Automated Pen Plotter

- <u>Group 24</u>
- Al Moatasem Al Abri EE
- Patrick Caughey CPE
- Anthony DeMore CPE
- Peregrino Quansah CPE

INTRODUCTION

- Unique way to generate images with speed and precision.
 - Unlike laser printers are able to print continuous lines.
- Mainly used by architects and engineers.
 - Used for blueprints, cad drawings and architectural renderings.
- Used by hobbyists for unique art piece and designs.
 - Typically smaller scale than professional designs.
 - Allow for the use of writing utensil of choice.

MOTIVATION

- Pen plotters can be very costly.
 - Typically priced at \$300-\$1000.
- Our design aims to be an easy to use and cheaper product that will create more interest in pen plotting.
- Pen plotting can create unique works of art we want to allow more hobbyists to explore.

GOALS & OBJECTIVES

- Create a precise and mechanically sound design.
 - Plotter must be durable.
- Stability is important with this type of CNC adaptation.
- Allow the user to control the plotter from their PC.
- Ability for user to use the writing utensil and surface of their choice.
- Design an easy-to-use GUI which will control the entire process.

SPECIFICATIONS AND REQUIREMENTS

Specification	Requirement	Value
Stepper motors	X Y and Z axes	3 motors
Working area	the larger dimensions of A4 and U.S. Letter Sizes with additional margin of 0.5 Inches	9.5" x 12.75", 242 mm x 324 mm or greater
Base size	working area plus 100 mm on top, 30 mm on each side, and 30 mm on bottom	302 mm x 454 mm or greater
Plotting precision	Much less than the line weight of a standard pen	0.1 mm or less in the X and Y directions
Plotting speed	Reasonable speed for writing or drawing	~20 mm per second
Clamp fitting for pen	Fits most standard pen sizes	6 mm to 14 mm
PCB full size	Plenty of room for display and controls	120 mm x 100 mm or smaller
Switches	Confirm, cancel, and emergency stop	3 switches
Motor power supply voltage	Appropriate voltage for chosen motors	12V
Microprocessor power supply	Appropriate voltage for microprocessor	5V
Firmware size	Size of medium size C code when converted to 32 bit machine code	~10 kB or smaller

OVERALL PROJECT DIAGRAM

Mechanical Design

X Axis

- The X axis motion is controlled by a belt and pinion system
- This allows the X and Y axis motors to be together
- As with almost all systems, backlash may be a concern

Y Axis

- The Y axis uses a pulley actuator system
- This allows the X and Y motors to be together
- Backlash still a possible concern

Z Axis

- The Z axis uses a lever arm to raise or lower a spring loaded linear slider
- Low range of motion
- Printing difficulties

Pen Gripper

- The pen gripper uses a lever arm to hold the pen against the groove in the plastic
- Possibly raise friction

Remaining Steps

- Cable management
- Limit switches
- PCB attachment
- Paper alignment

System block diagram:

Power distribution diagram:

Microcontroller:

Specifications	Arduino Nano	Elegoo Mega R3
Microcontroller	ATmega328	ATmega2560
Voltage	5V	5V
Flash memory	32KB	256KB
SRAM	2КВ	8KB
PCB size	18*45mm	101.52*53.3mm
Price	\$19.80	\$20

Stepper Motors:

- Used for the movement of the carriage.
- There are several types of stepper motors.(hybrid stepper motor, variable reluctance stepper motor).
- Name 17 stepper:
- Commonly used in 3D printing.
- Higher torque at low speed.
- 1.8-degree step size .
- Torque 45Ncm.

Stepper derivers:

- Provides current required.
- Changing polarity.
- Voltage supply.
- Changing the step size
- Logic supply of 3.3-5V
- It can handle 36V and minimum voltage of 8V.
- stepper drivers. (A4988, STSPIN820...)

Limit switches:

- Commonly used in moving projects.
- Controls the movement and dimensions.
- prevent any issues that might cause by the moving parts.
- Used in (x-axis, y-axis, z-axis).
- Switches will be connected to the microcontroller.

PCB schematic:

Stepper Driver Schematic:

Software

The project requires two different software modules to operate:

- The firmware :
 - It is responsible for motion and controlling the motors
- The control software:
 - Converts graphics into G-code
 - Sends the G-code to the motor-controlling microcontroller

Software Block Diagram

Controller Software

Firmware

What is Gcode?

- Geometric-code is a programming language for Computer Numerical Control Machines (CNC)
- The G-code commands instruct the machine where to move, how fast to move and what path to follow.
- An example of G-code structure:
 - G## X## Y## Z## F#

Software Selection

For the firmware, grbl is the industry standard for CNC machines:

- Grbl is an open source firmware
- Used in the industry for motion control
- It takes in G-code as input, interpret and translate them to motion out put
- For our project, we will use a modified version called the grbl-servo

Software Selection

Grbl-plotter is an open source CNC control software

- This software is developed specifically for plotting devices
- It makes room to incorporate a graphics converter
- The graphic converter will be responsible for creating G-code out of inputted graphics

Use case diagram

From the UI of the control software, users can:

- Add raw text or graphics
- SVG files to G-code conversion
- Input and edit G-code
- Control machine variables

Part Name	Quantity	Cost
MGN15H Linear Rails	2	\$88
Nema 17 Stepper Motors	3	\$36
GT2 Belt & Pulley Kits	2	\$50
Various bolts and nuts		\$40
Linear Rod & Bearings	2 (each)	\$20
Various 3D Printed Design Parts	20	\$165
A4988 Stepper Drivers	1	\$11
Servo Motor	1	\$11
Limit Switches	1	\$7
DC Power Supply	1	\$13
Arduino Uno	1	\$23
Arduino CNC Shield	1	\$8
Total	\$459	

Issues

- Certain 3D printed parts not printed correctly.
- Mechanical design needing modifications when assembled.

Progress

Milestones

Questions?