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Abstract – An innovative and original project consisting of 
hardware and software designs, the Remote Access 
Monitoring system or (RAM), is an effective system that can 
interact in real time and retrieve data of different 
components: wind speed, humidity, temperature, air pressure, 
air quality, and soil moisture content through the articulation 
of a mesh network. The mesh network consists of nodes which 
represent a geological area; these nodes comprise of unique 
sensor data recorded in real time by our hardware design. The 
motivation behind this project is to give the users a better 
understanding of the area they may use without fearing any 
catastrophic damage. This project can help as a purpose to 
stopping wildfires in the forest soon.  

 I. INTRODUCTION 

    In recent years, we have seen the devastating 
consequences of global warming. One such consequence 
was the measurable uptick in wildfires. In 2020 alone over 
10 million acres of land burned destroying nearly 18,000 
structures. Our motivation originated from one event in 
2016, the Chimney Tops 2 fire. One group member was 
present at the origin of this wildfire. The short of it is, 
wildfires are terrifying and have a lifelong impact on those 
affected. So therefore, we investigated methods of 
gathering information about what causes those wildfires. 
Some of the variable that we took into account included the 
fuel load, which is the number of combustible materials 
present such as dried brush and dead trees. We realized that 
reliably detecting fires is an engineering challenge that may 
quickly exceed the capacity of two semesters, which is why 
we didn’t create a fire warning system. With consideration 
of the fire investigator’s insights, we created an open-
source monitoring system. We focused on monitoring the 
environmental factors leading up to wildfires. Some of 
these factors include fuel load, moisture, temperature, 
volatile compounds in air and wind speed/direction. Our 

system consisted of a resilient mesh network of nodes. Each 
node reports its data back to an aggregator node where the 
data is stored and displayed. All nodes are modular 
allowing only the necessary sensors be equipped for the 
specific application of the system. The system is fault 
tolerant, maintaining functionality with a minimal number 
of nodes remaining.  The information gathered by our 
system aides those responsible for forest management in the 
prevention of forest fires by prompting preventative actions 
as well as informing movement of assets when actively 
fighting a fire by placing the mesh near populated areas 
may aid emergency management in issuing earlier 
warnings to residents in the event an evacuation is required. 

II. SYSTEM COMPONENTS 

    Our Remote Area Monitoring device is composed of 
many different types of components and modules that work 
together in order to gather the data for our nodes. This 
section introduces and explains the different components 
within our system. 
 
A. Microcontroller 
    The microcontroller unit or MCU will be the brains of 
each node. After researching different types, we decided to 
use an ESP32 system on a chip from Espressif Systems. We 
made sure that it had a good selection of both digital and 
analog general purpose input output (GPIO) pins and also 
that it was low-cost and has a versatile system. The chip 
also executes a 32-bit application and the clock frequency 
of this board reaches 240 megahertz, and it has 512 
kilobytes with 30 or 36 rounds, 15 in each row. The ESP32 
is also able to withstand high temperatures and also 
included a built-in Wi-Fi antenna so that the user can 
interact with the device portably with good connection.  

 
B. Photovoltaic Panel and Battery 
    We decided to use two components to power the Remote 
Area Monitoring device. One of these components is by 
using 3 Watt Minimum 6 Volt Photovoltaic Panels which 
gathers energy from sunlight to power the system. The 
photovoltaic panels charge the lithium-ion foil battery in 
each node and helps the device to operate off-grid for 
extended periods of time. The lithium-ion foil battery is a 
type of rechargeable battery made up of cells in which 
lithium ions travel from the negative electrode to the 
positive electrode via an electrolyte during discharge and 
back again during charging. To make sure that these 
components are safe, we used a TP4056 battery charger 
chip that protects the cell from over and under charging. 
The TP4056 chip features two status outputs, one for 
charging in process and one for charging completed. It also 
has a charge current of up to 1A and accepts a wide range 
of voltages while charging the battery. 



