

Remote Area

Monitoring
Wyatt Vining, Abhijeet Malviya, Nicholas

Gonzalez, Johan Castillo

DEPT. OF ELECTRICAL ENGINEERING
AND COMPUTER SCIENCE, UNIVERSITY

OF CENTRAL FLORIDA, ORLANDO,
FLORIDA, 32816-2450

Abstract – An innovative and original project consisting of
hardware and software designs, the Remote Access
Monitoring system or (RAM), is an effective system that can
interact in real time and retrieve data of different
components: wind speed, humidity, temperature, air pressure,
air quality, and soil moisture content through the articulation
of a mesh network. The mesh network consists of nodes which
represent a geological area; these nodes comprise of unique
sensor data recorded in real time by our hardware design. The
motivation behind this project is to give the users a better
understanding of the area they may use without fearing any
catastrophic damage. This project can help as a purpose to
stopping wildfires in the forest soon.

 I. INTRODUCTION

 In recent years, we have seen the devastating
consequences of global warming. One such consequence
was the measurable uptick in wildfires. In 2020 alone over
10 million acres of land burned destroying nearly 18,000
structures. Our motivation originated from one event in
2016, the Chimney Tops 2 fire. One group member was
present at the origin of this wildfire. The short of it is,
wildfires are terrifying and have a lifelong impact on those
affected. So therefore, we investigated methods of
gathering information about what causes those wildfires.
Some of the variable that we took into account included the
fuel load, which is the number of combustible materials
present such as dried brush and dead trees. We realized that
reliably detecting fires is an engineering challenge that may
quickly exceed the capacity of two semesters, which is why
we didn’t create a fire warning system. With consideration
of the fire investigator’s insights, we created an open-
source monitoring system. We focused on monitoring the
environmental factors leading up to wildfires. Some of
these factors include fuel load, moisture, temperature,
volatile compounds in air and wind speed/direction. Our

system consisted of a resilient mesh network of nodes. Each
node reports its data back to an aggregator node where the
data is stored and displayed. All nodes are modular
allowing only the necessary sensors be equipped for the
specific application of the system. The system is fault
tolerant, maintaining functionality with a minimal number
of nodes remaining. The information gathered by our
system aides those responsible for forest management in the
prevention of forest fires by prompting preventative actions
as well as informing movement of assets when actively
fighting a fire by placing the mesh near populated areas
may aid emergency management in issuing earlier
warnings to residents in the event an evacuation is required.

II. SYSTEM COMPONENTS

 Our Remote Area Monitoring device is composed of
many different types of components and modules that work
together in order to gather the data for our nodes. This
section introduces and explains the different components
within our system.

A. Microcontroller
 The microcontroller unit or MCU will be the brains of
each node. After researching different types, we decided to
use an ESP32 system on a chip from Espressif Systems. We
made sure that it had a good selection of both digital and
analog general purpose input output (GPIO) pins and also
that it was low-cost and has a versatile system. The chip
also executes a 32-bit application and the clock frequency
of this board reaches 240 megahertz, and it has 512
kilobytes with 30 or 36 rounds, 15 in each row. The ESP32
is also able to withstand high temperatures and also
included a built-in Wi-Fi antenna so that the user can
interact with the device portably with good connection.

B. Photovoltaic Panel and Battery
 We decided to use two components to power the Remote
Area Monitoring device. One of these components is by
using 3 Watt Minimum 6 Volt Photovoltaic Panels which
gathers energy from sunlight to power the system. The
photovoltaic panels charge the lithium-ion foil battery in
each node and helps the device to operate off-grid for
extended periods of time. The lithium-ion foil battery is a
type of rechargeable battery made up of cells in which
lithium ions travel from the negative electrode to the
positive electrode via an electrolyte during discharge and
back again during charging. To make sure that these
components are safe, we used a TP4056 battery charger
chip that protects the cell from over and under charging.
The TP4056 chip features two status outputs, one for
charging in process and one for charging completed. It also
has a charge current of up to 1A and accepts a wide range
of voltages while charging the battery.

