
0

Initial Project Design Document

August 6, 2015

ORQC

Oculus Rift QuadCopter Controller

Group 6

Gustavo Gonzalez
Matthew Grayford
Gunnar Skotnicki
Craig Thompson

I

Table of Contents
1. Executive Summary .. 1

1.1 Motivations ... 2
1.2 Goals and Planned Objectives .. 2
1.3 Team Member Biographies ... 4

1.3.1 Gustavo Gonzalez .. 4
1.3.2 Matt Grayford .. 4
1.3.3 Gunnar Skotnicki ... 5
1.3.4 Craig Thompson... 5

1.4 Acknowledgements ... 6
2. Project Requirements and Design Constraints .. 6

2.1 Problem Statement .. 7
2.1.2 Design Specifications... 8

2.2 Customer and Customer Requirements .. 9
2.2.1 Performance ... 11

2.3 Realistic Design Constraints ... 12
2.3.1 Economic Constraints .. 13
2.3.2 Environmental, Social, and Political Constraints 14
2.3.3 Health and Safety Constraints .. 15
2.3.4 Manufacturability and Sustainability Constraints 17

2.4 Deliverables .. 17
2.5 Estimated Budgets and Finance Plans .. 19
2.6 Scheduling Concerns and Time Limitations ... 20

3. Standards ... 22
3.1 Standards ... 22
3.2 Regulations ... 24

4. System Design .. 25
4.1 Key Design Elements and Associated Research ... 27

4.1.1 Related Projects ... 27
4.1.2 Batteries ... 31
4.1.3 QuadCopters .. 32
4.1.4 Flight Controllers ... 34
4.1.5 Camera ... 40

II

4.1.6 Software ... 41
4.1.7 Hardware .. 45
4.1.8 Oculus Rift and related subjects .. 48

4.1.9 Possible Solutions .. 51
4.1.10 Decision Criteria and Justification ... 53
4.1.12 Design Considerations and Solutions to Issues That Arose............... 54

4.2 Overall System and Associated Diagrams .. 54
4.2.1 Hardware Architecture ... 54
4.2.2 Software Architecture .. 57

4.4 Feature Results .. 63
5. Oculus Rift Dev Kit 2 Integration ... 65

5.1 Oculus Dev Kit 2 Software Developers Kit .. 66
5.2 Oculus Specifications and First Impressions .. 67

5.2.1 OLED Display ... 68
5.2.2 Sensors ... 68

5.3 Host Machine Specifications to Run the Oculus Rift 68
5.3.1 Host Machine Minimum Requirements ... 68
5.3.2 Host Machine Recommended Requirements 69
5.3.3 Power ... 69

6. Quadcopter Design.. 69
6.1 Quadcopter Architecture ... 69
6.2 Quadcopter Components ... 71

6.2.1 Flight Controller... 71
6.2.2 Propellers ... 71
6.2.3 Motors .. 72
6.2.5 Frame/Landing Gear .. 74
6.2.8 WiFi Transmitter Adapter .. 74
6.2.9 Power Distribution System .. 75

6.3 Quadcopter Component Summary .. 76
7. Glove Controller Design ... 77

7.1 Glove Architecture .. 77
7.2 Glove Components.. 78

7.2.1 Accelerometer and Gyroscope ... 78
7.2.2 Arduino Uno .. 83

III

7.2.3 USB Connector .. 84
7.2.4 Button Layout .. 84
7.2.5 Driver Software .. 85
7.2.6 Print Circuit Board ... 85

8. Host Machine Design .. 86
8.1 Host Machine Architecture ... 86
8.2 Host Machine Major Components .. 88

8.2.1 Motherboard ... 88
8.2.2 Processor .. 88
8.2.3 Random Access Memory ... 89
8.2.4 Storage ... 89
8.2.5 Graphics Card .. 89
8.2.6 Power Supply ... 89

9. System Integration and Testing .. 89
9.1 Video Streaming ... 90
9.2 RC Control via Glove ... 93

9.2.1 Glove Button Functions ... 93
9.2.2 Glove Accelerometer Functions .. 93
9.2.3 Glove Gyroscope Functions ... 94

9.3 RC Control Monitoring via Oculus Rift ... 95
10. Project Management ... 95

10.1 Documentation and Organization ... 95
10.1.2 Design Journals .. 98
10.1.3 Manuals .. 98
10.1.4 Media ... 98
10.1.5 Miscellaneous Notes .. 101
10.1.6 Planning Documents .. 101
10.1.7 Status Reports .. 101
10.1.8 Tests ... 102

10.2 Team Organization.. 104
10.2.1 Technical Assignment Design Areas ... 104
10.2.2 Management Assignments ... 105
10.2.3 Working Guidelines ... 105
10.2.4 Safety Guidelines ... 106

IV

10.2.5 Team Communication and Accountability 107
10.3 Schedule and Work Breakdown Schedule .. 107

10.3.1 Hours Summary ... 108
10.3.2 Milestones .. 109

10.4 Operational Planned Budget ... 110
10.4.1 Project Cost .. 110
10.4.2 QuadCopter components .. 111
10.4.3 Oculus Rift DevKit 2 ... 112
10.4.4 Controller Components: ... 112
10.4.5 Project Cost Summary ... 112
10.4.6 Sources of Funding .. 113

10.5 Method of Approach ... 114
10.5.1 Design Methodology .. 114
10.5.2 Research Techniques ... 114

11. Conclusion .. 115
11.1 Project Results .. 116

11.1.1 Final Costs ... 117
11.1.2 Time Spent ... 118

11.2 Moving Onwards .. 118
Appendix and References .. V

References .. V
Appendix .. VIII

1

1. Executive Summary

Everyone has their own different ideas of what the “future” is going to look like. Varying
levels of advanced technology that could only exist in our wildest dreams. Many people
share the dream of getting one step closer to those “futuristic” pieces of tech, and with that
in mind we wanted something beyond the ordinary, something novel. Our idea first
originated with designing a Quadcopter and allowing it to be controlled from a wrist watch.
But we immediately found that that had already been done, we needed something with
more of a kick. Next we discovered that a member wished to try virtual reality headset
technology like the Oculus Rift or Google Glass. With these ideas at hand we came up with
ORQC, an Oculus Rift QuadCopter Controller. A combination of ideas brought together
to create an all new experience.

Technology has been advancing before humankind at an extraordinary rate. Each day
newer and better items are created to better a cause or mission. These items can include
new personal devices, medical equipment, vehicles, games, etc.. Noting that all these new
creations can come together to form something grander than the original is a specialty of
engineering. Through this project we work to bring multiple tools and utilities together to
create something useful to many and usable in many situations. There has always been an
interest for “virtual reality”, it has been a concept quite common in Sci-Fi and a common
fragment of how the “future” is perceived. We want to make use of this interest, and show
just how much we can do with current technology. We plan to bring virtual reality to a
newer and more immersive experience that everyone can enjoy.

The base component of our project is the copter the user will be piloting. This copter will
have cameras attached to the front of the copter streaming live feed to the user to view
through the Oculus Rift. We want this to be our “eyes in the sky” to give an exciting view
to the user, but we want to go beyond just seeing through the eyes of a drone. One of the
best types of immersion is to enjoy a real hands on experience. We feel that current
implementations are being limited by the controllers we have available. Keyboard and
gamepads limit the experience. Everything focuses entirely on just the visual feed, and
even if you create the most realistic possible visual immersion, you can't help but wish you
could go further, touch and grasp the things you are looking at. We can't go quite that far
realistically with what we have available to us, but we really want to integrate that hands
on feel.

To do this we are going to create a glove that will allow a user to operate a quadcopter
remotely and experience what they see first-hand in front of their eyes. With the flick of a
wrist we want to have all of the controls necessary to pilot our device, and leave room for
further possibilities (Game applications and hobbies). The controller will have an
accelerometer and gyroscopes to allow for motion based controls, as well as pressure
sensors to create “button” inputs using the fingertips. We hope that the combination of
“VR” visual feed and the implementation of will give users a brand new experience that
will hopefully inspire similar projects from hobbyists and grow the VR community.
Listed below are the motivations and goals we have for our project from our current team
members, their biographies, and acknowledgements to supporters of the project.

2

1.1 Motivations

When we had all individually registered for this course none of us were quite sure what we
planned to design going into this. But we all knew we wanted something interesting, and
importantly something fun. We had seen previous projects, the home security systems the
covers lots of interesting ideas but none of them really clicked. When the basis of a copter
was suggested we began to build off that, just a drone on its own was not enough, we
needed more. The initial suggestion was an automated drone that would float around and
take pictures of the user, a selfie-drone, however that project was already done in a much
grander scale, we did not think we could match it or even come close, but the idea of a
drone was set. The Oculus Rift was put on the table as a possible accompaniment to the
drone and we were sold, while the actual purpose of the ORQC system was left in the air,
we decided we wanted to make it possible and sought to design the copter/controller
combination. This could be used for games (Utilizing the graphic overlay we wish to
incorporate, or what was also considered was an artistic approach. You could carry this
setup in a portable case, bring it with you on a hiking trip and take some pictures of hard
to reach views. A group member during a trip to WonderWorks mentioned running into a
child who was disabled who was unable to take part in the Laser Tag Experience, and were
motivated to incorporate something similar into our own project. Virtual Reality does not
have to only be something we use to experience fantasies in greater detail, but could also
bridge a gap to experiences we take for granted, and to help individuals who would
otherwise not be able to experience that first hand , take part. Overall we were excited to
create something that had so many possibilities for improvement as we go through the
design process.

1.2 Goals and Planned Objectives

The ultimate goal is of course to have our fully functional copter interacting with little to
no delay with our custom hand controller as well as the oculus rift. This controller should
also be able to run completely on its own for use in any other applications as any other
USB device. The Camera attached to the copter should be able to transmit live feed through
a stable Wifi Connection to our host machine, which then takes the feed, and depending on
the setting either distorts the feed before outputting to the screen on the oculus, or it will
display the feed on a regular monitor (for testing purposes). This copter should be able to
be fully controlled using the hand controller, and ideally the controls themselves should be
easy to understand. While not immediately planned, a possible addition would be to add
information about the position of the hand controller into the graphical overlay itself to
help the user with orientation and centering.

The hardest part of this project will likely be two separate issues. Properly utilizing the
Oculus to receive the camera feed in a viewable matter, the other is the creation of the
controller itself and the circuit board that will be required as well as the programming of
the arduino micro controller. We decided the best way to tackle this is to split the bulk of
the work into teams within the group itself, to help focus our time and efforts more clearly.

3

Extensive research by each group member will be required in their appropriate fields. A
brief outline of proposed research and responsibilities, as well as group subdivisions is
detailed below.

Table 1.2A Workflow Outline for Expected Milestones

Subgroup 1: Gunnar and Gustavo shall focus on any software aspects of the project,
learning how to use the Oculus as well as studying the applications of the Raspberry Pi.
They will learn how to get a steady stream of video from the camera using the Raspberry
Pi device and how to properly receive it on the host machine. They must also study the
software involved with the Oculus and research a way to incorporate any features that could
help with the immersion. To do this the group shall attempt to acquire the OR DevKit2 to
get hands on experience and access to the developer's libraries and API’s for a better
understanding of how to proceed in the implementation. They shall also assist Subgroup 2
with the programming of the arduino in the development of the hand controller.

Subgroup 2: Craig and Matt will be in charge of researching the EE aspects of the design
and will primarily be working on the hand controller. They will also be assisting in power
consumption and the batteries that will be powering our quadcopter drone. The group was
supplied information towards tutorials on learning how to create a circuit board, and they
will spend time studying those materials and make the executive decision on whether we
have the capability of mounting the components onto the board itself or if we shall have to
pursue alternative methods.

4

1.3 Team Member Biographies

A team consisting of three computer engineers and one electrical engineer. On the first day
of group discussion after the group was formed, the members decided who specifically
planned to do certain parts of the project. Gus and Gunnar will focus on the software aspect
of the project while Matt and Craig will focus on the hardware and component construction
of the project. By dividing and conquering separate portions of the project the team can
finish different components at nearly the same time without bottlenecking any portion in
particular

 1.3.1 Gustavo Gonzalez

Gustavo.Gonzalez93@knights.ucf.edu

Gustavo was born April 23rd, 1993 in Caracas, Venezuela. Moved to Florida from a young
age, and has held an interest in technology from a young age. Graduated from Freedom
High School in Orlando, Florida, and moved on to further his career at UCF as a Computer
Engineering student, and has spent his entire college career at UCF.

No Internship experience, but has experience in group software development through
various personal projects such as programming a BASIC 2 Stamp microcontroller to
regulate servo motors in the navigation of a miniature paddleboat, as well as a software
development project titled Cylindris in which the group developed an android game app
modeled after 3D tetris utilizing OpenGL.

Focus on the project is helping with the development the software to bridge the Oculus
with the drone and assist anywhere else possible, and past experience with OpenGL will
be helpful in modifying video feeds. After graduation Gustavo hopes to sign with a
software company where he can continue to learn and improve on his skillset.

 1.3.2 Matt Grayford

dragonbolt1@knights.ucf.edu

Matt is Computer Engineering student with 2 years at Embry Riddle Aeronautical
University and 3 years at UCF. He has experience in Technical Writing and Software
Configuration Management with two companies, first as an intern and after as an
independent contractor. His current job focus is Troubleshooting and potential Circuit
design.

His main focus in this project relates to the construction and operation of the Glove and
it’s components to the project. He is also working as the Semi manager of the project by
keeping the group coordinated and up to date with various tasks assigned to each member
to ensure collaboration is at a max.

mailto:Gustavo.Gonzalez93@knights.ucf.edu
mailto:dragonbolt1@knights.ucf.edu

5

 1.3.3 Gunnar Skotnicki

GunnarSkotnicki@knights.ucf.edu

As a Computer Engineering student Gunnar started his college career at UCF. Early on he
knew he wanted to work with software, but wanted to learn about hardware as well. His
current focus is creating the network communication between components, game engine
support, as well as configuration of all machines at the software level.

Gunnar is staffed as a software engineering intern with AVT Simulation (Applied Visual
Technologies). His experience with simulators, both large and small, contributes
experience of distributed simulation, which he believes can apply to this project’s scope.
Other previous experience consists of Linux server administration and configuration, as
well as embedded programming specifically Arduino Uno Rev 3 / TI MSP430 based.

By tying personal interests in microcontrollers, work, and school experience Gunnar will
further his knowledge of engineering complex systems, and designing elegant robust
software. He hopes to pursue a software or systems engineering career in simulation as it
has increasingly becoming a passion.

 1.3.4 Craig Thompson

Craig.T.UCF@knights.ucf.edu

Electrical Engineering student who spent his entire college career at UCF. Interning for a
contracting company. His focus on the project is to keep the quadcopter running with the
additional components and to help with the construction and operation of the Glove.

Craig’s work at SGM engineering helps him slightly in determining load for the systems
that are to be designed. Although the MEP work done at SGM does not directly co-relate
with such topics as Quadcopters, Oculus Rifts, or PCB boards, caution and code that
requires panels to be loaded for no more than 80% of total possible load and then a reduced
90% of that for further receptacles and other miscellaneous loads.

Craig hopes to learn more about PCB board layouts and how to make components co-relate
and work together without frying any of the components. He also hopes to learn about RC
and WiFi communication; how they work and their limitations. This, he will learn through
observing his teammates, but Craig will not be taking a direct hand in the RC or WiFi
configurations other than what will be considered for power consumption.

mailto:GunnarSkotnicki@knights.ucf.edu
mailto:Craig.T.UCF@knights.ucf.edu

6

1.4 Acknowledgements

High 6 Senior Design project team for allowing us to note their project with use of glove
for sign language as well as use a picture from their assignment to illustrate its capabilities

A thanks as well to Dronenet Senior Design project team for allowing us to use a picture
from their project and discuss with us the power use of the Quadcopters they used and
different choices they made with their senior design project.

Alex Berliner: UCF Alumni currently living in Orlando Florida, friend of Gustavo
Gonzalez. Has experience with the Oculus Rift DK2, and has provided his kit to the group
for a lesser price. He expressed interest in seeing the project develop, and will be a
continuing source of knowledge for the group as they begin working with the software.

Henry Ramon Gonzalez, La Boyera Construction: Father of Gustavo Gonzalez, expressed
great interest in the group’s project, and wished to support them. Granting full access to
group to various tools and machinery that could assist in the production and development
of the QuadCopter as well as provided additional funding to assist in the acquisition of key
project elements, most notably the Oculus Rift.

Reds Hitchon, grandfather to Gunnar Skotnicki, contributed his HPQ1 quadcopter to the
group upon hearing the idea. He was fascinated with the idea of flying the quadcopter in a
much simpler manner. Even as a long time pilot, he felt the HPQ1 was hard to fly and was
eager for us to implement an easier solution than the classic controls.

2. Project Requirements and Design Constraints

This project as detailed before consists of 3 major components. The Oculus Rift,
Quadcopter and Controller. Within these major components both the Quadcopter and
Controller have their own sub-components that create them. These sub components will be
discussed in further detail through the remainder of this report. Below is an initial draft of
how we conceptualized our system to function. The Oculus communicates with the host
machine for information from the drone, while the drone sends the video feed to the host
machine. The Controller sends its commands to the host machine to help display
information on the graphical overlay, while the controller sends commands to the drone.
Research will be done to see exactly how the signals shall be sent out, whether we can
accomplish this through a direct link on the wi-fi connection or if we shall have to
incorporate RC signals from the glove. This is not the final draft and will likely see some
revisions as we better understand how these systems will interact with each other in a
functional manner.

7

 Figure 2A: Block Diagram of the System

The below listed Problem statement and customer requirements are to layout the plan
behind our project and its full use hereafter. With emphasis on the independent use and
combination of the parts in question, the team can create a project that will enhance certain
entertainment environments in the current technological age.

2.1 Problem Statement

Today we have video games that give a sense of immersion with an unreal world like we
have never seen before. A person can play as a different race altogether and become the
best elvish marksman or the world’s most fearsome orc warrior. Video games give us a
chance to save the world thousands of times over with thousands of different characters.
However, video games are based solely on the unreal. On things intangible and without
significant real world consequences.

In today’s world, we have incredibly advanced feats of aerospace, mechanical, computer,
and electrical engineering to give household toys the ability of flight with tight, responsive
controls. We can fly miniature planes, helicopters, and quadcopters remotely and within
minutes without any form of professional training. But these forms of home entertainment
come with the drawback of not being in the cockpit, of very obviously being a replica of
the real thing. The person flying the toy aircraft can feel a significant sense of missing out
on something.

To combine these two worlds of video games and tangible miniature aircrafts, we propose
combining the technology of virtual reality with instant video streaming. Using the Oculus
Rift as our tool for virtual reality and combining a quadcopter with a camera and a WiFi
adaptor, we can stream the video feed of the quadcopter to the Oculus Rift to produce a
new level of immersion. We hope that our design is not limited only to the field of video
games, and that it can find a place in various hobbies that could make use of this added
level of immersion.

8

By combining these two aspects we hope to expand into a more novel form of
entertainment than what is currently available. Mixing common hobbies into one newer
technological setting. And expanding the field of what is possible for future developers and
hobbyists that share our love for technology and combining it with forms of entertainment
everyone can enjoy.

 2.1.2 Design Specifications

The design specifications we will be focusing on are physical, hardware, and software.
These are not standards or constraints but more so guidelines for the team to follow and
have a better focus towards completion

Physical Specifications

● Any LED’s on Hand Controller should be easily visible
● Hand controller should be adjustable or be able to fit various size hands
● Hand Controller should be comfortable to control
● Exposed wiring should be kept to a minimum on the Hand Controller.
● PCB encasing for Hand Controller should be kept light weight to avoid strain on

the user
● Copter should ideally be able to lift around 2-3 lbs worth of cameras and batteries.
● Any components attached to copter should be easily removable and modifiable.
● Copter size should be capable of being piloted in an indoor household setting.

Hardware Specifications

● Components must run off (Insert planned battery voltages) or less
● Copter should be able to run for at least 7 minutes
● Hand Controller should be able to run off powered USB connection.
● Hand Controller drivers should be handled to act preferably as a regular USB

Keyboard I/O
● All electrical components should have an off switch for safety.
● Hand Controller should be able to communicate with Host Machine
● Host Machine must have strength to run Oculus.

Software Specifications

● Source Code should be written in possibly C, or C++.
● Programming should not exceed given memory space on chosen Microcontroller

and similar variants
● Should be uploadable to microcontrollers through USB connection.
● Should be kept on an easily accessible repository and properly maintained

9

2.2 Customer and Customer Requirements

By combining new and improving technology with a well known past time (Driving RC
cars and copters) we hope to capture a wide target audience. The younger generation and
the old will be drawn to our product (accessibility and familiarity, and the lure of “next-
gen” tech possibilities. An age range of 13-20+ will be our predicted main user base, as
this application could find its home in a variety of settings such as tourist locations (eg
Wonderworks, Hardknox) with modifications to the base unit. The age of 13 is also a
standard we must follow due to the minimum age requirements specified by the Health and
Safety warnings on the Oculus Rift.

Figure 2.2A Age Distribution Census Chart Orange County Florida (public Government domain data)

As can be seen from Figure 2.2A, a good portion of the audience is from age 15-39. These
are ideal marks to hit since many parents want to get something their teens can enjoy or
even themselves. Within our county area there is roughly 200,000 individuals who fit our
criteria making. The full numbers for the above graph can be seen in Figure 2.2B.

The customer will have to be warned of the health risks involved in using the Oculus Rift.
Large, elaborate vocabulary is used in disclaimers that simply come down to risk of nausea
in those not used to using the Oculus Rift and risk of seizure in those with epilepsy.
Nonetheless, these are important to ensure that the user can have a safe and enjoyable
experience. It is important the the customer understands how to properly use our devices,
and proper detailed instructions will be included in our user manuals once our product is
complete and well documented.

10

Figure 2.2B: Age Distribution Numbers for Figure 2.2a

The above table displays the figures for the census of Orange county region in the year
2000. Age range of 15-39 makes up 20.66% of the 49.5% male audience and 19.89% of
the 50.5% female audience. This is 15 years old for a census chart but the numbers for this
age bracket have not fallen far from the mark as the 15 years would leave most percentages
in the area of 3.5% - 4.5% still factoring in about 100,000 individuals from both genders.

The below sections list out the needed portions for the customer’s use and enjoyment of
the project devices. The better performance available the better the entire experience.
Though the customer must also be aware of the potential hazards of using the equipment
involved. The times for use and directions will be explained later. Main focus will include
the major components and the environment they are meant to be used in.

Quadcopter

● Quadcopter should be in a controlled environment. No other users in the testing
area.

● Flight time should be anywhere from 2-5 minutes.
● Full free range movement within the respective controlled environment.
● Fail safes for loss of control of the Quadcopter.

Glove Controller

● Glove size should be a one size fits all or adjustable glove.
● About a cubic foot of room should be given for where the user will be moving their

hand while controlling the Quadcopter.
● Buttons on the Glove and functions designed should be clearly labeled.
● No pieces on the Glove should be loose or detached while in motion.

11

Oculus Rift

● Headset should be configured for each user by utilizing the configuration software
before beginning a virtual reality experience. Discomfort may be experienced if not
done.

● Children under 13 should not use this device unless monitored by an adult.
● Safe environment: The headset limits vision and as such the customer must be

aware of their surroundings.
● Seizures: Any individual who has experienced a seizure, loss of awareness or other

symptoms linked to epilepsy should consider first visiting a doctor before using this
device.

Environmental

● System should ideally be run in dry indoor environment
● Withstand indoor household temperatures ranging from 60-80F
● Avoid rainy environments when piloting craft

 2.2.1 Performance

The customer will need the controls of the quadcopter to be highly responsive. The video
stream will need to be as close to instantaneous as possible. Since this is a reality-based
virtual reality performance of a modern-day dog fight (that is, it is a fight between two
aircrafts to see who is more maneuverable and whose responses are better) then the
customers will need their equipment to be as responsive as if they were in a cockpit. This
poses some issues as due to the nature of the system, with the user wearing the Oculus Rift
headset their visibility is limited to only that of the copters onboard cameras. The controller
should be able to be used with minimal coordination or external inputs. Any delays in the
video feed need to also be minimized to ensure that the user does not experience crashes
or delayed inputs in their flight.

12

Task Expected Time Ideal Time

Video Feed delay .01ms .001ms

Controller signal response
(X direction)

0.001ms 0.0001ms

Controller signal response
(Y direction)

0.001ms 0.0001ms

Controller signal response
(Z direction)

0.001ms 0.0001ms

Controller gyroscope
response

0.001ms 0.0001ms

Correction accuracy (in X
direction)

0.001ms 0.0001ms

Correction accuracy (in Y
direction)

0.001ms 0.0001ms

Optional Laser trigger time 0.001ms 0.0001ms
Table 2.2C Ideal time chart for performances.

The above table is based off of our collective knowledge as it stands with the relating
technology. The more we experiment and research with our pieces of equipment, the more
we will know on how the equipment reacts. This chart, we expect, will be edited upon
numerous times throughout the project.

2.3 Realistic Design Constraints

Below are listed the related Realistic Design Constraints pertaining to the main functions
of our project. Functions within the constraints include:
- Wifi and remote control
- First Person View systems
- Cameras
- Unmanned Aerial Devices

The following sections will define the ABET Constraints and ANSI required standards.

13

 2.3.1 Economic Constraints

We will have an economic constraint of a total of $1200. Each of us will contribute $300
of our own money to be pooled together in attempts to create this project. Already, about
$300 has been used for buying the Oculus Rift. This gives us a remaining $900 to work
with. Besides this, we have a working Quadcopter that will hopefully be able to meet the
criteria we have set before it. Though researched, the quadcopter has been used before and
as such, could be damaged beyond what we see.

Economic Constraints Summary

1. Keep total costs under $1200

2. Oculus Rift and Quadcopter are most expensive pieces.

3. WiFi Adapter and Raspberry Pis will be second largest expense.

4. Glove components will be the most minor expense.

5. End-goal will be to have cheap, straightforward replacement parts.

Table 2.3A Summary of Economic Constraints.