 

 

 
C. Temperature, Humidity, and Pressure Sensor 
    We needed to use a BME280 sensor in order to gather 
data for three different types of environmental nodes which 
are temperature, humidity, and atmospheric pressure. It 
combines high linearity and high precision sensors, making 
it ideal for low current consumption, long-term stability, 
and strong EMC resilience. It also has a fast reaction time 
and meets the requirements for developing applications 
such as context awareness and high accuracy across a wide 
temperature range. The BME280 was created with low 
current consumption (3.6 pA @1Hz), long term stability, 
and good EMC robustness. BME280 was sensitive to waste 
heat from nearby devices so we then also added a DS18B20 
temperature sensor in order to offset the temperature of the 
BME280. A capacitive soil moisture sensor was used to 
measure the moisture in the soil by using the soil as a 
dielectric.  
 
D. Anemometer 
    An anemometer is needed to measure the wind speed and 
direction. The anemometer that we used is self-built with 
two different assemblies both using magnets in order to 
determine the wind characteristics. The wind speed sensor 
part uses an A3144 hall effect magnetic sensor fixed in 
place and produces active high pulses as the magnet passes 
through the sensor. The number of pulses is counted by the 
microcontroller which it then determines the wind speed. 
The wind direction sensor part uses a Melexis MLX90316 
absolute rotary position sensor with a magnet and wind 
vane attached to the end of the axle that gathers and returns 
a PWM signal when it rotates that can then be used to get 
the direction. 
 
E. CO2 and TVOC Sensor  
    We needed to use a CCS811 air quality sensor along with 
a Total Volatile Organic Compounds (TVOC) sensor to 
measure the CO2 level from the amount of smoke present 
in the area. The TVOC sensor that we used is able to detect 
1000ppm change in TVOCs. These sensors were also 
placed on our product while activating the mesh network. 
As the mesh network is activated, the air quality detects the 
air and obtains all the data it can and displays it on the web 
interface when the user hovers over the different nodes as 
they please. 
 
F. Compass  
    A Honeywell HMC5883L digital compass is used to find 
the wind direction and determine the node’s position 
relative to the Earth. The measurement for wind direction 
comes from a compass heading from 0 to 360 degrees. This 
serves as a reference point to base the wind direction 
measurements from the anemometer. It has a magnetometer 
that is used to measure the compass azimuth, which also 

helps to add minimal cost and complexity to the system 
while reducing human error. The magnetometer’s X-axis is 
aligned with the zero point of the wind direction to measure 
the direction and the degrees.  
 
G. Camera 
    We needed to use a camera for the device so that it could 
take pictures of the environment around it so that it would 
report data about it in order to prevent future fires. The type 
of camera that we used 2MP Sensor SPI Interface. The 
images from the camera extracts details from the 
environment and identifies sources that can cause forest 
fires. Based on the output signal, there are two types of 
cameras which are analog and digital.  

III. SYSTEM CONCEPT 

    Our system is superlatively displayed in terms of system 
components which are placed on our circuit board to gather 
data in real time. These components; mostly purchased; are 
used fully to produce the final product. The section 
provides a technical aspect of the components that we have 
used in our project. 
 

 

Fig. 1.    System overview of software and hardware 
 
Here, we have nodes in a mesh network connected to the 
mesh controller (aggregator) which connects to the server 
running parser which connects to the database and then the 
web application. 

IV. HARDWARE DETAILS 

    Excluding the microcontroller due mainly to probable 
redundancy, each of the primary system components 
described in previous sections of system Components, will 
now be discussed in even greater detail with test results 
provided. 
 
 



 

 

A. Soil Moisture 
    Our testing technique will consist of three extreme-to-
extreme cycles. The first extreme is to leave the dry sensor 
out in the open on a paper towel. This is an example of 
severely dry dirt. The sensor may also be submerged in 
seawater. This saltwater solution will consist of 3/4 cup 
water and 1 teaspoon table salt. The seawater will stand in 
for thoroughly wet soil. This circumstance is not natural, 
but it does indicate the sensor's functioning range. The 
sensor will be measured dry before being immersed in a 
saltwater solution. When the sensor is taken from the fluid, 
it will be totally dried. For each sensor, the submersion-
drying cycle will be done Two times. 
The results of our testing may be observed for both samples 
in Table 1 and Table 2 below. 
 

