project system, these two choices were promptly
discarded immediately.

The Pidora operating system has been known to have some glaring issues and
even with several versions of bug fixes, there was still some negative feedback on
the system. In order to avoid any potential future problems that at first glance may
not have seemed relevant, the group chose to also abandon this as an operating
system choice for the Raspberry Pi.

Having narrowed down the flavors of Linux by a margin, the two remaining options
that supported our features were ArchLinux and Raspbian. These two operating
systems are pretty similar, however one major difference is that ArchLinux boots
directly into the command line, while Raspbian has some graphical interface. Many
tutorials to projects about functionality and operation have plenty of support with
the Raspbian operating system that would bring an additional benefit. The specific
operating system to be used was Raspbian Wheezy as it has been confirmed on
multiple sources to work with the Raspberry Pi single board computer with the
group's planned implementation.

26

3.3.5 Miscellaneous Software Tools

3.3.5.1 PuTTY

PuTTY is being used to interface with the group’s Master CPU via a serial
connection. PuTTY allows the group to use Secure Shell to communicate with our
Master CPU via a USB/TTY cable connected between our development computers
and our Master CPU. By interfacing with our Master CPU this way, the group is
able to easily transfer the program files to the device, as well as configure the
device according to our needs.

3.3.5.2 Eagle

Easily Applicable Graphical Layout Editor was used to help design and plan out
the necessary hardware components, including the schematic diagrams for the
individual components and the printed circuit board layout. This software will allow
detailed placement and reverse operation between the schematic and printed
circuit board layout for full control of part placement and proper wiring connections.

3.3.5.3 Umlet

Umlet is used to help design and plan out the necessary software components
including the block diagrams, UML diagrams, and flowcharts. Umlet provides the
group with simple, yet robust, control over the designs and layouts for our many
diagrams and flowcharts. Umlet also has the added benefit of being a plug-in for
Eclipse, our chosen Integrated Development Environment.

3.3.5.4 Google SketchUp

Google SketchUp is used to help design and plan out the necessary mounting
components, and to help illustrate the process of the system’s functionality as a
final working product. Google SketchUp allows us to create three dimensional
models of the baggage claim area, so the group can figure out how to correctly
mount our various devices, as well as help the group sort out some of the logistics
in a way two dimensional images would be insufficient.

27

3.3.6 Miscellaneous Web Tools

3.3.6.1 Repository

Assembla will be used to host our software repositories for source control. This
repository allows the group to perform Subversion for version control, which allows
independent work on individual portions of the system and merges them altogether
without creating file conflicts. Assembla allows a free tier Subversion repository,
which is ideal for the group’s needs.

3.3.6.2 Issue Tracking and Agile Manager

Yodiz will be used to host our issue tracking and agile management. This website
allows us to create several agile sprints and add as many tickets as we would like
to each sprint. The group is able to plan the development of our system several
months in advance. Group members are able to create bug tickets when
necessary, and all of the status information for the project can be easily viewed on
Yodiz. Yodiz’s free tier plan allows for a maximum of three users, which is ideal for
our group of three engineers.

3.3.6.3 Mocked Web Services Domain

LivingBucket.com is the web domain which will be used as the host for our mocked
web services. This domain will allow us to upload the PHP scripts which will serve
as our fake airline lookup system and our various fake airlines. This domain will be
interacted with directly by our Master CPU. The LivingBucket domain was chosen
because it is currently owned by one of the group’s members and has guaranteed
uptime, so the group does not need to find a free domain which could have the
potential for uptime issues throughout development and demoing.

28

3.4 Miscellaneous Technologies

3.4.1 Tag Housing

There are several simple methods of attaching tags to luggage bags that the group
looked into. When first researching RFID chips and related devices, the low
frequency chips were found to be used most commonly for door locks. The “tags”
for these were just simple door key cards the size of a credit card, though keychain
variations also exist. An example of each type can be seen below in Figure 3-8.
Other possible options for tag housing include a laminated or plastic sleeve similar
to current information tags some passengers put on their luggage bags.

Figure 3-8 – Key card and keychain RFID tags.

“Permission Pending”

However, in order to relate to the luggage bag scenario, the group looked into more
conventional means currently being used at airports in modern times. Existing
systems use a sticker tag with text information and a barcode printed on the paper
strip. Using a commercial printer device with RFID embedded in the printer roll,
these types of tags can be created with the RFID chip printed onto the paper strip.
These tags could be mass produced with the most economical savings compared
to the other options, considering the scale of the intended product to be used. A
printer unit can be seen below in Figure 3-9. As you can see below in Figure 3-10,
these tags work the same way as normal luggage tags, maintaining the older
system of baggage claim tracking for any systems still in place that need it.

29

Figure 3-9 – RFID Tag printer unit

“Permission Pending”

Figure 3-10 - RFID printed sticker

“Permission Pending”

3.4.2 Mounting

The scanning device and master unit can be mounted onto any flat surface that it
out of the way of local operation of devices.

For the scanning device, the antenna needs to be set up in a way that it points
towards the tags that need to be scanned, while not obstructing the flow of objects
on the conveyer system. A simple L bracket next to each other will assist in the
creation of a platform for the antenna. The antenna is connected to the scanning
unit that can be mounted along the wall a couple feet from the antenna itself. Both
these units will be connected through a coax cable.

30

The master processing unit, placed in the main passenger area, can be mounted
out of the way in a location close to the scanning unit for proper communication of
its data. The television will also need to be mounted within the vicinity so the master
processing unit can communicate all video information of the tag data to it.

A fully mounted system would look like Figure 3-11 below, indicating the placement
of the RFID antenna, RFID scanning box, Main processing unit,and Display. Since
each system is modular and wireless, other than the need for power, each unit can
be smartly places in any location within its designated contact range with its other
units.

Figure 3-11 - System Layout

31

3.4.3 Device Housing

The main devices of the system, the scanning unit and the master unit, will both
need to be encased in some type of protective housing, most likely plastic. The
scanning unit casing will need to allow heat dissipation but also be sturdy and
rugged enough to withstand industrial location environments, as it will be mounted
in the back of the carousel system. It will require holes to allow for connection to
power as well as the external antenna attachment. A primitive project case can be
seen below in Figure 3-12 that can be used as a base. The manual drilling of
required holes will be necessary to allow mounting of a PCB board within, as well
as any additional components the project demands. These housing cases are
available in a large quantity of dimensions and styles and the best fit will be chosen
for the project.

Figure 3-12 – Sample scanning unit enclosure.

“Permission Pending”

The master unit will need to have a more aesthetic housing since it will be located
in a commercial area. Its ruggedness does not need to be as hardy as the scanning
unit, but needs to be able to be mounted at multiple positioning to accommodate
a location that is near a monitor for data broadcasting. Figure 3-13 below shows
one of many available cases designed for a prototyping single board computer,
which come in a wide array of colors and plastics.

Figure 3-13 – Sample master unit enclosure

“Permission Pending”

32

4 Project Hardware and Software Design
Details

4.1 Overall System Block Diagram

The overall system, shown in Figure 4-1, is operated from a Master CPU which
will control each peripheral device. The Master CPU will handle device
communication, monitor updating, and sending information to the host airlines.
The host airlines are in charge of notifying the passengers that their bag has
arrived on the carousel. It will also command the RFID scanning unit to turn on or
off depending on the status of the system. Each connection to these devices will
be through a wireless serial communication device.

For the CPU, the Raspberry Pi will fill the function as the high end service to
manage the notification system of text, monitor, and airline. Communication to
these devices will be handled through the use of Bluetooth, standard WiFi, and
wireless video transmission through an Android system.

For the scanning unit, the RF transceiver will be handled by the TRF7970
microchip, and controlled by the MSP430 microcontroller. Utilizing HF frequency
antennas to extend the scanning range of the device, hard connected with a
SMA and UFL connection to the PCB containing the RFID chip.

Figure 4-1 - System Block Diagram

33

4.2 Hardware Design

4.2.1 HF RFID Tag

RI-I02-112A-03, as shown below in Figure 4-2, is a large rectangle Tag-it™ HF-I
Plus Transponder Inlay by Texas Instruments. It is a global ISO 18000-3 compliant,
ISO/IEC 15693, passive 13.56 Mhz tag, containing 2kbit of user programmable
memory with factory installed Application Family Identifier (AFI) and Data Storage
Format Identifier (DSFID). 112A type allows for an offset of ±200Khz for frequency
variation through paper surfaces. This tag is selected for its large size of 45x76mm
to allow the most surface area for power transmission and broadcast range through
the larger antenna.

Figure 4-2 - Tag-it™

“Reprinted with permission from Texas Instruments”

4.2.2 Microcontroller

For this project the MSP430G2553, shown below in Figure 4-3, is a dip style chip
used for ease of programing and testing, it can run on 3.3V source and contains a
Universal Serial Communications Interface (USCI). This serial communication can
be split into two serial sections of portA and portB. Each port can support Universal
Asynchronous Receiver Transmitter (UART), Serial Peripheral Interface (SPI), and
Inter-Integrated Circuit (I2C). Since both ports can only support a single SPI or I2C
at one time, the microcontroller will be set up with a single UART to the wireless
serial communication device, shown below in Figure 4-4, and SPI to the RFID
scanner, shown below in Figure 4-5.

The MSP430 will also be controlling the command lines of the RFID scanner and
monitor status information, relaying this information back to the master unit to allow
remote operation of the RFID scanner. For future productions, the MSP430F type
chip would offer surface mount and space saving and can be implemented as a
final production chip as it contains the same basic operational pins for serial
communication.

34

For status information and tracking of program operations, LED lights will be
attached to spare general input/output pins in order to indicate when a tag is
scanned and a heartbeat indicator to make sure the program is not stuck in an
internal loop and the program is returning to the front of the main program between
tag scans.

Figure 4-3 - MSP430G2553

“Reprinted with permission from Texas Instruments”

Figure 4-4 MSP430 to LMX9838 UART Block Diagram

“Reprinted with permission from Texas Instruments”

Figure 4-5 MSP430 to TRF7970A SPI Block Diagram
“Reprinted with permission from Texas Instruments”

35

4.2.3 RFID Transceiver

TRF7970A, shown below in Figure 4-6, is a multi-protocol integrated chip for
encoding and decoding of ISO 18092, 21481, 15693, 18000-3, 14443A/B, and
FeliCa protocols. It operates at a minimum of 2.7V to 5.5V for full power operations.
The power out can be set to 100 mW or 200 mW on the transmission side, where
the later requires a minimum of 5V input to achieve. The chip also includes an
internal voltage regulator with a 20 mA max current draw and can supply power
directly to the MSP430 microcontroller for power operation on a 2.7V to 3.4V
range. The RFID scanner is able to support SPI or an 8-bit parallel output. For this
design the SPI connection will be used to the MSP430 for command and control
instructions. To implement the SPI connection I/O connection of the parallel pins
0-7 as indicated below in Figure 4-6, are adjusted to indicate SPI mode. This is
done by providing a high voltage on pins 1 and 2, and a ground on pin 0. During
the initial startup of the RFID chip, the SPI protocols will be selected, providing
serial data flow out of I/O pin 6 and 7, and flow control off I/O 4.