Optimally, we will not be needing nearly this amount of money. The two large purchases
are the Oculus Rift and the Quadcopter. The glove with the microcontroller, accelerometer,
gyroscope, and attached host machine will be a minor expense. Then the WiFi adapter and
Raspberry Pi’s will be more than the glove’s components, but less than that of the Oculus
or Quadcopter.

The hope of the project, given an ample amount of time, is for us to create a new version
of laser tag that would use out virtual reality quadcopters. So it would be optimal that our
project would become a product to establishments that have arcade components. This
would be the perfect controlled environment while bringing in profits for our establishment
customers. In such a setting, we want our product to be as cheap as possible.

The cheaper we can make the product, the easier it is to replace. This would appeal to both
us, the ones making and testing the product, and the company, the ones buying and paying
for maintenance of the product. Instead of trying to convince a company to buy an
extremely large and expensive piece of equipment, we would be selling an extremely
portable, relatively inexpensive, product that needs just a small, windowed room.

14

 2.3.2 Environmental, Social, and Political Constraints

As stated before if the eventual hopes of finished production, the quadcopter will be in an
enclosed room hosted by the establishment consumer. Thus, in terms of noise pollution,
the finished product will be entirely contained and without consequence. The quadcopter,
glove, and host machine will all work off of electricity, so there will be no worries of
environmental pollution, either.

Environmental, Social, and Political Constraints Summary

1. Enclosed room will reduce noise pollution.

2. Electricity power will add no environmental pollution

3. Plastic pieces and available sources make disposal of parts environmentally friendly.

4. Single-handed glove will make it more accessible to those with one working hand.

5. Lack for need of movement makes it more accessible to disabled personnel

6. Monetary constraints will depend on establishment holding said technology.

7. The entire project will have no racial or sexual bias.

8. Companies like Arduino will be compensated for their programming environment if
this product is, indeed, sold.

9. Product is not meant to encourage violence.

10. Product is not to be used for spying.

11. Employees will be given safety measures to follow.

Table 2.3B Summary of Environmental, Social, and Political Constraints.

Similarly, there will be no water or landscape pollution coming directly from the finished
product. If a propeller breaks, it is a lifeless, harmless piece of plastic that is easily recycled.
The battery is the closest aspect to environmental pollution, but as battery technology
advances, as long as the voltage and current supply are the same, more environmentally
safe batteries can easily be used with our product.

In terms of social constraints, the use of the single glove as a controller will hopefully make
it more accessible to people than a two-handed controller. The use of one hand will make
it accessible to amputees or other such people with a single working hand. Similarly, since
the user only has to use their hand and not their legs, paraplegics can also use our product.
In terms of monetary availability, that will depend on the establishment and how much it
will cost for a single round of the hopefully achieved laser tag. We are hoping for this to
be as accessible as possible. Further in this paper, quadcopter regulations will be mentioned
that the consumer must adhere to.

15

As for political constraints, we are so far self-funded and will probably continue to be so.
We will be using Linux to program the Raspberry Pi(s). Linux is an open source operating
system that is for the public use. We will be using the Arduino environment to program the
microcontroller that comes from the Arduino Uno. This we will have to come to an
agreement with the Italian company on splitting development costs fi it over comes to the
point that we actually have a product to sell and are willing to do so.

Because this is a virtual reality game that depends solely off of shooting an inanimate
object, there will be no inherent negative aspects of discrimination against race or gender.
Along these lines, it is to be advertised as a purely fictional game with no physical
consequences. Damage to quadcopters will more than likely be caused from user error than
actual violence as the user may bump their quadcopter in such a way that it accidentally
crashes.

On a larger scale, this product is for strict use in contained environments away from public
eye. The quadcopter is not designed for use of spying or disturbing others. Violation of
such parameters will be at the hand of the consumer and out of our reach as producers of
material. The product being in an enclosed space will be a large protector from physical
harm that may be caused by a crashing quadcopter. The limited battery will allow for the
establishment housing the product to safely be able to acquire and fix the quadcopters in
such a manner that no physical harm can possibly become of them given that they take the
correct safety measures.

To expand upon this, the battery of the quadcopter can only last so long. So if there is a
malfunctioning quadcopter and an employee needs to acquire it, then the employee can
wait the respective time until there is no possible energy left in the battery. As a
precautionary measure, the employee can also turn off all RC equipment relating to the
quadcopters so that none can accidentally cause a quadcopter to be active when the
employee is attempting to handle said quadcopter.

 2.3.3 Health and Safety Constraints

As stated previously, minor measures can be taken to create a large effect. In the situation
of a malfunctioning quadcopter, the employee can do a number of things before retrieving
the quadcopter from its enclosed space. Firstly, the employee can have all of the equipment
that may be giving the quadcopter its commands turned off. Secondly, the employee can
wait an allotted amount of time until the battery in the quadcopter is sufficiently drained.

16

Health and Safety Constraints Summary

1. Reiteration: Employees will be given safety measures to follow.

2. Enclosed space will provide employee and public safety.

3. Enclosed space will provide lack of noise pollution.

4. Heat from batteries must be handled carefully.

5. No toxic or radioactive materials.

6. Oculus rift will have extensive personal health safety measures.

Table 2.3C Summary of Health and Safety Constraints.

The employee must be careful when handling the battery. The batteries inside the
quadcopter can become very hot when used excessively. As such, the employee can wait
another allotted amount of time from when the quadcopter has finished being used to when
the battery should be sufficiently cooled. Besides when the quadcopter is in use, the battery
can become heated when being charged. As such, the employee can use a cloth to dampen
the heat between the battery and they employee’s hand. These instructions will be
expressed to the purchasing establishment and it will be their duty to inform their
employees.

The fact that the quadcopter is to be in a contained, windowed room means that there should
be no possibility for the safety of the public to be encroached upon. Similarly, the materials
of the walls of the rooms will help in dampening the sound coming from the quadcopters.
So fear of sound pollution should be deterred.

There are no products of radioactive nature. There are no products that have form of
toxicity when handled correctly. The only possibility of toxicity is if an employee uses
tools to physically crack open a battery, which is highly unlikely.

The only cause for safety concern is the extended use time of the Oculus Rift. When used
for a long amount of time, the Oculus Rift can cause nausea. This is easily subsided by not
using the Oculus Rift and having the customer take deep breaths and possibly consume
food that calms the stomach. Thus, very blatant warnings must be executed for those
susceptible to nausea. Additionally, a seizure warning must be displayed for those with
epilepsy or sensitivity to bright, flashing lights.

17

 2.3.4 Manufacturability and Sustainability Constraints

The end result of this project is to have complete instructions on how to make this product
with relatively no thought. There will be layouts for making a printed circuit board where
to replace it, the customer must only give the instructions to someone with experience in
creating printed circuit boards. Additionally, the parts for the printed circuit board will cost
very little. We will give sources for the parts that can be replaced on the quadcopter. Past
the parts given, a new quadcopter will have to be purchased and the quadcopter model will
be provided. Additionally, the Oculus Rift is name branded, so the customer should have
no problem contacting the Oculus Rift company if we cannot help them.

The quadcopters, host machine, and glove will all work off of electricity. With this design,
the entire system will be entirely sustainable given that the establishment customer that
purchases the product has access to an electrical outlet and can recharge the batteries given.

2.4 Deliverables

Amongst the constraints and specifications filling this paper, we need to lay out exactly
what we want to do with this project. Here, we will do that. Below is a bullet point summary
detailing what we want to get done. We are aware that each of us is very busy in our day-
to-day lives and that time is of the essence. Thus, we have separated our deliverables into
two sections: one for what we must get done and one for what we would like to get done.

Deliverables determined for this project are:

● Working Quadcopter system/drone
● Working glove controller for Host machine or Raspberry Pi
● Glove successfully controls Quadcopter
● Oculus rift programmed for use with camera to the drone
● All documents required with the associated parts and components, such as Oculus

Rift user manual. Any documents to accompany will either be added directly or
subdirectly and associated at project completion

Now that we have laid out what we must get done, below is what we would like to get
done. This is a very ambitious project to us since it will be a first time for a lot of us in
working in so many different environments. For example, one group member has never
worked with a Raspberry Pi and as such will have to familiarize himself in order to become
useful to the overall group. As such, the following are things that we aspire to complete
given that the metaphorical planets align.

Optional further Deliverables should time permit:

● Laser calibrated for potential laser tag use
● Additional buttons calibrated to the controller for other uses
● Independence of the Controller as a stand-alone USB plugin for external use
● Ambidexterity to glove components

18

Laser Tag system: There are a couple of issues that would need to be addressed and design
decisions should we decide to implement this. Depending on how acrobatic our copter ends
up being in the final draft would affect some of the major decisions regarding implementing
some laser tag. Because we already plan to overlay a game engine to keep track of possible
readings from the glove, further customizing that and adding crosshairs and “score” counts
might be an easy addition. We can't be sure until we actually begin testing however.

We will be looking into similar DIY laser tag projects and seeing what we can learn from
them. Realistically if we want Copter vs. Copter laser tag to work, that might be beyond
the scope of our project to setup two copters and have them fight in unison, but we would
at least like to try to get a single laser on our copter (Or perhaps implement a shotgun type
spread to increase accuracy, and make up for any difficulties caused by attempting to aim
a laser mounted onto the Copter). If we can setup a single stationary laser we could possible
move onto attempting to synchronize some servos and get a wider range of movement for
the laser. If we can get mounted lasers to be able to target an average sized person wearing
some sort of Laser Tag vest, our product could be marketed as a way for disabled kids.

2.4A: User piloting ORQC in laser tag arena

Kids who would normally not be able to enter the laser tag arenas would then be able to
take part and enjoy the experience playing with other children. This of course would not
be limited entirely to children, but as they are a large proportion of the laser tag community,
we would focus on marketing towards them. We feel this gives a nice spin on our product
while also ultimately accomplishing a good goal. Virtual Reality does not have to only be
for the average person’s enjoyment, but can help closer bridge that gap for people who may
not have had the chance to enjoy things we take for granted.

19

2.5 Estimated Budgets and Finance Plans

Group members understood at the conception of our project that we would likely run into
some large costs. After discussing with Dr. Richie we were warned to expect a minimum
of a $1000 budget that could go upwards to $1500 when taking into account for
replacements and prototypes. Each group member has an income, and found this estimate
to be reasonable. In the early planning stages most of the group was unfamiliar with the
average price of a majority of the components involved in the project, as such it’s possible
we are underestimating the costs. The cost towards the consumer would likely be much
smaller than the development costs as we get a better grasp of our system and where we
can cut costs and be more efficient in our usage components. Because of the nature of the
implementation of Oculus and copter, user costs would likely be mainly centered around
the Hand Controller, and it would be our goal to ensure compatibility with a variety of
copter setups, assuming the user has access to an Oculus Rift. Once more research has been
done, a more detailed budget plan will be outlined.

Due to the high cost of this project, the group will be seeking out alternate methods of
financing. Ideally we hope to seek out some sponsors that may be interested in the concept
and could possibly rent an Oculus for us to use in development for the duration of Senior
Design I & II. Group member Gunnar also expressed possibilities with working together
with his company who could be willing to assist in funding. Group Member Gustavo also
noted that his father showed interest in the novel idea and would like to see it evolve and
saw possible applications in his field of work (Construction), for safe image capturing of
construction sites.

We will outline a more detailed budget in a later section once we get a better idea of how
much funds we have, as well as how any possible sponsorships could affect our total
budget. All costs incurred will be written down as they are made to ensure we have an
accurate log of purchases, and ensure that we are always aware of how much funds we
have left to allocate where necessary. The table below (2.5a) shows a planned budget
distribution of each individual component that will be used.

20

Parts Prices

Copter Components (Propellers,
Hull, Motors)

$100-200+

Flight Controller $50-100+

Sensors $20+

Oculus Rift $300+

Battery $25-50

RC transmitter/receiver $50+

MicroControllers $40+

Raspberry Pi $60-90+

Camera $25-50+

Wifi Transmitter/Receiver $25-50+

Wifi Range Extender $50+

Integrated Circuit Components $10-20+

PCB $10-30+

Total Approximately $ 1000
Table 2.5A: Predicted costs

Further updates to this chart will be maintained as time progresses with the project
construction.

2.6 Scheduling Concerns and Time Limitations

Due to starting in the Summer semester there are a few considerations we have to make.
We have limited time, so it must not be wasted on pursuing alternatives that don't hold
strong enough prospects for our project. We have to be precise and efficient to ensure goals
are met on consistent schedules. As such we find it important that we have clear goals in
mind and establish some estimates of how we wish to divide our work and the time we
wish to allot to it all. All research moving forward as well as our planning and scheduling
will be done with a few key points in mind.

21

● Budget constraints must be kept in mind, however speed is top priority to make
sure we maximize our time.

● Documentation of every piece of research done by group members should be
organized and consistent.

● Plan to meet minimum twice a week on Senior Design 1 class days to discuss new
ideas or concerns.

● Weekly Weekend meetings over skype or similar VOIP software to stay up to date
and review what has been accomplished and needs to be done.

● Aim to complete report with time to spare to ensure we have time to look over and
correct any tiny details.

● Focus early efforts into studying and understanding techniques that we will be using
throughout our project to be ready to dive into work for the upcoming fall semester.

The above key points will help place some focus on group efforts. Consistent
communication is key to ensure milestones and goals are met in a timely manner. To best
make use of our limited time for planning and inexperience with some of the topics we will
be discussing, any additional time spent on learning how to use particular software or how
to interact with hardware, as well as early acquisition of key elements like the Oculus Rift
and Quad Copter Components will be essential to a detailed design report in Senior Design
I, ensuring a smooth development process in Senior Design II.

The start of this coming September will indicate that we have begun Senior Design II and
have started working on the final portion of the project. From September to December, we
are planning to work on the final documentation that will act as our recordings and findings
during the executive stage of this project. Spanning the months of September to November,
we will be prototyping the quadcopter creation and the glove creation. We will also be
testing the software’s created for the glove, the host machine, and the quadcopter all the
while recording our findings in our final paper.

The side objectives, though no less important from the overhead objective, during
September will be to acquire the parts necessary to create each stage of the project. We will
preferably purchase spares of each item to make sure we will not lose time if we have to
wait for another shipment. We will create a prototype of the glove that will at least give
readouts to a standard laptop computer with the Arduino environment on it to test and make
sure that the gyroscope and accelerometer are working. Similarly, we will be creating and
testing the Oculus Rift programming that will be done. We will want to create the
quadcopter with its additional Raspberry Pi, camera, and WiFi accessory. We will also be
verifying that our initial documents, this paper, are correct and that we have no further
research to be done.

During October, testing and writing of the Oculus Rift program will continue. At this point,
it is hoped that the quadcopter and glove prototypes will be ready for each other so that
testing the communication between the two can begin. Once this has some steady ground,
we will be testing the quadcopter, glove, and Oculus Rift together.
Once November comes around, we want to be on more solid ground with the quadcopter,
Oculus Rift, and glove communicating together. As such, we plan that November will be

22

a time of final touches to make sure everything works smoothly. Time permitting, this may
be when we add supplemental material. Running simultaneous to this, we will be creating
our final draft of our documentation papers. And by December, everything will be ready
for presentation.

3. Standards

Standards and regulations are required by law to be instilled within the design process as
to prevent any huge irregularities in construction or design. Without these rules, users may
be at risk or other laws may be broken without prior knowledge. These standards also
provide guidelines and limitations for our designs.The standards and regulations
herewithin are for the safety and use of the customer and the designers to ensure all
requirements can be met without any violations to current laws.

3.1 Standards

Because a quadcopter is considered a small Unmanned Aircraft System(sUAS), it must
adhere to the Federal Aviation Administration (FAA) standards. The FAA has worked
closely with the RTCA to make the available for free online DO-344 Volume 2-Appendices
F & G - Operational and Functional Requirements and Safety Objectives for Unmanned
Aircraft System Standards. Below is a table given by the Radio Technical Commision of
Aeronautics (RTCA) for Unmanned Aircraft Systems Appendix F.

All of this applies to Unmanned Aircraft Systems of classes A through E and then G. Our
quadcopter, being below 20 pounds, is considered to be in class A. There were many more
categories in the Appendix F of RTCA’s Unmanned Aircraft Systems standards, but they
did not adequately apply to our situation and so we deemed them to be superfluous and
unnecessary information. What has been given here called to us to be necessary enough to
give said information and explain the data with reasoning as to why we will be adhering
with the regulations put upon UAS. Besides, of course, adhering to said regulations for
obvious physical and social safety measures.

23

OR ID OR-UAS.1

UAS MASPS
Requirements

UAS Unique Operational
Requirements

UAS shall comply with
National Airspace System
(NAS) operational rules,
regulations, guidance, and
procedures used for
manned aircraft, according
to its type certification,
unless granted a specific
exception by the governing
authority.

References 14 CFR § 23
14 CFR § 25
14 CFR § 91
14 CFR § 121
14 CFR § 135
DO-304
DO-320

Same as Manned

IFR X

VFR Communicating
w/ATC

 X

VFR Not Communicating
w/ATC

 X

Controlled Airport X

Uncontrolled Airport X

Off Airport X

Table 3.1A. Standards given by RTCA for determining regulations.

The table has a lot of bombastic language that means that when a UAS falls under a
category with an X tagged in it, the aircraft must adhere to the regulations that will follow
this section. Because our aircraft definitely falls under the “Class A” category and “Off
Airport” category while not being in the “Same as manned” category, we must adhere to
the regulations. The regulations, as one will see, are very understandable and will be easily
followed given the setting of being in an enclosed, windowed room at the final product.

24

Moving on to the Virtual Reality standards, we are expecting our Virtual Reality to feel
almost instantaneous and fluid. As such, we want a time delay in video feed to be no more
than 0.01ms between when the video is recorded and sent to when it is received and
displayed. We will want similar times to go along with virtual reality movement reaction.
We want 0.01ms or less for the time between one moves their head and when the Oculus
Rift reads this and moves the screen’s position to view the related portion of the picture.

As stated earlier, the Oculus Rift has the possibility to cause nausea in some users given a
set amount of time unique to said user. Thus, through testing on each of us and if possible
through people who accept our invitation to test, we will determine a reasonable time for
an average user to use the Oculus Rift without meeting nausea.

The specific parts for the quadcopter will be held to the standard of lasting at least 100 non-
collisional flights. This number based off of personal use and experience. The normal wear
and tear of flying may cause structural damage to the propellers which may have to be
replaced. Given no collisions at all, the on board Raspberry Pi and its camera and WiFi
adapter should last for as many years as any given modern laptop. Similar standards will
be held for the glove, host machine, and Oculus Rift. SInce they will be largely computer-
based pieces of equipment, their lasting value should match the commercially available
personal computers. It cannot be stressed enough, though, that these standards are held
under the circumstances that the equipment is well looked after.

3.2 Regulations

Here are the highlighted safety guidelines that we will follow as provided by the Federal
Aviation Administration's educational campaign “Know Before You Fly”:

● Follow community-based safety guidelines, as developed by organizations such as
the Academy of Model Aeronautics (AMA).

● Fly no higher than 400 feet and remain below any surrounding obstacles when
possible.

● Keep your sUAS in eyesight at all times, and use an observer to assist if needed.
● Remain well clear of and do not interfere with manned aircraft operations, and you

must see and avoid other aircraft and obstacles at all times.
● Do not intentionally fly over unprotected persons or moving vehicles, and remain

at least 25 feet away from individuals and vulnerable property.
● Contact the airport or control tower before flying within five miles of an airport.
● Do not fly in adverse weather conditions such as in high winds or reduced visibility.
● Do not fly under the influence of alcohol or drugs.
● Ensure the operating environment is safe and that the operator is competent and

proficient in the operation of the sUAS.
● Do not fly near or over sensitive infrastructure or property such as power stations,

water treatment facilities, correctional facilities, heavily traveled roadways,
government facilities, etc.

● Check and follow all local laws and ordinances before flying over private property.
● Do not conduct surveillance or photograph persons in areas where there is an

expectation of privacy without the individual’s permission

http://www.modelaircraft.org/

25

Due to the settings that we are proposing, some of these are inconsequential, but they still
need to be recognized. Since we are proposing the drones to be housed in a room with glass
walls, or at least large windows, then we do not need to worry about losing sight of them.
Being in a building will ensure the drones do not exceed 400 feet above ground and the
room will provide the 25 foot barrier between persons operating or observing. Being inside
will also disregard the environmental conditions of weather.

4. System Design

This project contains a complicated system with many components that must communicate
with each other and function smoothly while still leaving room for future improvements
and features that we discover and may wish to include through the development process.
We have to find a way to have all components of the project work together. We need the
quadcopter to work with the WiFi adapter; the WiFi adapter to work with the host machine;
the host machine to work with the PCB glove; the PCB glove to work with the quadcopter.
This is a grossly oversimplified cycle that needs to work in our project. However, at its
core, our system will consist of mostly “stand-alone” modules (The oculus, the host, and
the glove) that can function on their own. We want to make sure the copter can handle
staying in the air should it lose signal from our Hand controller, and that the Host machine
has fail safes should it lose connection with our video stream and ensure a speedy
reconnection. Having them be able to function semi autonomously will ensure that we
avoid some minor issues like our copter crashing often during testing and such and make
our lives much easier. It is our task to ensure that the Rift ,Copter, and Controller can
function together and consistently. Below is a visual representation of the quadcopter
communicating with the Raspberry Pi which communicates with the microcontroller on
the Arduino.

Figure 4A. Quadcopter communicates with Raspberry Pi which communicates with

microcontroller and vise versa.

26

Figure 4B High Level System Design

On a more detailed level, the individual components of our system have to be chosen
carefully to ensure that our implementations do not conflict with each other. Intensive
research will be done towards ensuring each component we decide on, carries no risk of

27

incompatibility with the rest of the design. Priority will be given to compatibility and ease
of use for each component, to help facilitate early prototyping and testing.

There are a wide range of methods and techniques to accomplish our goals throughout this
project, whether it be the components of the copter (The flight controller, the motor, the
weight etc) the glove (the model of accelerometer, the circuit board, etc) or the software
we will be utilizing in the integration of the oculus and video feed. Research done by group
members on key components and details on the pros and cons of possible solutions will be
detailed below.

4.1 Key Design Elements and Associated Research

As we are combining 4 separate elements together in one project, it is crucial to check for
other projects that have done similar work. Along with these projects we need to look over
specific elements like batteries, different brands of Quadcopters, flight controllers and
cameras. A concentrated effort must be made to ensure that proper research is completed.
Due to the complexity of our project, there are various little details that could be
overlooked, and cause issues at a later time when we least expect it. During our research
there are a few details regarding the components we use that we are looking for in
particular.

We want to weigh our decisions with our limited funding and time constraints in mind. As
we have a smaller time span in the summer semester to dedicate to research and acquiring
components to get hands on experience, care must be taken to ensure any possible choices
we make be affordable and accessible. Most of our early prototyping will likely be done in
the early stages of the upcoming fall semester, to make better use of the longer development
time period. As such most of our research will be towards affordable products and
alternatives, as well as researching similar projects to gain a better understanding of how
to best proceed in the following months. Future drafts will include more detailed
information and concrete decisions as we begin testing our choices and making clear
decisions.

 4.1.1 Related Projects

High 6 - The basis of this project was to integrate bluetooth from an android and the
androids language app to translate signs that were made from a glove with sensors in it. As
a person would sign language out signs and words the android app would translate it for
the receiver. This was meant to bridge the gap for users that don’t know sign language.
High 6’s relation to our project lies in the use of bluetooth to a wireless system and
receiving signals from the glove. In the event we decide to make the glove wireless we can
utilize similar methodology to bluetooth connection to the host machine.

28

Figure 4.1A Enable Talk High 6 Project glove design plan Permission granted

The main difference in their project to ours for the glove portion is that we will be focusing
on the controller aspect of the glove. We are not in need of single digit use though the
group has questioned that potential before as we could measure the changes in finger
positioning to allow for additional commands to be sent to the controller. The High 6 team’s
use for the components on the glove does allow for additional functionality to the project
but again goes outside the full scope of what our glove will provide.

DroneNet: The Quad Chronicles - This project utilizes battery efficiency with UAV
devices. They created a carrier style platform for the UAV to charge its battery from
allowing for extended period of mobilization of the UAV. A few key pieces we can pull
from this project are their recommendations on camera use for the Quadcopter, battery
power choice, and potential methods for resupplying the battery on the go. The carrier
drone platform used a home built recharging platform known as the Bedini motor.

29

Figure 4.1B: Bedini motor development DroneNet. Permission granted for use of picture

The Motor system displayed above is only one of the many components this team used in
completing their project. Another major choice they underwent was deciding what camera
system to use with the Quadcopter. Decisions were met with either the GoProHero3 or the
Raspberry Pi camera. The Raspberry Pi camera was a solid choice among the the two but
with additional funding granted the team decided the GoPro may prove more valuable due
to its on personal battery, which could outlast even longer extended usage that the platform
would provide.

30

Live Two-Camera Video Stream from Raspberry Pi to Oculus Rift through
GStreamer - Torkel Danielsson (Permissions granted for mention)

The basis of this project was a home live-streaming experience. We stumbled upon this
project in the early planning stages as we were researching possible methods to stream
compatible video to an Oculus Rift. This project confirmed our expectations that the
Raspberry Pi would be a suitable platform from which to stream video. The Video Stream
setup is quite simple, it consisted of a single Raspberry Pi: Compute module, with two
Raspberry Pi cameras interfaced to it. Both cameras had a wide angle lens module attached,
and were positioned to provide a 180x120 degree FOV with minimal delay over an IP
connection.

All video encoding was capable of being done on the fly within the Pi itself before being
sent to his home computer to be then displayed on the Oculus. This project utilized a
VideoCore GPU to provide the power necessary to do the live encoding, which we will be
looking into as a possible component of our host machine. The Raspivid function from the
Raspbian OS pipes video feed into Gstreamer which is sent over an RTP protocol to a PC,
this setup is almost exactly what we envisioned and will be pursuing further contact with
Mr.Torkel for possible assistance and tips regarding how we may utilize similar techniques.
His full setup consisted of 4 instances to properly encode this large field of view, so
downscaling his project techniques should be quite feasible for what we wish to
accomplish. Further contact will be pursued to get a better grasp on how he managed his

Figure 4.1C DIY Laser Tag System by user MacDynamo on Instructables *(Permissions

pending for mention and reprint from MacDynamo)

Through our early glances at Laser Tag Systems we came upon this project that seemed
to fit our interests. A full part list as well as build instructions detailed a quick buzzer

31

system using cheap breadboard components (under $20 total build price) to simulate a
target using photo resistors.