Table 1 
Soil Sensor 1 Test Results 

Continuous Current 
Draw (mA)  

5.64  

Cycle 
Number  

Dry 
Output 

(Counts)  

Submerged Output 
(Counts)  

Delta 
(Counts)  

1  2870  953  1917  

2  2909  961  1948  

3  2903  946  1957  

 
Table 2 

Soil Sensor 2 Test Results 
Continuous Current 

Draw (mA) 
5.66 

Cycle 
Number 

Dry 
Output 

(Counts) 

Submerged 
Output (Counts) 

Delta 
(Counts) 

1 2863 942 1921 

2 2858 954 1904 

3 2857 945 1912 

 
    This data allows us to derive three major conclusions. 
First and foremost, the sensors have a wide range of counts. 
The difference from low to high measurement is larger than 
1900 counts over all 6 trials and 2 sensors. This is nearly 
half of the total 4096 counts that the microcontroller can 
measure. This is a significant enough delta to detect 
changes in soil moisture. The measurements are precise, as 

we can see in the second observation. After being 
immersed, the sensors returned to their dry measurement in 
all experiments. This is also true for submerged 
measurements. This offers us assurance that the 
measurements will be constant when the environment is 
stable. 
 
B. Photovoltaic Panel and Battery 
    The engineering team is planning to use a 5x5 
polycrystalline solar panel. They give a panel with a 
relatively small area of roughly 5 square feet, a peak power 
output of 3W, and a peak output spec (500mA) at 6 volts, 
which is enough to run the 200mA system and charge 
during peak daytime hours. Our engineers anticipated that 
this would be adequate, and it was proven by testing, as 
explained more in the following sections. 
 

 

Fig. 2. Solar power system testing apparatus  
 
    During the early testing phase for our design, we utilized 
the testing apparatus depicted in Fig. 2. This apparatus 
consisted of the major components in our power system 
designs. The continuous draw of from the battery with the 
photovoltaic panel disconnected was approximately 
200mA to represent our expected power budget.  
    During a 3.5-day period, the battery regulator, battery 
pack, and solar panel were all assessed. We created a multi-
axis graph with Minutes on the horizontal axis and a double 
vertical axis with Current (mA) on the left vertical axis and 
Voltage on the right horizontal axis. The battery voltage 
periodically rises but remains constant over the day, and the 
current swings to the negative, suggesting that the battery 
is being charged. 
 



 

 

 

Fig. 3. Battery voltage and current over time. 
 
C. Temperature, Humidity, and Pressure Sensor 

(BME280) 
    The BME280 supports the I2C and SPI (3-wire/4-wire) 
digital serial interfaces. The sensor has three power 
settings: sleep, regular, and forced. The sensor alternates 
between measurements and idle intervals in normal mode. 
When using the BME280's built-in IIR filter to filter short-
term disturbances, this mode is suggested (e.g., blowing 
into the sensor). In forced mode, the sensor performs a 
single measurement on demand before returning to sleep. 
This mode is suitable for applications requiring a low 
sample rate or host-based synchronization. A variety of 
oversampling settings, filter modes, and data rates may be 
used to tailor data rate, noise, reaction time, and current 
consumption to the user's needs. 
 
D. CO2 and TVOC Sensor (CCS811 sensor) 
    We are measuring carbon dioxide and total volatile 
organic compounds to provide an overall picture of air 
quality in a region when there are fires nearby. With this in 
mind, we will design the subsystem's testing technique to 
emphasize stability and the ability to monitor deltas. We 
may begin by measuring the known atmospheric baselines 
for both measures. The average carbon dioxide 
concentration in the atmosphere is 400 parts per million. 
Total volatile organic compound content is close to 0 parts 
per billion. When put in a well-ventilated environment, we 
may anticipate our sensor to read 0 parts per billion total 
volatile organic compounds. 
 