Figure 4-6 TRF7970

“Reprinted with permission from Texas Instruments”

4.2.4 Wi-Fi Integration

36

Edimax EQ-7811Un Wi-Fi USB adapter is a 802.11b/g/n standard wifi transceiver
with up to 128 bit WEP,WPA1/2 encryption. It is a small USB connected device
with a small size of 7.1x14.9x18.5mm that will be attached to the master unit for
connection the internet or local network in order to facilitate the notification of
members when tag data is extracted and passenger notification is required to be
sent.

4.2.5 Bluetooth Integration

TRENDnet Micro-Bluetooth TBW-106UB v2, shown below in Figure 4-7, is a small
USB connected device of size 20x12x5mm, using Bluetooth 4.0 protocols, it will
be used to communicate and control the RFID scanner by sending data to and
from the scanning unit for monitoring and controlling the on status of the device.
The Bluetooth adapter can be set up as a master node and is able to control
multiple scanners if the system requires a larger system installed.

The Bluetooth device on the scanning unit is the LMX9838 serial port module,
shown below in Figure 4-8, it is a Bluetooth 2.0 protocol device and communicates
with the MSP430 through the use of UART. It is an integrated chip with internal
antenna. This device will be used as a slave device to the master node for the
retrieval of the data stream from the RFID scanner. Its connection will be to the
MSP430 through the UART connection for data gathering sent from the RFID
scanner. Further status controls will be controlled by the MSP430 along with status
LED attached the general purpose input output pins of the Bluetooth device to
indicate transmission and reception of data through the device.

Figure 4-7 - Micro-Bluetooth Adaptor

“Permission Pending”

37

Figure 4-8 - LMX9838 serial port module

“Reprinted with permission from Texas Instruments”

4.2.6 Master Central Processing Unit

Raspberry Pi 2 Model B (Figure 4-9) is a single board computer using a 900MHz
quad-core ARM Cortex-A7 processor and will be used as the master unit for
command and control of the slave RFID scanner, as well as a data extraction
device for all the tag information being provided by the scanning unit. All data
extracted will be used to update a video display and provide a text message
service. The Raspberry Pi 2 Model B has 1GB of RAM, four universal serial bus
ports, forty general-purpose input/output ports, a full high definition multimedia
interface port, an Ethernet port, a combined 3.5mm audio jack and composite
video port, a camera interface, a display interface, a micro secure digital card slot,
and a VideoCore IV 3D graphics core. The Raspberry Pi 2 Model B was chosen
because of its large range of capability, its compatibility with the group’s chosen
development language, and its competitive cost. The group felt confident in the
Raspberry Pi 2 Model B’s ability to perform all of the tasks it will be assigned to
perform for the success of the project.

38

4.2.7 Power Supply

Generic 5v power plug with matching power plug adapter used in final design of
the PCB layout. The power supply will need to provide enough current to support
both the Bluetooth and NF RFID chip. The MSP430 will be run off the internal
regulator of the NF RFID chip. The Bluetooth chip will be regulated down from 5v
that the NF RFID chip requires for full power operation to 3.3V for its internal
operations.

4.2.8 Monitor Integration

Andoer MK808B Plus Android 4.4 HDMI TV stick is a wireless device for displaying
video to a television screen using an android based operating system. This system
will be used to provide a graphical interface for the tag data being presented. Once
each tags data is transmitted to the master unit, and decoded, the information will
be provided to the monitor device so that an informational screen can present all
current tag data values for display. As tag information is updated this information
can be added or removed from the display in real time.

The monitor itself will be any HDMI based television to allow the android stick to
transmit its information to the video receiver. It will also need to be large enough
to be seen, but resolution size is only required to be high enough to accommodate
the font size needed for displaying tag information at a distance. It also needs to
be mountable to a wall or pole within the baggage area, and is rugged enough to
run in a busy environment with many people moving about causing potential
unwanted vibration or damage.

4.3 Software Design

4.3.1 Microcontroller Unit Software

The microcontroller will be programed in C and will control the identification of the
tag being scanned through its manufacturer identification number present in each
of the tags as they are made. The base program is provided by TI specifically for
their RFID chip, and will be modified for the MSP4302553 controller. Further
adjustments will need to be made during the testing phase to accommodate any
restriction that may occur during operation of the device.

Programing and flashing of the software will be accomplished using the Code
Composer Studio designed to work with the Texas Instrument line of chips.

39

During startup of the Scanning Unit, initialization of the device chips will begin. The
Bluetooth chip will power up and default into Idle Automatic and await connection
requests. This connection request will be generated by the Master CPU when
requesting data from the scanning unit.

Next, the TRF7970 will power up along with the MSP430. As the MSP430
initializes, it will set up the serial communications TX and RX pins for connection
with the Bluetooth module, and MISO/MOSI for the TRF7970. Once the serial
communication pins are established, data will be send to the TRF7970 to initialize
its starting mode.

With the TRF7970 initialized the IRQ bit is cleared and the tag scanning can begin.
Setting the transmit power out flag within the TRF7970, the chip will output a signal
to power up any tags within range. A single tag’s UID data will be read from the
tag. After a delay of about 6 milliseconds, the chip will power down transmission,
and set the IRQ line. If a tag is detected, its UID information is temporary stored in
the MSP430’s memory through the SPI connection, and offloaded through the
MSP430’s UART to the Bluetooth chip.

The Bluetooth chip in its Idle Automatic mode will await a connection with the
Master CPU. At the time the connection is established through the Bluetooth
protocols, the UID data present on the UART input lines will be transmitted for
processing.

4.3.2 Java Language Coding Standards

The group’s developers will be adhering to a strict and detailed set of coding
standards for the java portions of the system. These coding standard rules have
been accepted by all members who will be tasked with java development for the
project. These coding standards will be configured within each developer's
Integrated Development Environment, and the IDE will be set to automatically
adjust the code to adhere to the coding standards as much as possible after the
developer has saved their work. Adhering to strict Coding Standards is important
because our group is using a Subversion Repository to manage code. If the
formatting and style is different for each developer, merging source code changes
could become extremely problematic.

40

4.3.2.1 Tabbing Policy

The group’s policy for tabbing is fairly standard. The tab characters will not be
allowed. All tabbing should be performed by using four spaces instead of the tab
character. Wrapped lines should be tabbed over using an additional 8 spaces.
Class bodies, class members, enum declarations, method bodies, block bodies,
switch bodies, case bodies, and ‘break’ statements should all be indented over.
Nested indentation should always be used to visually signify a change in code
scope. These tabbing standards are in place to ensure a universally readable
format for all developers in the group.

4.3.2.2 Brackets and Parentheses Policy

The group also has a fairly standard policy when it comes to brackets and
parentheses. Opening brackets should not be located on a different line, but
instead should be located at the end of the block’s control flow line. Brackets
should also always be used for bodies, regardless of the size of the body. Even if
the body has only one line of code in it, the body should be wrapped in brackets,
despite the fact that the brackets are not computationally necessary. This standard
is in place to prevent accidental bugs which may arise from code not being located
within the scope the developer believes it is in. Closing brackets should almost
always be located on their own line, with the exception being cases where a flow
control operator is proceeding. For example, for else-if statements and for do-while
statements. Parentheses should only be used when necessary. This policy exists
to simplify the appearance of mathematical equations and other code segments
which require parentheses.

4.3.2.3 White Space Policy

The group’s white space policies are designed to optimize the readability of the
code. White Spaces should be located before opening parentheses for conditional
and flow control statements. This policy does not apply to method calls, where no
space between the method name and the method’s arguments should exist. White
Space should also exist before opening brackets under all circumstances. White
Spaces should be located after all commas and colons. White Spaces should also
exist before colons, except when the colon is being used to signify a label, in which
no white space should exist between the label name and the colon. In the rare
situation where code may follow a closing bracket on the same line as the closing
bracket, such as for an else-if statement, white space should exist between the
closing bracket and the start of the proceeding code. White Space should also
exist before and after all operators, with the exception of increment and decrement
operators, where no spaces should exist before or after them.

41

4.3.2.4 Shorthand Policy

The group’s shorthand policies are designed to allow shorthand coding while also
limiting the abuse of shorthand coding, which may lead to code which is difficult to
maintain and debug. The for-each loop statements are allowed only in situations
where an index is not required, and only in situations where the iterator will not be
modified in any way within the loop. This policy exists because while retrieving the
index of an item within a for-each loop is doable, it requires additional computation
which would otherwise be unnecessary if a standard for loop was used instead.
Additionally, this policy prevents the modification of the iterator, or any data
structures being iterated, within the loop because these modifications will throw a
Concurrent Modification Exception and result in the program crashing. The ternary
operator statements are allowed only in situations where the results of the
conditional statements are basic, and only when there are at most two outcomes
to the conditional statement. This policy exists because complex or lengthy results
in ternary operator statements can become cumbersome and can result in code
which is difficult to maintain and difficult to debug. Additionally, this policy prevents
ternary operators from being chained together to create three or more possible
outcomes for the line of code which has the ternary operators. This restriction was
put in place because chaining ternary operators can also create code which is
difficult to maintain and difficult to debug.

4.3.2.5 Blank Lines Policy

The group’s policy for blank lines is very basic. It is important to note that
comments are not considered blank lines. No blank lines should exist before the
package declaration. A single blank line should exist after the package declaration,
before the import group, after the import group, between the class declarations,
before the first declaration in the class, before the field declarations, after the field
declarations, and between class methods.

4.3.2.6 New Lines and Line Wrapping Policy

The group’s policy for new lines and line wrapping is also fairly straight forward. A
new line should be added for all empty bodies. A new line should exist after
annotations. A new line should exist after enum values. A new line should exist
after opening brackets, with the exception of when an array is being directly
initialized. No new lines should exist for else statements, catch statements, finally
statements, or while statements. Additionally, each line of code should wrap after
a linewidth of 200.

42

4.3.2.7 Class Fields Policy

The group’s policy for class fields is very extensive, because the group wanted to
make sure the code was easy to maintain and debug. Our first policy for class
fields is to restrict complex types to their most reasonably abstract type. An
example of this is declaring a variable as a java.util.List, instead of a
java.util.ArrayList. The variable may be initialized as a java.util.ArrayList later in
the class, however the class variable must be restricted to a java.util.List. This
policy exists because declaring the complex variables like this allows for more
maintainable code in the event where the initialization type needs to be changed
for some reason. The “most reasonably abstract type” is determined by which
methods the complex type needs access to during development. Our second
policy for class fields is to restrict the naming convention of normal variables to be
formatted in camel case. Camel Case states that the field’s name should lead with
a lowercase letter, and if the field’s name contains multiple words, the words
should be pushed together without spaces and the leading character for each
word, excluding the first word, should be capitalized. The naming convention for
constant fields is different, however. Constant fields should be fully capitalized,
with underscores separating words in the case where a constant field’s name has
multiple words.