Being built primarily on a breadboard, with which we all have experience with this is an
easy to make little bundle that any member of the group could put together when we want
to begin testing lasers. It works with a generic store bought laser pointer so we don't have
to worry about looking for fancy parts. There is no programming required either, so of
course we would have to pursue better alternatives once we begin to implement a scoring
system and such, but this cheap build will let us attach it onto someone's shirt and start
getting some target practice with any early prototypes of our laser tag system, and maybe
we could even expand upon this by connecting a microcontroller such as a BASIC Stamp
2 board, or an arduino if we want even more functionality.

 4.1.2 Batteries

There are quite a few limitations that we must overcome. To start, we have to keep in mind
the battery limitation of quadcopters. In an ideal world, quadcopter batteries would last for
hours at the least. Realistically, however, an average time for quadcopter flight is about
seven minutes. What would be considered a very large amount of flight time is doubling
this to fourteen minutes. As well as just powering the copter itself, we have to worry about
the batteries being used to power the Raspberry Pi and camera bundles attached to the
copter.

So we are going to look at what is available to us and decide which way we need to go.
First, we will look at the batteries we have found that would suit the HPQ1 quadcopter that
we currently have available. We are going to look at the standard battery that comes with
the quadcopter, the Turnigy 4S LiPo Pack, and the Multistar High Capacity 3S Multi-Rotor
LiPo pack.

The standard battery that comes with the HPQ1 have a voltage of 3.2V. So when
researching other batteries, we are going to want to keep within this range and not deviate
too extremely. It has an ampere hour of 2200mAh while boasting an average of 14 minutes
on the official site. Its discharge rate is 20C and the entire battery is 180 grams. Costing
$69.95, this battery is our lightest option with the lowest ampere hours. We are hoping that
this will be enough to power everything we need and keep the quadcopter in the air high
enough and long enough. Testing will tell us whether or not we need to switch.

The Turnigy 4S LiPo pack caught our eye with its whopping 5000mAh that would spell
twice the amount of flight time as the standard battery. Conversely, its weight is also over
twice that of the standard at 556 grams. But depending on the resulting weight of the
Raspberry Pi, camera, and WiFi adapter, this may be completely in our range of weight. I
say resulting weight in the foresight that one of the chosen components for the video
streaming may not be powerful enough and a heavier, more capable part may be chosen.
The Turnigy has a discharge rate of 30C with 3.7V per each of the four battery cells. The
Turnigy’s retail price of $37.39 makes it much more affordable than the standard HPQ1
battery, but its weight deters us and makes us continue looking for better possible options.

32

Coming to the Multistar High Capacity 3S LiPo pack, it also has 3.7V per cell. With
4000mAh, it is still significantly more than the standard, and with only 244 grams it is less
than half the weight of the Turnigy. Multistar has similar discharge rate as the standard at
20C. And at $19.96 , it is our cheapest option. Coming down to price, weight, and ampere
hours, the Multistar is our most viable option given that the standard battery does not
complete the job needed.

In the event that we need to use a different quadcopter, we also need to analyze the available
batteries for it. Thus, the following is an analysis of the batteries we have found available
for the Traxxas 6608. Similarly with the HPQ1, we will start with the standard battery that
comes with the Traxxas, then move on to the ZOP LiPo battery and then the Syma X5C-1
X5C X5A.

The standard battery that comes with the Traxxas 6608 has a voltage of 3.7V. As such, we
will be researching batteries that stay close to this range of voltage. Having 650mAh and
20C discharge rate with boasted flight time of maximum 15 minutes, it should be easy
enough to find a replacement battery with more ampere hours. The standard battery weighs
8.5 grams with $10.56 per battery. The lightness of the battery gives us an idea of the
amount of weight the quadcopter can carry. This would mean we definitely would have to
power the Raspberry Pi off of the quadcopter’s battery instead of attaching a battery of its
own onto the quadcopter. This is doable, but it is not prefered.

Moving on to the ZOP LiPo battery, it also has a voltage of 3.7V with a 20C discharge rate.
The ZOP has an incredible ampere hour of 1000mAh. Though not quite double the time of
the standard battery, the difference is significant enough to have a sizable increase in flight
time. This does mean, however, a much heavier weight at 35 grams. The manufacturer does
not release the exact amount of weight the Traxxas has for it maximum payload, but this
weight may be too much even for estimates found. At $9.98, it is our cheapest option, but
our most unlikely due to weight.

The Syma X5C-1 X5C X5A, as with the other two choices, has a voltage output of 3.7V
and a discharge rate of 20C. The Syma has 680mAh, which is larger than the standard
battery, is almost twice as heavy at 14.17 grams. For not even 10% the battery life of the
standard battery with over 150% the weight, this battery is highly unlikely to be our choice.
Its price of $14.00 makes it even more so.

If we need just a little bit extra time, the Syma battery will be our first choice, but until we
hit that point, the standard battery that comes with the Traxxas 6608 will be our battery of
choice for that quadcopter.

 4.1.3 QuadCopters

The quadcopter will also have to support the weight of the components we will want to
attach to it. It needs to support the added weight of the raspberry pi, the power supply of

33

the raspberry pi, the camera attachment of the raspberry pi, and the transmitter that will
communicate between the camera and the host machine over WiFi. Balancing of the weight
must also be taken into consideration so we do not hinder the flight capabilities of the
copter. As such we will be looking at a variety of possible build kits as well as researching
individual components to be used in any copter prototypes.

Early on we found we had access to a model copter called the HPQ1 Rotor Concept
controller, this copter is advertised to be fully ready to fly out of the box, and controlled by
a standard 6 channel digital radio receiver, as well as an already integrated flight controller
board with advanced barometer, accelerometer and magnetometers. The 3 Axis gyro and
inertial based self-stabilization system (with 6 DOF) as well as fail safes for signal loss and
low battery make this a strong start in our testing and development. Some important details
about the safety features provided by the copters built in flight controller that are of interest
to us are visible below.

Loss of RC Signal

● In case of RC signal not being detected during flight, the aircraft will enter the
security protection mode (SPM)

● In SPM, the aircraft will emit a long “b-e-e-e-e-p” tone intermittently.
● The aircraft will not fly until an RC signal is received from the controller.

Start-up throttle protection

● During power up, if your radio throttle stick is not in the lowest position (zero
throttle), The SPM will be activated.

● In this state, the aircraft will not respond to any command until the throttle stick
is placed in the lowest position.

In-flight Protection during RC signal loss

● a. If RC signal is lost or interrupted while in flight, the aircraft will immediately
self

● land and an intermittent beep tone will also be emitted.
● b. When RC signal is regained, this protection will be deactivated and the aircraft
● can continue flying

 Low battery protection

● Upon detecting low battery, the aircraft will beep intermittently while still flying.
● Please land as soon as possible and replace battery.
● If this warning is ignored, the aircraft will slowly power down and self-land. You
● Still have flight control during this time, but not throttle control.
● Default is 3.2 volts per LiPo cell.

Table 4.1C: Safety Features List for HPQ1 Copter (Permissions pending from
rotorconcept.com)

34

This copter comes with various features that are also included in most high cost copters,
itself costing a steep price of $899, so having access to this copter will possibly greatly
reduce our budget limitations as we can then focus more on other aspects of our system.
Its maximum payload capacity (up to 1.2 pounds) utilizing higher performance blades than
what comes bundled with the standard will also be taken into account for any early
camera/battery setups.

For backup we will still be considering looking at alternative flight controllers and products
in case we need more prototypes or wish to implement multiple copters into our system, as
this all comes pre bundled we may run into some complications if we cannot replicate a
similar rc signal/receiver’s functionality into our hand controller then we might have to
drop support for this copter. Regardless, early testing will still be alleviated in the Oculus
Rift integration department, as the inner workings of the copter are of little relevance to the
camera module system we will be installing onto any copter we end up using. Any
complications that arise once we begin integrating the hand controller will be dealt with as
the need arises.

 4.1.4 Flight Controllers

The decision of the flight controller is very important, as it will decide how much
customization we can include into the controller. The implementation of the flight
controller could affect whether we will use RC controls or whether we can send input
signals over WiFi. These are important issues that need to be taken into consideration. If
we utilize RC controls we may lose out on digital features we could have added to our
overlay to help with flight controls. But we gain affordability and a wider range of
accessibility. Having RC controls would be preferable for any outdoor setting where we
might not have access to a strong wifi signal (such as having to resort to a phone hotspot
for example), and would keep in line with our attempts to make each major component its
own singular functioning system.

If we consider keeping our controls over WiFi we have to consider the bandwidth
requirements and costs of extra transmitters and receivers, as well as extenders if we wish
to expand into longer ranges besides indoor use. There are various flight controllers on the
market we can choose from, as copters and miniature aircrafts are a common hobby, we
simply need to choose one that will fit our needs, preferably with GUI’s that are easy to
navigate, possibly GPS features to assist in fail-safe situations or to assist with the controls
of the hand controller to avoid crashes and user errors, as well open source development
so we can customize any small details we might require for features. Consideration is also
going to be taken into possibly programming our own flight controller.

Flight controllers of particular interest that appeared during research were the OpenPilot
controller, MultiWii controller, and the ArduPilot flight controller systems. Of particularly
notable mention is the MultiWii series of controllers [?]. The MultiWii software is open
source as was originally developed to utilize the the gyroscopes and accelerometers from
the Wii Motion:Plus and Nunchuck accessories, but future improvements allowed
compatibility with other sensors. It is also commonly integrated using an Arduino board

http://www.multiwii.com/

35

which group members have showed personal interest in utilizing in our project. An
extensive list of instructions and forums for help are located on the host site, as well as a
detailed overview of a sample project including RC components and the building steps for
linking the microcontroller with the PCB from the Wii accessories, which would be of
great assistance. The affordability of using WiiMote accessories could help drastically
lower costs for replacements ($20 average), and the ease of purchase would possibly save
us as we could purchase these accessories off various major retailers that contain any
electronic entertainment sections. (Best Buy, GameStop, Target).

There are basic setups for connecting the two pcbs that generally only require a few
connecting wires. Below is an example of the module being connected to an Arduino Pro
Mini that seems like an affordable and easy to implement option that can be accomplished
with basic soldering. Having easy to build, and more importantly with clear instructions
are a vital component of our project, as many of the group members are inexperienced with
soldering and have little hands on experience messing with PCB’s the abundance of
information specifically towards the implementations of the MultiWii could be a great
asset. Even should the group discover more effective alternatives, a considering has been
made towards acquiring a MultiWii setup for the purposes of experimenting in early
development stages, which could help when we move on to the development of our hand
controller.. Below are some images detailing the process of how we could connect an
Arduino-Mini to the WiiMote PCB’s, with exact pin connections and wires. Similar
schematics are available on the forum, should we decide to use an alternative
implementation that does not utilize the Arduino Mini.

36

Figure 4.1D: Full diagram of pin connections for MultiWii system (permissions pending)

The ArduPilot series of Flight Controllers were originally based on the Arduino family of
MCU’s.Future expansions and improvements however outgrew the Arduino environment
and support for various MCU’s has grown. ArduPilot is an Open Source autopilot software
system that supports helicopters, fixed wing aircraft, and more notably for the purposes of
our project MultiCopters (Specifically QuadCopter). Boasting a large growing community
with support for new developers. There is a plethora of information on site at
http://copter.ardupilot.com/ that would leave us access to tutorials related to further
developing any base code and how to customize it to our needs. The main flight code is
written in C++ which would help us stay consistent in our programming techniques as
group users expressed wishes to code in C or C++. Along with the great support, there is
compatible software the APM:Copter that we could utilize in simplifying the control of the
copter and incorporating auto-pilot features could help simplify the more fine-tuned
controls that might not be feasible on our hand controller.

A list of similar projects are also available on site, and more research will be done to
analyze the different techniques used to implement the flight controller and how we could
utilize similar approaches in our own development. Something important to take note of
however, is the limitations that we would run into, as we would be required to utilize their
hardware and associated compatible sensors to make full use all the features available. The

http://copter.ardupilot.com/

37

group will discuss this in detail, outlining the benefits of time saved and consistency versus
the extra costs that would be associated, and how they impact our capability to stay within
our budget. Keeping in mind that as our main goal is user controlled flight, we want to
ensure we do not detract that experience from the user in favor of taking an easier road in
the development process, as such our decisions will be weighed towards the baseline
functionality the controllers provide with less importance placed on particularly advanced
features that we will not be making use of.. Both controllers are readily available so stock
is not a worry.A closer look will be required to see the ready made autopilots and whether
they suit our needs, or if it will be important to look at other options to ensure compatibility
with our controller. Following is a table detailing some of the differences in two of the
leading choices in flight controller’s with ArduPilot support should we decide to
incorporate them (The Pixhawk and APM 2.6 modules).

Pixhawk APM 2.6

Dimensions Dimensions

Size 1.96 in x 3.21 in x .613 in Size 2.76 in x 1.77 in x 0.59 in

Weight 1.31oz Weight .99 oz

Processor and Sensors Processor and Sensors

Processor 32-bit STM32F427 Cortex
M4 core with FPU
168 MHz/256 KB RAM/2
MB Flash
32 bit STM32F103 failsafe
co-processor

Processor 8 bit microcontroller
Atmel 2560

Sensors ST Micro L3GD20 3-axis
16-bit gyroscope
ST Micro LSM303D 3-axis
14-bit accelerometer /
magnetometer
Invensense MPU 6000 3-
axis
accelerometer/gyroscope
MEAS MS5611 barometer

Sensors 3-axis Gyroscope ,
Accelerometer, High
performance Barometer

Power Servo rail high-power (7 V)
and high-current ready

Power 3DR Power Module with
XT60 connector (5v)

Table 4.1E : Details comparing the Pixhawk and APM 2.6 flight controllers

38

As can be noticed above, the Pixhawk boasts a much stronger set of processors and
requiring more power. Further research showed that the Pixhawk, due to being more
modern, has more consistent support from developers. The APM 2.6 while being a solid
controller, is at the absolute limits of its functionality, using every last bit of processing
power it has to run the compatible ArduPilot:Copter software, and as such leaves little
room for improvement and customization. The Pixhawk built in fail-safes would be of
much interest to prevent damage in our development stages to our copter and anything to
increase safety is well desired to prevent extra costs in rebuilding, much like insurance the
extra cost could be considered worth the price of safety.

A particular detail of importance is PPM functionality common in RC receivers, which
could help with compatibility issues on our hand controller. Of the two choices there is a
steep $50 price difference, but it is possible that the functionality of the cheaper APM2.6
will be enough for our purposes should we decide to use the ArduPilot line of controllers.
The APM 2.6 does not come packaged with full Autonomy and requires a separate GPS
extension, and depending on how much autonomy we want to have on the copter for
backup, we could skip that functionality and lower the cost of the APM 2.6 even more by
not purchasing the GPS module, the main attraction of these flight controllers is the ready-
available flight software for basic functions that we could build upon.

The last flight controller system of note is the OpenPilot line. OpenPilot is another Open
Source project, with a thriving community. It was originally developed with low-cost
stabilization and auto piloting in mind. This software is compatible with multi rotor
systems (from 2 to 8 rotors) so it is more than suitable for our QuadCopter. Because every
part of OpenPilot is open source we have access to hardware designs to print out our own
PCBs and possibly save costs from using a pre-made controller. Every step of their original
software development is accurately detailed and laid out for any new developer to study
and recreate their own similar projects. Again, as most of the goals we wish to accomplish
are in new territories where most of us are inexperienced, detailed steps and guidelines will
greatly streamline our build process in the upcoming Fall semester.

The more we research flight controllers, the more notable the advantages of utilizing a pre
made piece of hardware become. The included OpenPilot GCS (Ground Control Station)
software, that is also open source and freely available allows for easy configuration of the
flight controller’s utilizing OpenPilot software. Any time saved on the copter in the long
run will allow us to better focus our efforts on creating our functional controller. Should
we choose to purchase an OpenPilot flight controller, of notable mention is one of their
earlier models the OpenPilot CC3D copter control due to its advertised easy usage with
Plug and Play functionality as well as Auto-Level safety fail-safes that would be useful to
ensure we do not damage our crafts in the phases of development where we might have
issues with consistent signals as we develop our hand controller. Some more in depth
details about this controller will be detailed below.

39

 OpenPilot CC3D Copter Control

 Features ● Auto-Level support on Tri,Quad,and Hexa Copters
● FlexiPort : Providing both I2C connectivity and dual serial ports
● All associated software is free and open source
● Direct High Speed USB support, Plug and Play
● 4 MBytes of onboard storage

Sensors ● 3 Axis Gyroscope Array (IDG-500 and ISZ-500 models)
● 3 Axis Accelerometer (ADXL345)

RC
Support

Up to 6 PWM Channels, PPM support as well as support for multiple
receivers

Size 36mm x 36mm 4 Layer PCB

Weight .2 oz

Table 4.1F: OpenPilot CC3D copter control specifications

At a first glance, the OpenPilot CC3D has some notable features. The Auto Level support
is something that we were looking for in most of our choices, as our primary concern was
keeping the copter at a consistent altitude in the case of controller failures or loss of
connection. We wanted to avoid the copter dropping back down and possibly damaging
itself. Like previous detailed controllers, a list of similar projects are available and well
documented on the OpenPilot Wiki, and will be a valuable resource.

The main appeal of the CC3D is its low cost, previously detailed Flight Controllers were
in the upper $100 range, some variants in the $200 range. Because we are trying to
minimize our budget as much as possible, due to possibility of needing multiple prototypes
and to take into account component failure, the $100 price tag of the CC3D is incredibly
appealing. It comes with features also available on higher end flight controllers, and while
it does not directly support GPS functionality, that is a feature we are more than willing to
forego, in favor of a cheap and easy solution to autonomous altitude management.

The high compatibility for various forms of RC signals will likely lead us to use this flight
controller in our final build, as the hardest portion of our system to make compatible will
be the controls from the glove. Due to the time constraints of the summer semester and
funding problems, we are unable to truly get any hands on experience with any of the
detailed Flight Controllers yet, but we wish to get a closer look in upcoming Senior Design
II and our first approach will likely be with the OpenPilot CC3D.

40

 4.1.5 Camera

In the early stages of the project concept planning we had discussed incorporating cameras
into the system, and of course that became a necessary component of our final idea to
provide vision to the Oculus Rift. We were however unsure of exactly what kind of camera
we would need to utilize, as various factors could heavily impact our overall design. The
size of the camera and weight are of course of major concern, as we have a limited
mounting platform onto which we can place the camera. This issue was further expanded
upon when the realization (which with further research , a stronger understanding of the
Oculus Rift was obtained) that we would possibly have to accommodate more than a single
camera to properly integrate the full 3D view of the Oculus Rift and maximize the
immersion our customers will experience.

Standard webcams posed an immediate concern for space management on the hull of our
Quadcopter, and we want to avoid clutter to streamline the final design and avoid balance
issues. Pricing on high quality webcams also seemed rather high ranging from $30+ for a
component we expected to be a minor aspect of the build and when we have to get
replacements and test different varieties the cost starts adding up. Common USB webcams
usually either don't immediately support integration with the Raspberry Pi and of course
take up a limited resource on the board, the USB ports, which comes with their own
seperate concerns of power management. These concerns however were alleviated when
we came across a particular piece of hardware.

Figure 4.1G : Size comparison of Raspberry Pi camera and a Quarter

41

The Raspberry Pi Camera module is an add-on built specifically for the Raspberry Pi. It
clips on through on board sockets using a CSI interface specifically designed for interfacing
with cameras. This alleviates the requirements of using up the limited USB ports available
to us on a Raspberry Pi board, as well as gives us a fully compatible video feed with high
data rates (with the ability to send pixel by pixel data). This tiny 25mm x 20mm x 9mm
camera weighs just under 3g giving us a high range of mobility and keeping us that much
closer to the minimum weight requirements we desire. This tiny module boasts of
capabilities up to 5 Megapixels (2592 x 1944) resolution on static images, and a video
recording support that goes up to 1080p30 which is more than enough for either Oculus
Rift development kit we might end up using.

This combined with the full support from the Raspbian operating system (Native operative
system of the raspberry pi) which we will be working with extensively leads us to believe
that this camera will certainly be included in our final build. We plan to get our hands on
these modules as soon as possible into the development process to test data rates and
optimize latencies before proceeding onto the more technical aspects of our project and
attaching it to the copter. The price tag of $30 is manageable within our budget to purchase
2 or more of these early on and begin experimenting, as well as being widely available
from multiple retailers, we won’t have to worry about stock.

 4.1.6 Software

In the process of choosing our programming language we have two main pools of
consideration. There were our main choices, Part A, this is due to either prior knowledge
or recommendations. The second chart, Part B, talks about languages we considered,
however we did not feel they were right for the job.

Since most of our system environment is relatively low level programming we required
our programming to be done in a language that allowed us to have full control of the system.
This provides detailed control that is also quick and efficient. Our goal is to reduce the
hardware requirements as much as possible in an embedded system since our hardware can
limit us very quickly if a poor implementation is done.

42

Programming Languages Chart Part A

Assembly Pros:
- Learning ARM assembly
- Minimize overhead

Cons:
- “Reinventing the wheel”
- Harder debugging
- Significant increase in

development time
- Project’s scope is too large
- Processor Dependent

C Pros:
- Strong Low Level Language
- Manual Control of resources
- Arduino/RPi natively run C code
- Manual Memory Control
- Most of the group knows C

Cons:
- C can be unforgiving
- Manual Memory Control
- Lack of OOP
- Portability
- Lesser “Reinventing the wheel”

C++ Pros:
- OOP Concepts
- C++ is a superset of C
- STL library
- More common in Game Engines

Cons:
- Poor GUI libraries
- Portability
- Learning curve

Table 4.1H: Programming Languages chart

43

Programming Languages Chart Part B

C# Pros:
- Strong Windows support
- Unity Game Engine support

Cons:
- Fairly Windows specific
- Runs in a Virtual Machine

Java Pros:
- Relatively easy language
- Cross Platform (JVM)

Cons:
- Runs in a Virtual Machine (JVM)
- No Garbage Collection control
- Poor application footprint

Languages brought up for consideration:
Ada - For employable experience, and it is used in controlled systems.
Python - Did not feel it would handle the low level stuff well, in addition to being too
high of an abstraction for our needs.
PHP/Ruby - Would have been an approach if we had a web interface, since we felt
these technologies were better suited for the web.
Javascript - This is in the same situation as PHP/Ruby, however Unity game engine
does utilize Javascript, so depending on our implementation of Unity we may use
JavaScript.

Table 4.1I Programming Languages Chart

With our system in mind we planned on using primarily the C language. Where Object
Oriented methodologies would help we could easily feed data from a C program into a C++
program. We felt that Java unfortunately could become way too bloated since garbage
collection in Java is not nearly as clean or strong a s the C languages. C# really did not fit
the cut either since it is a language primarily used for Windows-based machines, our goal
is to have everything within a linux environment.

However the exception here is that we will likely use C# for the Unity game Engine, trade
off with that engine discussed further below. While assembly was considered, we quickly
realized that due to the scope and amount of programming going into this project, that a
team of two dedicated software developers would not be able to successfully implement
everything needed in assembly in such a short time, and we felt that the performance gained
from writing assembly would be minimal compared to C.

Our goal was to aim for a system that primarily used Unix-based Linux and try to contain
the technologies to as little diversity as possible. However implementation details have
lead us to believe we may need to branch out to the Windows operating system as well.
Initially we wanted to avoid this as to make our network programming easier, since

44

Window and Unix machines have different libraries built in. We also felt that Linux would
give us a stronger control of our system, particularly if we felt the need to use BASH
scripting for our environments or just have general hardware/software configuration
control that is not as obfuscated as Windows. The specific distro of linux we are planning
on using is the Raspbian distro. We debated between Raspbian and Arch Linux ARM,
however the results became clear that the Raspbian OS was better supported for the
Raspberry Pi since that was the platform it was targeting. More particularly we felt that if
we ran into any problems the community for the Raspbian OS would be of better support
since it revolves entirely around the hardware we plan on using.

Game Engine Comparison

Unity Game Engine (5.0) Pros:
- Excels at mobile market
- Exporting cross platform is easy
- Free version

Cons:
- Pro version
- C# - No prior team knowledge

Unreal Engine 4 Pros:
- C++ development
- Free completely
- Visually Stunning

Cons:
- Traditionally more graphic

intensive

CryENGINE Pros:
- Visually Stunning, surpassing the

others
Cons:

- Monthly subscription
- Steep learning curve

Table 4.1J: Game Engineer Comparison Chart

After our basic analysis of the few game engines that Oculus Rift supports directly, we
decided to go with Unity. While it does create a learning requirement for our team we felt
that an engine that would require less resources would be better. However the game engine
is mainly used for the overlay and feeding video to the Oculus Rift. The goal with this is
ultimately to utilize the Raspberry Pi as the host machine, however if Unity is unable to
run sufficiently on the Raspberry Pi, then we will likely attempt the same functionality with
the Unreal Engine 4.

45

Programming of the arduino fits right in with our programming language choices, as it
utilizes both C/C++. We will choose to write most of the arduino code in C as we do not
feel we need the object oriented features that C++ presents us. The arduino’s built in
libraries make it easy to read signals from I/O pins. The arduino’s codebase will be rather
small, it will mainly consist of an aesthetic portion and a functional portion. Our plan is to
take in all of the data and convert it into a single memory struct and pass it to the host
machine to send to the quadcopter.