C. Temperature, Humidity, and Pressure Sensor
 We needed to use a BME280 sensor in order to gather
data for three different types of environmental nodes which
are temperature, humidity, and atmospheric pressure. It
combines high linearity and high precision sensors, making
it ideal for low current consumption, long-term stability,
and strong EMC resilience. It also has a fast reaction time
and meets the requirements for developing applications
such as context awareness and high accuracy across a wide
temperature range. The BME280 was created with low
current consumption (3.6 pA @1Hz), long term stability,
and good EMC robustness. BME280 was sensitive to waste
heat from nearby devices so we then also added a DS18B20
temperature sensor in order to offset the temperature of the
BME280. A capacitive soil moisture sensor was used to
measure the moisture in the soil by using the soil as a
dielectric.

D. Anemometer
 An anemometer is needed to measure the wind speed and
direction. The anemometer that we used is self-built with
two different assemblies both using magnets in order to
determine the wind characteristics. The wind speed sensor
part uses an A3144 hall effect magnetic sensor fixed in
place and produces active high pulses as the magnet passes
through the sensor. The number of pulses is counted by the
microcontroller which it then determines the wind speed.
The wind direction sensor part uses a Melexis MLX90316
absolute rotary position sensor with a magnet and wind
vane attached to the end of the axle that gathers and returns
a PWM signal when it rotates that can then be used to get
the direction.

E. CO2 and TVOC Sensor
 We needed to use a CCS811 air quality sensor along with
a Total Volatile Organic Compounds (TVOC) sensor to
measure the CO2 level from the amount of smoke present
in the area. The TVOC sensor that we used is able to detect
1000ppm change in TVOCs. These sensors were also
placed on our product while activating the mesh network.
As the mesh network is activated, the air quality detects the
air and obtains all the data it can and displays it on the web
interface when the user hovers over the different nodes as
they please.

F. Compass
 A Honeywell HMC5883L digital compass is used to find
the wind direction and determine the node’s position
relative to the Earth. The measurement for wind direction
comes from a compass heading from 0 to 360 degrees. This
serves as a reference point to base the wind direction
measurements from the anemometer. It has a magnetometer
that is used to measure the compass azimuth, which also

helps to add minimal cost and complexity to the system
while reducing human error. The magnetometer’s X-axis is
aligned with the zero point of the wind direction to measure
the direction and the degrees.

G. Camera
 We needed to use a camera for the device so that it could
take pictures of the environment around it so that it would
report data about it in order to prevent future fires. The type
of camera that we used 2MP Sensor SPI Interface. The
images from the camera extracts details from the
environment and identifies sources that can cause forest
fires. Based on the output signal, there are two types of
cameras which are analog and digital.

III. SYSTEM CONCEPT

 Our system is superlatively displayed in terms of system
components which are placed on our circuit board to gather
data in real time. These components; mostly purchased; are
used fully to produce the final product. The section
provides a technical aspect of the components that we have
used in our project.

Fig. 1. System overview of software and hardware

Here, we have nodes in a mesh network connected to the
mesh controller (aggregator) which connects to the server
running parser which connects to the database and then the
web application.

IV. HARDWARE DETAILS

 Excluding the microcontroller due mainly to probable
redundancy, each of the primary system components
described in previous sections of system Components, will
now be discussed in even greater detail with test results
provided.

A. Soil Moisture
 Our testing technique will consist of three extreme-to-
extreme cycles. The first extreme is to leave the dry sensor
out in the open on a paper towel. This is an example of
severely dry dirt. The sensor may also be submerged in
seawater. This saltwater solution will consist of 3/4 cup
water and 1 teaspoon table salt. The seawater will stand in
for thoroughly wet soil. This circumstance is not natural,
but it does indicate the sensor's functioning range. The
sensor will be measured dry before being immersed in a
saltwater solution. When the sensor is taken from the fluid,
it will be totally dried. For each sensor, the submersion-
drying cycle will be done Two times.
The results of our testing may be observed for both samples
in Table 1 and Table 2 below.