Our third policy for class fields is the order in which they are declared in the class.
The fields are first ordered by their specialty type, with any constants coming first,
followed by static fields, followed by final fields, with normal fields coming in last.
The fields are then ordered based on visibility, where private fields are first,
protected fields are in the middle, and public fields are last. Lastly, the fields are
ordered based on alphabetical order, where ‘A’ is first and ‘Z’ is last. Our fourth
policy for class fields requires that the fields should always be accessed within the
class by using the ‘this’ qualifier. This policy exists to prevent any bugs which may
arise from accidentally hiding fields and variables. This policy also exists to make
it easier to read the code, as the ‘this’ qualifier quickly tells the developer that the
field has class scope. Our fifth policy for class fields is that all class fields should
be restricted to the private scope if at all possible. Access to the fields from outside
of the class should be restricted to the usage of getters and setters. This policy
exists to prevent regression bugs from creeping into the system from code
changes. If a developer needs to perform some sort of check on a field prior to
allowing an external class to retrieve the value of the field, having the access to
that field restricted to only getter methods means the developer will not have to
track down every single time the field was directly accessed outside of the class.
This policy can have enormous positive impacts on code maintainability in the long
run. Our final policy for class fields is that all unused private fields should be
deleted. This policy exists to prevent the existence of unnecessary fields and
unnecessary memory usage. If the field is not used by the class, it does not belong
in the class.

43

4.3.2.8 Class Methods Policy

The group’s policy for class methods closely resembles our class field’s policy. Our
first policy for class methods is the order in which the methods should be
organized. The method are first ordered based on their visibility, with public
methods coming first, protected methods in the middle, and private methods at the
end. The methods are then ordered in alphabetical order, where ‘A’ is first and ‘Z’
is last. Lastly, the methods are ordered by ascending number of parameters, where
the least number of parameters come first and the most number of parameters
come last. The order of constructors in the class is a bit different. If any of the
constructors in the class are public, all the constructors should be located before
the class methods. If none of the constructors in the class are public, all of the
constructors should be located after the class methods. From there, the
constructors are ordered in the same fashion mentioned earlier for the class
methods.

4.3.2.9 Imports Policy

The group’s policy for imports is fairly basic. All imports should be explicitly
declared. The usage of importing entire packages with the asterisk wildcard is not
allowed under any circumstances. All unused imports should be removed. These
policies exists to prevent the unnecessary importing of classes which may result
in excessive memory usage. Additionally, the imports should be ordered in
alphabetical order. This policy exists to improve the maintainability of the code.

4.3.2.10 Comments Policy

The group’s policy for comments is very strict. Our group views comments are a
critical part in maintaining code in a shared environment, so we consider it
extremely important that our code is correctly commented in a way which can be
understood by all of our developers. First of all, our Integrated Development
Environment’s automatic comment formatting is enabled. This tool is important
because it allows us to standardize our commenting format. No comments should
exceed a linewidth of 200. This policy exists to ensure that comments to not
expand beyond the linewidth of the code. Block comments should be restricted
only to comments spanning more than a single line. For comments which are only
a single line or less in length, line comments should be used instead. Additionally,
line comments are restricted to be used only for comments which are a single line
or less in length. Embedded comments should only be used for complex
operations and they should be used responsibly. Leaving a comment for simple
lines of code is unnecessary and cumbersome, so we are not allowing it. JavaDoc
comments are extremely useful as documentation, both due to their standardized
nature and due to their integration with our Integrated Development Environment.
JavaDoc comments should be provided for all classes, class fields, and class
methods, regardless of their visibility and/or purpose. Additionally, JavaDoc
comments should include descriptions for all parameters and return types.

44

4.3.2.11 General Coding Policy

The group also has many general coding policies. First, inner classes should only
be used when no other option is possible. Inner classes are commonly used
excessively or when better alternatively are available, and this practice can lead to
code which is difficult to maintain, which is why we are restricting them. All code
should be set to be automatically formatted when the file is saved. This policy
exists to ensure our policies are adhered to as strictly as possible. The annotation
‘@Override’ should be used whenever applicable. This annotation signifies when
a method is inherited, which is extremely useful when reading the code and
attempting to debug it. Any unused local variables should be removed. These
variables take up unnecessary memory and usually include unnecessary
additional computations. The ‘TODO’ tag should be used to take note of all
unfinished code. The ‘FIXME’ tag should be used to take note of all unresolved
bugs in codes. The ‘XXX’ tag should be used for any other important notes. These
tags are being used because of their integration with our Integrated Development
Environment, such that we can easily locate them and make the necessary
adjustments.

4.3.3 Abstraction Software

4.3.3.1 Model Objects

To simplify our software design for our Main CPU and Android Stick devices, our
group will be sharing some object functionality by creating an abstraction library.
The abstraction library will contain shared functionality for the Main CPU and
Android Stick model classes to be built off of. The UML diagram for this library can
be found below, in Figure 4-9.

The AbstractBaggage object is the first object in our abstraction library. This object
contains fields that both Baggage Objects in the Main CPU and Android Stick
share. Specifically, this class contains the bag’s airline IATA code, the flight the
bag was on, and the passenger’s display name. Additionally, this class contains
the associated getter and setter methods for each field. The scope of the fields in
this class are protected, instead of private, so they are easily accessible by the
inheriting baggage classes.

45

The AbstractServiceResponse<T> object is a generic response object for the
various service classes in our system. The class contains a boolean where true
indicates the service operated successfully, and false indicates the service was
unable to successfully complete its operation. Classes which inherit from this class
are expected to specify a result type for the T parameter. Additionally, this class
contains a getter and a setter for an unspecified result variable of type T. The scope
of the success variable is protected, instead of private, so the variable can be easily
accessed by the inheriting service response classes.

Figure 4-9 - UML diagram Model Objects

4.3.4 Main CPU Software

The program running on the CPU will be using a subset of Java known as Java
ME Embedded. Java ME Embedded is a miniaturized version of the Java
programming language designed for small embedded headless devices. The
software for the CPU will be compiled and packaged using the Java ME Embedded
8.1 Development Kit, so the compatible Java ME Embedded 8.1 Runtime
Environment should be installed onto the CPU.

4.3.4.1 Required Libraries

4.3.4.1.1 JUnit 4

JUnit 4 will be used for creating and maintaining our automatic java unit tests. JUnit
was chosen because our developers have experience using it and because it is
the most popular unit testing software available for java. JUnit is so popular that
Maven contains specialized functionality for making the JUnit and Maven operate
collectively. The usage of JUnit means we will be able to easily create and manage
our various unit tests in an automated fashion.

46

4.3.4.1.2 Mockito

Mockito will be used alongside JUnit for the sake of mocking functionality in order
to isolate unit test cases. Mockito is a widely used library for unit testing, especially
when using JUnit. Mockito was chosen because our developers have experience
using it and because of its popularity. The usage of Mockito means we will be able
to write more isolated and specific unit tests without having to worry about
unrelated code impacting the results of the unit tests.

4.3.4.1.3 Bluecove

Bluecove will be used for the Bluetooth capabilities on the CPU. The CPU needs
to act as the master of a piconet, so we needed to find a java library with sufficient
support for our needs. Bluecove was chosen because it is one of the few libraries
we could find that implement the JSR-82 Bluetooth Application Programming
Interface. JSR-82 implementation was important to us because it is the current
Bluetooth minimum standards specifications for the Java Micro Edition subset. The
usage of Bluecove means we will only need to configure an existing library for our
Bluetooth needs in our CPU, instead of implementing our own library for Bluetooth
functionality.

4.3.4.2 Model Objects

The data model for this system is fairly basic. The UML diagram for the Model
Objects in our Main CPU can be found below in Figure 4-10.

Baggage information sent to our Main CPU is used to construct Baggage objects.
A Baggage object inherits from the AbstractBaggage class and contains the bag’s
airline IATA code, the bag’s identification information, the passenger’s display
name, the flight the bag was on, the airport the bag was scanned at, the carousel
number the bag was scanned at, the time the bag was first scanned, and a value
indicating when the bag should timeout.

All of the Baggage objects are stored in a synchronized linkedlist hashmap named
BaggageCache. The BaggageCache map acts as an ordered data cache, where
the key is the bag’s airline IATA code concatenated with the bag’s passenger
identification information and the value is the Baggage object. The objects are
ordered by the time they were first scanned, with the most recently scanned bag
being the last object. Objects are removed from the BaggageCache once their
timeout value has been passed.

47

The MasterController is a singleton object which holds, and is tasked with
managing, the BaggageCache. The MasterController also determines what data
to send to the airline hosts for passenger notification, updates the Baggage objects
timeout values, and determines when the monitor devices should be updated. The
MasterController also removes objects from the cache if their timeout value has
been reached. The MasterController contains a hashmap of airline endpoint paths,
which it is tasked with managing. The hashmap’s key is the airline’s IATA code,
while the value is the airline’s notification endpoint path. This hashmap is cleared
after an hour of inactivity.

Figure 4-10 - UML diagram Model Objects

48

4.3.4.3 Services

The Main CPU is required to do several input and output tasks, so it contains
several different services. The UML diagram for the Main CPU’s Services can be
found below in Figure 4-11.

The baggage tag data first arrives in the Main CPU via a Bluetooth connection.
The BaggageTagService exists to manage the Bluetooth connections, retrieve the
incoming data, and convert the incoming data into Baggage objects. By creating
an instance of a BaggageResponse object, the newly created Baggage object is
passed to the MasterController to be added to the BaggageCache. The
BaggageResponse object inherits from the AbstractServiceResponse class and
contains a boolean value indicating whether or not the service method was
successful, as well as the created Baggage object.

The AirlineEndpointService exists to query the airline endpoint webservice and
retrieve the notification endpoint paths for a given bag’s airline. This service returns
an instance of an EndpointResponse object. The EndpointResponse object
inherits from the AbstractServiceResponse class and contains a boolean value
indicating whether or not the service method was successful, as well as the found
endpoint path in the form of a String.

The AirlineNotificationService exists to pass information to the airline’s web service
endpoint for the purpose of notifying the passenger that their bag can be found on
the carousel. It is up to the airline’s discretion for how they want to notify the
passenger - either by text message or a mobile app’s push notification. This
service does not listen for a response.

The DisplayUpdateService exists to push new data to all of the listening Android
Sticks in the baggage claim area. This service does not listen for a response.

49

Figure 4-11 - UML diagram Main CPU Services

4.3.4.4 Flow Chart

There are two main processes for the Main CPU to perform. The first process is
its primary functionality, which is receiving incoming baggage tag data, processing
it, and triggering updates to the display, as well as notifying airlines that new
baggage has arrived, when necessary. A flow diagram outlining this process can
be found below in Figure 4-12.

50

Figure 4-12 - Flow Diagram

The second process the Main CPU has to perform is keeping the cache up to date.
A secondary process runs in the background and periodically checks the timeout
intervals of the bags found in the BaggageCache. Since the Baggage Objects in
the BaggageCache are ordered such that the earliest scanned bag is first, the
cache only needs to be iterated until it finds an object which has not timed out. A
flow diagram outlining this process can be found below in Figure 4-13.