 4.1.7 Hardware

In researching for the hardware, we will start with the microcontroller that will act as the
“brains” for the glove. The microcontroller will be detecting what data comes in from the
accelerometer and gyroscope combination that we will discuss later. The Microcontroller
will then translate this data from the combination into useful directions. For example, the
data from the accelerometer and gyroscope will tell the microcontroller that the glove is
positioned at relative frame (0, 0, 0). In real life, this will mean the user has their hand on
a flat surface. The microcontroller will translate this data as the hand being on a flat surface
and this will be sent to the host machine.

The host machine will then work with the microcontroller to send this direction to the
quadcopter which will accept the command to stay still. Once the glove is raised to some
position (0,0,Z), meaning that the user has raised their hand to some distance Z, the data
that will be sent to the microcontroller will then be different accordingly. The
microcontroller will translate this movement as the hand being raised and will work with
the host machine to give the signal to the quadcopter to rise. The quadcopter will then turn
on its motors and will raise in scale with the user’s hand.

So in deciding this “brain”, we will be considering the TI Launchpad, the Arduino Uno,
and the PRopeller Education Kit - 40. The reason we are looking at kits and boards while
looking at microcontrollers is that the kits and boards will act as a good way to prototype.
Instead of immediately soldering and making a printed circuit board with our
microcontroller, gyroscope, and accelerometer, and any other components that will be
included in our package, we will use a breadboard and the kits and boards, along with the
later to be decided accelerometer and gyroscope combination, to make a changeable and
quickly adaptable prototype.

The TI Launchpad will come with the TI M430G2553 microcontroller. It has 16 data buses
and operates at 16MHz. IT has 16KB of storage, 512B of RAM, 8 digital Input/Output
channels, 8 analog Input/Output channels, and costs $4.30. While the amount of data busses
are incredible for such a cheap piece of equipment, there is not a large amount of RAM or
memory to work with the code we will eventually be giving it. The code we will be writing
will take a large amount of memory for reading three axis of motion and a spherical degree
of rotation. We are very capable programmers and builders, but it would take machine level
language code to make it efficient enough to work on such a small frame, we predict.

46

The Propeller Education Kit - 40 will come with the P8X32A-D40 micro controller. An
incredible 32 bit data bus makes this extremely appealing, along with its 80MHz speed.
It’s storage is a sizable 32.7KB with an incredible 32.7KB of RAM. An interesting aspect
is the large size of digital Input/Output channels being at an exorbitant 32 channels.
Meanwhile, the P8X32A-D40 has to analog Input/Output channels to speak of. The kit,
itself, is $129.99. While this piece of technology is clearly superior to the TI M430G2553,
it is extremely expensive. While it would be luxurious to be able to afford this kit and be
able to use it with one try and get everything working the first time, we are very aware that
we will be making mistakes. Thus, to work with something so expensive, we have decided
to decline using it. Our wallets would hurt too much, and we would be too afraid to
experiment in our attempts to out goals.

Finally, we have the Arduino Uno. The Arduino Uno’s microcontroller is the ATMega328.
Its data bus is a surprisingly small 8 bits while processing at the same speed as the TI
M430G2553 at 16MHz. However, better than the TI equipment, the ATMega328 has 32KB
of storage, just about matching the expensive Propeller microcontroller. However, quite
between the two counterparts, the ATMega has 2KB of RAM. Its digital Input/Output is at
a sizable 14 channels with a smaller analog Input/Output at 6 channels. The entire board is
$24.95, which makes it significantly cheaper than the Propeller kit.

Although not nearly as powerful as the Propeller, and while more expensive than the TI
Launchpad, the Arduino Uno appeals to us as the best choice in dealing with prototyping
and further in creating a working printed circuit board. Additionally, we all have more
experience in working with the Arduino environment than we ever had with working in the
Parallax environment. The Arduino environment also has a few more tools that we have
readable and understandable access to than the Launchpad. Thus, we choose the Arduino
Uno as our “brain” of the glove.

Next, we will be looking at the accelerometer and gyroscope combination. As stated earlier,
the combination of the two devices will be our sensor to measuring how the user is moving
their hand. The direction of movement of the hand (mainly whether the hand is moving up
from the flat surface, or down towards the flat surface) will be largely measured by the
accelerometer. The direction that the hand is in, (whether the hand is bent inwards towards
the user’s body or bent outwards away from the user’s body) will be largely measured by
the gyroscope. It was described before how the position of the hand will affect the
quadcopter’s movement of up and down.

The quadcopter will also know to move forward, backwards, strafe left, or strafe right as
according to the accelerometer. If the user’s hand is at some position (0, 0, Z) and the user
moves their hand away from their body some distance (0, Y, Z), the Y distance will be
measured and put into a range of speed. So if the user puts their hand between distance 0
and Y, the quadcopter will move at speed 1. If the user moves their hand between distance
Y and 2Y, the quadcopter will move ahead at speed 2, which is proportionally faster than
speed 1. And so on. Similarly, if the glove is in position 0 to X, the quadcopter will move
to the side at speed 1, and so on in the same fashion.

47

Meanwhile, if the user’s hand is tilted in such a way without moving the hand, itself, the
quadcopter will turn in scale with the user’s hand. Similar to the above example, if the user
moves their hand between degree 0 and ∅(theta), then the quadcopter will turn to the side
in that direction at speed 1, and so on in the same fashion. Together, this is how the
accelerometer and gyroscope combination will work to translate via the microcontroller
and host machine to the quadcopter on how to move.

In choosing the accelerometer and gyroscope combination, we will be looking at the
SparkFun Triple Axis Accelerometer and Gyro Breakout board, the FLORA 9-DOF
Accelerometer/ Gyroscope/ Magnetometer, and finally the 9-DOF IMU Breakout board.
Once again, we are looking at pre-made packages that have the components needed inside
of them and are ready to be plugged into a breadboard along with a microcontroller “brain”
and be tested. Once thoroughly tested, we will move on to having all of the components
integrated into a printed circuit board.

To start, we look at the SparkFun breakout board. This board has a single component, the
MPU-6000A. It has a gyroscope sensitivity of 250dps, 500dps, 1000dps, and 2000dps. This
is about the range we have determined through looking at more and less sensitive
gyroscopes and accelerometers and have determined this range to be perfectly suitable. It’s
noise is at a workable 0.033dps/sqrt(Hz) while operating at 50Hz. This is manageable, but
not preferable. Its accelerometer sensitivity is 2g, 4g, 8g, 16g. Once again, this range is
perfectly common and coincides with our goals. Its accelerometer noise is at 400
µg/sqrt(Hz) when operating at 10Hz. This, again, is workable, but not preferable. The
package borders on the expensive side while being at $39.95. Although it is viable to use
this technology, we sense that a better option is on the horizon.

Moving on to the FLORA 9-DOF, it also has a single component that contains both the
accelerometer and gyroscope as opposed to containing them as two separate entities. The
part identification is the LSM9DS0. It has a gyroscope sensitivity of 245dps, 500dps, and
2000dps. While not as sensitive as the SparkFun, it is still well within our needs. However,
it is odd because the public data sheet for this part excludes the mention of noise when it
comes to the gyroscope. Further research at professional user reviews show that they have
problems with noise and it is suggested that they work with operational amplifiers to try
and cancel out the noise. This would be a larger hassle than we need and so we are already
starting to shy away from this product. The LSM9DS0 has an accelerometer sensitivity at
2g, 4g, 8g, and 16g. This is exactly as the SparkFun, so we see that the choice between the
two will not be from this portion. Again, however, the data sheet fails to mention the noise
that comes from its accelerometer. Neglecting to mention the noise for either of its main
components seriously discourages us from wanting to use this product. Coming down to
price, it is $19.95. While far cheaper than the SparkFun, we again feel as if there is
something better for our use.

Now we arrive at the 9-DOF IMU breakout. This product does come as two separate
components for its gyroscope and accelerometer with the L3GD20H and LSM303D,
respectively. Exactly like the FLORA, the L3GD20H has a gyroscope sensitivity of
245dps, 500dps, and 2000dps. This works well within our needs. The data sheet reports a

48

gyroscope noise of 0.011dps/sqrt(Hz) while operating at 50Hz. This is one third the noise
of the SparkFun and, we assume from the earlier mentioned customer reviews, much better
than the FLORA. Moving on to the accelerometer, it has a sensitivity of 2g, 4g, 8g, and
16g. Again, exactly as the first two, the accelerometer will be well within our goal of
sensitivity. Its noise comes to 150 µg/sqrt(Hz) when operating at 100Hz. Though at
different frequencies, the noise level is much lower than the SparkFun accelerometer noise.
To add to the fact, the price of the 9-DOF IMU breakout board is the same as the FLORA
at $19.95. Being much cheaper than the SparkFun with less noise, we have decided to work
with the 9-DOF.

We realize that with two different parts, it means that we will possibly have twice the work
to try and get it all to communicate, but with enough practice with the breakout board, we
are certain we will overcome these challenges. Another addition to using this breakout
board is a “guaranteed” voltage overload protection. Thus, theoretically, this board will not
burn out and its components will be protected when testing the product. This safety
measure will help immensely when testing this product.

As we will attempt to use a raspberry pi as a host machine, further details about the various
modules and their capabilities will be outlined at a later point in our discussions about our
host machine and its use in our camera module that will be attached to our copter. This will
have to be researched and tested to see if the raspberry pi can handle the Oculus Rift, the
glove, and the WiFi transmitter that will communicate with the camera on the quadcopter.
We will also have to make sure that the raspberry pi used as the host machine will have a
portable power source that can handle all of the added components. For the purposes of
development, we will likely be utilizing a group members personal computer as our host
machine, until we can optimize our system to a point where we have a more solid grasp on
the requirements and can downgrade to a smaller machine for portability and ease of use.

 4.1.8 Oculus Rift and related subjects

Another major component is the Oculus Rift itself. The details of the hardware itself are
fairly easy to find and are not particularly of interest to the design, however the
implementation of common apps and software that contain Oculus Rift compatibility are
of great interest to us. There are currently two major models of the Oculus rift. The
Development Kit 1 and Development Kit 2. The decision of which model we will choose
to use could greatly affect the ease with which we can integrate the Oculus Rift into our
system, so we will be taking a close look at the differences between the two models and
the support available to each to better decide which model is realistically obtainable, and
whether the limitations associated will be worth the costs. A detailed comparison and
discussion of the important features between both Dev Kits will be detailed on the next
page.

49

Oculus Rift DK1 Oculus Rift DK2

Display Display

Resolution 640 x 800 per eye Resolution 960 x 1080 per eye

Refresh Rate 60 Hz Refresh Rate 75 Hz, 72 Hz, 60 Hz

Persistence ~3 ms Persistence 2 ms, 3 ms, full

Viewing Optics Viewing Optics

Viewing
Optics

110° Field of View
(nominal)

Viewing
Optics

100° Field of View (nominal)

Interfaces Interfaces

Cable 10′ Cable 10′ (detachable)

HDMI
included

Yes HDMI Yes

USB Device
included

Yes USB Device
included

Yes

USB Host USB 2.0 (requires DC
Power Adapter)

USB Host USB 2.0 (requires DC Power
Adapter)

Positional
Tracker USB

USB 2.0 Positional
Tracker
USB

USB 2.0

Table 4.1K: Rift comparison

At a brief glance, the two devices are similar in terms of interfacing, as such with either
decision we would likely run into the same issues or lack of issues where cabling and power
are concerned. The most notable improvements between the DK1 and DK2 models
however, is the quality of Optics. While the DK1 has 110° FOV (vs 100° FOV for DK2),

50

the DK2 offers a variety of refresh rates rather than the static 60hz as well as a much higher
resolution of 960x1080 per eye. As well as better persistence rates. To achieve our highest
possible quality we will most likely be looking more closely into the DK2 model for our
purposes. To make the best use of the HD capabilities of the Raspberry Pi: Camera module
we plan on using, our best approach is to make the most out of the possible resolution rather
than having to scale down and lower the quality of our video feed. The quality, and range
of freedom in our refresh rates will likely be worth the tradeoff of lessened support, as the
DK2 has been available for a shorter time, apps and support software available to it are not
as widely available and detailed compared to the DK1, as well as the increased costs
associated with the newer model. Below is a chart listing the sensors and minor details of
the two Development Kits.

Oculus Rift DK1 Oculus Rift DK2

Internal Tracking Internal Tracking

Sensors gyroscope, accelerometer,
and magnetometer

Sensors Gyroscope, Accelerometer,
Magnetometer

Update Rate 1000 Hz Update Rate 1000 Hz

Positional Tracking Positional Tracking

Sensors CMOS Sensor Sensors Near Infrared CMOS Sensor

Refresh Rate 60 Hz Update Rate 60 Hz

Weight Weight

Weight 380 grams Weight 440 grams (without cable)

Included
Accessories

HDMI to DVI Adapter
DC Power Adapter
International Power Plugs
Nearsighted lens cups
Lens cleaning cloth
Control Box containing
switches for
Brightness,contrast etc

Included
Accessories

HDMI to DVI Adapter
DC Power Adapter
International Power Plugs
Nearsighted lens cups
Lens cleaning cloth

Table 4.1L: Detailed breakdown of differences between DK1 and Dk2 (Permissions granted from
riftinfo.com, see appendix)

51

Because support is hard to find, and from looking up information of similar projects
working with the Oculus it's easy to see how many complications arise. Due to the nature
of the screen itself on the oculus (the screen is the lcd from a samsung note 3), to get a true
3d view any video feed must be stereoscopic to get the full effect and the resolutions must
be properly configured for each eye. While it is possible to use a basic 2d video feed, a
layer of distortion would need to be applied anyway to help with visibility, as without that
layer the users may experience dizziness and disorientation.

Further research will be done to see if we can accommodate the need for stereoscopic video
on a software level, while still being able to use a single camera. And we will be weighing
the costs and work involved with this implementation or opting for a dual camera setup
utilizing the Raspberry Pi:Compute version of hardware that comes with two USB ports
and dual camera functionality. As we are fairly confident in our decision to utilize
Raspberry Pi's we will be utilizing a particular software program called GStreamer to pipe
our feed from the Raspberry Pi to our host machine (utilizing Real Time Protocols), once
we receive this feed we must add a layer of distortion to simulate a 3d view. With a single
camera we would be required to first split this feed and then stitch it together, which could
cause extra delays, while a double camera setup would be more tasking on bandwidth but
would provide an easier to manage video feed (having each camera mimic an eye).

 4.1.9 Possible Solutions

Discussed in this section are main ideas for the various components as a resolution to the
problems brought out in the previous sections. Such components include battery,
Quadcopter, Camera, Flight Controller, Game Engine, and Control Signal

Battery: To help with the power problem, we will have to find a battery that has a better
life-span than the pre-equipped battery. When dealing with the quadcopter, however, this
is not as simple as getting a battery with a larger milliamp per hour lifespan. This is because
the larger the lifespan, the heavier the battery. The heavier the battery, the more the load
on the quadcopter. Thus, the new battery must be carefully evaluated and the weight of the
Raspberry Pi, the camera, and the WiFi adapter must be weighed in and considered when
choosing a battery of larger lifespan.

Conversely, if our design permits us to be able to use the Raspberry Pi as a host machine,
then it will be extremely simple to get a battery with a larger life span. Since the user will
simply be seated either at a desk or on the ground, then a battery large enough to power the
Raspberry Pi’s weight will be inconsequential. Batteries advertised specifically for the
Raspberry Pi boast a few hours of operation, which is more than enough for a quadcopter’s
maximum flight time of 14 minutes.

QuadCopter: To help with the weight lifting problem, different propellers will be used than
the ones initially equipped. Three-leafed propellers will provide better lift while making
the blades longer will increase efficiency. This may reduce battery life due to larger power
output, but it is a necessary trade-off. We will be looking into various hobby shops and
similar retailers to find effective light weight wings for our copter. No particular propellers

52

have caught our eye yet, but once we have developed our video streaming module and have
a more exact load requirement we can make better decisions towards what components we
will be using.

Camera: The Raspberry Pi: Camera module offers too much support and accessibility to
overlook. The resolution it can achieve alone puts it on a higher grade than any average
webcam we could consider purchasing, not even beginning to mention its compact size.
The cost also keeps it in line with an affordable baseline, in case we need replacements. A
double camera setup is currently appearing to be our most appealing build path, given the
previous concerns of syncing two separate camera feeds are greatly simplified due to the
built in tools and support offered by the Raspberry Pi itself. Our original issues of requiring
a separate Pi for each webcam along with the signal strength to send both these feeds in
real time can be nearly completely eliminated, while staying within the original planned
budget costs we associated with any camera hardware.

Flight Controller: Of the Flight Controllers we researched the OpenPilot and MultiWii
software and associated hardware both seemed to be bright prospects. Both were relatively
affordable and provided similar features that interest us, such as the Auto Level support to
assist with failsafes. Both were also not fully autonomous compared to the other controller
we found (ArduPilot), and that fits better within our interests, as we simply want to get
some basic functionality. The end goal is of course that control of the copter is mainly done
by the Hand Controller we create, as such all the extra bells and whistles of autonomous
flights aren't particularly necessary to us which can help us cut costs and avoid the higher
end flight controllers. The guaranteed compatibility with common RC receivers and
transmitters make them all promising choices.

Video Feed: Regardless of which engine or operating system we decide to move along
with, all of our research leads us to believe that Gstreamer software is our best bet at feeding
our video. It is supported by various ARM, Linux, MACOSX and Windows platforms so
we would have no worries about compatibility. A well-documented Core Library with easy
to use and understand AI’s, pipelining tools and an advertised capability to provide high
data rates/low latency using their light weight data passing functions. Full access to
documentation on their home site, with easy connections to developers for any questions
we might have make this a strong option.

Game Engine: Unity seems like a strong contender for our game engine of choice to create
our graphical overlays to use with the Oculus Rift. Unity Pro is easily accessible, although
the release of Unity Free integration with Oculus will be a great asset in early development
to familiarize ourselves with the engine and its tools. Lens corrections, layered cameras,
and direct rendering functionalities appear to make it the best choice currently available to
get working early and quickly. Pending any further development from other engines that
may arise during our production period.

Control Signal: The initial debate on control signal for our QuadCopter was reliant on what
flight controller we wished to utilize. We considered RC controls vs sending input signals
over Wifi, while we realized that the WiFi signals could give us freer reign over how we

53

control the copter and how much integration we can include between the controls
themselves and our graphical overlay on the Oculus Rift. Bandwidth concerns arose of
course, and the majority of flight controls are all RC based so it felt like we would be
making too much unnecessary work for ourselves. Overall, it seems RC is the best choice,
and will cause us the least issue. The individual components we will use have not been
decided yet, but there are a wide variety of choices we will take closer looks into.

 4.1.10 Decision Criteria and Justification

Weight: The size and weight of the camera is very important. Between the batteries and
the camera itself, they will be taking a good portion of the total load the copter can carry.
Minimizing weight will be an important criteria for any hardware and components we wish
to use in our project.

Resolution: Camera resolution should ideally be as close to the default resolution of the
oculus, however any discrepancies could be dealt with on a software level. Bandwidth
usage is another issue; we have to take into account the usage between a single and double
camera.

Battery Life. We need to power cameras, microcontrollers; the flight controller and any
other appliances we may find necessary. This will tie in hand to how we decide to control
the drone itself, if we decide against Wifi and split the streaming/controlling we could
possibly alleviate some bandwidth. We have to make sure any decisions we make still
allow us a significant amount of flight time.

Cost: Earlier in the report we outlined some basic price estimates for each component, we
want to aim for staying to the lower end of those estimates to ensure we can afford what
we need and take into account any part failures or unexpected issues. Extra spending might
be warranted if we take a look at the ratio of cost versus time saved and utility.

Support: Any components, hardware, software we decide on using, most of us have little
familiarity with. As such any products that come with information, guides, tutorials and
such will be weighed more heavily.

Ideally we would be able to have the lightest battery, the lightest webcam and such without
any drawbacks. But budget is still going to be a consideration, we have to work with what
we can realistically acquire and that means we have to make some sacrifices. Any decisions
made will be done as a group, before any major purchase the group will discuss and ensure
that we agree with the pricing and the quality. As we continue through development, the
following section will be outlined clearly, concerning any design decisions, components,
software we found to be more effective for our goal, as well as any concerns or issues we
ran into and their proposed solutions.

54

 4.1.12 Design Considerations and Solutions to Issues That Arose

Initially we were leaning towards a single camera with a wide angle lens. This would have
given us the possibility of having a resolution larger than the Oculus that we can then
“scan” through using the motion sensor for the oculus. This seemed to be an easier solution
than having an additional rotor attached to the camera and syncing the head movement.
However as further research was made towards the Oculus we decided it was best to
proceed with a double camera layout to better simulate the stereoscopic view we require
for optimal viewing, our initial bandwidth concerns were alleviated after viewing similar
projects accomplishing much more detailed video streaming than we planned to use, on
similar hardware.

4.2 Overall System and Associated Diagrams

 4.2.1 Hardware Architecture

The glove will be largely made of the microcontroller, the accelerometer, and the
gyroscope. All of this will communicate with the host machine and further, the quadcopter.

Figure 4.2A: flowchart describing basic glove architecture.

The accelerometer and gyroscope are devices that basically give data. If this was issued
directly to the host machine, then the host machine would have a lot of data but no
commands from the data or instructions on what to do with the data. Thus, the
microcontroller will act as a mediator between the host machine and the

55

accelerometer/gyroscope combination that will take in the data, translate the data to useful
commands, and give these commands to the host machine that will then give these
commands to the quadcopter.

So we have to choose from a large selection of microcontrollers. We will be comparing the
Arduino, the MSP430, and the Propeller Education Kit - 40. Below is a table with all of
the boasted advantages to using each board as stated by their respective specification
sheets.

 TI Launchpad Arduino Uno Propeller Education Kit - 40

Microcontroller TI M430G2553 ATMega328 P8X32A-D40

Data Bus 16 bit 8 bit 32 bit

Speed 16 MHz 16MHz 80 MHz

Storage 16KB 32 KB 32.7 KB

RAM 512 B 2 KB 32.7 KB

Digital I/O 8 channels 14 channels 32 channels

Analog I/O 8 channels 6 channels 0 channels

Kit cost $4.30 @ TI.com $24.95 @ Adafruit $129.99 @ Parallax

MPU cost $1.90/1 chip $1.86/1 chip $7.99/1 chip

Figure 4.2B: Comparison table for micro controllers

Because the Arduino has more memory with the same amount of speed as the TI
Launchpad, it will contour to what we are trying to do more since we are trying to take in
a lot of data of positioning and speed and translating this to the host machine. For this
reason, we will side with the Arduino over the TI Launchpad.

Because of pricing and because we are more familiar with the Arduino than the Propeller
Education Kit - 40, we will side with the Arduino between the two. The P8X32A-D40 is
certainly the better microcontroller, given that you are only working with digital I/O, but
having to learn to work with an entirely new microcontroller would not be beneficial and
probably hinder us in the long run for trying to learn a new environment. Thusly, we chose
the Arduino and it’s corresponding ATMega328 as our microcontroller of choice.

We now have to choose which accelerometer and gyroscope we wish to use. There are
combinations that are a single component with both accelerometer and gyroscopes inside
them. There are also the individual charts. We will be comparing between the available
SparkFun Triple Axis Accelerometer and Gyro Breakout, the FLORA 9-DOF
Accelerometer/Gyroscope/Magnetometer, and the 9-DOF IMU Breakout.

56

 SparkFun Triple
Axis
Accelerometer and
Gyro Breakout

FLORA 9-DOF
Accelerometer/
Gyroscope/
Magnetometer

9-DOF IMU
Breakout

Part(s) # MPU-6000A LSM9DS0 L3GD20H and
LSM303D

Gyroscope
sensitivity

250 dps
500 dps
1000 dps
2000 dps

245 dps
500 dps
2000 dps

245 dps
500 dps
2000 dps

Gyroscope noise @
50Hz

0.033 dps/sqrt(Hz) N/A 0.011 dps/sqrt(Hz)

Accelerometer
sensitivity

2 g
4 g
8 g
16 g

2 g
4 g
8 g
16 g

2 g
4 g
8 g
16 g

Accelerometer
noise

400 ug/sqrt(Hz) @
10Hz

N/A 150 ug/sqrt(Hz) @
100Hz

Price per kit $39.95 $19.95 $19.95

Price per part $4.02 $3.69 L3GD20H @ $4.01
LSM303D @ $4.31

Figure 4.2C: Accelerometer/Gyroscope combo comparison

Further research has shown that the LSM9DS0 has a lot of problems with noise. The
specifications sheet mentions nothing about this as so we are sceptical to try it. Thus
between the L3GD20H and LSM303D combination and the LSM9DS0 standalone, we
have chosen to use the combination instead.

Although it will be twice as expensive to use the L3GD20H and LSM303D combination
as the MPU-6000A standalone, the pure amount of noise coming from the standalone is
worthy enough for us to continue on and choose the combination. The noise will especially
be a problem since we are trying to make the glove as fluid and intuitive as possible. The
price difference of an extra $4 will be worth it. We also will buy the 9-DOF IMU Breakout
board for extensive testing before attempting to use the combination in a PCB. The
breakout board boasts voltage protection, thus making this a viable strategy. Thus, we have
chosen the L3GD20H and LSM303D combination.

57

 4.2.2 Software Architecture

For host we will be choosing between Windows and Linux, once we decide on which will
be easier to handle the networking and general integrations. On the Raspberry Pi itself we
will likely be utilizing the free operating system Raspbian to make use of associated APIs
and the compatibility of the various RasPi modules (The camera board and possibly the
wifi receiver). This will allow for easy testing, and the usage of convenient software such
as Gstreamer to send the camera feed to our host machine.

What will ideally be happening, to minimize any delays and complications, is to treat the
OR itself as a simple monitor. On the software level, what should happen before any
camera feed reaches the oculus, the feed needs to be distorted to be viewed more
comfortably on the oculus, and a graphical overlay will be applied on top of the feed in real
time to keep track of important statistics (Hand position from controller, distances, battery
life etc), this should all be handled on the host machine itself.

The controller should ideally be able to “mimic” keyboard inputs, and be read in as such,
to test in two stages. Testing the software and input functionality on its own with a
keyboard, and then testing the controller functioning properly.

