Design Overview

Remote Area Monitoring

Group 10

Wyatt Vining – Computer Engineering
Johan Castillo – Computer Engineering
Abhijeet Malviya – Computer Engineering
Nicholas Gonzalez – Computer Engineering

Motivation

- Over 10 million acres of land consumed in 2020 alone
- Forest fires have a lasting impact on both the environment and those living within it
- We as perspective engineers have an opportunity to make an impact

Goals and Objectives

- Gather Data for the Prevention of Forest Fires
- Create a network of sensing nodes capable of offgrid communications and operation
- Collect the data gathered by each node and aggregate the data in a database. This data may be exported or viewed for a historical representation of the area
- Each sensing node shall adopt a modular design
- All design files will be open source

Hardware Engineering Specifications

Requirement ID	Specification Value		
H01	Range	100 Meters	
H02	Visual Camera	Visual Camera 350x288 Resolution	
H03	Charging 3-Watt Charging Rate		
H04	Node Body Max Size 6in x 6in		
H05	Wind Speed	+- 10% Accuracy	
H06	Wind Direction	+- 10% Accuracy	
H07	Relative Humidity Sensor	Accuracy +- 10%	
H08	Temperature Sensor	Accuracy +- 0.5C	
H09	Barometer	Accuracy: +- 1.5mbar	
H10	Soil Moisture Sensor	Minimum 850 ADC Count Change Over Sensing Range	

Node Hardware Block Diagram

Part Selection and Testing

Temperature, Pressure, and Humidity

- Bosch BME280
- DS18B20
- Temperature

- Temperature
- Relative Humidity
- Pressure
- DS18B20 not available in SMD package
- Long Term Testing:
 - Filtering modes enabled on BME280
 - Pressure very consistent
 - DS18B20 may not be required

Air Quality – CO2 and TVOCs

CCS811 Inside a Node

Data Gathered from a Node in Our System

• ScioSense CCS811

- Electrical Design Rework
 - Feedback loop required for startup
 - Pin 4 (TP2) connected to Pin 5 (TP1)
- Long Term Testing:
 - Added environmental offsets
 - Reduced polling rate
 - Stability reached with lower than expected power consumption

Soil Moisture Sensor

Continuous Current Draw (mA)		5.64	
Cycle Number	Dry Output (Counts)	Submerged Output (Counts)	Delta (Counts)
1	2870	953	1917
2	2909	961	1948
3	2903	946	1957

Soil Sensor 1 Test Results

- Capacitive Soil Moisture Sensor V2.0
- Used as an Indirect Measure of Rainfall
- Uses Soil as a Dielectric
- Testing Conducted to Expose Minimums and Maximums
- **Testing Shows Two Conclusions:**
 - Results are consistent
 - The delta in counts is approximately half the range of the microcontroller

Dry Soil

Saturated Soil

Anemometer – Overview

- Wind speed sensor
 - A3144 hall effect magnetic sensor
 - Produces pulses as the magnet passes by the sensor
- Wind direction sensor
 - Melexis MLX90316
 - Absolute position rotary encoder
 - Measures magnetic flux passing through the part

Anemometer – Wind Speed

Calibration

Setup

Wind Speed Test Results

Vehicle Speed (MPH)	Measured Speed (MPH)	Percent Error
10	10.1	1%
10	10.6	6%
20	21.3	6.5%
20	19.4	-3%
40	40.9	2%
40	38.4	-4%

- Low-Cost Design less than \$2
- Calibrated using speedometer on vehicle
- Potential Calibration Errors:
 - Wind gusts
 - Wind direction with or against the vehicle's direction of travel
 - Variations in vehicle speed
- Results show we are under our 10% accuracy requirement

Mechanical Design

HDD Bearing

Hall Effect

Pulses While Spinning

Anemometer – Wind Direction

- Sensor comes preprogrammed to output a PWM signal
- The microcontroller measures the duty cycle of the sensor signal
- We tested the sensor by attaching an oscilloscope to the output and observing the consistency of the transition from min to max duty cycle
- We correlate duty cycle to degrees with the following equation:

 $Degrees = 360 - \frac{DutyCycleTime - MinDutyCycleTime}{CalibrationFactor}$

Camera Selection and Testing

Camera Testing Prototype

- ArduCam Mini 2mp
 - Built-in Image Buffer
 - 2mp Max Resolution
 - Auto-Lighting Modes
- Images Give an Indication of the Fuel Loading of an Area
- Lower Resolution is Sufficient
- Mesh Network Limits the Data Size of the Images

Microcontroller ESP 32

Widely Available and Supported

Part of the Arduino Family of Boards

Built-in Wi-Fi Antenna for Mesh Networking

Software Engineering Specifications

Requirement ID	Specification	Description
S01	Application	Web application to display current and historical data
S02	Map View	Show each node on a map with the status of the node
S03	Map Overlay	Display a gradient on the map representing the environmental conditions such as temperature
S04	Off-Grid Network	Network for communicating to and from the nodes without relying on established networks such as cellular
S05	Notifications	Notify the user of issues in the mesh network
S06	Maximum Number of Nodes per Aggregator	150

Software Components python

- Quickly adaptive in a prototype environment
- Strong data manipulation

- Dash is a web interface built using Python
- Plotly is a data visualization framework
- Plotly and Dash are tightly integrated

TinyDB

- Flexible Data Model
- Scalability
- Ease of Use for Developers

Server Software Design

Alert History

Image Data

Mesh Network

- Benefits Advantages:
 - Cover a wide area
 - Resilient to failures of individual nodes
 - Expandability

- Disadvantages:
 - Slow data rate

Painless Mesh

- Out of the box support for ESP32 microcontroller
- Arduino Library Available
- Built-in handling for mesh functionality:
 - Self-Healing
 - Optimized Paths
 - Automatic Detection of New Nodes

Node Software Design

- Arduino Platform
- Painless Mesh Networking
- Three Discrete Commands:
 - Get a snapshot of sensor data
 - Get an image capture
 - Reset the node

Development Prototypes

Developmental Prototypes used to:

- Test individual components
- Test software and hardware integration
- Validate electrical designs

Camera Testing Node Prototype

Sensor Testing Node Prototype

Power Systems

<u>Sensors</u>

Microcontroller

Main PCB

Wind Direction Sensor

- External module to minimize magnet interference on compass sensor
- Small footprint for easier mechanical design
- Allows for iteration and changes without the need to modify the main PCB

Enhanced Notifications

Balanced Power Budget

Top 5 Future Improvements

Addition of Environment Trends

Higher Resolution Images

Allow User Devices to Connect and Communicate Over the Network in an Emergency

Questions?

Remote Area Monitoring

Group 10: Wyatt Vining, Johan Castillo, Abhijeet Malviya, Nicholas Gonzalez