Figure 4-13 - Flow Diagram

4.3.5 Android Stick Software

51

The Android Operating System is used on our Android Stick. The specific version
of the Android Operating System running on the Android Stick will be Version 4.4
KitKat. This version allows us to use the most up-to-date enhancements for the
Android Stick Bluetooth support, which will allow us to update the television
displays more quickly and with more accuracy. Version 4.4 KitKat also allows us
to use the most up-to-date enhancements to the Android Operating System
family’s user interface, which will allow us to create the most user friendly display
for the passengers waiting to claim their bags.

The program running on the Android Stick will be developed by using the Java
Standard Edition 7 Development Kit. The program will be built as an Android
Application with the assistance of the Android Development Kit and Maven.
Version 7 was chosen instead of Version 8 because the Android Development Kit’s
most recent compatibility with the Java Standard Development Kit uses Version 7.

4.3.5.1 Model Objects and Services

The data model for the Android Sticks contains only two classes, and there is only
one service class. The UML diagram for the Android Stick classes can be found
below in Figure 4-14.

The Baggage object inherits from the AbstractBaggage class and contains the
bag’s airline IATA code, the passenger’s display name, and the flight the bag was
on. The BaggageCache is a singleton array wrapper containing all of the Baggage
objects to be displayed on the monitors.

The UpdateDataService exists to retrieve incoming data from the CPU. This
service deletes the existing data found in the BaggageCache and replaces it
entirely with the incoming data. This service is strictly for receiving incoming data,
so it does not send any data.

52

Figure 4-14 - UML diagram Android Stick

4.3.5.3 Views

The Android application on the Android Stick contains a single view. This view
shows a basic table of the data found in the BaggageCache.

4.3.5.4 Flow Chart

The Android Stick only has one primary process. When data is received by the
Android Stick from Bluetooth, the internal data cache is replaced with the incoming
data and the display view is updated. The flow diagram for this process can be
found below in Figure 4-15.

53

Figure 4-15 - Flow diagram

4.4 Miscellaneous Design

4.4.1 Tag Housing Design

For economic reasons and ease of use in mass production, the printed sticker
RFID tag was chosen for the tag housing design. The group ordered some RFID
sticker tags from a known manufacturer with already written data information
required for the project. This design choice removes any extra components for the
tag housing, as the RFID chips to be printed can easily be mounted in a similar
fashion to that of existing barcode systems used in modern airports. This also
allows for removal of any unnecessary parts that could interfere with the RFID
scanner from picking up the RFID chip signals.

The RFID tag will be placed on a paper reel with printing paper for traditional
barcode printed information. The sticker adhesive will be wrapped around the
luggage handle. For testing purposes, the transponder to be used will be the one
shown in Figure 4-2, where it will be mounted onto the surface of a test object while
attached using a form of tape or sticker.

54

4.4.2 Mounting Design

4.4.2.1 Flat Conveyor System

Different airports have different conveyor carousel systems for baggage claim,
which require different mounting positions in order to accomplish the functionality
of the project. There are a variety of things to consider for the placement of the
system; the most important being that it should be out of the way as much as
possible while still being in the ideal position to meet the objectives.

For the flat single-level conveyor systems, the scanner should be mounted to the
wall with a “L” bracket. In this conveyor system, there is a single belt which begins
in the backroom where the airline’s ground crew load the bags. The belt travels
outside to the baggage claim area, and then travels back into the backroom to form
a large, continuous loop. The external antenna should be mounted along the
bracket in such a fashion that it will hang over the conveyor track in order to scan
all objects that pass below it. The Master CPU can be located either in the
backroom or in a discreet location in the baggage claim area where the public
would be unable to access it. The Master CPU would need to be close enough to
the Microcontroller units and the Android Sticks attached to the TV Displays, in
order to be able to communicate effectively with them. Figure 4-16 below depicts
how the system would be mounted.

Figure 4-16 - Example of mounting configuration for a flat conveyor system

55

4.4.2.2 Sloped Conveyor System

For the sloped multi-level conveyor systems, the scanner should be integrated into
the already existing bumper system. This will allow each passing luggage bag item
to be scanned as it enters the track system. The Master CPU can be located either
in the backroom or in a discreet location in the baggage claim area where the
public would be unable to access it. The Master CPU would need to be close
enough to the Microcontroller units and the Android Sticks attached to the TV
Displays, in order to be able to communicate effectively with them. Figure 4-17
below depicts how the system would be mounted.

One important differentiating factor between the sloped conveyor system and the
flat conveyor system scenarios is that the sloped conveyor system requires an
additional microcontroller unit to scan luggage on the outside carousel. This is due
to the luggage carousel not looping around the backroom, resulting in luggage
items needing to be scanned on the separate track to update the TV display
information correctly.

Figure 4-17 - Example of mounting configuration for a sloped conveyor system

4.4.2.3 Single/Multi Level Conveyor System Complexity

The group decided to focus on the flat single-level and sloped multi-level conveyor
systems as they are the most commonly used type of luggage carousels. There
are three known and confirmed configurations that could be supported by the
project. These include: the sloped multi-level system which has a single carousel
and a loading belt, the flat single-level system which has a single carousel, and the
flat single-level system which has a single carousel and a loading belt. It is possible
other configurations exist as well, but they will not be put into consideration for the
group’s project. Figure 4-18 below depicts how the system would be mounted.

56

Figure 4-18 - Example of mounting setup for a possible flat conveyor system

4.4.3 Device Housing Design

The group decided to go with the only available option of buying a pre-built case
and modifying it as necessary for the project. Several holes will be drilled out using
tools on hand to allow all the necessary wires and ports to be attached correctly.
This decision was made to avoid any potential hazardous violation of standards
regarding the casing.

57

5 Design Summary

5.1 Hardware Design Summary

For the RFID scanning unit, a device that can scan not only at a distance but also
through potentially thick objects was needed for use in a luggage situation. The
tags orientation and position could be in a multitude of locations and distances
away from the scanning antenna as well. Ideally, an Ultra High Frequency
receiving unit would work to cover distances above a conveyer belt in the ranges
over 1 meter. This would allow the scanner to be places at a distance over the
track that the luggage would be placed on with no worries of oversized baggage
not being able to pass under the scanning area, while still providing enough power
to penetrate various materials and local interference.

UHF devices have a higher starting cost, upwards of $500 to $1000 in the receiver
and transmitter circuit boards, and associated antenna. We decided for this project
to scale down the demonstration of the system by using a high frequency near field
communication device. The HF devices are meant for close or vicinity scanning,
these range from a few centimeters to a meter from the scanning surface. The HF
type of devices are for card reading, where you scan a card over a scanning
surface, which would be located directly on the circuit board, or a security device
antenna that can scan objects as they pass through a passageway or doorway.
This minimum required distance allows us enough room to demonstrate the
product and procedures of the tag and reading device while maintaining a lower
overhead cost of smaller scaled parts.

In our application, we are not using an internal board integrated antenna but rather
an external antenna mounted through a plug. This will allow proper separation of
the RFID transmission and the wireless Bluetooth transmission from interfering
with each other as that RFID device will be generating up to 200mW of power.
Each system will be on different carrier frequency, as the Bluetooth will be on a 2.4
GHz base frequency, and the RFID system runs on 13.56 MHz range, upwards of
960 MHz for the UHF systems.

Since the HF RFID device being used is a lower power device, the scan range is
limited to a one meter range, and as such may not have enough power to scan
tags if they are obstructed with objects within the luggage. Placement of the
external antenna will allow for compensation of these factors.

58

The connection of the scanning device to the microcontroller will be through a
simple serial communication line, upgradable to a higher power device would be a
simple modification to the scanning board and attachment of the new scanning
chip and circuitry. Since the main connection to the microcontroller will be done
through a four wire serial connection, the limitations would be in the
microcontroller’s ability to run commands, and control the software of the RFID
scanner. As the more software control commands are sent, the more local memory
space will be required to buffer each command, and await the return data.

Currently, the chip being used requires as little as a few kilobits of programing to
scan a basic passive tag and is within the size and ability of the MSP430 line of
microcontroller to handle the data flow of the scanner to another serial device. All
the tag data picked up by the scanner will be passed through the msp430 and
directed to a serial Bluetooth transmitter, this data will be transmitted to the main
processing board.

The main processing board is comprised of a Raspberry Pi, with peripherals of a
Bluetooth attachment and a Wi-Fi attachment. The option to go with the Bluetooth
as the serial communication was its simple ability to pair and send commands to
a single device. This will allow the ability for the master unit to act as the master
Bluetooth of a piconet and is capable with expanded programing to control multiple
scanners within a system, should the need arise for multiple scanning devices
needing to be installed to a single conveyer track. The Pi device allows for
expanded operating systems to be installed, its price is cheap in comparison to a
full on computer since it's a single board operational system. Along with the
availability and functions, it supports Oracle based operations that most of the
subsystem will be operating on. Overall the Pi offer a multitude of online community
support for the creation of projects.

Attached to the Pi is also a Wi-Fi device used for the purpose of communication
with an external source for text message notification, this can either be direct
connection to a local hotspot or local server of the airport in order to pass message
request for text message notification.

Along with the text notification, a visual notification on a display will be presented
on a video monitor, this will be accomplished by using an Android based video
processor that connected directly to the HDMI port of the monitor.

59

Since the system will be operating in an airport, the possibility of the system being
in operation 24/7 means that power requirements for the system will need a
constant draw to power the RFID system for tag activation since the tags being
used are passive devices. With constant wireless communication, between all
devices on the network, the system will have little downtime. As such, a constant
power supply from a wall outlet would be ideal for the operation of the system over
other options of battery based systems.