Software block diagrams

Block Diagram Legend

Gray Hardware

Red Operating System

Yellow Proprietary Software, may use API’s

Green Data Flow

Purple Oculus Rift Output

Figure 4.2D Legend for block Diagrams

58

Figure 4.2E Host Machine Setup

Host Machine: Our host machine diagram uses our best case scenario in which the host
machine is a Raspberry Pi. This machine will have three connections, two of which feed
data for the software layers with the third connection being a wifi adapter. The Oculus Rift
will be connected via USB and will be the video output from the quadcopter’s camera.
gstreamer library supports creating a RTP/RTSP server that will allow video to stream from
the drone to the host machine. The controller software essentially just sends data from the
hardware to the quadcopter for flight. The game controller is a software layer that adds
game functionality to the quadcopter, primarily just sending packets between each host.

59

Figure 4.2F Quadcopter Software Diagram

The purpose of the game controller software is to facilitate a game of laser tag between two
users. The software is a thin layer that listens for the hardware triggers to let the quadcopter
know it has been “hit”. The hit copter will then broadcast the hit to any other copters in the
game. Each copter will update their own local copy of the scores and time remaining. Once
the user wants to fire a shot an event is sent from the controller to the quadcopter. As the
game finishes each quadcopter will share their individual scores and the game host’s
machine will discover and resolve any discrepancies.

60

Figure 4.2G Game Controller State Diagram

61

Figure 4.2H Camera Data Flowchart

62

Figure 4.2I Arduino Code Organization

63

 4.4 Feature Results

Figure 4.4A Potential Overlay for Oculus Rift

For the Oculus Rift’s Overlay we wanted to design an overlay that was minimal. We
wanted to make sure not to obstruct the user’s vision while still giving them critical data.
The intentions are to make sure the color scheme for each icon is something that can be
read over any texture and color combination. We felt the need that the user might find these
things intrusive, so we plan on allowing the user to hide elements of the display. This can
be toggled during flight, however the configuration as in which icons to hide must be done
prior to starting the software. Once the quadcopter reaches a critical point of resources it
will switch from the user’s controls to an automatic reserve mode, in which certain icons
become mandatory on the overlay.

64

Oculus Rift Overlay Icon Reference

Icon Number Name Function Can be hidden?

1 User Mode Show the user the quadcopter is
in manual mode

Yes

2 Mode Represent to the user if the
ORQC is in game mode or flight
mode

Yes

3 Auto Mode Quadcopter is in automatic mode Yes, until reserve
mode

4 Game Stat Reference game points or place,
if in game mode

Yes, only exists
when in Game
Mode

5 Wifi
Connection

Show the user the strength of the
wifi signal

Yes, while signal is
strong

6 Power
Indicator

Indict how much power the
quadcopter has left

Yes, while in good
state (<50%)

7 Warning
Signal

Something is wrong with the
quadcopter and flight should stop

Always hidden until
triggered

8 Toggle UI
State

Show whether the icons are
hidden or not.

No

9 Crosshair Visual aid for what is directly in
front of the quadcopter.

No

10 Game
Messages

Various messages from Game
Mode.

No

11 Flight Space
warning

Warn the user that they are too
close to some object.

Always hidden until
triggered

12 Thrust
Percentage

Show the user the amount of
work the engines are doing.

No

Figure 4.4A Oculus Rift Overlay Icon Reference

65

5. Oculus Rift Dev Kit 2 Integration

The Oculus Rift is a work-in-progress virtual reality headset that is nearing completion for
the consumer market. The version we will be using for this project is Oculus Rift DevKit
2. It is a fixed and modified version but, according to the developers, only half as capable
and structurally sounds as the planned consumer version. This version boasts 1080
resolution for both eyes and a 75 Hz refresh rate. The options are also interchangeable
within the programs it is used for. There is a bit of setup required with the current version
making it potentially the least user friendly application to the whole project. This setup
includes mounting the camera, connecting it to the host machine, ensuring the user can see
properly when the display fully comes on, and adjusting resolutions as needed. Tested so
far in other applications Dev Kit 2 will prove to be quite valuable to the project and after
the project completes further integration with the consumer release version may be
applicable to the project. Below is a short diagram highlighting the conceptual interaction
between the OR and the rest of our system.

Figure 5A: Conceptual Diagram of OR integration

For the purposes of our project, we will be able to set up without requiring the external
camera for positional tracking. Because our goal is just the sight and 360° orientation
tracking, we have no use for the added tracking on our fixed viewpoint. The oculus will
simply act as a monitor, and all testing will be done through the viewpoint of the oculus
itself and a regular desktop screen, this will be to ensure that we can treat each aspect of
our system as modules and do individual testing. Because of the stretched resolution, live
camera feed must first be distorted before viewing to ensure that the user can comfortably
see without dizziness.

Our intention is to have this post-effect on the feed be done on the software level of our
graphical overlay/game engine. As well as having a setting to turn this on or off for regular
monitor testing. Integrating the orientation tracking will likely be the most difficult portion
of our system, but because we are using a fixed camera feed we don’t have to worry about

66

syncing the movement with any onboard controls and can be dealt with individually. To
accomplish all of the above we must research exactly how the current programs and games
that support the OR communicate with the device. Because the API’s are available to
owners of the OR once the product code is activated on the site, the sooner we get our
hands on a OR the more time we have to look into how it works. So we can make more
clear decisions on the handling of the video feed and how we can incorporate it into any
possible game engines or overlays and improve the experience. Future drafts will provide
more concrete details as we gain experience with the hardware and software.

The data to follow is the Software Developers kit, specifications, and requirements. These
will outline the full intended use and control of the Oculus for this project as well as costs
and concerns related to the Rift.

 5.1 Oculus Dev Kit 2 Software Developers Kit

Figure 5.1A: The components that make up the OR (pending approval from IFIXIT)

The Oculus Rift DK2 came bundled in a hefty cardboard box (A notable change from the
DK1’s tough plastic casing) which is likely to help cut the price. If costs for a better case
were included it would likely push that $350 price tag into the $400 bracket.

67

Components Details Features

Sensors Accelerometer/Gyroscope/
Magnetometer

Near Infrared/CMOS
sensor

1000hz refresh rate

Screen Low Persistence 5.7” Super
AMOLED display

960x1080 per Eye

Lenses A set

B set

For users with regular
vision or contacts
For users who are
shortsighted

Table 5.1a: Table of various components and their details

Open developer software provided online at the developer’s main site. The total package
price is listed at $350. This will likely be the most expensive portion of our project and as
such we are looking into means to fund it. We are attempting to contact companies who
might show interest in our project and wish to negotiate some sort of “rental” agreement
for the duration of Senior Design for the purposes of testing and development. Barring that
one of the group members Gustavo has acquaintances with access to an OR and will
attempt to arrange to either purchase or rent the OR self funded by the group members.

5.2 Oculus Specifications and First Impressions

Notable Improvements from the DevKit 1 are the addition of Positional Tracking, Low
persistence OLED display, and a built in latency tester.The control box that used to come
with the DK1 that had screen brightness and other manual controls has been bundled into
the head unit motherboard and can be accessed in software rather than having to access the
hardware. This comes in handy as it simplifies any configuration and avoids extra
peripherals that the user has to worry about while wearing the headset. After getting our
hands on it it seems rather sturdy. The headset itself is durable, and doesn't seem to have
any loose hanging pieces that could break. The main HDMI cable bundled with the usb
connector is covered in a thick durable plastic, no worries with wear and tear in that regard.

The lense distance markers on the side are easily visible and click smoothly into place.
Attempting to wear glasses while wearing the Oculus feels very cramped, and the lenses
seem prone to scratching if in contact with lenses from the user's glasses for an extended
period of time, considering all the head movement that goes on. The cable is very
uncomfortable however, that may be an issue for user comfort and might need to be noted
in our usage instructions to alleviate that, it wraps behind the head and gets easily tangled
with all the extra cables and wires required for the set up. After downloading the supported

68

software and drivers however, the device is easily setup and straightforward to use. The
lenses are easily removable and replaceable, as they simply twist into a socket. Once the
lenses are removed you can see the Note 3 screen fixed into place, with a partition in
between to help further distinguish the boundaries between each eye's view, similar to
binoculars. The screen is easy to reach for cleaning. The positional tracking camera is
lightweight and easy to carry around, however between the positional tracking camera and
the oculus itself any machine using this device requires a minimum of 4 usb ports, and this
will have to be put into consideration if we want to utilize a raspberry Pi as a host machine,
due to limited ports.

 5.2.1 OLED Display

960x1080 (Per eye), full housing from the Samsung S3 including logo. Straight rip from
the product, this allows for manageable replacements should the need arise. Screen can be
treated as a single monitor on “Direct Display” mode available in configuration software,
however this is disorienting and does not appear fluid. Non-Stereoscopic video causes
issues varying between misalignment and stretching and tearing, as the oculus tries to
display on each half of the screen.

 5.2.2 Sensors

Head positional tracker: Infrared Camera.Mounts easily onto a computer monitor, comes
with clips and a flat platform that we could possibly attach velcro or magnets (once we are
sure it's safe to do so) to help mount onto more surfaces, powered by usb connection and
needs to be connected to PC to ensure we have access to all of the Oculus Rift’s tracking
capabilities. We can probably remove this component, if we find the built in orientational
tracking is sufficient for our purposes.

Infrared LED Array: Housed in the head mounted casing, is an array of IR LEDs used by
the Positional Tracking camera.

5.3 Host Machine Specifications to Run the Oculus Rift

Minimum power and host machine requirements as designated by Oculus are listed in this
section. The minimum specifications are the base line and lowest quality recommended to
run on a machine with the oculus rift.

 5.3.1 Host Machine Minimum Requirements

 Minimum requirements: A desktop computer running Windows 7 or Windows 8, 2 USB
2.0 ports (at least one powered), and a dedicated DirectX 11 compatible graphics card with
DVI-D or HDMI graphics output.

69

 5.3.2 Host Machine Recommended Requirements

Recommended specifications: In addition to the minimum spec it is recommended that
your dedicated graphics card be capable of running current generation 3D games at 1080p
resolution at 75 fps or higher. A consistent 60fps is recommended for average use to ensure
that the image quality stays smooth and user feels minimal delay in tracking functions.

 5.3.3 Power

Powered USB port minimum (preferably 3.0), but possible to be powered by a regular 5V
battery as long as it uses USB connection.

6. Quadcopter Design

The purpose to the quadcopter design is to have a simple Quadcopter that will allow for a
decent flight time as well as payload enough to lift with a camera mounted to it. This section
will give a layout to preferences between current quadcopter designs and ideas. There will
also be information of a separate chosen quadcopter for comparison.

6.1 Quadcopter Architecture

We are currently supplied with the Rotor Concept HPQ1 Quadcopter in Figure 6.1A

Figure 6.1A The Rotor Concept HPQ1 Quadcopter we are supplied with.

70

We may also use the Traxxas 6608 LaTrax Alias if our supplied Quadcopter does not meet
the requirements we need to continue with the project. The Traxxas 6608 is shown in Figure
6.1B below, consent given by manufacturer.

Figure 6.1B: Traxxas 6608 Quadcopter and its dimensions.

The quadcopter being used will take a fair amount of coordination to comply with the rest
of the project. To start, we will examine the frame to make sure it is strong since the arms
of a quadcopter are the parts that are most likely to break and experimenting with the
quadcopter can become expensive if we have to continuously replace a pricey frame. We
will need to observe the motors to see if it can handle the weight of the quadcopter and the
attached camera while giving a smooth ride. The smoothness should not be overlooked
especially since the oculus can already be disorienting to those without prior experience.

We can look over the speed controllers of each motor to make sure they are up to par,
thankfully the hobby community has progressed and these devices should be more and
more readily available as time goes on. Propellers will be needed in plenty since these are
also prone to breaking and are relatively cheap. We may replace the battery installed in the

71

quadcopter since we want flight time to be larger than the common ready-made
quadcopter’s flight time of seven or so minutes. This may be one of the leading expenses
surrounding the quadcopter.

 The next largest expense may be the radio system. Since we want to use the glove to
communicate as opposed to a more common transmitter controller, this price may fall with
the research of what we can attach to the PCB. The common flight controller for the
quadcopter itself is about the same price range as a raspberry pi, so using one to combine
Wi-Fi and quadcopter controls will not be monetarily costly. The other spare not-as-flashy
bits and bobs such as servo leads, low voltage alarms, and breakout cables should just about
exceed the price of a single frame.

6.2 Quadcopter Components

Since we will be using the HPQ1 Quadcopter, a pre-arranged quadcopter, it will have the
same components examined before. The HPQ1 will have motors, propellers, a battery, a
camera, a flight controller to control it all, and, of course, a frame with landing gear. We
will also be examining the same parts for the Traxxas 6608 LaTrax Alias

The Raspberry Pi, however, is not part of the original design of the HPQ1 nor the Traxxas
6608 LaTrax Alias, so that will have to be added to the quadcopter. The WiFi adapter will
also be added and the battery may be switched out as examined later on.

 6.2.1 Flight Controller

The flight controller that comes with the HPQ1 is the Rotor Concept TX7 Transmitter. It
is characteristically similar to the Spring RC TG661A six-channel spread. It operates on a
2.4GHz to 2.483 GHz frequency. Power supply is 9.6V to 12V equating from 8 AA
batteries. It has a FSK modulation and its receiver type is a RG661A. All of this will be
extremely important in determining how to communicate between the glove and the
quadcopter, itself. The Spring RC TG661A is about $42.33.

The flight controller that comes with the Traxxas 6608 LaTrax Alias is the Traxxis LaTrax
Alias Quadcopter Transmitter with 2.4GHz frequency and 6 channels. The power supply
is four AA batteries totalling roughly 4000mAh and 12V. The current pricing on the
Traxxas LaTrax Alias Transmitter is on sale for $4.99. It’s regular pricing rests at $62.99.
Because both the HPQ1 and the Traxxas 6608 transmitters operate on the same frequency
with the same channels, it is assumed that the alternate transmitter for the HPQ1 can be
used for the Traxxas 6608.

 6.2.2 Propellers

The HPQ1 is equipped with LotusRC “8A” and “8B” quadcopter propellers of approximate
size 8 inch length and 3.8 inch pitch. Similar propellers are the Gaui 8” quadcopter
propellers that are about a third of the price of the previously stated propellers. They have
a length of eight inches and a pitch of three and four fifths inches. Common pitch levels

72

range from 3.5 to 6 inches, so 3.8 will keep us on the low side without being the minimum.
In simplified terms, the higher the pitch, the slower the rotation and vehicle speed. This
concept is shown in figure (2) from D.L. Engineering’s website.

This increase of speed will, of course, increase the power used. Also, the generally lower
the pitch number, the higher the torque the propeller can produce. Since we will need to
carry more weight than the usual quadcopter, we will want to stay close to the minimum
of 3.5 inches but reach just a bit higher to avoid such high torque.. [1] “For larger
quadcopters that carry payloads, large propellers and low-kv motors tend to work better.
These have more rotational momentum, and will more easily maintain your aircraft’s
stability.”

Quadcopter propellers come in a set of four with two of them being for clockwise rotation
and the other two for counterclockwise rotation. Picking up multiple will be very heavily
needed since propellers are reported to break often when experimenting. The HPQ1
Quadcopter is advertized so that [2] “use of the optional three-bladed propellers allow a
payload of 1.2 pounds.” Since we will need to carry a lot of weight, we will opt to have the
three-leafed propellers with the length of 8 inches and pitch of 4.5 inches. A set of
clockwise and counterclockwise three-leafed propellers will cost $2.50. A set of propellers
for $5 is very good, so multiple sets will be bought due to propeller fragility.

The Traxxas 6608 has a Propeller length of 5.51 inches. The price for a pair of propellers
from the manufacturer is $2.00. These, however, are two-leaved propellers. Thus, if we
were to use the Traxxas 6608, we would use 5 inch long and 3 inch pitch three-leafed
propellers. A set of four is about $4.99.

 6.2.3 Motors

The HPQ1 has four 980Kv brushless outrunners with removable “endbells” for storage.
The brushless outrunner motor is an electric motor that spins its outer shell around its
windings. Though outrunners are slower than inrunner motors, they have a much higher
production of torque. This higher torque output will coincide well with the small pitch of
our propellers. This combination can lower the amount of power needed to power the
motors, as stated above in the description of propeller pitch. Using an outrunner also
eliminates the extra weight and complexity of a gearbox.

The Traxxas 6608 has two high output clockwise and two high output counter clockwise
motors. They are brushed and coreless. From the manufacturer, the set of four motors costs
roughly $40 while independent sellers sell the set as cheaply as $27 online.

 6.2.4 Battery

The battery equipped on the HPQ1 Quadcopter is a Generic 2400mAh 20C 3S lithium
polymer with Deans Ultra-Plug connector and JST-XH balancing harness. It has a claimed
flight time of eighteen to twenty five minutes, which would be phenomenal. This is,

73

however, without streaming the live video. This will, undoubtedly drain the battery.This
battery weighs about 0.7 pounds.

The Traxxas 6608 has a standard 650mAh capacity LiPo battery with 3.7V voltage
equipped with it. It’s flight time is a boasted average 10 minutes without weight and while
using the two-leafed propellers. Below is a table containing different battery choices.
Because we are looking at two different quadcopters, we will have two different tables.
The first table is for the HPQ1 and the second table is for the Traxxas 6608.

HPQ1 Standard Turnigy 5000mAh
4S 30C Lipo Pack

Multistar High Capacity 3S
4000mAh Multi-Rotor Lipo
Pack

Voltage 3.2V 3.7V (per cell) 3.7V(per cell)

Amp Hours 2200mAh 5000mAh 4000mAh

Discharge Rate 20C 30C 20C

Weight 180 grams 556 grams 244 grams

Cost $69.95 $37.39 $19.96

Figure 6.2A :Table comparing different available batteries for the HPQ1.

Traxxas 6608 Standard ZOP 3.7V
1000mAh 20C Lipo
Battery

Syma X5C-1 X5C
X5A

Voltage 3.7V 3.7V 3.7V

Amp Hours 650mAh 1000mAh 680mAh

Disharge Rate 20C 20C 20C

Weight 8.5 grams 35 grams 14.17 grams

Cost $10.56 $9.98 $14.00

Figure 6.2B: Table comparing different available batteries for the Traxxas 6608.

If the flight time turns out to be less than satisfactory, then we will be switching to the
Multistar High Capacity 3S 4000mAh Multi-Rotor Lipo Pack. It’s ampere output is much
higher than the standard battery while being much lighter than the Turnigy. This battery
weighs about 0.538 pounds. If the advertizing for the quadcopter is to be believed, then
this difference in about half a pound should not alter our plans too much.

74

 6.2.5 Frame/Landing Gear

The HPQ1 has an aluminum frame for the arms and skid bracket with carbon fiber skids.
There is a clear polycarbonate dome with black and yellow shrink wrap tubing to discern
between the front and the rear of the quadcopter. The entirety of the quadcopter as it is out
of the box is about .95 pounds while empty. When flight ready, that is when a battery is
added, it is 1.3 pounds. And when loaded to maximum, it is advertized to be able to fly at
2.9 pounds.

The Traxxas 6608 has a molded composite frame. The frame sells online for $8.11 and at
full price for $13.99. This can be cheap enough to buy multiple and not have to worry about
breaking the quadcopter during prototype testing.

 6.2.6 Camera

The camera used to communicate with the host machine through WiFi will be the raspberry
pi-specific camera board. The camera has more resolution than the Oculus Rift, so the plan
of using the camera’s picture as a large image and using the Oculus Rift’s smaller
resolution to look around will theoretically work, the supported camera resolutions that
will likely interest us the most are 1080p30 and 720p60. The camera should not take a large
amount of wattage to power so this will keep battery use to a minimum. Another benefit to
this camera is that it weighs about 0.01 pounds. This will also help to reduce overall weight
consumption

 6.2.7 Raspberry Pi

It weighs an approximate 0.1 pounds, which definitely falls in the realm of possibility for
the HPQ1 Quadcopter to be able to carry. We will be attaching the Raspberry Pi to its own
power source. We are thinking of using the USB Battery Pack for Raspberry Pi - 4400mAh
- 5V @ 1A which comes out to be about 0.3 pounds. The Raspberry Pi itself and the battery
together turn out to be about 0.4 pounds. This being under half the maximum advertised
weight of 1.2 pounds makes it perfectly acceptable. The Raspberry Pi has several options
available to it for cameras and WiFi adapters. Because of its operating system being on a
open source, there are plenty of user-based inquiries and information available to us for
reference. As such, there are devices made especially for the Raspberry Pi that will make
this project smoother due to their efficient integration.

 6.2.8 WiFi Transmitter Adapter

There are a few choices we have between Wifi Adapters, however the cost range of these
usually are only $5~10 so it is quite possible we will pursue testing with a series of
Adapters to achieve our best latency. There are a number of USB Wifi Adapters
specifically marketed towards the Raspberry Pi which have low power requirements that

75

will assist in organizing and planning the power consumption required towards the cameras
and peripherals we will be required to attach to our Pi. The differences between the adapters
are minor and do not require extensive detailing, most offer 802.11 functionality, powered
by USB 2.0 and different transmission speeds and channel settings. For the purposes of
early prototyping we will likely be using the RPi Wifi Adapter from ThePiHut, as its $8
cost is easily replaceable and support for Linux and Windows will let us begin testing
quickly to ensure we have our camera feed setup ready to go.

 6.2.9 Power Distribution System

Figure 6.2C: Standard Power Distribution Board layout.

Power distribution systems in the hobby world are simply PCBs with color coordinated
plugs for the easier consumer use. The Rotor Concept website does not have readily
available specifications for their HPQ1 and neither does the LaTrax website. Thus, it is
assumed that a power distribution board is used for its efficiency. An example of the
board’s layout is shown in Figure 6.2C.

76

6.3 Quadcopter Component Summary

The chart below is a summary of the information discovered in this section

Specifications HPQ1 Traxxas 6608

Blade length 8 inches About 6 inches

Quadcopter Width 24 inches 12.07 inches

Overall Height 5.5 inche 1.69 inches

Flight Weight with battery 610 grams 100 grams

Flight System 3-axis gyro and inertia
based self-stabilization

Auto-leveling six-axis

Flight time (maximum) 25 minutes 15 minutes

Radio System 2.4GHz digital spectrum.
(also any 4-channel radio)

2.4GHz 6-channel multi-
mode

Main Frame
Structure/Material

Aluminum Molded composite

Battery Type Lithium Polymer (LiPo) Lithium Polymer (LiPo)

Battery Voltage 3.2V 3.7V

Battery Capacity 2200mAh 650mAh

Battery Discharge Rating 20C 20C

Figure 6.3A: Chart comparing our two choices of quadcopter.

Weighing in the differences to the Traxxas 6608 and the HPQ1 we can see in Figure x that
the flight time for the HPQ1 is longer by about 10 minutes with a heavier frame and taller
size. The traxxas on the other hand is smaller and lighter with a molded composite structure
and lighter LiPo battery pack. The radio system also allows for 2 more channels for wireless
control.

For our specific uses the longer time frame for flight will allow for longer play with the
controller and headset. They both also keep under what we would warrant as a safe
boundary for eye use of the Oculus. When testing becomes more readily available of the
two units we can be more precise on the most beneficial Quadcopter to use based on our
criteria of flight time and responsiveness.

77

7. Glove Controller Design

The controller of the drone will be the Glove controller. It will allow the user to manipulate
the drone with his/her hand with movement of the hand in multidirectional motions.
Utilizing a gyroscope and accelerometer we will be able to accurately depict the motion of
the hand and an intended direction for the quadcopter to move. The intent and purpose of
this device is to have a Joystick like feel that is more immersive and responsive in nature
than a joystick can offer.

Further implementation of the glove may allow the user to utilize other interfaces rather
than just the drone like flight simulator applications or other games. This will ultimately
depend on the driver software developed for it and the connection point to the desired host
machine.

The goal of the glove is to make an intuitive controller that the user will be able to use
without much training. Because of the possible goal of integrating the quadcopter-Oculus
Rift combination in a laser tag environment, there will be a limited amount of time for each
user and there will be multiple users wanting to play with the product. Thus, the easier it is
for the user to learn and start playing with the product, the more appealing it will be thus
creating more customers and more users. We also want the glove to be as natural and non-
juxtapose to using the Oculus Rift as possible. We want the users to be able to feel as if
they are flying the quadcopter, themselves, as opposed to having a screen close to their
eyes while still using a conventional controller. We want it to be a seamless experience as
opposed to a flashy activity.

Ideal functionality of the glove is to have it accurately represent the movements of the user
with the movements of the quadcopter. So as the user raises their hand, the quadcopter will
raise from the ground. As the user turns their hand, the quadcopter will turn. And so on.
There will also ideally be buttons that act as shortcuts to taring. When the user places their
hand on the ground and hits the “tare” button, there will be an automatic reset so that the
glove’s RC component will translate as the glove being on the floor and thus the motors of
the quadcopter will be off. There will also be buttons for setting power distribution amongst
the motors in case there will be listing by the quadcopter. What we mean by “listing” is the
quadcopter moving to the left, right, forward, or backward unwantedly. This is a common
occurrence with quadcopters and thus buttons to correct such actions would be preferable.

7.1 Glove Architecture

The glove will be a simple store bought one-size-fits-most glove with the fabricated PCB
board attached to the back of the glove to rest on the back of the user’s hand. The glove
will be a fingerless leather glove. The lack of fingers on the glove will be for ventilation so
that the user’s hand will not excessively sweat. Leather being the choice of material is for
some insulation between possible heat coming off of the PCB and the user’s hand. Because

78

the user will be seated to use the Oculus Rift, a chair’s arm rest or a nearby table will be an
easy tool to use for setting the glove’s sensors at a (0, 0, 0) position. Alternatively, if the
user is sitting on the floor, they can use the ground to set the sensors at (0, 0, 0). The user
will be seated in such a way that the wires connecting the glove and the host machine will
not get in the way of the user’s motions. The prototype will have a small breadboard
attached to the back with an microcontroller board and the Adafruit 9-DOF IMU Breakout
- L3GD20H + LSM303 breakout board connected and ultimately wired to the host
machine.