 

Fig. 4. Testing of CCS811 CO2 and TVOC sensor 
 
    The first condition for our testing is that the sensor 
reports no more than 10 parts per billion total volatile 
organic compounds but no more than 420 parts per million 
carbon dioxides when put outdoors. The first prerequisite is 
that the sensor properly measures our predicted values. 
From here, we may experiment with different values. These 
new values will be more of a test for accuracy than 
accuracy. The sensor must also read the value and provide 
a reliable reading for five measurement cycles. Stability is 
defined as a variation in either measurement of no more 
than 10 parts from cycle to cycle. The results of our testing 
for the air quality sensor may be observed in Table 3. 
 
 

Table 3 
Air Quality Sensor Test Results 

Test 
Condition 

Expected 
Max 
CO2 

(PPM) 

Actual 
CO2 

(PPM) 

Expected 
Max 

TVOC 
(PPB) 

Actual 
TVOC 
(PPB) 

Passing 

Outdoors 400 400 0 0 PASS 

Indoors 
400 - 
1000 

949 500 83 PASS 

Candle 
Greater 

than 
1000 

8224 
Greater 
than 500 

14011 PASS 

 
 
 



 

 

E. Camera 
    The majority of the camera module testing will be done 
at the system level. Separate from the functioning of the 
camera module itself, the flow of pixel data via the node 
and across the mesh network offers a problem. Two photos 
will be captured as part of the testing approach for the 
subsystem level camera module. For this test to be regarded 
passing, two conditions must be met. The first need is that 
the Python control program can both order the camera to 
take a shot and save the captured data to a jpeg file. The 
second criteria is that both photographs be somewhat eye-
focused. We shall leave this criteria at the test agent's 
discretion.  
 

 

Fig. 5. Prototype used for testing the camera module. 
 

 

Fig. 6. Spoke target test image 
 
    Both prerequisites for a successful test are met by the 
image in Figure The python command script was used to 
capture and save this image. The picture subject is a spoke 

target for evaluating camera optics and resolution. This 
provides us with a clear metric for evaluating our image. 
Given the image's resolution, the capture may be judged 
passable.  
    While testing our camera, we encountered an issue where 
the data processing requirement for image capture was 
outside the capabilities of our microcontroller. The ESP32 
does not contain enough memory to store and then transmit 
the image data. As a result, we selected the ArduCam Mini 
module depicted in Fig.4. This module has a built in first in 
first out cache. The microcontroller may now read a single 
packet worth of data and transmit the data over the mesh 
network before retrieving the next data packet from the 
camera module.  
 
F. Main PCB Layout 
    The actual placement and connectivity of each 
component in the electrical design is represented by the 
printed circuit board layout. Our system's physical 
mechanical design is directly influenced by the layout. This 
layout may be observed in Fig. 6. We must consider the 
completed circuit board's dimensions as well as the 
component placement. We'll also have to take into account 
any manufacturer suggestions for the physical arrangement 
of the pieces. The main system PCB houses the CPU, power 
systems, and all sensors, except for wind sensors. All 
supporting small components are likewise housed on the 
main PCB. The primary system PCB layout was created 
with prototyping and testing in mind. In addition, to save 
money, we chose a 100mm square dimension. We 
discovered that restricting the size and selecting a standard 
size lowers the cost of the PCB from the vendors. 

 

Fig. 7. Main PCB layout 



 

 

V. SOFTWARE DETAIL (ABHIJEET) 

A. Arduino Framework 
    The Arduino IDE is very simple and reliable. 
Additionally, the Arduino family of boards had an 
extensive range of documentation and libraries along with 
a wide user base. All the factors discussed aligned to 
address the stress points during the early stage of project 
development and the end stage of the project where we 
deploy it. We have chosen the EASP32 microprocessor to 
connect all our sensors which are collecting data in real 
time. The board runs software which is made for the 
Arduino platform. The Arduino interacts with the module 
in a two-way fashion with the usage of the Arduino core, 
which contains the main code for the IDE while the web 
application shares its dependency modules with the 
external processing component.  
    Our design board had some essential sensors and other 
devices installed such as: temperature, humidity and 
pressure sensor, anemometer, CO2 and TVOC sensor, 
compass, and camera. Another key benefit of the Arduino 
framework is the wide variety of software libraries 
available for interacting with these modules. These libraries 
often encapsulate the lower level register reads and writes 
to the sensors themselves. Allowing a developer to access 
base functionality of each sensor using a higher level 
function call. These libraries may also incorporate 
advanced functionality defined in the data sheets for each 
of the sensors. An example of this is the ability to select 
advanced running modes for the BME280.  
 