Table 1
Soil Sensor 1 Test Results

Continuous Current
Draw (mA)

5.64

Cycle
Number

Dry
Output

(Counts)

Submerged Output
(Counts)

Delta
(Counts)

1 2870 953 1917

2 2909 961 1948

3 2903 946 1957

Table 2

Soil Sensor 2 Test Results
Continuous Current

Draw (mA)
5.66

Cycle
Number

Dry
Output

(Counts)

Submerged
Output (Counts)

Delta
(Counts)

1 2863 942 1921

2 2858 954 1904

3 2857 945 1912

 This data allows us to derive three major conclusions.
First and foremost, the sensors have a wide range of counts.
The difference from low to high measurement is larger than
1900 counts over all 6 trials and 2 sensors. This is nearly
half of the total 4096 counts that the microcontroller can
measure. This is a significant enough delta to detect
changes in soil moisture. The measurements are precise, as

we can see in the second observation. After being
immersed, the sensors returned to their dry measurement in
all experiments. This is also true for submerged
measurements. This offers us assurance that the
measurements will be constant when the environment is
stable.

B. Photovoltaic Panel and Battery
 The engineering team is planning to use a 5x5
polycrystalline solar panel. They give a panel with a
relatively small area of roughly 5 square feet, a peak power
output of 3W, and a peak output spec (500mA) at 6 volts,
which is enough to run the 200mA system and charge
during peak daytime hours. Our engineers anticipated that
this would be adequate, and it was proven by testing, as
explained more in the following sections.

Fig. 2. Solar power system testing apparatus

 During the early testing phase for our design, we utilized
the testing apparatus depicted in Fig. 2. This apparatus
consisted of the major components in our power system
designs. The continuous draw of from the battery with the
photovoltaic panel disconnected was approximately
200mA to represent our expected power budget.
 During a 3.5-day period, the battery regulator, battery
pack, and solar panel were all assessed. We created a multi-
axis graph with Minutes on the horizontal axis and a double
vertical axis with Current (mA) on the left vertical axis and
Voltage on the right horizontal axis. The battery voltage
periodically rises but remains constant over the day, and the
current swings to the negative, suggesting that the battery
is being charged.

Fig. 3. Battery voltage and current over time.

C. Temperature, Humidity, and Pressure Sensor

(BME280)
 The BME280 supports the I2C and SPI (3-wire/4-wire)
digital serial interfaces. The sensor has three power
settings: sleep, regular, and forced. The sensor alternates
between measurements and idle intervals in normal mode.
When using the BME280's built-in IIR filter to filter short-
term disturbances, this mode is suggested (e.g., blowing
into the sensor). In forced mode, the sensor performs a
single measurement on demand before returning to sleep.
This mode is suitable for applications requiring a low
sample rate or host-based synchronization. A variety of
oversampling settings, filter modes, and data rates may be
used to tailor data rate, noise, reaction time, and current
consumption to the user's needs.

D. CO2 and TVOC Sensor (CCS811 sensor)
 We are measuring carbon dioxide and total volatile
organic compounds to provide an overall picture of air
quality in a region when there are fires nearby. With this in
mind, we will design the subsystem's testing technique to
emphasize stability and the ability to monitor deltas. We
may begin by measuring the known atmospheric baselines
for both measures. The average carbon dioxide
concentration in the atmosphere is 400 parts per million.
Total volatile organic compound content is close to 0 parts
per billion. When put in a well-ventilated environment, we
may anticipate our sensor to read 0 parts per billion total
volatile organic compounds.