7.2 Glove Components

The glove will have to have at least four key components: the glove itself, and
Accelerometer and Gyroscope combination, USB input and output, and at least one button.
The glove itself will act only as a vessel for the PCB so that strapping it onto the user’s
hand can be easy.

The accelerometer and gyroscope combination is going to be the main focus of the glove.
We are going to have to read tilt with a good amount of accuracy so that the user can have
tight control over the movement of the quadcopter. For example, we need the glove to
sense the nuances between slight and major tilt so that the slight tilt left or right can be a
small drift left or right and then a large tilt will cause the Quadcopter to harshly fly left or
right. The USB input and output is to be used simply as the communicator between the
movements of the accelerometer/gyroscope combination and the host machine. The USB
input will also have to act as the incoming wattage to power the glove.

 7.2.1 Accelerometer and Gyroscope

The object of the glove is to measure the tilt of the user’s hand and translate that data to
determine direction of flight and acceleration in said direction. To do this, we will need to
combine an accelerometer and a gyroscope to accurately measure the tilt. Given that we
master the tilt, we may be able to add additional features for tighter, more intuitive controls.
We will be using the Adafruit 9-DOF IMU Breakout - L3GD20H + LSM303 breakout
board to test with an Arduino to work out any kinks the programming or parts may have.
Adafruit claims to have a “3 volt regulator with reverse-polarity protection” so that we
don’t have to be worried about burning any of the components and we can test power
outputs with more freedom. Once mastered, we can move on to integrating the individual
parts (the L3GD20H gyroscope and the LSM303 compass and accelerometer combination)
into the printed circuit board. Both components have I2C digital output, so communication
should be relatively easy.

The LSM303 has 16-bit data input, an analog supply voltage of 2.16 volts to 3.6 volts. It
boasts tilt-compensated compasses, position detection, motion-activated functions, and
power-saving for handheld devices. Since this will be mounted onto the glove, this last
feature will be unnecessary. Figure (5) shows the block diagram as provided by the

79

STMicroelectronics data sheet. Below the figure is a table describing the pin layout of the
LSM303.

Figure 7.2A. LSM303 general flowchart given by its datasheet.

80

Pin # Name Function

1 Vdd_IO Power supply for I/O pins

2 SCL Signal interface I2C serial clock (SCL)

3 SDA Signal interface I2C serial data (SDA)

4 INT2 Internal interrupt 2

5 INT1 Internal interrupt 1

6 C1 Reserved capacitor connection (C1)

7 GND 0V supply

8 Reserved Leave unconnected

9 DRDY Data ready

10 Reserved Connect to GND

11 Reserved Connect to GND

12 SETP S/R capacitor connection (C2)

13 SETC S/R capacitor connection (C2)

14 Vdd Power supply

Figure 7.2B Pin Layout of LSM303. Will be used when creating PCB.

The above table will mainly be used when creating the printed circuit board. As shown
above, pins 7, 10, and 11 will be connected to ground. Pins 1 and 14 will be connected to
the microcontroller’s power source. The rest of the pins will be connected to either the
microcontroller or separate devices depending on what is needed by the accelerometer.
We will be using the datasheet and any other supplied resources to combine our
knowledge and get the PCB working.

The L3GD20H also has 16 bit rate value data output with embedded 32 levels of 16 bit
data output FIFO. It has a wide supply voltage from 2.2 volts to 3.6 volts. It boasts low
power consumption, fast turn-on and wake-up and high shock survivability. The datasheet
supplied by STMicroelectronics lists “gaming and virtual reality input devices” as one of
the applications, which gives us comfort in knowing that this route has been tested with
this specific equipment. Figure (6) shows the block diagram as provided by the
STMicroelectronics data sheet. Below the figure is a table describing the pin layout of the
L3GD20H.

81

Figure 7.2C: L3GD20H general flowchart as given by its datasheet.

The Figure 7.2C will largely be for the benefit of when we start designing and creating the
printed circuit board. We will be sure to follow the given materials on how to create a basic
printed circuit board along with following this table and any additional information that is
given by the manufacturer on their data sheets. As it stands, we know we will be connecting
pins 9 through 15 to ground and 16 will be connected to the microcontroller’s voltage
output. Largely, we will be working with pins 1 through 8 to establish a secure data
connection between the microcontroller and the gyroscope.

82

Pin # Name Function

1 Vdd_IO Power supply for I/O pins

2 SCL
SPC

I2C serial clock (SCL)
SPI serial port clock (SPC)

3 SDA
SDI
SDO

I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)

4 SDO
SA0

SPI serial data output (SDO)
I2C less significant bit of the device address
(SA0)

5 CS I2C/SPI mode selection (1: SPI idle mode/I2C
communication enabled; 0: SPI
communication mode/I2C disabled)

6 DRDY/INT2 Data read/fifo interrupt IFIFO
theshold/overrun/empty)

7 INT1 Programmable interrupt

8 DEN Gyroscope data enable

9 Reserved Connect to GND

10 Reserved Connect to GND

11 Reserved Connect to GND or VDD

12 GND 0V supply

13 GND 0V supply

14 Cap Connect to GND with ceramic capacitor

15 Reserved Connect to GND or VDD

16 Vdd Power supply

Figure7.2D: Pin layout of the L3GD20H. For use in creating the PCB.

83

 7.2.2 Arduino Uno

We will be using the Arduino Uno to test the Adafruit accelerometer/gyroscope
combination. We will then use the Arduino microcontroller to create the final glove design.
The following is a table of the specifications of the Arduino Uno as boasted by the official
Arduino website.

Microcontroller ATmega328

Operating Voltage 5v

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 14 (of which 6 provide PWM output)

Analog Input Pins 6

DC Current per I/O Pin 40mA

DC Current for 3.3V Pin 50mA

Flash Memory 32KB (ATmega328) of which 0.5KB used
by bootloader

SRAM 2KB (ATmega328)

EEPROM 1KB (ATmega328)

Clock Speed 16MHZ

Length 68.6mm

Width 53.4mm

Weight 25g

Figure 7.2E: Arduino microcontroller specifications for planning program boundaries

The table provided here will be used as a reference to make sure that everything is
working as it should. During the course of creating the program that will read in data
from the accelerometer and gyroscope combination, we predict that the code will be
inefficient on the first couple of iterations. Thus, knowing the processor speed and
consequentially the amount of reaction time that the microcontroller should be operating
at will give us a good indicator as to whether or not our code needs debugging. Similarly,
if our code is up to par with the processing speed, then it will be an indicator that our
accelerometer or gyroscope may not be functioning as they should be.

84

The size and weight of the Arduino will be helpful for us in determining how well the
glove should work. It will give us predictions as to whether or not the glove will be a
burden to the user or if the glove will work as hoped and become an integration into the
virtual reality world we will provide.

 7.2.3 USB Connector

We will be using the five-pin Mini USB B 2.0 connector on this design. The USB 2.0 can
handle an effective throughput signaling rate of 280 megabits per second. This should be
more than enough to handle the data coming out of the accelerometer and gyroscope
combination. Though the USB mini does have a higher insertion-removal cycle than either
the standard or the mini USB, since we are designing the glove to be more or less an
extension of the host machine, the glove should not see a large amount of insertion-removal
cycles. A standard USB will supply 5 volts, which will also be plenty enough power to
handle the 3.6 volt maximum of both accelerometer and gyroscope.

 7.2.4 Button Layout

Since we are designing a virtual reality where you control a quadcopter and, given enough
time, try to shoot down your opponent’s quadcopter, we will need a shoot button. Thus, we
will be putting a button on the index finger part of the glove where it is easily accessible to
the user’s thumb. The idea being that the user is making the classic childhood “finger is
the barrel and thumb is the hammer” sign with their hand to mimic holding a gun. The user
will hold their hand sideways in this position and when they want to fire at their opponent,
they hold their finger out as the barrel and bring their thumb down on their finger as if it
were the hammer of a gun striking gunpowder. This design is hopefully going to add to the
lightheartedness of the design and possibly help with integration.

We may also add a few more buttons onto the printed circuit board, itself. One button may
act as a kind of “kill switch.” If something goes wrong, and the quadcopter starts to go
haywire, the button will cause the glove to cease communication with the quadcopter and
the copter will stop in midair and slowly descend. This button may be integrated as more
of a switch so that the user can clearly identify the “on” or “off” position. This will be
needed in a more physical way as opposed to visual because the user will be wearing the
Oculus Rift, which cuts off visual contact with the world around them.

Another button to be added will depend on the integration of the accelerometer and
gyroscope combination. We can add a button that will act in the same way a scale may tare
weight. The button will establish a new base point where the x, y, and z axis will read at
zero and there will be no sense of tilt. This button would be integrated for the comfort of
the user.

85

 7.2.5 Driver Software

Currently planned to try and integrate the received signals as simple keyboard inputs to
mimic the same response a keyboard would give. The Arduino Uno comes with a driver
creation software to make input into other devices simple and programmable. As buttons
and functions are added we can convert them direct as keyboard commands which will
allow for faster data flow and response time from the accelerometer and gyroscope as well
as the physical buttons themselves. The glove on/off disconnect will be a manual switch
for single interrupt and not be part of the driver. It will halt the data flow from being
connected to the host machine but cutting off the power separately. All other software
provided by the Arduino Uno is open source with many guides, references and tutorials.
Further production with the Arduino software will be pending till the board is received and
attached to the glove.

 7.2.6 Print Circuit Board

Figure 7.2F: Rough prototype of PCB using Eagle software.

86

The figure on the previous page, Figure 7.2F, is a rough draft of the PCB that we will be
using. This is more of a test to make sure that the Eagle software will work and that we can
accurately design our planned circuit board. We will be utilizing UCF’s Amature Radio
Club resource to have them teach us how to build PCBs and what good designs consist of.
In attempting to use the freeware that the Eagle site has distributed to its users, it has
become apparent that the use of our student resources will be very much needed.

8. Host Machine Design

Below is the design aspects for the host machine. These include the Architecture and major
components for the host machine. Currently the host machine is planned to be Matt’s
Personal computer as it has the needed power to run the controller and the Oculus Rift. The
later plan though is to downsize to a Raspberry Pi Model B. Below will be listed the
Raspberry Pi Model B planned upgrade. Further below in the specs section will be Matt’s
current personal computer as well as the Raspberry Pi’s specs.

8.1 Host Machine Architecture

Our future host machine will be a Raspberry Pi Model B (RPi) this machine utilizes an
ARM instruction. The Raspberry Pi has a couple of different alternative builds each with
differences between them. Below is the hardware specifications of Raspberry Pi models as
boasted by the official website.

The following table will be used, as the description says, as a comparison between the
different models of Raspberry Pis. The different models, of course, will come at different
prices with different advantages. Thus, this table will provide us with different options
should the occasion arise that we have a problem. These problems will hopefully be very
apparent since we will be working with both a Raspberry Pi as the host machine and a
Raspberry Pi as the on-Quadcopter-computer. The hope being that we will be able to tell
whether the host machine Pi or the quadcopter Pi is the one that is malfunctioning or needs
an upgrade.

87

Feature Model A Model B Model A+ Model B+ Compute
Model

BRCM2835 SoC Yes Yes Yes Yes Yes

STANDARD
SoC Speed

700Mhz 700Mhz 700Mhz 700Mhz 700Mhz

RAM 256MB 512MB 256MB 512MB 512MB

Storage Full SC Full SD Micro SD MicroSD 4GB eMMC

Ethernet 10/100 No Yes No Yes No

HDMI output
port

Yes Yes Yes Yes Yes

Composite video
output

Yes Yes On 3.5mm
jack

On 3.5mm
jack

Yes

Number of USB
2.0 ports

1 2 1 4 1

Expansion
header

26 26 40 40 N/A

Number of
available GPIO

17 17 26 26 48

3.5mm audio
jack

Yes Yes Audio/Vid
eo

Audio/Vi
deo

N/A

Number of
camera interface
ports (CSI-2)

1 1 1 1 2

Number of LCD
display interface
ports (DSI)

1 1 1 1 2

Power (bare,
approximate, 5v)

300mA,
1.5W

700mA,
3.5W

N/A 650mA,
3W

N/A

Size 85x56x15
mm

85x56x17m
m

65x56x12
mm

85x56x17
mm

62x30x3mm

Table 8.1A: Comparison between different models of Raspberry Pi(s).

88

Additionally, the information given by the table shows the limitations of the Raspberry Pi
and all of its models. Should we come to a problem that cannot be fixed by buying a model
with more storage or more GPIO, then we will have to come to the conclusion that a larger,
more capable host machine will have to be acquired.

8.2 Host Machine Major Components

For testing purposes and to prevent bottlenecking, we will use Matt’s personal computer
as a host machine. We will do this while we try to downsize the host machine to the
Raspberry Pi. Matt has confirmed that the Oculus Rift does work on his computer which
will allow us to begin coding for the Oculus Rift and the glove controller. The
specifications of Matt’s personal computer are below.

 8.2.1 Motherboard

MSI Z87-G45 Gaming Republic

● Supports 4th Gen Intel® Core™processors for LGA 1150 socket
● Supports DDR3-3000(OC) Memory
● USB 3.0 + SATA 6Gb/s
● Audio Boost: Reward Your Ears with True Quality
● Killer Ethernet: Kill Your Lag
● Military Class 4: Top Quality & Stability
● OC Genie 4: Overclock in 1 Second
● Click BIOS 4: Easily Fine-tune Your System
● PCI Express Gen 3: World's 1st PCI Express Gen 3 Motherboard Brand
● Multi-GPU: NVIDIA SLI & AMD CrossFire Support
● Lucid Virtu MVP 2.0:
● Fast Boot: Quickly Boot Up & Enter OS in A Few Seconds

 8.2.2 Processor

Intel(R) Core(™) i7-4770k CPU
of Cores 4

of Threads 8

Processor Base Frequency 3.5 GHz

Max Turbo Frequency 3.9 GHz

TDP 84 W

Max Memory Size (dependent on memory type) 32 GB

Memory Types DDR3 and DDR3L 1333/1600 at 1.5V

Max # of Memory Channels 2

Max Memory Bandwidth 25.6 GB/s
Figure 8.2A Intel i7-4770k CPU specs

Commented [1]: add my machines specs for this part
as an early development till the raspberry is ready

89

Planned processor for the Raspberry Pi: 900MHz quad-core ARM Cortex-A7 CPU

 8.2.3 Random Access Memory

Corsair Vengeance 8Gb (2x4 GB) 240-Pin DDR3 SDRAM

● DDR3 1600
● Timing 9-9-9-24
● Cas Latency 9
● Voltage 1.5V

Planned RAM for the Raspberry Pi1GB LPDDR2 SDRAM

 8.2.4 Storage

Samsung SSD 840 PRO Series ATA - 128 GB solid state

Planned Storage for the Raspberry Pi MicroSD card socket with 16gb MicroSD card

 8.2.5 Graphics Card

EVGA 04G-P4-2972-KR GeForce GTX 970

● 1664 CUDA Cores
● 1050MHz Base clock, and 1178MHz Boost Clock
● 4GB GDDR5
● 224.3GBps Memory Bandwidth
● 7010MHz Memory Clock
● 145 Watts Power Consumption under load
● DL-DVI-I, HDMI and 3 Display Ports
● Supports up to 4 monitors
● SLI ready (2 Way, 3 Way, 4 Way SLI)

 8.2.6 Power Supply

Corsair 800Watt Power supply
+5V @ 2A via microUSB socket

9. System Integration and Testing

The following sections list the plans to integrate and test the components with their
individual parts. Parts include video streaming to the Oculus Rift from the camera, the
Remote control from the glove and the glove’s functions, the controllers’ impact on the
Oculus Rift. Tests will be done frequently as parts are matched together and individual
sections are completed. Main testing will be held by each group member on their particular

90

group set but when integration comes together different portions will overlap and the group
will reform to complete the portions of testing.

9.1 Video Streaming

The video will be streamed using an open source multimedia framework named Gstreamer.
From there we will use a Real-Time Streaming Protocol (RTSP) as well as a real-time
protocol (RTP) provided within Gstreamer to transmit the data from the cameras into Bino,
a 3D video player. These three layers will come together to form the basis of the camera’s
control with the Oculus rift.

Component QuadCopter Camera Oculus Rift

GStreamer Connected? Yes/No Connected? Yes/No

RTSP Connected? Yes/No Connected? Yes/No

RTP Connected? Yes/No Connected? Yes/No

Table 9.1A Component Test List

Testing the overall portions of the camera and its software configurations will be primary
and after signals are received for the camera, integration with the Oculus will become the
follow up priority

Our initial testing plan will likely consist of getting our networking to feed a single
raspberry Pi + Raspberry Pi Camera module to our host machine. Once we can properly
receive that data we can begin displaying it in our Oculus Rift. There are 3 possible setups
for our streaming module with which we can proceed, in the order that we will likely be
experimenting with. Their advantages and disadvantages will be detailed below.

Single Raspberry Pi + Wide Angle Lens Raspberry Pi Camera

Having a single Pi + Camera setup will give us the lightest weight as well as the smallest
power cost when taking into account the Pi + Batteries involved with powering each
component. This option is also the most affordable. There are some immediate concerns
with this setup however, the Oculus Requires Stereoscopic video feed to deliver a full 3D
view. With this setup we would only have a single reference point for our video feed and
would have to then sample and cut apart our feed as necessary before we transmit and
output to our Oculus. This could cause some delay concerns and might not be entirely
feasible depending on the processing power of the Raspberry Pi module we decide to use.
The supported Camera module however comes with built in encoding so this concern may
not prove to be as much of an issue as originally estimated. The camera module itself comes
with command line instructions for easy testing. The Command raspivid -o vid.h264 allows
us to save a 5 second video file to our given path, in the natural encoding setting of the
camera. Further arguments can be specified such as the resolution sizes, the time length the
fps settings we desire allowing for a large amount of customization to fit our needs.

91

Complete documentation of the commands and arguments are available to us on the
developer's site for Raspberry Pi and its associated modules.

To solve the issue of Stereoscopic input needed we could split the feed and duplicate it on
a software level, as well as introduce any filters to simulate the angle difference of a human
eye. A diagram outlining an example of how this would be implemented is below

Figure 9.1B: Proposed Image Sticking Solution for single camera feed

We would have to test the delays of this implementation, as well as if the quality obtained
is worth the delays of just simply feeding in a single wide angle lens view. The natural
distortion of the lens might be enough to not require extra detailing to be done post process.
This will be our first line of testing, as it will be required if we wish to continue onto our
second alternative anyway.

Two Raspberry Pi + Two Raspberry Pi camera

If we decide that the quality of the video feed is insufficient with the single Camera setup,
or that the distortion makes viewing uncomfortable. We could then consider lowering the
individual resolution settings on our initial Raspberry Pi camera, (to help with data
management) and incorporating a second Pi + Camera system. By doing this we can
manually position the cameras to achieve the field of vision we desire. An immediate
concern is that we would now require double the bandwidth we were already using for our
single implementation and would need to now network the two Pi’s together, through a
client-server system , to make sure our video feed is synced together before we export it
out through our RTP connection into our host machine.

92

Table 9.2C: Proposed implementation of two Pi system

There are worries about syncing when the wifi connection we utilize becomes unstable,
we want to avoid the possibility of the feed splitting, if we wish to resolve this by instead
letting our host machine handle the load we can implement a similar system by simply
having each RPi function as its own server and stream their video feeds individually.
Because Raspivid does have built in functionality for interfacing two boards, which can be
accomplished by setting our viewing port to the same ID on each board, we could possibly
save ourselves the trouble of networking the two streams to each other, and simply sending
this input to Gstreamer. By separating the ports on our host machine that are receiving
each individual camera (eye), GStreamers video mixer functionality will allow us to stitch
together our two individual video feeds into a single visible stream on our host machine.

Single Raspberry Pi : Compute Module + Two Raspberry Pi Camera

The final method is a sort of last resort. If we find that the networking delay between the
two raspberry pi’s are too large and cause notable syncs we have to pursue a stronger board,
the Raspberry Pi:Compute. This module and its associated IO board have space to connect
two Raspberry Pi Camera Modules. The cost of this kit on its own however totals $100+
and we would like to avoid having to resort to this option. By having onboard support for
our two cameras and stronger processing power, we don't have to worry about any
networking delays and can bundle our video feed before sending it to be more easily
decoded on our host machine. Having to only power a single board will also alleviate some
of our payload concerns for batteries. Once we have learned how to stream the double
Pi+camera setup, modifying our code to implement the Compute model is trivial.

Further details as we begin testing each setup will be documented at a future draft,
including vitals such as any delays, quality and frame rates achieved, battery life and
overall personal comfort level of individual group members.

93

9.2 RC Control via Glove

The functions of the Glove are vital to the full control of the Quadcopter. Functions
intended are: minor button functions for adaptable and future modifiable use, an
accelerometer for measuring movement, and a gyroscope for measuring pitch and angle.
The button limit will be at a minimum of 2 and a possible maximum of 8. The glove’s full
purpose from this design project is to be modifiable for other applications for direct use
from Virtual gaming devices. For best use of the functions provided the user will be
recommended to have their hand placed in a level position such as on a table, desk, or arm
rest in a relaxed and resting position. Before fully activating the Quadcopter a quick tutorial
and system test should be in place to allow for configuring and troubleshooting a default
hand position.

 9.2.1 Glove Button Functions

Toggle buttons will be key for some functions such as motor on/off, program menu screen,
and 0-4 additional programmable buttons that will work with other normal keybindings. A
spreadsheet will be made to show quadcopter and host machine compliance. A sequence
of buttons will be pressed and the resulting function will be observed and recorded to see
if there are any bugs in the system. An example is shown below.

Sequence Button 0
function
success

Button 1
function
success

Button 2
function
success

Button 3
function
success

0123

3210

0213

Figure 9.2D: Button function sequence table

The functionality of the buttons will flesh out the organization of the table and the
sequences that will be tested.

 9.2.2 Glove Accelerometer Functions

The accelerometer will maintain forward and side to side movement of the quadcopter. The
accelerometer will also be used as an indication of throttle. The higher the user lifts their
hand, the more throttle the quadcopter will read. Using a table or armrest for the default
position will prove useful not only in reading how much throttle to place, but also how
much to take away when landing the quadcopter.

94

This will be tested measured with a simple ruler and the glove. With everything at zero, we
will lift the glove until the quadcopter reaches a certain height. The measurement will be
recorded and this process repeated. Example table is shown below.

Run Hand height

1

2

3

Figure 9.2E: Glove Hand Movement Test

 9.2.3 Glove Gyroscope Functions

The gyroscope will maintain pitch and yaw of the Quadcopter as well as left and right
turning, based on the hand’s position relative to a fixed default or level position. Testing
for this will be a bit trickier than testing for throttle. The manufacturer of the
accelerometer/gyroscope combo’s website shows a program available that shows the yaw
and pitch of the gyroscope. This software will be used as a test to make sure the gyroscope
works in general. Testing on the quadcopter itself will have to be a case-by-case basis of
how well the responsiveness feels to the tester.

Test Degrees of success

Change in pitch forward

Change in pitch backward

Change in yaw left

Change in yaw right

Turn left

Turn Right

Table 9.2F: Directional change test

Using table 9.2C we can determine what is the most successful range of movement that the
controller can process. We will more than likely set a maximum for the full degree of turn.
This maximum may be configurable on the fly at startup for whoever operates it. A quick
troubleshooter for new users may be fully desired before optimum use. Seen as a simulator
prior to controlling the live aircraft.

95

9.3 RC Control Monitoring via Oculus Rift

The Oculus Rift’s functionality with the Glove controller will be designated to the
Camera’s functions including looking up, down, left, and right. when the Quadcopter is
twisted left and right to spin horizontally in either direction the camera will remain
stationary. There were a few design parameters around this, the most important being the
complete separation of controller and Oculus. Matt had huge worries concerning this as an
avid gamer, when camera functions are bound together with other functions like movement
it can hinder gameplay heavily and be extremely disorienting. Camera head orientation
should act as a turret style mechanic with limited motion of the body and camera swivel
limit. However this is not to say that it will be easy to get used to on the first try for new
users. This will force the user to react more to the need of using the glove to turn to
associate the difference between camera and orientation.

As was mentioned in an earlier section when we were discussing the features and game
engines available to us our graphical overlays are primarily for the user's benefit. To help
the user better control the device we planned to add in information tracking to be viewed
on the Oculus Rift through the game engine. Little details such as the current orientation
of the glove or the strength of the sensors current readings can be useful information to the
user so they can better adjust how they move their hand. By having access to those readings
the user is then able to more accurately adapt to the controls and pilot our Copter more
efficiently than if they were to dive in without any experience.

10. Project Management

This section will describe the full content and detail to our planning and testing that will
take place from now through senior design II. Subsections include Documentation, Team
Organization and Time planning, Schedule and Work Breakdown, Budget, and Method of
Approach. This is essentially an initial outline of what will take place as soon as the
semester begins and construction and design can commence.

10.1 Documentation and Organization

Our team followed a development model similar to that of the Scrum, agile software
development life cycle. Each week during development we will have a meeting to status,
discuss current tasks, and plan ahead. These meetings, are documented discussing the
topics, concerns, and successes from the week prior.

96

Figure 10.1A Scrum Agile Swimlanes

Furthermore a simplified workflow is in place as a procedural use method in order to keep
ourselves on track as we progress. The stages are simplified so that as issues are discovered
they can be picked up by a team member, be worked through, then resolved at completion.
Usually this method is used with sprints to better sort through time constraints and plan
faster. Currently, Atlassian has a planning tool for Scrum with Agile and Jira. Matt has in
depth experience with its uses from his internship and will be implementing an offline
version of the Agile process on a post-it board. This will help the team to track problems
faster and prioritize work to be accomplished.

Figure 10.1B Workflow Diagram for Issues

From Figure 10.1B, have the most simplistic version that Atlassian provides for a project
workflow. When an issue is created it is set into open. An issue has a few major pieces to
it. Firstly, a title and summary of what the problem or task at hand is. Next a summary
description of what is involved. JIRA allows for further customization with components

97

such as version affected and expected completion dates. The parts we will focus on is date
of issue/ticket creation, hours worked on the issue, expected hours to complete the issue,
and who it will be assigned to to work on the task. With these descriptors we can progress
issues along at a quick pace.