5.1.1 Parts List

Parts Qty Value Device Package

C1, C2, C3, C5, C9 5 100n C-EUC0402 C0402

C4, C10, C25 3 2.2u C-EUC0402 C0402

C6, C7, C24 3 27p C-EUC0402 C0402

C8 1 4.7u C-EUC0402 C0402

C12, C13 2 16p C-EUC0402 C0402

C14 1 10u C-EUC0603 C0603

C15, C16 2 1500p C-EUC0402 C0402

C17, C18 2 1200p C-EUC0402 C0402

C19 1 220p C-EUC0402 C0402

C20, C22 2 680p C-EUC0402 C0402

C21 1 10p C-EUC0402 C0402

C23 1 100p C-EUC0402 C0402

Table 5-1 - Table of Capacitors used

Parts Qty Value Device Package

L1 1 330n L-EUL2825P L2825P

L2 1 150n L-EUL2825P L2825P

Table 5-2 - Table of Inductors used

60

Parts Qty Value Device Package

R1, R2,R5 3 10k R-EU_R0402_GE R0402_GE

R3 1 100 R-EU_R0402_GE R0402_GE

R4, R6, R7, R8, R9,
R10

6 1k R-EU_R0402_GE R0402_GE

R11, R12, R14 3 330 R-EU_R0402_GE R0402_GE

R13 1 47k R-EU_R0402_GE R0402_GE

Table 5-3 - Table of Resistors used

Parts Qty Value Device Package

D1 1 blue LEDCHIP-LED0603 CHIP-LED0603

D2 1 red LEDCHIP-LED0603 CHIP-LED0603

D3 1 green LEDCHIP-LED0603 CHIP-LED0603

Table 5-4 - Table of LEDs used

Parts Qty Value Device Package

U1 1 TRF796XS-PQFP-
N32(RHB)

TRF7960_61

U2 1 LMX9838 LTCC70

U3 1 20 G2X[1/5]2---N20 N20

U4 1 LM3480-3.3 SOT-23-3

Table 5-5 - Table of Integrated Circuits used

61

Parts Qty Value Device Package

Y1 1 13.56 MHz CRYSTAL CRYSTAL-SMD-5X3.2

Y2 1 32.768 KHZ CRYSTAL CRYSTAL-SMD-5X3.2

Table 5-6 - Table of Crystals used

Parts Qty Value Device

JP1 1 5.5x2.1mm Barrel POWER_JACKSMD

S1 1 SWITCH-MOMENTARY-2SMD

SJ1, SJ2, SJ3, SJ4 4 Jumpers

UFL1 1 U.FL

ufl cable cable 1

Table 5-7 - Table of Miscellaneous parts used

62

5.1.2 Schematic

Figure 5-1 shows the TRF7970, used for the broadcast and reception of tag data.

Capacitors C4, C5, C34, and C35 are power filter capacitors design to allow fast
switching from power off to power on when the device wishes to go from a standby
mode to on status quickly.

Y1 is the 13.56 Mhz crystal used to generate the carrier wave for the HF tag
transmission, and is split for use as a system clock and data clock for proper timing
of the serial data output. C6 and C7 are used to set the oscillation of the crystal
based on its internal impedance.

C15 to C20, and C23, C24, along with L1 and L2 form the modulation and
demodulation of the carrier wave to activate and receive the data from a tag.

Input/Output pins are used for communication with the MSP430, in this setup, it is
in SPI serial communication mode. This is set up based on I/O 0, 1, and 2. By
setting I/O 0 to ground, a logic zero is set, and I/O 1, and 2 are tied to VDDX using
R1 and R2 to reduce current draw, to set them as logic high values. This setup
causes the TRF7970 to boot into serial communication, and not parallel
communication. Allowing I/O pins 6 and 7 to transmit data back and forth between
it and the host controller.

63

Figure 5-1 TRF7970

In figure 5-2, the MSP430G2553 is used to control both the TRF7970 and the
LMX9838. This is done through the MSP’s USCI, Universal Serials
Communications Interface. This interface support either two UART, or a single
UART and single SPI/I2C communication. In this setup, the left side of the MSP430
is using the UART connection to communicate with the LMX9838, and the right
side is using SPI to communicate with the TRF7970. Pins 3, 4, 8, and 9 are used
for the UART connection of receive, transmit, request to send, and clear to send.
Pins 15 and 15, along with 11 are used for the SPI two way communication through
Master Out Slave In, and Master In Slave Out. For proper operation of data flow,
pin 13 is used as an interrupt signal sent from the TRF7970 to tell the MSP430
that is has data ready to be sent to it.

Pin 16 is set up with a momentary switch to ground to reset the MPS430 should
the program get stuck in a loop. This is done by grounding out the pin, as normal
operation is held at a logic high by VCC.

64

Figure 5-2 MSP430G2553

Figure 5-3 shows the LMX9838, it is powered separately from the TRF7970 to
avoid current draw requests from both devices. So an LM3480 surface mount
voltage regulator is used to drop the 5V input voltage to 3.3V. Majority of the pins
on the LMX7838 are unused or connected to a ground plane.

C11, and C10 are used as power filter caps for startup from standby to on status
to assist in switching from zero volts to 3.3V in a quick smooth fashion.

Pins 12 to 15 are used for the UART connection to the MSP430 as mentioned in
the MSP430 schematic. Pins 16, 25 and 26 are operational pins to set the baud
rate of the UART communication.

Pins 7 and 19 are used for status indication that data is being sent through the
device.

Figure 5-4 shows the connection of the jumpers to the LMX9838 for baud rate
settings, the 32.768 KHz crystal for communication timing of the Bluetooth. The
5V connection is used to power the main VCC that chips will draw voltage and
current from for operation. The LED is used as the heartbeat signal to show that
the MSp430 programing is not stuck in a loop and requires a physical reset.

65

Figure 5-3 LMX9838

Figure 5-4 Other

66

5.1.2.1 Pin Layout Description

Tables 5-1 and 5-2 show the pin description for the Bluetooth and Near Field
Communication chip

Pin Name Description

32K- Crystal Oscillator negative terminal

32K+ Crystal Oscillator positive terminal

OP3 Baud rate selection pin

OP4 Baud rate selection pin

OP5 Baud rate selection pin

TXOUT UART Transmit output

RXIN UART receive input

RTS Request to Send

CTS Clear to Send

PG6 Link Status

PG7 RF Traffic

MVCC Internal Voltage Regulator Input

RESET Reset on low

Table 5-1 LMX9838

67

Pin Name Description

VDDX Internal Regulator output

OSC_IN Crystal Oscillator input

OCS_OUT Crystal Oscillator output

VSS_D Ground

EN Chip Enable

EN2 VDD_X Enable

SYS_CLK Reference clock off Crystal

DATA_CLK MCU Communication Clock

MOSI Master Out Slave In SPI data

MISO Master In Slave Out SPI data

SAVE_SELECT SPI direction select

ASK/OOK Modulations Select

MOD External Data Modulation

RX_IN1 Main Receiver Input

RX_IN2 Aux Receiver Input

TX_OUT Transmit Output

VIN Main Voltage Input

Table 5-2 TRF7970

68

5.1.3 PCB Layout

The layout (Figure 5-5) is set up with the microcontroller in the center controlling
the Bluetooth chip on the left, and the RFID chip on the right. Main power from the
5v is routed directly to the TRF7970 where its internal regulator will generate 3.3
V on its regulated output pin. This voltage is then used by the MPS430 for
operational use. Also off the 5v input, though a 5v to 3.3v regulator is the Bluetooth
chip. This is running off a separate regulator to avoid excessive current draw
directly from the TRF7970 that could cause interference or slower performance of
the Bluetooth communication.

Both the RFID and Bluetooth chip have external crystals of frequency control since
each device is a radio frequency communication chip. These crystals will be used
to set their carrier wave frequencies.

Also attached to the msp430 and Bluetooth chip is a status indicating LED, for
visual confirmation of data flow and the msp430’s programing is not stuck in an
internal loop with a heartbeat indication. A reset button is provided to the Bluetooth
and MSP430 for hard resetting of the devices should any data or code become
locked up during initial testing of the device. The RFID chip is run directly off the
msp430 for control, so any resets will be done through software then hardware.
Since the TRF7970 is the primary source of the MSP430, and loss in direct power
of the 5V input, will result in all chips being reset when powered down.

Due to the serial communication rates of the msp430 and clock rates provided by
the provided crystals, jumpers are placed outside the Bluetooth device in order
manual set the baud rate of communication between the Bluetooth serial and the
msp430. This provides the ability to set the speed faster or slower based on what
the msp430 can handle. Final design would include hard wired baud settings, and
a more secure surface mounted msp430 device over the dip style currently
showed.

All other components show to the right of the TRF7970 are capacitors and
inductors used for the generation and filtering of the carrier wave of the HF RFID
system.

69

Figure 5-5 - PCB Layout

70

5.2 Software Design Summary

The design for the group’s system consists of four parts, each of which need their
own unique software and serve their own unique purpose. The first part of the
system relies on the Microcontroller software. The second part of the system relies
on the Master CPU’s software. The third part of the system relies on the airline’s
implemented webservices. The final part of the system relies on the Android Stick’s
software.

The Microcontroller software is written in C. The group chose this language
because it was the highest level language the MSP430 was capable of running.
The Microcontroller software is responsible for operating the RFID receiver and
passing the data found on the RFID chips to the MSP430 board’s Bluetooth device.
The Bluetooth then sends the data to the Master CPU.

The Master CPU runs an Embedded Linux Operating System called Raspbian
Wheezy, and the group’s code is written in Java ME Embedded 8.1. The group
chose Java because it is a very high level language which the developers in the
group are comfortable using. Java also offers many libraries and tools which the
group can utilize to improve performance of the system and speed up development
of the system. The Java ME Embedded 8.1 Runtime Environment is tailor made
to run on embedded devices and has explicit support for the Raspberry Pi board.
The Master CPU is responsible for managing the Microcontrollers and the Android
Sticks. It also serves as the central processing hub for the entire system. The
Master CPU controls when the Microcontrollers scan for RFID chips, it interprets
the RFID chips’ data, caches the data, manages the communications with the host
airline’s webservices, and manages when the Android Sticks should be updated
and what their new data should be. After the Master CPU interprets the RFID data
it receives from the Microcontroller, it sends a notification request to the host
airline. After it sends the notification request, it updates its internal cache and
sends updated data to the Android Sticks.

The airline’s implemented webservice runs whatever server-side language they
wish to implement with. The group has provided instructions for implementation
requirements in Section 2.4.3.3 of this document. The purpose of this web service
is to send notifications to the passengers that their bag is available on the carousel
to be picked up. It is the host airline’s choice as to whether they would like to
implement their notifications as a text message, as a mobile application push
notification, or in some other fashion. The host airline can also use this service for
updating their internal baggage systems and databases. This webservice is not
expected to return a result to the Master CPU. For testing and demoing, the group
has decided to implement this webservice in PHP. The group chose PHP for the
implementation because it is a simple enough language to implement the expected
behavior of a host airline’s real-world webservice.

71

The Android Stick runs the Android 4.4 Kitkat Operating System. The group’s
software for the Android Stick is written in Java and compiled into an Android
Mobile Application. The software is designed to only show a single view, which is
a table showing the current bags available on the carousel. It is possible in future
development that the application could also support the ability to default to an
advertising screen, or any screen the host airline would like, when the system is
not in use, however that functionality is not part of the group’s current design for
this project. The software is designed to be aware of incoming data from the Master
CPU over a Bluetooth connection. The incoming data is interpreted as the updated
data to be displayed on the table and shown to everyone waiting in the baggage
claim area.

Due to some overlapping functionality and structure between the Master CPU and
Android Stick, the group has designed a shared library which will abstract the
shared functionality and structure. This library will be dependencies for both the
Master CPU and the Android Stick, and both subsystems will be built off of the
abstracted library. The group decided to do this to reduce the amount of code
which would need to be rewritten for both systems. Having the code shared
between the two systems ensures an additional level of system synchronicity and
cohesion, and makes maintaining the repeated functionality and structure
significantly easier.

5.3 Miscellaneous Design Summary

5.3.1 Tag Housing

The group decided on the paper reel design which consists of the RFID tags being
placed on the printing paper. These RFID tags will be ordered from a manufacturer
and printed with the data information required for the project’s specifications.
These tags will be attached to luggage bag handles in the same manner as existing
barcode printed information systems. Additional information could be printed on
the paper reel by the airlines discretion.