Fig. 4. Testing of CCS811 CO2 and TVOC sensor

 The first condition for our testing is that the sensor
reports no more than 10 parts per billion total volatile
organic compounds but no more than 420 parts per million
carbon dioxides when put outdoors. The first prerequisite is
that the sensor properly measures our predicted values.
From here, we may experiment with different values. These
new values will be more of a test for accuracy than
accuracy. The sensor must also read the value and provide
a reliable reading for five measurement cycles. Stability is
defined as a variation in either measurement of no more
than 10 parts from cycle to cycle. The results of our testing
for the air quality sensor may be observed in Table 3.

Table 3
Air Quality Sensor Test Results

Test
Condition

Expected
Max
CO2

(PPM)

Actual
CO2

(PPM)

Expected
Max

TVOC
(PPB)

Actual
TVOC
(PPB)

Passing

Outdoors 400 400 0 0 PASS

Indoors
400 -
1000

949 500 83 PASS

Candle
Greater

than
1000

8224
Greater
than 500

14011 PASS

E. Camera
 The majority of the camera module testing will be done
at the system level. Separate from the functioning of the
camera module itself, the flow of pixel data via the node
and across the mesh network offers a problem. Two photos
will be captured as part of the testing approach for the
subsystem level camera module. For this test to be regarded
passing, two conditions must be met. The first need is that
the Python control program can both order the camera to
take a shot and save the captured data to a jpeg file. The
second criteria is that both photographs be somewhat eye-
focused. We shall leave this criteria at the test agent's
discretion.

Fig. 5. Prototype used for testing the camera module.

Fig. 6. Spoke target test image

 Both prerequisites for a successful test are met by the
image in Figure The python command script was used to
capture and save this image. The picture subject is a spoke

target for evaluating camera optics and resolution. This
provides us with a clear metric for evaluating our image.
Given the image's resolution, the capture may be judged
passable.
 While testing our camera, we encountered an issue where
the data processing requirement for image capture was
outside the capabilities of our microcontroller. The ESP32
does not contain enough memory to store and then transmit
the image data. As a result, we selected the ArduCam Mini
module depicted in Fig.4. This module has a built in first in
first out cache. The microcontroller may now read a single
packet worth of data and transmit the data over the mesh
network before retrieving the next data packet from the
camera module.

F. Main PCB Layout
 The actual placement and connectivity of each
component in the electrical design is represented by the
printed circuit board layout. Our system's physical
mechanical design is directly influenced by the layout. This
layout may be observed in Fig. 6. We must consider the
completed circuit board's dimensions as well as the
component placement. We'll also have to take into account
any manufacturer suggestions for the physical arrangement
of the pieces. The main system PCB houses the CPU, power
systems, and all sensors, except for wind sensors. All
supporting small components are likewise housed on the
main PCB. The primary system PCB layout was created
with prototyping and testing in mind. In addition, to save
money, we chose a 100mm square dimension. We
discovered that restricting the size and selecting a standard
size lowers the cost of the PCB from the vendors.

Fig. 7. Main PCB layout

V. SOFTWARE DETAIL (ABHIJEET)

A. Arduino Framework
 The Arduino IDE is very simple and reliable.
Additionally, the Arduino family of boards had an
extensive range of documentation and libraries along with
a wide user base. All the factors discussed aligned to
address the stress points during the early stage of project
development and the end stage of the project where we
deploy it. We have chosen the EASP32 microprocessor to
connect all our sensors which are collecting data in real
time. The board runs software which is made for the
Arduino platform. The Arduino interacts with the module
in a two-way fashion with the usage of the Arduino core,
which contains the main code for the IDE while the web
application shares its dependency modules with the
external processing component.
 Our design board had some essential sensors and other
devices installed such as: temperature, humidity and
pressure sensor, anemometer, CO2 and TVOC sensor,
compass, and camera. Another key benefit of the Arduino
framework is the wide variety of software libraries
available for interacting with these modules. These libraries
often encapsulate the lower level register reads and writes
to the sensors themselves. Allowing a developer to access
base functionality of each sensor using a higher level
function call. These libraries may also incorporate
advanced functionality defined in the data sheets for each
of the sensors. An example of this is the ability to select
advanced running modes for the BME280.