When a task is picked up by a group member they can move it to In Progress, Resolved,
and Closed. If a discussion simply solves the problem or a mistake is discovered early on
it can be resolved quickly and the issue can be closed. Closed issues can be reopened if a
future problem is discovered as well. As an example if we clear up a section of code and
the oculus works correctly we can close the issue. But if a function makes a call back to
that section and it works incorrectly again we main need to reopen the earlier issue and
look to see what other problems there could have been involved.

 10.1.1 Code

The code base was kept and maintained using a Git repository for source control. We
further maintained the code base by having weekly forks clearly marked e.g
REPO_July_13. We felt that a weekly cycle would be a good strategy in the event of any
malfunctions, giving us the ability to restore an earlier working place.Each member of the
team contributing to the codebase creates their own working repository and would commit
when they felt a contribution has been made to their project or current task.

Formal Guidelines:

● Use 1-2 lines of whitespace in between segments of code
● Each function/method definition will have a comment explaining the purpose and

the return value
● Variable names will be clear to the scope of the software layer
● Proper naming capitalization is Camel-Casing as such “exampleCase”

○ Underscores may be utilized when
■ Using an API whose naming conventions use such
■ Clarity of the variable, rare occasion

● Strong attempts to make the code as modular as possible must be made.
● Any debug messages not in a developer’s personal branch must refer to the

function/class/application that it is derived from, as such “Debug: Example
Message - sendPacket : packet.c”

● Git commits will contain the following information:
○ General Description of the changes
○ Issue Number (if applicable)
○ Reason for Change
○ Author’s Name

● Each source file will contain a change log that notes the author, date, and short
description of the changes or introductions

● Any function calls to an open source library or API should include a comment to
give a high level idea, this is to increase readability

● Prior to git commits the author should pull a clean trunk branch, and do a diff and
merge where applicable prior to the commit

98

● The repository will contain a weekly branch marked as such, and developers should
strive to be on the most current branch as frequently as possible

● These guidelines apply only to the trunk build, each developer can code as they see
fit in their branches so long as the code has been formatted prior to submission

 10.1.2 Design Journals

Design journals should contain as much information as possible with regards to design,
including research or reference to, previous versions or plans regardless of functionality,
and benchmarks/tradeoffs. Primarily this includes keeping old information that may have
changed, this should be documented with a change log attached at the end of each file
containing a short description of the change. If sections have completely been removed or
changed, the author making the changes should effectively duplicate and rename that
design document with the date and then can edit the original working copy. This allows us
to never have to try to redesign a previous idea anything if one design does not work as we
like.

 10.1.3 Manuals

For each main subsystem we will be creating a manual explaining the basic scope and
operation of that subsystem. There will also be a manual for the total product, this will
contain more in-depth information about the usage of the product. The general layout for
the manual will be as such:

● Introduction
● Acronym and symbology listings
● Basic Use
● Connectivity in the System
● System Limitations
● Advanced Use (Where applicable)
● Technical Information
● FAQ’s
● Legal Limitations and Regulations - Main Manual
● Parts List for Replacements - Main Manual

 10.1.4 Media

Our media is stored in three primary locations

● Code : Git Repository
● Documentation : Google Drive
● Master Copy : External Portable Hard Drive

All media is subject to version management, and should not contain any discrepancies with
the data covered. Meaning that one media platform should not host any information that is
crucial without backing up the data to the master drive. All developers are required to keep

99

a personal copy of any of their work on a storage method of their choice. In the event all
three of our primary methods fail, each member will have a backup of all their information,
so we can rebuild the project.

When it came to choosing our media storage method all of the group members had different
approaches to how the media should be handled. We initially thought that we would all use
Google Drive to keep our media since it has the integration with all of Google’s other office
tools. However we quickly realized that would be a poor choice for the code base, and
something like SVN or Git would be better suited towards that use case. Our decision to
go with Git over SVN was primarily because Git is a trending technology right now and
we felt it would be good experience to gain. Additionally since some of group members
live further away than an easy drive, we believed that a decentralized method of version
control would work better than SVN’s set up.

Our group has had experience with SVN in the past, and it offers a nice function set while
being easy to learn. While security is not a concern within this project we felt that having
a secure copy of data would be a good practice to implement. Since data is hosted on our
Google accounts which historically can contain valuable personal data we would like to
have a backup in the event that a malicious user gains access to our account, with malicious
intent or by a group member leaving their google account signed in on a public machine.
While we felt this scenario is extremely unlikely we would also rather be prepared for such
a catastrophic event. Reassuringly Google Drive does have methods in place to allow for
file recovery, but we do not have the same automatic features within Git.

100

Storage Method Analysis

Method Pros and Cons Use Case Bold means used

Git Repository Pro:
- In-demand knowledge
- Access via Github
- Branching allows for fast

prototyping
- Smaller repositories than

SVN
- Distributed Source Control
- Faster than SVN

Cons:
- Learning curve
- Clone entire repository

- Source Code

Subversion
(SVN)

Pros:
- Better UI than git
- Marks versions better
- Check out subtrees
- Easier to use than git

Cons:
- Most of Git’s Pros

- Documentation
- Source Code

Shared Drive -
Google Drive

Pros:
- Everyone has access
- Collaborative tools via

Google’s suite
- Mobile Access
- Familiarity

Cons:
- Online
- No automatic version

marking

- Documentation
- Source Code

Physical Media Pros:
- Offline Access
- Security
- Independent of companies’

uptime
Cons:

- Physical
- Expensive depending format

- Documentation
- Source Code

Figure 10.1C Media Software Pros and Cons

101

 10.1.5 Miscellaneous Notes

Group members are expected to upload any notes to the Drive under their own personal
file. These notes should be sorted on at least two main levels, the author followed by either
the subsystem or the task the notes align with. There is no formal guidelines for the format
of the notes within due to allowing members to take their notes in a style that is best suited
to their work style.

As the project progresses, this style may be changed to better alleviate space and placement
for files. Files may be arranged as things pertain to Documentation, Programming, Circuit
Maintenance and Construction, etc. Currently a high level is in place for initial design
documents.

 10.1.6 Planning Documents

Any planning document should be clear and concise for the component they are planning.
These documents will be uploaded and kept within the drive as well. The planning
documents will benefit from being modular, as it will allow us to focus on components at
a smaller scale while working our way “up” to the higher level component pieces. Ex.
planning the camera-raspberry pi connection will come prior to planning game engine
overlay to the video feed from said camera. Additionally the planning documents should
contain references to where the original data and/or resources exists, so that other members
can quickly gain similar knowledge. The goal is to be able to have a member from the
opposite sub-team be able to understand components outside of their scope, should it be
for additional help or understanding the system better.

 10.1.7 Status Reports

Within our weekly meetings we document our progress through a few criteria.

● Functional Progress - Progress of any subsystem having functionality
● Developmental Progress - Status regarding a development task
● Next Week’s Target - A decision of where we want to be next meeting
● Blocking Factors - List any developmental pieces that need to be completed in order

to progress
● Purchase Needs
● General 4 Week Schedule
● Concerns

These status reports are then saved into a folder specifically for them within our shared
Google Drive. This allows anyone to go back to trace changes and tasks decided for each
week. The focus is to be able to rollback any changes easily after a failure.

102

 10.1.8 Tests

Once we have the quadcopter, it will be tested as it has come pre-packaged. Each of us will
test it, which will give four test results that should coincide with the quadcopter’s ultimate
capabilities. We will use the same table for the given RC controller as for the custom made
Glove. This will be a more general testing for the glove to see how well it performs in a
leisurely environment. Before and after data will help with adjusting the glove and knowing
limitations with the controller and quadcopter. The table following this next explanation
paragraph will be filled out during testing.

We will rate how well the quadcopter and RC controller respond to each other in
“Responsiveness”. This will help us determine if we can continue with the quadcopter’s
built-in RC receiver or if we have to remove it and either install another WiFi receiver to
read the glove’s controls or use the WiFi receiver that is sending and receiving video data.
A rating of 1 will be that the quadcopter does not respond well at all and a rating of 5 will
be that the quadcopter responds perfectly. We will also rate how well the quadcopter, itself,
will be able to stay still given the correct conditions in “Stability”. The “Stability” section
is important since the Oculus Rift is prone to cause nausea in those not used to it, so if the
quadcopter is not steady then the user will possibly be even more prone to nausea. A rating
of 1 will be that the quadcopter continues to list even after on-board settings are adjusted
and a rating of 5 will be that the quadcopter was able to stay perfectly still. The motor and
power distribution will be edited if need be. The “Battery time” section is not something
that we can rate, but it is data that needs to be recorded and this table is a fine chance to
record it.

Rating 1-5 (if
applicable)

Gus Matthew Gunnar Craig

Responsiveness

Stability

Battery time

Table 10.1D Responsiveness check table

The Oculus Rift will have to be tested on its initial PC platform before it is tested on the
Raspberry Pi. Once again, each of us group members will test the Oculus on its initial
platform to make sure its base settings and parameters are performing correctly. We will
use the same table for the PC platform as for the Raspberry Pi platform. This will give us
data for comparison in deciding whether to move forward with the Raspberry Pi option.
The table following this next explanation paragraph will be filled out during testing.

We will rate the video quality of the Oculus rift in the “Video quality” section of the table.
This will be more for comparing between the Oculus Rift being run on a PC and it being
run on the Raspberry Pi. A rating of 1 will be extremely poor video quality and a rating of
5 will be extremely good video quality. The “Brightness” category will, of course, be for

103

us to rate the brightness of the Oculus Rift’s screen. This will be on a scale of 1 for too dim
and 5 for too bright. This data will be recorded in the case that nausea is a result of the
screen being too bright or too dim. The “Brightness” category will also give an indicator
as to the average customer and how we can contour the product to fit every need. The
“Motion controls” category will measure how responsive the motion controls of the Oculus
Rift are. The motion controls in question being the property of the Oculus Rift to turn the
“camera” of the virtual reality world in response to a person turning their head. Between
four people, it should give a dependable indicator as to whether the individual feels that
the camera moves out of sync with the individual’s head motion.

A rating of 1 will indicate that the motion controls are too slow and a rating of 5 will
indicate that the controls are too fast. Once again, we have a category that cannot be rated,
but it is data that will be useful and needed. This will give a better idea to how long the
customer should be exposed to the Oculus Rift. Given our possible goal of quadcopter laser
tag in an arcade-like environment, we can have the games regulated to last for a certain
time.

Rating 1-5 (if
applicable)

Gus Matthew Gunnar Craig

Video quality

Brightness

Motion controls

Time to nausea

Table 10.1E Quality Check table

We now have to test how well the Oculus Rift communicates with the Raspberry Pi’s
camera attachment via WiFi. Once again, each of us group members will test the Oculus
communicating with the camera to make sure that it is performing correctly. We will use
the same table for the PC platform as for the Raspberry Pi platform. This will give us data
for comparison in deciding whether to move forward with the Raspberry Pi option. The
table following this next explanation paragraph will be filled out during testing.

We will rate the video quality of the image coming in from the camera in the “Video
quality” category. This will give us insight as to how well the host machine and camera are
communicating. Given the data previously recorded of how well the video quality is on the
platform it was made for, we can compare whether the camera over WiFi is working
properly. A rating of 1 will indicate that the video quality is poor and a rating of 5 will
indicate that the video quality is good.

Another category that we will be rating is the “Video speed” of the camera over WiFi. This
meaning that we will be watching for any lag that happens to the video while streaming.
This will be another indicator as to whether or not the camera is communicating properly

104

with the host machine over WiFi. A rating of 1 will mean that there is a lot of lag and thus
communication is poor and a rating of 5 will mean that there is no lag at all and
communication is good. We will also rate the responsiveness of head movement in the
“Responsiveness” category. Since we will be controlling the area of sight for the Oculus
Rift, will will also have control over the responsiveness of head movement and thus virtual
reality camera speed. This can be a large contributing factor to nausea and thus must be
considered carefully.

A rating of 1 will mean that the responsiveness is extremely poor and a rating of 5 will
mean that the responsiveness is extremely good. Again, we have a category that cannot be
rated, but it is data that will be useful and needed. This will give a better idea to how long
the customer should be exposed to the Oculus Rift. Since this will be a more accurate
representation of what the customer will be viewing, our possible goal of quadcopter laser
tag in an arcade-like environment will be better simulated and a time limit will be better
represented.

Rating 1-5 (if
applicable)

Gus Matthew Gunnar Craig

Video quality

Video speed

Responsiveness

Time to nausea

Table 10.1F Video Quality Check

10.2 Team Organization

As was mentioned in earlier sections the team is organized into two groups: hardware and
software. Each group will remain separate on their portions of the project till testing and
integration is required to bring parts together. This section entails the teams work on
technical assignments, management assignments, working guidelines, safety guidelines
and communication and accountability.

 10.2.1 Technical Assignment Design Areas

The group was broken into two main groups, hardware and software. This will reflect the
two separate main objectives that will come together in the end. The first objective being
to make a glove that reads the inputs from the gyroscope and accelerometer combination
and gives this data to a host machine that can then translate with quadcopter and all of its
attachments. The second objective being to create a workable virtual reality environment
seen through the Oculus Rift that picks up data from the Raspberry Pi’s camera attached to
the quadcopter and successfully updates that data in real time.

105

Hardware:
● Craig - Circuit Design and power systems

○ Safety Captain
● Matt - Circuit Design and integration

○ Documentation Lead

Software:

● Gus - Flight Controller and Raspberry Pi applications
○ Configuration Manager

● Gunnar - Raspberry Pi and Networking applications and Oculus Integration
○ System Administrator

 10.2.2 Management Assignments

Management assignments will be more focused on keeping the teams up to date on each
other’s portions either day to day or week to week as things move along. Matt has taken to
this role to keep things in check as the project moves forward and see that timing is running
smoothly for each portion. Planning and focus for the designs is imperative to keeping the
flow of the project moving and even as far as completing it earlier if possible. At this stage,
most of the time limits planned are hypothetical in nature and due to change as challenges
are faced or tasks are completed.

 10.2.3 Working Guidelines

When working with any of the development tools and pieces they should be handled with
care as to make sure no damage comes to the piece. Members are also expected to
communicate to make sure no one is using any particular piece without the others knowing
it is use. This is to ensure there aren’t any experimental components that could be
problematic and damage any piece or person.

As more information on the project is created and updated it is important to keep a set of
guidelines for keeping data manageable and secure. Below is a list of software security
guidelines.

1. Do not share login information with anyone outside of the group.
2. Actively maintain a password of at least 12 characters in length.

a. Password length is the quickest way to secure a password
b. If possible make logging in a remote process with an encrypted key

3. Keep a local copy of the files being worked
4. Ensure logging out of project accounts when leaving a public computer.
5. Do not divulge technical inner workings to non-group members when avoidable.

Specifically:
a. Networking information
b. Input (wary of buffer overflows)

6. When using email do not open attachments you do not expect.
a. Never email files to a user, always upload through our media choice

106

i. A malicious user could pretend to be a group member sending
source code to another.

7. Drone’s wifi network should be hidden as to minimize interest in the network.
a. The network will be whitelisted so as to further deter malicious users
b. Ensure network is WPA2

8. Remove any default password, again abiding by Rule # 2.
9. The root accounts must be disabled upon SSH.
10. Only the software team will have the root password for Linux machines.
11. Critical pieces of software should be backed up on physical media often.
12. Each system will generate logs of users, access times, and commands ran
13. Keep software as up to date as possible, specifically the operating system(s).
14. Keep software on the machine to the bare minimum, so as to not introduce

vulnerabilities.
15. If a software package is being introduced to the system, run a virus scan on the

package.
16. All of these guidelines apply to any computer the group members use, including

smartphones and tablets.

 10.2.4 Safety Guidelines

The safety guidelines for the group will be dependent on the portions of work. These rules
and guidelines pertain more to the hardware team than the software but none the less should
be followed should either team cross them.

To start, handling the quadcopter will be the largest factor of safety concern.

1. Always carry the quadcopter from the base. Carrying from the arms may cause
damage to the arms and the propellers may go off accidentally.

2. Make sure to have the RC unit turned off before turning on the quadcopter. This
will avoid the possibility of propellers hitting the hands trying to set up the
quadcopter.

3. Conversely, make sure the RC unit is turned off before attempting to retrieve and
turn off the quadcopter. The same reasoning applies here.

4. When testing in indoor environments, make sure to keep aware of ceiling height,
people around, and objects in the space.

5. When testing in outdoor environments, make sure to keep aware of plants, wild
animals, pedestrians, and weather conditions.

6. Do not fly in strong winds or rainy conditions. Strong winds can carry the
quadcopter more than is within permittable bounds and water can damage important
components.

We will also have to establish rules for handling electronics. This may be more for the
safety of the electronics than for the safety of the individual but the rules are essential to
both.

107

1. Make sure to ground yourself by touching something metal that is attached to the
ground. This will release excess charges.

2. Make sure disconnect components from all power sources before working on them.
Shock to the device or shock to yourself could ensue.

3. Keep your wires clearly color coded. This will help in not connecting something to
a power source that shouldn’t be.

4. Make sure to use wires with supple coating. Crossed wires can cause shortages that
can damage equipment.

5. If you are unsure on where to place a wire, do not guess. Get a second opinion.

 10.2.5 Team Communication and Accountability

Our group uses various forms of communication depending on the topic and severity of the
topic. Given that a topic needs to be discussed immediately, a mass text is sent to each
group member and a time is made where each can get to a computer with Skype
accessibility. If the matter is not as urgent, then email is sent instead of text.

Meetings:

● Face to Face
● Skype

General Group Questions:

● Group SMS Message Chat
● Email Group

Software Questions/Bug Reporting:

● Email and Google Spreadsheet for Bug Tracking
● Detailed Git Commit Messages (for software status updates)

Hardware Questions/Problem Reporting:

● Email and Google Spreadsheet for Issue Tracking
● Google Spreadsheet for Development tracking (mirroring git commits)

Each member also holds accountability over particular design components. These design
components will become more apparent as log sheets are filled out and members who spent
the most time on projects will most probably be the ones taking responsibility for the
component’s failure or success.

10.3 Schedule and Work Breakdown Schedule

First figuring out what problems need to be prioritized then determine a detailed workline
and expectation timeline.

108

Figure 10.3A: Schedule Plan

 10.3.1 Hours Summary

Total hours expected to accomplish everything. Senior Design 2 begins August 24th and
ends December 7th. Due dates for specifics will be maintained at a later time. If 15 hours
are dedicated per week for 15 weeks at a minimum then 225 hours will be available to
complete the tasks.

Task Total time Expected(hours)

Initial Programming For Oculus Rift 25

Initial Programming For Flight Controller 30

Glove Construction 15

Glove Testing 25

Quadcopter and Glove Testing 20

Oculus with Quadcopter Camera Testing 20

Oculus, Quadcopter, Glove Testing 30

Documentation 15

Total Hours 180

Table 10.3B: Hours time summary

With the listed hours we will have around 45 extra hours of which we will be able to
dedicate to potential optional additions should the key requirements be met. As we will be

109

running an Agile style build process, we will be able to confirm testing timelines and hours
spent throughout the build process so that this value can be adjusted.

 10.3.2 Milestones

Milestones for this project will be key points on completion readiness. Having an adequate
amount of milestones will allow the team to have a better idea of what is to be expected as
deadlines come closer. Our milestones are not in any particular order, however we do have
milestones that aid in the progress of larger ones. Primarily we break the tasks down into
small steps that are easy to implement, but add value to the main milestone.

General Milestone Outline:

● Order the parts
● Set up our main work lab space
● Configure git
● Configure defect tracking systems on Google Drive
● Set up our Jira environment
● Raspberry Pi

○ Set up operating system
○ Apply security fixes
○ Create user accounts for each group member
○ Create a logging system

● Create a cloned image of the raspberry pi with our final setup
○ Allows for easy restoration

● Prototype a basic networking test tool
● Receive camera data on RPi alone
● Send data between arduino and host machine

○ Should be data similar to the controller (analog/digital)
● Send camera data through RTSP

○ Oculus Rift
○ Overlay created
○ Camera Visuals updated to the Oculus
○ Feed

● Glove Controller
○ Construction Completion
○ Signal received by host machine

■ Can be tested with network test tool
○ Signal carried to Quadcopter

■ Can be tested with network test tool

Optional Milestone Outline

● Laser Integration with Quadcopter
○ Game controller software

■ Create basic point tabulation
■ Create a basic game lobby system
■ Create distributed networking broadcasting of score

110

■ Create a postgame sync
● Downsize Oculus Host Machine To Raspberry Pi

○ Includes configuration of the Oculus
○ Make this run on a battery matching the quadcopter’s life

10.4 Operational Planned Budget

Currently we are projecting our budget based upon receiving no additional funding. Given
the opportunity that we receive funding from corporate sponsorship, we may look into
expanding our budget for either stronger parts or more functionality. The hope would be
that the sponsor donates a set amount of money so that we can divide the money
accordingly and possibly find a better deal for parts than would be available at the time of
donation. Additionally, if we receive just money, then we can enhance what we currently
have, which may be more efficient than starting from scratch. Monetary donations also
decrease risk of having to give the donated items back in their original conditions. The
possibility of having to power the Raspberry Pi on the quadcopter by the quadcopter’s
battery is an example of altering a quadcopter past its original condition.

 10.4.1 Project Cost

This final pricing table will be filled in as the parts are purchases. If a sponsor donates the
parts, not currency, we have indicated as such. This is to give a clear representation of what
was purchased from our own funding, as to give the sponsors their credit. Monetary donors
will be listed following the chart, mentioning their donation unless donor notes elsewise.

Funding Breakdown

 Funding Amount Expected Amount

Group Members

Part Donations (estimate)

Corporate Sponsors

Table 10.4A Funding Estimations

111

Parts Prices

Copter Components (Propellers, Hull, Motors) Donated by Sponsor

Flight Controller Donated by Sponsor

Sensors

Oculus Rift Donated by Sponsor

Battery

RC transmitter/receiver Donated by Sponsor

MicroControllers

Raspberry Pi

Camera

Wifi Transmitter/Receiver

Wifi Range Extender

Integrated Circuit Components

PCB

Total

Table 10.4B Part Cost list(to be updated as parts arrive)

 10.4.2 QuadCopter components

In the case that the HPQ1 is sufficient for our needs, the Raspberry Pi, camera, and WiFi
transmitter together will be about $90. This being $40, $30, and $20, respectively.
Replacement propellers will cost all of $5 for a cheap set of spares while a new RC
controller can cost as much as $70 depending on our eventual needs as they arise.

If it comes to the point that we need to buy a new quadcopter, then a new Traxxas 6608
has recently had a price cut making it a mere $100. This would lead to a few new expenses
of solder, wire, and electrical components to re-circuit the power distribution to include
the Raspberry Pi and its attachments.

112

Quadcopter Component list:
● HPQ1 Quadcopter
● 4 Rotor Blades
● 1 Rotor Concept TX7 RC Controller
● 1 Raspberry Pi
● 1 Camera
● 1 WiFi Adapter
● 1 Camera Mount

 10.4.3 Oculus Rift DevKit 2

All parts and components of the Oculus Rift DevKit 2 came as a bundled package.
Replacement parts and components (should they be required) will be updated on the funds
tables as they are acquired. Below is the current list of components that come with the
Oculus Rift.

Component list:

● Oculus Rift DevKit 2 goggles
● Oculus Rift Camera/Mount

● USB and Mic Connector
● Power cord
● Spare Monocul glasses
● Carrying Case

 10.4.4 Controller Components:

The end product will be the cheapest to produce. The glove, itself, will cost at most $10
while the Arduino Uno will cost about $25 and the accelerometer and gyroscope break ot
board will cost about $20. So the prototype will cost about $60 to produce including a
breadboard and wires. However, the accelerometer and gyroscope are about $4 each while
the ATMega328 microcontroller as about $2. So the final product will be approximately
$30 including PCB board printing and other possible components.

Component list:

● Glove(left and right)
● Glove mount backing
● USB Connector
● PCB with mounting
● Accelerometer
● Gyroscope

 10.4.5 Project Cost Summary

So far as it stands, the following graph is a representation of how we have spent our money
on this project. Because the HPQ1 was donated to us, it is the largest monetarily translated
donation we have at a retail price of $900. The Oculus Rift was previously owned and sold

113

at a reduced price. Thus, there was about $50 donated to our project and around $300 spent.
Therefore, including donations, about $1250 have been spent on the project so far and we
have about $900 left in our personal budget to spend.

Figure 10.4C: Current budget pie graph(to be updated with more in the future)

 10.4.6 Sources of Funding

The primary source of funding is being contributed by the group members. The group has
received some generous donations towards the Oculus Rift and the quadcopter thus far. We
as a group feel that our project has a strong appeal towards many of the companies
surrounding UCF and we are actively pursuing corporate sponsorship. Specifically we are
talking with companies such as AVT Simulation, Bohemia Interactive, Hard Knocks, and
Inter-coastal Electronics Inc. We feel that our project directly relates to those in the
simulation and gaming worlds and will actively seek more partners until we have sufficient
funding.

114

10.5 Method of Approach

We plan to use the Agile process for problem and issue solving as mentioned in early
sections. Using this process we can layout the design and assign tasks as needed based on
levels of importance. This approach is easier to document as well as each change is
monitored by the group as a whole. Testing, listing bugs, fixing said bugs, and retesting is
the simplest process for the Agile Scrum cycle. Furthermore, in the sections to follow will
be Design Methodology and research techniques used so far

 10.5.1 Design Methodology

The main design approach followed an agile style modeled closest to the Scrum cycle. This
consisted of our team designating tasks and try to complete that task by the next Scrum
Sprint. We felt that this would be the best approach with a system that has a number of
subcomponents. That we would be able to effectively target our needs and be able to build
a working product from the ground up focusing on the small pieces as we built the big
picture. Often times this resulting in getting a small baseline version completed within a
week. The following week would result in elaboration on the version to make a robust and
feature/piece of the subsystem.