72

5.3.2 Carousel Conveyor Mounting

Even though multiple types of single and multi-level conveyor systems exist, the
group will build the mounting for only the two most common scenarios. For the flat
single-level conveyor system, the scanning component will be mounted like a shelf
above the carousel track. The Master CPU will be located in a discrete location
within close proximity of the TV displays and out of reach of the public. For the
sloped multi-level conveyor system there will be two scanning components that will
be mounted. One will be attached to the side of the conveyor track in the back
room, while the other is attached to the bumper railing of the carousel track out in
the front. The Master CPU in this setup will also be located in a discrete location
within close proximity of the TV displays and out of reach of the public.

5.3.3 Board Housing

The group decided to go with the only available option of buying a pre-built case
and modifying it as necessary for the project. Several holes will be drilled out using
tools on hand to allow all the necessary wires and ports to be attached correctly.
This decision was made to avoid any potential hazardous violation of standards
regarding the casing.

73

6 Prototype Construction

6.1 Parts Acquisition

Item Acquisition

Raspberry PI 2 Model B Bought

4GB microSD card w/ Adapter Bought

Generic PL2303HX USB To TTL To UART RS232 COM
Cable Module Converter

Bought

TRENDnet Micro-Bluetooth USB 3.0 Adapter Bought

Edimax EW-7811Un Wi-Fi USB Adapter Bought

MK808B Plus - Android 4.4 Stick Bought

Asus VE248 monitor Owned

PCB Bought

Mounting Built

RFID Receiver Bought

RFID Tags Bought

74

7 Project Prototype Testing

Required Specifications Testing

Requirement How it will be Tested

Must meet airport transmission
standards

The components will be tested to see if they
exceed the defined standards.

RF Receiver must accurately
scan the RFID chip 95% of the
time

Scanning unit will be run several times and
accuracy averaged out of the recorded
results.

System must accurately identify
who the luggage belongs to
95% of the time

Full system will be run several times and
accuracy averaged out of the recorded
results.

Must notify the correct recipient
with a maximum delay of 60
seconds.

The full system will be run to ensure the
delay is no greater than 60 seconds when
receiving the notification.

Must not exceed funds of
$2,000 to construct

The components will be selected to not
exceed the funds of construction.

Will use wall outlet to power
scanners and microcontroller.

System will be checked to ensure it supports
the wall outlet power supply before being
plugged in and tested.

Must not have any negative
impact on the environment or
personnel

The system will be put in demo use for a
week and any negative environmental or
personnel changes will be monitored.

Must meet size requirements to
allow clearance for luggage

Luggage bag dimensions will be measured
using a ruler or tape measure.

Must not emit any harmful
radiation and is safe to handle

Power transmission levels will be measured
and kept at the minimum required values for
functionality

Information the system
transmits must be secure and
not allow unauthorized access.

Additional Bluetooth devices will be used to
attempt to break the strict pairing of the
Bluetooth devices.

Table 7-1 - Requirements related Testing

75

7.1 Hardware Testing Environment

Ideal location would be at an airport in the working environment the system is
supposed to be used in. This environment would consist of a conveyer system,
either single level or multiple. The scanning equipment will need to be able to scan
with operational interference from machinery, and ability to transfer data wirelessly
at a distance through at least a single brick layer wall. The individual parts of the
hardware system will be located at an appropriate distance, but this distance is
determined by airport layout, so maximum reliable distance will need to be tested,
along with an amount of physical barriers that may be present between the
conveyer loading area and front end monitor viewing area.

Since the system is split up into the scanning unit, the processing master unit, and
the monitor display device, the maximum distance and reliability will be determined
by the interaction of each individual node. The distance from the scanning unit to
the master unit, and the master unit to the display unit. Combined distance will
determine the maximum placement of each device within the network.

Another factor to test will be the Wi-Fi connection of the master unit with the local
network or internet. Since offloading customer data for text message sending will
need access to a network with internet access or direct access to the internet.

7.2 Hardware Specific Testing

Since the majority of the system is software based, the hardware acts as relays to
pass information from subsystem for data processing. Specific test would include
mock data being loaded into the system and determining proper transmission of
the data to each device in the subsystems.

This would include but not limited to, testing data transmission of the RFID scanner
by scanning a tag, and checking internally within the microprocessor that the data
was received through an LED indicator. On chip activity through LED will also be
used to verify the operation of the device.

A secondary test to verify transmission of data received by the microprocessor in
the scanning unit would be to load mock information, a simple “Hello World” script
and verify proper connection and transmission over Bluetooth of the information
within the processor to the main unit.

Within the main unit a full software testing will be used for the interaction between
the wifi and airport network, and the Bluetooth communication back to the scanning
unit for command and control.

76

7.3 Software Testing Environments

7.3.1 Emulators

7.3.1.1 Raspberry Pi

For our software testing environment, we will want to be able to emulate the
Raspberry Pi. By emulating the Raspberry Pi, we will be able to perform unit testing
and check other functionality of the Java ME Embedded 8.1 Runtime Environment
prior to running the same tests on the physical device. Our group will be using the
embedded emulator provided by Oracle in the Java ME Embedded 8.1
development kit.

7.3.1.2 Android Stick

For our software testing environment, we will want to be able to emulate the
Android Stick. By emulating the Android Stick, we will be able to perform unit
testing and check other functionality of the Android Operating System prior to
running the same tests on the physical device. Emulating the Android Stick will be
very straightforward. Since the Android Stick will be running the Android Operating
System 4.4 KitKat, we simply need to use one of the many Android Operating
System 4.4 KitKat emulators available to download for free.

7.3.2 Mocked Airline Lookup Service

For the software testing stages and for demoing, the airline endpoint paths service
will have to be mocked. We will be using PHP Version 5.6, since it is the most
recent version. We will not be taking advantage of any extra PHP plugins for our
mocked web services, since we plan our mocked web services to be extremely
basic. They simply need to emulate the results of a query to a real world web
service, not the procedures a real world web service would follow for a query.

This mocked instance will be hosted online, at LivingBucket.com, and will be a
simple php script containing a map of fake airlines and endpoint paths to their
passenger notification services. The script will accept a payload containing a valid
fake airline IATA code, and the script will return the endpoint path mapped to that
IATA code. Three mocked airlines will exist for the broadest range of testing
possible.

In a real world scenario, the web service would be connected to a simple database
containing the airline mappings. However, for the purpose of simplifying our
mocking process, we will store the airline mappings as an in-memory hash table,
where the key is the airline’s IATA code and the value is the endpoint path.

77

7.3.3 Mocked Passenger Notification Services

For the software testing stages and for demoing, the airline passenger notification
services will have to be mocked. These mocked instances will be hosted online, at
LivingBucket.com, and will be simple php scripts containing a map of fake
passenger data. The script will accept a payload containing the lookup key for a
passenger, and the script will return the passenger information. Three of these
fake services will be created, one for each mocked airline.

In a real world scenario, the web service would depend on a baggage database to
find the passenger’s notification information. However, for the purpose of
simplifying our mocking process, we will store the baggage data as an in-memory
hash table, where the baggage identification code is the key, and the passenger
information is the value.

7.4 Software Specific Testing

7.4.1 Microcontroller Testing

7.4.1.1 Integration Testing

7.4.1.1.1 Scanner Input Integration Testing

The code for reading the input from the scanner will be thoroughly tested by using
an integration test. Our group has determined that, since unit testing the
microcontroller code would be impractical due to its tight coupling with the
hardware, we will proceed directly to integration testing. The integration testing for
the Scanner Input will involve us manually scanning tags and ensuring the tags’
raw data can be found in the correct registry locations. In order for our integration
testing for this portion of the project to pass successfully, we must be able to find
the raw data, in its entirety, at the exact location we expect to find it in for every
single tag we test with.

7.4.1.1.2 Bluetooth Output Integration Testing

The code for transmitting data over the Bluetooth chip will be thoroughly tested by
using an integration test. Our group has determined that, since unit testing the
microcontroller code would be impractical due to its tight coupling with the
hardware, we will proceed directly to integration testing. The integration testing for
the Bluetooth Chip Output will involve us creating fake data in the Microcontroller
Unit’s registry and instructing the Microcontroller Unit to transmit the data with its
Bluetooth chip. We will then receive the data on another device and check it for
accuracy. In order for our integration testing for this portion of the project to pass
successfully, we must be able to correctly receive the fake data, in its entirety, for
every single test we perform.

78

7.4.1.1.3 Full System Integration Testing

The full system integration testing for the Microcontroller Unit will consist in the
group ensuring that we are able to manually scan tags and receive the tag’s raw
data on a separate device via a Bluetooth connection. In order for the
Microcontroller Unit’s full system integration test to pass successfully, we must be
able to correctly receive the raw tag data, in its entirety, on our secondary testing
device for every single tag we test it with.

7.4.1.2 Performance Testing

7.4.1.2.1 Scanner Input Performance Testing

Performance testing for the Microcontroller Unit is extremely important for the
success of the project. The Master CPU will be waiting for information, so the
Microcontroller Unit needs to be able to respond quickly. One of the major potential
bottlenecks for the Microcontroller Unit is how quickly it is able to scan the baggage
tags. Since this is such a significant potential bottleneck, the group will be
performing rigorous performance testing on it. In order for the Scanner Input
performance test to pass successfully, the system must be able to scan the tags
and store the raw tag data as quickly as possible. If our system is unable to do this
within a reasonable amount of time, we will have to redesign this portion of our
system to improve its performance and efficiency.

7.4.1.2.2 Bluetooth Output Performance Testing

Another of the major potential bottlenecks for the Microcontroller Unit is how
quickly it is able to transmit the raw tag data with its Bluetooth chip. Since this is
such a significant potential bottleneck, the group will be performing rigorous
performance testing on it. In order for the Bluetooth Output performance test to
pass successfully, the system must be able to prepare the Bluetooth Chip and
transmit the stored data as quickly as possible. If our system is unable to do this
within a reasonable amount of time, we will have to redesign this portion of our
system to improve its performance and efficiency.

79

7.4.1.2.3 Full System Performance Testing

The entire Microcontroller Unit will be subject to a strict performance test. Based
on our analysis of a real-world worst-case scenario, the group must expect the
microcontroller unit to be able to scan an RFID tag and finish transmitting the data
over Bluetooth in roughly 250 milliseconds. If we are unable to make the
Microcontroller Unit’s full system operate that quickly, we will need to attempt to
optimize the performance of the Microcontroller Unit.

7.4.2 Main CPU Testing

7.4.2.1 Model Unit Testing

7.4.2.1.1 Baggage Object Unit Testing

Our group will perform standard Java Object Unit Testing for the Baggage Object,
because it is a normal Java Data Object with little to no unique functionality other
than to store data in an organized fashion. To meet our code coverage
requirements, all nine getter methods and all nine setter methods will be unit tested
for basic getter and setter functionality. These unit tests will exist for the sake of
regression testing.