B. Python Programming language 
    An important standard we followed while using python 
is PEP 8. We used this to properly style the code we wrote. 
In order to make sure our functions ran properly, we 
installed several packages such as dash, plotly, source, 
pandas, numpy, etc. We used PyCharm as our chosen IDE 
to construct all the code because it is very python friendly 
and has more add-on functionalities for important libraries. 
The purpose of our application was to showcase the real 
time and historical data of the node (area) where the sensors 
collect its data from. There is a local area network and a 
Linux command and a control center as well.  
    With the chosen Arduino board and MSP 32 
microcontroller, python and Arduino are such software 
tools that should work with our device. Our database holds 
collections or data from the sensors which we have on the 
board which gets stored in the backend of the software side 
and then it sends the data to the frontend of the application 
to its specific parts of the webapp, for example, the data 
retrieved from the sensor data would be sent to the section 
displaying temperature, humidity, and wind speed. We also 
chose python because it is quick for prototyping and testing. 
For our GPS system, the nodes are meant to be pinpoints on 

the map which cites the different nodes. The GPS system 
we have tracks all the information that is gathered on that 
specific node and then all the information will be 
transferred to the data server which is also made through 
python.  
 
C. Plotly and Dash  
    Dash is a python framework made by Plotly for 
developing interactive web applications. Dash is written 
through the use of Flask, Plotly.js and React.js. In order to 
make our web application interactive, we just needed 
python. It is open source, and the application was developed 
using the framework viewed on the web browser. The Dash 
core components were used to build our elements displayed 
on the web application such as graphs, sliders, drop-down 
menus, etc. There are also callbacks which are used to bring 
interactivity into the web application. The function helps in 
defining the activity during where a user can click a button 
to interact with something or he or she can click a drop-
down menu for more options. In order for all the functions 
to execute, we had to install important packages such as 
dash-html components, dash-core components, and Plotly. 
These packages help in creating graphs, drop-down menus, 
etc. On the other hand, Plotly packages help in creating 
graphs and plots for reading various datasets which was 
recorded through our sensor data stored in the backend side 
of the software application. Callbacks in dash are used to 
make the web application or any application interactive. 
Firstly, a callback is initialized using “@app.callback()” 
and then this is followed by a function. We have used plenty 
of callback features in our software application to make our 
web application interactive for the users. We have input 
functions and output functions. The output functions in our 
web application were developed to display the wind speed, 
temperature, humidity, etc.  
 

 

Fig. 8. Example of our interactive graph  
 



 

 

 

Fig. 9. Example of our density heatmap used to display 
environmental data over physical locations. 
 

 

Fig. 10.  Map showing each of the nodes physical location 
and status. 
 
    The images in Fig. 8, 9, and 10 represent the different 
visuals on our web application through the uses of Dash and 
Plotly. The graphs generated from the data in our system 
allow the user to select a time scale starting from the last 
hour and ending with all time. This time scale may also be 
adjusted using the interactive slide selector at the bottom of 
the graph. These features give the user the flexibility to 
view the data in a way that best serves their needs. The 
density heatmap, like the graphs, allows the user to select 
the type of data they would like to view with a dropdown 
menu. The selected datatype is then displayed on a map of 
the area being monitored. The heatmap is also animated 
with 24 frames representing the previous 24 hours of time.  
 
 

D. TinyDB 
    TinyDB is a document-oriented database written purely 
in python with no other external dependencies. TinyDB 
does everything using JSON. We have a JSON file in our 
IDE, PyCharm, that has stored all the data through our 
sensors from our board. It is not only run locally to reduce 
potential costs for remote hosting, but also allows for 
storage of unstructured data as each node may have a user 
selected assortment of sensors. 
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