 10.5.2 Research Techniques

Software Team:

For the software team a lot of the research was time spent reading forums for the particular
technology, seeing if anyone had any experience doing such tasks, specifically looking for
any errors or obstacles that they faced. As our project contains elements that are widely
researched for use in a variety of hobbies and crafts we were able to find multiple similar
projects with either wildly different or similar implementations. This gave the team a strong
sense of the limitations of the technologies, while gaining insight. However the primary
method of research was reading a lot of the technologies documentation.

Grasping a basic understanding of the API’s used at a high level. Most of our research was
conducted using online resources. Because a majority of software and information
regarding it is Open Source the software team had nearly full access to the inner workings
of any software they decided was worth looking into. Any forums or development pages,
as well as documentation for possible libraries and functions are being kept separately on
our shared Google Drive's folder for easy access should we find the need to go back and
look through these sources.

115

Hardware team:

The main things the hardware team has to focus on are the Glove, quadcopter components
and host machine, though the portion of the host machine will be mainly handled by the
software team once its components are gathered. The main research technique for finding
the glove setup was first seeing what other remote controllers used for signal processing
and data transmission. Many projects and current devices use microcontrollers so the next
step was determining what controllers were of a reduced size so that they could fit on the
back of a user’s hand and remain a close distance to the host machine.

The arduino uno fit this description perfectly. Light and simple to program, we can use the
main power of the arduino model to establish as stepping stone for the full components of
the glove. An accelerometer and gyroscope were needed to calibrate the actual use of the
soon to be created PCB. Google has been the main starting source for searching for
documents and hints as well as Remote Control forums for controller creation.

Lastly the Quadcopter’s research mainly led to Traxxas as they are a major leader in
Remote control vehicles. Googling anything RC related usually pulls up Traxxas’ main
page. Key points of searching through options though was battery longevity and weight of
the quadcopter. We figured buying a prebuilt platform for the Quadcopter would prove to
be most efficient as it gives us easy things to replace and more time to focus on other
hardware such as the glove or the host machine. Communicating with the software team to
pull together the needed camera choice for the Oculus was also vital to the task.

11. Conclusion

The major key points of our project have been outlined. The group feels that we were able
to successfully design our system and will be able to move onto the Fall 2015 Semester
prepared and ready to begin working. A majority of our time in the Summer 2015 semester
was spent performing extensive research into the finer details of how we plan to create
each component of our project. We went through some complications, and quickly realized
that communication was going to be key to ensure we would meet our goals.

While we had some initial communication issues and misunderstandings of responsibilities
we feel that we were able to work on these problems as they arose in an organized and
calm manner. Through time, group members became more comfortable with each other
and this facilitated communication as we were able to more uniformly combine our efforts.

The team focused their efforts on accomplishing personal milestones as much as possible,
as well as assisting fellow members when they were falling behind, to avoid running into
any major issues near the end of the semester. Through the research done, each group
member has learned new material and techniques that they had not experienced before in
the scope of their courses at UCF.

We have grown individually and as a group. Ultimately our goal has been to develop an
interesting Virtual Reality experience for everyone to enjoy, and we feel that with our

Commented [2]: Figure we can add a little fluff here by
separating the teams

116

newly gained knowledge and support from fellow Alumni, Friends, and Family we believe
we can make our designs a reality.

Now that our group has a stronger awareness of the scope of our project and the difficulties
we will likely encounter as we begin building and prototyping, we plan to not slack, and
continue building our current momentum to ensure we make strong progress towards not
only having a functioning final build, but also to incorporate any extra features we
originally wished to include in our project to make the most of our time left here at UCF.
Overall it has been a great learning experience so far, and through analyzing similar
projects and others experiences with similar hardware we think we have a firm
understanding of how we plan to move forward.

11.1 Project Results

The project’s total success relies the full integration of each setup coming together to
complete the system. If the Oculus Rift works but the glove does not, then we are left with
a quadcopter that needs to be controlled via a regular RC controller. This will lose the
objective of integration and complexity is added that the user now has to learn. If the glove
works but the Oculus Rift does not, then nothing but a new controller is made and no steps
towards new, exciting innovations have been made.

System Check Pass/Fail

Quadcopter

Glove

Oculus Overlay

Quadcopter Integrated with Glove

Host Machine

Oculus with Host Machine

Quadcopter Integrated with Host Machine

Camera Streaming to Oculus Via Host
Machine

Complete System

Figure 11.1A Pass Fail System Table

117

 11.1.1 Final Costs

These costs will be considered final upon project completion. It would be preferable to be
able to plan the cost of this project down to the penny, but mistakes must be accounted for
and so spaces must be made. Continuously updating this chart throughout our project will
give us an indication as to how much we are spending. When a pair of new gyroscopes and
accelerometers cost $8, it is no big deal. When four pairs are immediately burnt on the first
four attempts at creating a PCB, then research has to be done and people have to be
consulted before moving on.

Parts Prices

Copter Components (Propellers, Hull, Motors) Donated by Sponsor

Flight Controller Donated by Sponsor

Gyroscope

Accelerometer

Sensors

Oculus Rift Donated by Sponsor

Quadcopter Battery

Raspberry Pi Battery

RC transmitter/receiver Donated by Sponsor

MicroControllers

Raspberry Pi

Camera

Wifi Transmitter

Wifi Receiver

Wifi Range Extender

Integrated Circuit Components

PCB

Total

Table 11.1A: Total final Project cost

118

 11.1.2 Time Spent

The Table 11.1B will contain the total amounted hours spent on various tasks as a final
amount. This will be used more for our benefit on how much time is being delegated to
what aspects of the total project. This data will then lead us, to the problem’s source if ever
a problem arises. If no time is being spent on glove testing, then we will know that the
reason the quadcopter is malfunctioning is because of the glove and not necessarily because
of possible power distribution modifications.

Task Total time (hours)

Initial Programming For Oculus Rift

Initial Programming For Flight Controller

Prototype Glove Construction

Prototype Glove Testing

Glove Construction

Glove Testing

Quadcopter and Glove Testing

Oculus with Quadcopter Camera Testing

Oculus, Quadcopter, Glove Testing

Documentation

Total Hours

Table 11.1B: Final Hours Totaled (will be updated on completion of project)

11.2 Moving Onwards

Even though we have the larger time frame of Fall 2015 to build and test our product we
have to make sure we don't take that for granted and underestimate exactly how much work
we will need to do to stay on track. We will never know if any emergencies can arise that
hinder our ability to work, or even if we run into malfunctions on parts we never expected.
We need to make sure any planning takes into account possible setbacks and to not treat
our project goals with ideal environments in mind. As such early focused efforts will be
the best way to ensure the rope around our necks has some wiggle room.

119

As the group now has our hands on an Oculus DK2 and HPQ1 Copter, we plan to make
use of our early access and spend our time growing familiar with the products for the
upcoming semester. The Copter itself we must first learn how to pilot, as well as seeing
how far we can push the weight limits available to us, while still maintaining functionality,
so we can include any necessary information in our user manuals and get a better
understanding of what exactly our hand controller needs to be able to do to achieve as close
to possible functionality of its original pre bundled RC controller.

We will have to thoroughly test the breakout board and Arduino Uno to make sure that the
components we have chosen will work in the first place. If they work at the prototype stage
but not at the printed circuit board stage, then we will have to look into the other gyroscope
and accelerometer combinations and see if the combined-into-one-unit electronics will
work better for us in the long run.

We also will have to know whether we will need to pursue a different copter model. The
sooner we can make these decisions the more time we will have available should the need
arise to redesign larger components of our project. Luckily as each major aspect of our
project is nearly an independent module, we have more room to adapt to critical issues and
won't have to start entirely from scratch should any major changes be made.

We plan to get our hands on some Raspberry Pi’s early on and begin getting more hands
on experience with the interfacing of the cameras and such before the semester begins. We
will need to get a strong familiarity with the planned software involved and their
functionalities. Once we have the Pi’s and cameras we can begin testing the limitations of
their power for encoding and seeing what things we need to start cutting back on, whether
we need to use lower resolutions than initially planned for example.

As Gstreamer has its own set of libraries and features we need to learn, any head start we
can get on that will make sure we find the most optimal streaming settings for our cameras,
the sooner we can get our camera feed working and stable the sooner we can begin testing
the limits of how much game engine content we can overlay on top and whether our
planned host machine specifications will be able to handle the joint effort of running our
engines, Oculus, controller and any other software smoothly.

120

Projected Long Term Timeline

1 Year after Senior Design
Completion

● Fix initial bottlenecks, and trim down the
quadcopter design. While scaling the power and
speed up or at least maintain.

● Have the host machine be portable.
● Create an easy to use GUI for every application

within the project.
● Polish the project for commercial sales

2 Years ● Use our own quadcopter design if not already,
by this point our drone should be rather small,
suitable for indoor household use.

● Flex budget up and build smaller, lighter
hardware.

● Switch / Add other VR headset support, HTC
Vive, Sony’s Project Morpheus

● Software expands capabilities based upon user
feedback. Primarily increasing the autonomous
nature of the drone.

5 Years ● Have a successful small company running
entirely off of this product, expanding to either a
portable personal version, or a custom designed
flight arena.

● At this point the software should be in a mature
state that mostly support work is
happening.(Assuming project’s scope never
changes)

● Some really drastic changes could be
implemented now due to the growth of the tech
market.

Table 11.2A Projected Future Timeline

We also want to kickstart our progress into working on the most difficult component of our
project, the Hand Controller. If we could enhance its capabilities to be used in other
interfaces as a standalone project, that could be the sole greatest aspect of the project.
Combining it with other virtual reality equipment could prove to be a hugely profitable
endeavor.

V

Appendix and References

References

Consulted:

2.2

http://static.oculus.com/documents/health-and-safety-warnings.pdf

http://www.censusscope.org/us/s12/c95/chart_age.html

3.2

http://knowbeforeyoufly.org/for-recreational-users/

http://www.multiwii.com/

http://copter.ardupilot.com/

4.1

http://www.eecs.ucf.edu/seniordesign/fa2013sp2014/g06/uploads/2/8/7/8/28781263/senio
r_design_i_documentation.pdf

http://www.eecs.ucf.edu/seniordesign/fa2013sp2014/g07/

4.1.1

http://torkeldanielsson.se/live-twocamera-video-stream-from-raspberry-pi-to-oculus-rift

5.2

https://www.oculus.com/en-us/dk2/

5.3

https://support.oculus.com/hc/en-us/articles/201835987-Oculus-Rift-Development-Kit-2-
FAQ

6.1-6.2.2

http://rotorconcept.com/Documents/aHPQ1%20RotorConcept%20Manual%20003.JPG

http://www.hovership.com/2012/12/06/beginner-quadcopter-kit-buying-guide/

http://static.oculus.com/documents/health-and-safety-warnings.pdf
http://www.censusscope.org/us/s12/c95/chart_age.html
http://knowbeforeyoufly.org/for-recreational-users/
http://www.multiwii.com/
http://copter.ardupilot.com/
http://www.eecs.ucf.edu/seniordesign/fa2013sp2014/g06/uploads/2/8/7/8/28781263/senior_design_i_documentation.pdf
http://www.eecs.ucf.edu/seniordesign/fa2013sp2014/g06/uploads/2/8/7/8/28781263/senior_design_i_documentation.pdf
http://www.eecs.ucf.edu/seniordesign/fa2013sp2014/g07/
http://torkeldanielsson.se/live-twocamera-video-stream-from-raspberry-pi-to-oculus-rift
https://www.oculus.com/en-us/dk2/
https://support.oculus.com/hc/en-us/articles/201835987-Oculus-Rift-Development-Kit-2-FAQ
https://support.oculus.com/hc/en-us/articles/201835987-Oculus-Rift-Development-Kit-2-FAQ
http://rotorconcept.com/Documents/aHPQ1%20RotorConcept%20Manual%20003.JPG
http://www.hovership.com/2012/12/06/beginner-quadcopter-kit-buying-guide/

VI

http://www.hobbyking.com/hobbyking/store/__54299__Hobbyking_KK2_1_5_Multi_rot
or_LCD_Flight_Control_Board_With_6050MPU_And_Atmel_644PA.html

https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=35746

https://latrax.com/sites/default/files/6608-parts-list-140428.pdf

https://latrax.com/products/alias?t=specs

http://www.ebay.com/itm/like/281566912485?lpid=82&chn=ps

[1] http://blog.oscarliang.net/how-to-choose-motor-and-propeller-for-quadcopter/

http://thequadcopterguy.blogspot.com/p/choosing-your-parts_23.html

http://www.banggood.com/8045-3-Leaf-Propeller-ABS-CWCCW-For-Quadcopter-330-
Frame-Kit-p-954478.html

6.2.3

http://www.eflightwiki.com/eflightwiki/index.php?title=Outrunner

*** [2] http://www.eflightwiki.com/eflightwiki/index.php?title=Rotor_Concept_HPQ1

6.2.4

http://www.rcgroups.com/forums/showthread.php?t=1822983

http://www.hobbyking.com/hobbyking/store/__9516__Turnigy_5000mAh_4S_30C_Lipo
_Pack.html

7.2.1
https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout

http://www.adafruit.com/products/1714

https://www.verical.com/pd/stmicroelectronics-sensor-misc-LSM303DLHC-
369341?wm_ctID=250&wm_kwID=70581028&wm_mtID=1&gclid=Cj0KEQjwiN6sBR
DK2vOO_vaRs5cBEiQAfsnJCZLeKmAioGAtkiolcsThdklcjPUMAkXi3z8e_sHmR2Ea
Ak3a8P8HAQ

http://www.newark.com/stmicroelectronics/l3gd20h/3-axis-gyroscope-digital-lga-
16/dp/78X5255?mckv=sPkmjxXGy_dc|pcrid|72465880475|plid||kword|l3gd20h|match|p
&CMP=KNC-GUSA-SKU-MDC?gross_price=

http://www.hobbyking.com/hobbyking/store/__54299__Hobbyking_KK2_1_5_Multi_rotor_LCD_Flight_Control_Board_With_6050MPU_And_Atmel_644PA.html
http://www.hobbyking.com/hobbyking/store/__54299__Hobbyking_KK2_1_5_Multi_rotor_LCD_Flight_Control_Board_With_6050MPU_And_Atmel_644PA.html
https://www.raspberrypi.org/forums/viewtopic.php?f=37&t=35746
https://latrax.com/sites/default/files/6608-parts-list-140428.pdf
https://latrax.com/products/alias?t=specs
http://www.ebay.com/itm/like/281566912485?lpid=82&chn=ps
http://blog.oscarliang.net/how-to-choose-motor-and-propeller-for-quadcopter/
http://blog.oscarliang.net/how-to-choose-motor-and-propeller-for-quadcopter/
http://thequadcopterguy.blogspot.com/p/choosing-your-parts_23.html
http://www.banggood.com/8045-3-Leaf-Propeller-ABS-CWCCW-For-Quadcopter-330-Frame-Kit-p-954478.html
http://www.banggood.com/8045-3-Leaf-Propeller-ABS-CWCCW-For-Quadcopter-330-Frame-Kit-p-954478.html
http://www.eflightwiki.com/eflightwiki/index.php?title=Outrunner
http://www.eflightwiki.com/eflightwiki/index.php?title=Rotor_Concept_HPQ1
http://www.rcgroups.com/forums/showthread.php?t=1822983
http://www.hobbyking.com/hobbyking/store/__9516__Turnigy_5000mAh_4S_30C_Lipo_Pack.html
http://www.hobbyking.com/hobbyking/store/__9516__Turnigy_5000mAh_4S_30C_Lipo_Pack.html
https://learn.adafruit.com/ahrs-for-adafruits-9-dof-10-dof-breakout
http://www.adafruit.com/products/1714
https://www.verical.com/pd/stmicroelectronics-sensor-misc-LSM303DLHC-369341?wm_ctID=250&wm_kwID=70581028&wm_mtID=1&gclid=Cj0KEQjwiN6sBRDK2vOO_vaRs5cBEiQAfsnJCZLeKmAioGAtkiolcsThdklcjPUMAkXi3z8e_sHmR2EaAk3a8P8HAQ
https://www.verical.com/pd/stmicroelectronics-sensor-misc-LSM303DLHC-369341?wm_ctID=250&wm_kwID=70581028&wm_mtID=1&gclid=Cj0KEQjwiN6sBRDK2vOO_vaRs5cBEiQAfsnJCZLeKmAioGAtkiolcsThdklcjPUMAkXi3z8e_sHmR2EaAk3a8P8HAQ
https://www.verical.com/pd/stmicroelectronics-sensor-misc-LSM303DLHC-369341?wm_ctID=250&wm_kwID=70581028&wm_mtID=1&gclid=Cj0KEQjwiN6sBRDK2vOO_vaRs5cBEiQAfsnJCZLeKmAioGAtkiolcsThdklcjPUMAkXi3z8e_sHmR2EaAk3a8P8HAQ
https://www.verical.com/pd/stmicroelectronics-sensor-misc-LSM303DLHC-369341?wm_ctID=250&wm_kwID=70581028&wm_mtID=1&gclid=Cj0KEQjwiN6sBRDK2vOO_vaRs5cBEiQAfsnJCZLeKmAioGAtkiolcsThdklcjPUMAkXi3z8e_sHmR2EaAk3a8P8HAQ
http://www.newark.com/stmicroelectronics/l3gd20h/3-axis-gyroscope-digital-lga-16/dp/78X5255?mckv=sPkmjxXGy_dc%7Cpcrid%7C72465880475%7Cplid%7C%7Ckword%7Cl3gd20h%7Cmatch%7Cp&CMP=KNC-GUSA-SKU-MDC?gross_price
http://www.newark.com/stmicroelectronics/l3gd20h/3-axis-gyroscope-digital-lga-16/dp/78X5255?mckv=sPkmjxXGy_dc%7Cpcrid%7C72465880475%7Cplid%7C%7Ckword%7Cl3gd20h%7Cmatch%7Cp&CMP=KNC-GUSA-SKU-MDC?gross_price
http://www.newark.com/stmicroelectronics/l3gd20h/3-axis-gyroscope-digital-lga-16/dp/78X5255?mckv=sPkmjxXGy_dc%7Cpcrid%7C72465880475%7Cplid%7C%7Ckword%7Cl3gd20h%7Cmatch%7Cp&CMP=KNC-GUSA-SKU-MDC?gross_price

VII

7.2.1 block diagrams:
http://download.siliconexpert.com/pdfs/2013/12/18/13/33/10/666/st_/manual/215dm0002
7543.pdf

http://www.farnell.com/datasheets/1836728.pdf

7.2, 7.2.5

https://www.arduino.cc/en/Main/arduinoBoardUno

 8
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/

http://www.alliedelec.com/raspberry-pi-raspberry-pi-2-model-b/70465426/

http://www.adafruit.com/product/1030

8.1

https://www.raspberrypi.org/documentation/hardware/raspberrypi/models/specs.md

8.2.1

http://www.newegg.com/Product/Product.aspx?Item=N82E16813130847&cm_re=z87-_-
13-130-847-_-Product

8.2.2

http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-
3_90-GHz

8.2.4

http://www.newegg.com/Product/Product.aspx?Item=9SIA24G15S7606&cm_re=samsun
g_ssd_840_pro-_-20-147-192-_-Product

8.2.5
http://www.newegg.com/Product/Product.aspx?Item=N82E16814487075&cm_re=gtx_9
70-_-14-487-075-_-Product

10.1

Designated Jira site PatientPoint Infrastructure Swimlane
http://jirappns.patientpoint.com:8080/

http://download.siliconexpert.com/pdfs/2013/12/18/13/33/10/666/st_/manual/215dm00027543.pdf
http://download.siliconexpert.com/pdfs/2013/12/18/13/33/10/666/st_/manual/215dm00027543.pdf
http://www.farnell.com/datasheets/1836728.pdf
https://www.arduino.cc/en/Main/arduinoBoardUno
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/
http://www.alliedelec.com/raspberry-pi-raspberry-pi-2-model-b/70465426/
http://www.adafruit.com/product/1030
https://www.raspberrypi.org/documentation/hardware/raspberrypi/models/specs.md
http://www.newegg.com/Product/Product.aspx?Item=N82E16813130847&cm_re=z87-_-13-130-847-_-Product
http://www.newegg.com/Product/Product.aspx?Item=N82E16813130847&cm_re=z87-_-13-130-847-_-Product
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/75123/Intel-Core-i7-4770K-Processor-8M-Cache-up-to-3_90-GHz
http://www.newegg.com/Product/Product.aspx?Item=9SIA24G15S7606&cm_re=samsung_ssd_840_pro-_-20-147-192-_-Product
http://www.newegg.com/Product/Product.aspx?Item=9SIA24G15S7606&cm_re=samsung_ssd_840_pro-_-20-147-192-_-Product
http://www.newegg.com/Product/Product.aspx?Item=N82E16814487075&cm_re=gtx_970-_-14-487-075-_-Product
http://www.newegg.com/Product/Product.aspx?Item=N82E16814487075&cm_re=gtx_970-_-14-487-075-_-Product
http://jirappns.patientpoint.com:8080/

VIII

https://confluence.atlassian.com/download/attachments/185729618/jira_default_workflo
w.png?version=1&modificationDate=1378968996981&api=v2

10.1.4
https://git.wiki.kernel.org/index.php/GitSvnComparsion

Appendix
 permissions for oculus tables 4.1.8a & 4.1.8b

Permissions for mention in 4.1 Related Projects

Permission for DroneNet project

https://confluence.atlassian.com/download/attachments/185729618/jira_default_workflow.png?version=1&modificationDate=1378968996981&api=v2
https://confluence.atlassian.com/download/attachments/185729618/jira_default_workflow.png?version=1&modificationDate=1378968996981&api=v2
https://git.wiki.kernel.org/index.php/GitSvnComparsion

IX

Permission for High 6 project mentioned in section 4

X

Permission to use Traxxas 6608 Image

	1. Executive Summary
	1.1 Motivations
	1.2 Goals and Planned Objectives
	1.3 Team Member Biographies
	1.3.1 Gustavo Gonzalez
	1.3.2 Matt Grayford
	1.3.3 Gunnar Skotnicki
	1.3.4 Craig Thompson

	1.4 Acknowledgements

	2. Project Requirements and Design Constraints
	2.1 Problem Statement
	2.1.2 Design Specifications

	2.2 Customer and Customer Requirements
	2.2.1 Performance

	2.3 Realistic Design Constraints
	2.3.1 Economic Constraints
	2.3.2 Environmental, Social, and Political Constraints
	2.3.3 Health and Safety Constraints
	2.3.4 Manufacturability and Sustainability Constraints

	2.4 Deliverables
	2.5 Estimated Budgets and Finance Plans
	2.6 Scheduling Concerns and Time Limitations

	3. Standards
	3.1 Standards
	3.2 Regulations

	4. System Design
	4.1 Key Design Elements and Associated Research
	4.1.1 Related Projects

	4.1.2 Batteries
	4.1.3 QuadCopters
	4.1.4 Flight Controllers
	4.1.5 Camera
	4.1.6 Software
	4.1.7 Hardware
	4.1.8 Oculus Rift and related subjects
	4.1.9 Possible Solutions
	4.1.10 Decision Criteria and Justification
	4.1.12 Design Considerations and Solutions to Issues That Arose

	4.2 Overall System and Associated Diagrams
	4.2.1 Hardware Architecture
	4.2.2 Software Architecture

	4.4 Feature Results

	5. Oculus Rift Dev Kit 2 Integration
	5.1 Oculus Dev Kit 2 Software Developers Kit
	5.2 Oculus Specifications and First Impressions
	5.2.1 OLED Display
	5.2.2 Sensors

	5.3 Host Machine Specifications to Run the Oculus Rift
	5.3.1 Host Machine Minimum Requirements
	5.3.2 Host Machine Recommended Requirements
	5.3.3 Power

	6. Quadcopter Design
	6.1 Quadcopter Architecture
	6.2 Quadcopter Components
	6.2.1 Flight Controller
	6.2.2 Propellers
	6.2.3 Motors
	6.2.5 Frame/Landing Gear
	6.2.8 WiFi Transmitter Adapter
	6.2.9 Power Distribution System

	6.3 Quadcopter Component Summary

	7. Glove Controller Design
	7.1 Glove Architecture
	7.2 Glove Components
	7.2.1 Accelerometer and Gyroscope
	7.2.2 Arduino Uno
	7.2.3 USB Connector
	7.2.4 Button Layout
	7.2.5 Driver Software
	7.2.6 Print Circuit Board

	8. Host Machine Design
	8.1 Host Machine Architecture
	8.2 Host Machine Major Components
	8.2.1 Motherboard
	8.2.2 Processor
	8.2.3 Random Access Memory
	8.2.4 Storage
	8.2.5 Graphics Card
	8.2.6 Power Supply

	9. System Integration and Testing
	9.1 Video Streaming
	9.2 RC Control via Glove
	9.2.1 Glove Button Functions
	9.2.2 Glove Accelerometer Functions
	9.2.3 Glove Gyroscope Functions

	9.3 RC Control Monitoring via Oculus Rift

	10. Project Management
	10.1 Documentation and Organization
	10.1.2 Design Journals
	10.1.3 Manuals
	10.1.4 Media
	10.1.5 Miscellaneous Notes
	10.1.6 Planning Documents
	10.1.7 Status Reports
	10.1.8 Tests

	10.2 Team Organization
	10.2.1 Technical Assignment Design Areas
	10.2.2 Management Assignments
	10.2.3 Working Guidelines
	10.2.4 Safety Guidelines
	10.2.5 Team Communication and Accountability

	10.3 Schedule and Work Breakdown Schedule
	10.3.1 Hours Summary
	10.3.2 Milestones

	10.4 Operational Planned Budget
	10.4.1 Project Cost
	10.4.2 QuadCopter components
	10.4.3 Oculus Rift DevKit 2
	10.4.4 Controller Components:
	10.4.5 Project Cost Summary
	10.4.6 Sources of Funding

	10.5 Method of Approach
	10.5.1 Design Methodology
	10.5.2 Research Techniques

	11. Conclusion
	11.1 Project Results
	11.1.1 Final Costs
	11.1.2 Time Spent

	11.2 Moving Onwards

	Appendix and References
	References

	Appendix