7.4.2.1.2 BaggageCache Unit Testing

The unit testing for the BaggageCache class will involve testing the getter method
for the baggage cache LinkedHashMap, as well as testing the functionality of each
of the methods. The addBaggage(baggage : Baggage) method will be tested to
ensure the baggage object is always added to the cache in the correct order, and
it will be tested to ensure the method will not add anything to the cache if the
baggage object is null. The getBaggage(key : String) method will be tested to
ensure the correct Baggage Object will be returned for the given key value. The
method will also be tested to ensure that a null is returned if the key is not found in
the LinkedHashMap. The updateBaggage(key : String, timeout : Date) method will
be tested to ensure the Baggage Object associated with the key value is correctly
updated with the timeout value. The method will also be tested to ensure the
program will not crash with a Null Pointer Exception in the event where the sent
key is not associated to any Baggage Object in the LinkedHashMap. The method
will also be tested to ensure a Baggage Object is not updated with a null timeout
value. The updateCache() method will be tested to ensure it correctly removes
expired Baggage Objects from the LinkedHashMap baggage cache.

80

7.4.2.1.3 MasterController Unit Testing

The unit testing for the MasterController class will involve testing the methods in
the class. The findBaggage(key : String) method will be tested to ensure the
BaggageCache’s getBaggage(key : String) method is correctly called.

The processBaggage(...) method will be tested to ensure that it correctly processes
the incoming baggage data. The method will first be tested to ensure the
BaggageTagService is called to parse the baggage data and create a new
Baggage Object.

If the BaggageTagService fails to parse the baggage data, an error message
should be logged and the processBaggage(...) method should exit gracefully.
Otherwise, the method will then be tested to ensure the findBaggage(key : String)
method is called correctly using the newly created Baggage Object. In the case
where the Baggage Object is not found in the cache, the method will then be tested
to ensure the findAirlineEndpoint() method is correctly called. If the
findAirlineEndpoint() method returns a null value, the program should log an error
message and continue with normal operation. If the endpoint is correctly found, the
method will then be tested to ensure the AirlineNotificationService is correctly
called. The final step of this case will be to add the created Baggage Object to the
BaggageCache. In the case where the Baggage Object was originally found in the
cache, the method will be tested to ensure the cache is correctly updated with a
new timeout value. Regardless of whether or not the Baggage Object was
originally found in the cache, the processBaggage(...) method will now be tested
to ensure the updateDisplay() method is correctly called.

The addBaggage(baggage : Baggage) method will be tested to ensure the
BaggageCache’s addBaggage(baggage : Baggage) method is correctly called.
The findAirlineEndpoint() method will be tested to ensure that if an airline mapping
exists in the endpoints HashMap, the existing airline endpoint path is returned.
However, in the case where the mapping does not exist, it should perform a query
to the AirlineEndpointService. The found endpoint path from the service call should
be added to the endpoints HashMap prior to the method returning.

The updateCache() method will be tested to ensure the BaggageCache’s
updateCache() method is correctly called. The updateDisplay() method will be
tested to ensure that the DisplayUpdateService is correctly called.

81

7.4.2.2 Services Unit Testing

7.4.2.2.1 BaggageTagService Unit Testing

The BaggageTagService will be unit tested to ensure the createBaggage(Raw
Bluetooth Data) method operates correctly, and always returns an instance of a
BaggageResponse Object. If the data entering the method is unable to be parsed
correctly, the method will be tested to ensure the returned BaggageResponse
contains a null Baggage Object and that the success variable is set to false. If the
data entering the method is correctly parsed, the method will be tested to ensure
the returned BaggageResponse contains a valid Baggage Object with correct
values and that the success variable is set to true.

7.4.2.2.2 AirlineEndpointService Unit Testing

The AirlineEndpointService will be unit tested to ensure the
getAirlineEndpoint(airlineCode : String) method operates correctly, and always
returns an instance of an EndpointResponse Object. In the case where the airline
code does not exist in the testing web service, the method will be tested to ensure
the returned EndpointResponse contains a null String for the endpoint variable and
that the success variable is set to false. In the case where the airline code does
exist in the testing web service, the method will be tested to ensure the returned
EndpointResponse contains the correct web service endpoint for the airline and
that the success variable is set to true.

7.4.2.2.3 AirlineNotificationService Unit Testing

The AirlineNotificationService will be unit tested to ensure the
notifyAirline(endpoint : String, payload : Payload) method operates correctly. This
method does not return a value, so this method will be tested to ensure the method
correctly exists if either the endpoint or payload variables are invalid. The method
will also be tested to ensure the json message created from the payload variable
is correct.

7.4.2.2.4 DisplayUpdateService Unit Testing

The DisplayUpdateService will be unit tested to ensure the
updateDisplays(baggage : LinkedList<Baggage>) method operates correctly. This
method does not return a value, so this method will be tested to ensure the method
correctly exists if the baggage variable is invalid. The method will also be tested to
ensure the messages being sent to the display devices are correct.

82

7.4.2.3 Integration Testing

7.4.2.3.1 Bluetooth to Notification Service Integration Testing

An integration test for the Bluetooth to Notification Service will be created. This test
will ensure that the incoming bluetooth data to the MasterController’s
processBaggage(...) method can follow all of its steps all the way through and
successfully call the AirlineNotificationService’s notifyAirline(endpoint : String,
payload : Payload) method.

7.4.2.3.2 Bluetooth to Display Update Service Integration Testing

An integration test for the Bluetooth to Display Update Service will be created. This
test will ensure that the incoming bluetooth data to the MasterController’s
processBaggage(...) method can follow all of its steps all the way through and
successfully call the DisplayUpdateService’s updateDisplays(baggage :
LinkedList<Baggage>) method.

7.4.2.3.3 Full System Integration Testing

An integration test for the Bluetooth to Display Update Service will be created. This
test will ensure that the incoming bluetooth data to the MasterController’s
processBaggage(...) method can follow all of its steps all the way through and
successfully call both the AirlineNotificationService’s notifyAirline(endpoint : String,
payload : Payload) method and the DisplayUpdateService’s
updateDisplays(baggage : LinkedList<Baggage>) method.

7.4.2.4 Performance Testing

7.4.2.4.1 Bluetooth Incoming and Outgoing Performance Testing

Our group will be performance testing the portion of the Main CPU which receives
incoming Bluetooth data and processes it. This test is important because it will
show us how efficient our data parsing processes are. If this test provides us with
a result which suggests we are taking too long to parse the incoming data, we will
have to redesign our parsing algorithm.

Additionally, our group will be performance testing the portion of the Main CPU
which creates the Bluetooth message to send to the Android Sticks and sends it.
This test is important because it will show us how efficient our Bluetooth message
creation and our Bluetooth sending processes are. If this test provides us with a
result which suggests we are taking too long to create and send the messages, we
will have to redesign our algorithms for doing so.

83

7.4.2.4.2 Wi-Fi Incoming and Outgoing Performance Testing

Our group will be performance testing the portion of the Main CPU which sends
data across Wi-Fi to our servers, waits for a response, and then parses that
response. This test is important because it will show us how efficiently we are
interacting with our testing server. If this test provides us with a result which
suggests our code is inefficient, we will have to redesign our algorithms for
interacting with our testing server. The interactions with our testing server is seen
as our largest liability for a data bottleneck, so ensuring that this code performs
quickly and efficiently is extremely important.

7.4.2.4.3 Cache Management Performance Testing

Our group will be performance testing the cache management subsystem of our
Main CPU. This is the portion of the system which adds and removes values from
our internal baggage cache. The performance of this subsystem is critical to the
performance of our entire system. If the cache management subsystem runs
slowly, all aspects of the system will be detrimentally impacted. If these tests
provide us with results which suggest our code is inefficient, we will have to
redesign our algorithms for accessing and managing the internal baggage cache.

7.4.3 Android Stick Testing

7.4.3.1 Model Unit Testing

7.4.3.1.1 Baggage Object Unit Testing

Our group will perform standard Java Object Unit Testing for the Baggage Object,
because it is a normal Java Data Object with little to no unique functionality other
than to store data in an organized fashion. To meet our code coverage
requirements, all three getter methods and all three setter methods will be unit
tested for basic getter and setter functionality. These unit tests will exist for the
sake of regression testing.

7.4.3.1.2 BaggageCache Unit Testing

The unit testing for the BaggageCache class will involve testing the getter method
for the list of Baggage Objects. Standard Java Object Unit Testing will be used
because the BaggageCache does not have any unique functionality. These unit
tests will exist for the sake of regression testing.

84

7.4.3.2 UpdateDataService Unit Testing

The UpdateDataService class will be unit tested to ensure the updateData(Json
Data) method works as expected. The method will be tested to ensure the
incoming data is correctly parsed into a list of Baggage Objects. The method will
also be tested to ensure the BaggageCache is correctly accessed and correctly
updated with the new Baggage data. This method will also be tested to ensure it
triggers the table view’s update functionality to render the user interface.

7.4.3.3 Full System Integration Testing

The system for the Android Stick is fairly basic, so only the full system integration
test will be necessary. In this test, we will ensure the system works from start to
end. The test will send Bluetooth data to the UpdateDataService class and check
the created user interface table for accuracy. This test will pass only under the
condition that the table has been updated perfectly.

7.4.3.4 Performance Testing

7.4.3.4.1 Bluetooth Incoming Performance Testing

Our group will be performance testing the portion of the Android Stick which
receives incoming Bluetooth data and processes it. This test is important because
it will show us how efficient our data parsing processes are. If this test provides us
with a result which suggests we are taking too long to parse the incoming data, we
will have to redesign our parsing algorithm.

7.4.3.4.2 Display Updating Performance Testing

Our group will be performance testing the portion of the Android Stick which
updates the user interface table. This portion of the system is important because
if we are unable to update the table efficiently enough, the entire purpose of the
display becomes pointless. We need to ensure the table is updated in a quick
enough time such that the Android Stick is ready and able to process any additional
data the Main CPU sends it. If the test results show that we were not able to update
the user interface in a reasonable amount of time, we will need to redesign our
updating algorithm.

85

8 Administrative Content

8.1 Project Milestones

The group has planned out several milestones to be completed throughout the
design and prototyping stages of the project’s completion. They are outlined in the
following Tables 8-1 through 8-5.

Summer
2015

Ernest Adrian Tomasz

May 31-
June 6

-Compose Project
Proposal
-Design
Documentation

-Compose Project
Proposal
-Design
Documentation

-Compose Project
Proposal
-Design
Documentation

June 7 -
June 13

-Research and
define Hardware
Design

-Research and define
Software Design

-Research and define
Software Design

June 14
- June
20

-Research and
define Hardware
Design

-Research and define
Software Design

-Research and define
Software Design

June 21
- June
27

-Research
implementation of
code on
Microcontroller

-Research repository
and mocked services

-Research SMS
functionality

June 28
- July 4

-NCR Sponsor Pitch -NCR Sponsor Pitch -NCR Sponsor Pitch

July 5 -
July 11

-Research and
define additional
components

-Research and define
additional
components

-Research and define
additional
components

July 12 -
July 18

-Work on
Microcontroller
Schematic

-Test Raspberry Pi
OS

-Test Raspberry Pi
OS

Table 8-1 - Milestones for the project for Summer 2015

86

Summer
2015

Ernest Adrian Tomasz

July 19 -
July 25

-Combine and draft
report for review

-Combine and draft
report for review

-Combine and draft
report for review

July 26 -
Aug 1

-Finalize Senior
Design 1 Paper

-Finalize Senior
Design 1 Paper

-Finalize Senior
Design 1 Paper

Aug 2 -
Aug 8

-Submit Senior
Design 1 Paper

-Submit Senior
Design 1 Paper

-Submit Senior
Design 1 Paper

Table 8-2 - Milestones for the project for Summer 2015 continued

Break Ernest Adrian Tomasz

Aug 9 -
Aug 15

 -Finalize PCB
layout

-Develop Abstraction
Library

-Develop Android
Shared Library

Aug 16 -
Aug 22

 -Contact PCB
manufacturers

-Develop Master
CPU Model

-Develop Android
Stick and Android
App Model

Table 8-3 - Milestones for the project during Break

87

Fall 2015 Ernest Adrian Tomasz

Aug 23 -
Aug 29

-Order Parts for the
Microcontroller

 -Develop Master
CPU Services

 -Develop Android
Stick Services

Aug 30 -
Sept 5

-Order PCB -Develop Master
CPU Services

 -Develop Android
Stick Services

Sept 6 -
Sept 12

 -Work on
Microcontroller
programing

-Develop Mocking
Webservices

-Develop Android
App Services

Sept 13 -
Sept 19

 -Work on
Microcontroller
connections

-Integrate Master
CPU Services

-Integrate the
Android Stick
Services

Sept 20 -
Sept 26

 -Test
Microcontroller code

-Develop Master CPU
Cache Management

-Integrate the
Android App
Services

Sept 27 -
Oct 3

 -Build demo
hardware

 -Install and test code
on Raspberry Pi

 -Install and test code
on Android Stick

Oct 4 -
Oct 10

 -Build demo
hardware

 -Integration Tests
with Raspberry Pi
and Android Stick

-Integration Tests
with Raspberry Pi
and Android Stick

Oct 11 -
Oct 17

 -Integration Tests
with Raspberry Pi
and Microcontroller

 -Integration Tests
with Raspberry Pi
and Microcontroller

 -Integration Tests
with Raspberry Pi
and Android Stick

Oct 18 -
Oct 24

 -Integration Tests
with Raspberry Pi
and Microcontroller

-Integration Tests
with webservices and
Android App

 -Integration Tests
with webservices and
Android App

Oct 25 -
Oct 31

 -Integration Tests
with full system

 -Integration Tests
with full system

 -Integration Tests
with full system

Nov 1 -
Nov 7

-Test Prototype -Test Prototype -Test Prototype

 Table 8-4 - Milestones for the project for Fall 2015

88

Fall 2015 Ernest Adrian Tomasz

Nov 8 -
Nov 14

-Microcontroller
Mounting and
Housing

-Raspberry Pi
Mounting and
Housing

-Raspberry Pi
Mounting and
Housing

Nov 15 -
Nov 21

-Complete and
polish Prototype

-Complete and polish
Prototype

-Complete and polish
Prototype

Nov 22 -
Nov 28

-Combine and draft
report for review

-Combine and draft
report for review

-Combine and draft
report for review

Nov 29 -
Dec 5

-Submit Senior
Design 2 Paper
-Present Prototype

-Submit Senior
Design 2 Paper
-Present Prototype

-Submit Senior
Design 2 Paper
-Present Prototype

Table 8-6 - Milestones for the project for Fall 2015 continued

8.2 Budget & Financing

8.2.1 Expected Costs

The group has expected costs of around $1500, assuming two RFID receivers can
be obtained for $500, $100 for the microcontroller board to be constructed, $100
for Raspberry Pi and necessary components, as well as a buffer of $300 for any
additional expenses and hardware enclosure/mounting. These costs do not
include any hours paid for labor or working environments.

8.2.2 Financing

Due to lack of project sponsors and the expected costs exceeding the fully self-
financed group, the group has been forced to scale down on the demonstration
aspect of the presentation and will work with a smaller RFID Receiver range. Not
all of the additional features desired for development could have been included as
a result of this circumstance. The team’s budget totaled $400.

89

Item Quantity Acquired Price Net Worth

Raspberry PI 2 Model B 1 $43.00 $43.00 +
shipping

4GB microSD card w/ Adapter 1 $5.99 $5.99 +
shipping

Generic PL2303HX USB To TTL
To UART RS232 COM Cable
Module Converter

1 $4.59 $4.59 +
shipping

TRENDnet Micro-Bluetooth
USB 3.0 Adapter

1 $12.19 $12.19 +
shipping

Edimax EW-7811Un Wi-Fi USB
Adapter

1 $9.23 $9.23 +
shipping

MK808B Plus - Android 4.4 Stick 1 $28.77 $28.77 +
shipping

Asus VE248 monitor 1 $0.00 $177.99

PCB 1 $120 Varies

Mounting Costs ? ?

RI-I02-112A-03 Tag-it(TM) HF-I
Plus Transponder Inlays

1 $1.68 $1.68

LMX9838SB 1 $0 $31.39

TRF7970ARHBR 1 $0 $6.98

MSP430G2553IN20 1 $0 $2.80

LP3963ES-3.3 1 $0 $4.45

Capacitor 24 $2.01 $2.01

Inductor 2 $1.00 $1.00

Resistor 14 $0.46 $0.46

Crystals 2 $1.88 $1.88

Table 8-7 - Project expenses and financing

90

Item Quantity Acquired Price Net Worth

LED 3 $0.84 $0.84

Misc. 8 $10.31 $10.31

Demonstration costs $100 $100

Total 341.95 565.56

Table 8-8 - Project expenses and financing continued

8.3 Advisors

Since one of the group members had a patent on a potential new product, we
decided to meet with the company which held the patent rights [7]. The group
communicated with NCR, National Cash Register, for some insight on possible
implementations of our creation. During the meeting, it was concluded what the
best way to communicate with the airlines was, and how to handle the notification
system for the customers. On top of the discussion about the project at hand, the
group also managed to see how current single board computer systems are used
in modern Kiosk construction and the different types of RFID cards currently in
use.

8.4 Facilities & Equipment

The core of the project is centered mostly on software implementations and
therefore will not require any additional facilities or equipment. The group members
responsible for the software development have already existing workstation
environments that fulfill the needs of the project. The UCF Lab section will be
utilized during Senior Design 2 to construct and assemble the required hardware
components of the project.

91

9 Project Summary

The group successfully finished all the milestones set out for the first semester of
Senior Design. After taking the time to divide roles and group scheduling at the
very beginning, the group spent the majority of time invested in research and
design. The group gradually became knowledgeable on the unfamiliar topics
regarding the project and scheduled regular meetings to discuss the design
aspects of the project.

After allocating a budget, the different subsystems were defined based on the initial
specifications. Following the design definitions, requirements were created and the
appropriate hardware and software components were properly selected. A variety
of constraints, technical and financial, limited the possible options for the project's
implementation. However, the goals and objectives were pursued and met to a
satisfactory level for the C.L.A.I.M system.

Several subsystems were designed and developed that the group had no previous
knowledge of working with. The experience gained from working on these devices
proved to provide more information that went beyond the scope of the cumulative
education prior to the start of the project. This forced the group to utilize outside
resources to fully learn and comprehend some of the research components. There
were some initial difficulties with the microcontroller board design for the scanning
unit, but they were quickly smoothed out after group collaboration. There were
additional concerns regarding the Bluetooth communication between the Master
CPU and the other devices, but those were resolved as well.

The complete design and prototype process of the project helped the group
members gain necessary experience in developing and implementing possible
future projects in the workforce. The group hopes the work presented in the project
inspires future groups that wish to look in to this relatively untapped RFID
technology and potentially improve on the design.

92

10 Appendix

Appendix A - Citation

[1] Department of Transportation, 'Department of Transportation', 2015. [Online].
Available:
https://www.transportation.gov/sites/dot.gov/files/docs/2015MayATCR_1.pdf.
[Accessed: 05- Aug- 2015].

[2]R. Journal, 'Hong Kong Airport Says It Now Uses Only RFID Baggage Tags -
RFID Journal', Rfidjournal.com, 2015. [Online]. Available:
http://www.rfidjournal.com/articles/view?4885. [Accessed: 05- Aug- 2015].

[3] Future Travel Experience, 'Air France-KLM unveils new permanent bag tag and
bag tracking device', 2014. [Online]. Available:
http://www.futuretravelexperience.com/2014/03/air-france-klm-new-permanent-
bag-tag-and-tracking-device-can-benefit-the-entire-industry/. [Accessed: 05- Aug-
2015].

[4] Reboundtag.com, 2015. [Online]. Available: https://www.reboundtag.com/.
[Accessed: 05- Aug- 2015].

[5] Vanguardid.com, 'ViewTag', 2015. [Online]. Available:
http://www.vanguardid.com/PermanentRFIDLuggagetags.aspx. [Accessed: 05-
Aug- 2015].

[6] Qantas.com.au, 'Next Generation Check-in Regional Implementation Begins',
2015. [Online]. Available: http://www.qantas.com.au/travel/airlines/media-
releases/mar-2011/5084/global/en. [Accessed: 05- Aug- 2015].

[7] McGrath; Adrian, “Baggage Delivery Notification System and Method” U.S.
Patent 20140210623, issued July 31, 2014

Appendix B -Copyright Permissions

All images from Texas instruments are contained within Datasheets provided by
Texas Instruments for their respective device. Reproduction of significant portions
of TI information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions,
limitations, and notices.

93

Appendix C - Datasheets

Application Report SLOA138–April 2009
Implementation of the ISO15693 Protocol in the TI TRF796x

Application Report SLOA199–July 2014
TRF7970A + MSP430G2xx NFC/RFID Module Reference Design

TRF7970A SLOS743K –AUGUST 2011–REVISED APRIL 2014
TRF7970A Multiprotocol Fully Integrated 13.56-MHz RFID and Near Field
Communication (NFC) Transceiver IC

RI-I02-112A-03, RI-I02-112B-03 SCBS833B –NOVEMBER 2006–REVISED
JUNE 2014
RI-I02-112X-03 Tag-it™ HF-I Plus Transponder Inlays Large Rectangle

MSP430G2x53 MSP430G2x13 SLAS735J –APRIL 2011–REVISED MAY 2013
MIXED SIGNAL MICROCONTROLLER

LM3480 SNVS011G –JUNE 1999–REVISED FEBRUARY 2015
LM3480 100-mA, SOT-23, Quasi Low-Dropout Linear Voltage Regulator

LMX9838 SNOSAZ9F –JULY 2007–REVISED DECEMBER 2014
LMX9838 Bluetooth Serial Port Module