B. Python Programming language
 An important standard we followed while using python
is PEP 8. We used this to properly style the code we wrote.
In order to make sure our functions ran properly, we
installed several packages such as dash, plotly, source,
pandas, numpy, etc. We used PyCharm as our chosen IDE
to construct all the code because it is very python friendly
and has more add-on functionalities for important libraries.
The purpose of our application was to showcase the real
time and historical data of the node (area) where the sensors
collect its data from. There is a local area network and a
Linux command and a control center as well.
 With the chosen Arduino board and MSP 32
microcontroller, python and Arduino are such software
tools that should work with our device. Our database holds
collections or data from the sensors which we have on the
board which gets stored in the backend of the software side
and then it sends the data to the frontend of the application
to its specific parts of the webapp, for example, the data
retrieved from the sensor data would be sent to the section
displaying temperature, humidity, and wind speed. We also
chose python because it is quick for prototyping and testing.
For our GPS system, the nodes are meant to be pinpoints on

the map which cites the different nodes. The GPS system
we have tracks all the information that is gathered on that
specific node and then all the information will be
transferred to the data server which is also made through
python.

C. Plotly and Dash
 Dash is a python framework made by Plotly for
developing interactive web applications. Dash is written
through the use of Flask, Plotly.js and React.js. In order to
make our web application interactive, we just needed
python. It is open source, and the application was developed
using the framework viewed on the web browser. The Dash
core components were used to build our elements displayed
on the web application such as graphs, sliders, drop-down
menus, etc. There are also callbacks which are used to bring
interactivity into the web application. The function helps in
defining the activity during where a user can click a button
to interact with something or he or she can click a drop-
down menu for more options. In order for all the functions
to execute, we had to install important packages such as
dash-html components, dash-core components, and Plotly.
These packages help in creating graphs, drop-down menus,
etc. On the other hand, Plotly packages help in creating
graphs and plots for reading various datasets which was
recorded through our sensor data stored in the backend side
of the software application. Callbacks in dash are used to
make the web application or any application interactive.
Firstly, a callback is initialized using “@app.callback()”
and then this is followed by a function. We have used plenty
of callback features in our software application to make our
web application interactive for the users. We have input
functions and output functions. The output functions in our
web application were developed to display the wind speed,
temperature, humidity, etc.

Fig. 8. Example of our interactive graph

Fig. 9. Example of our density heatmap used to display
environmental data over physical locations.

Fig. 10. Map showing each of the nodes physical location
and status.

 The images in Fig. 8, 9, and 10 represent the different
visuals on our web application through the uses of Dash and
Plotly. The graphs generated from the data in our system
allow the user to select a time scale starting from the last
hour and ending with all time. This time scale may also be
adjusted using the interactive slide selector at the bottom of
the graph. These features give the user the flexibility to
view the data in a way that best serves their needs. The
density heatmap, like the graphs, allows the user to select
the type of data they would like to view with a dropdown
menu. The selected datatype is then displayed on a map of
the area being monitored. The heatmap is also animated
with 24 frames representing the previous 24 hours of time.

D. TinyDB
 TinyDB is a document-oriented database written purely
in python with no other external dependencies. TinyDB
does everything using JSON. We have a JSON file in our
IDE, PyCharm, that has stored all the data through our
sensors from our board. It is not only run locally to reduce
potential costs for remote hosting, but also allows for
storage of unstructured data as each node may have a user
selected assortment of sensors.

VI. ACKNOWLEDGMENT

The engineers of this senior design project wish to
acknowledge the assistance, guidance and support of Dr
Samuel Richie and Dr Lei Wei and Dr Aravinda Kar;
University of Central Florida.

REFERENCES

[1] Management of National Park Service Programs. National
Park Service, 2006,
https://www.nps.gov/subjects/policy/upload/MP_2006.pdf.

[2] “National Fire Danger Rating System.” Cibola National
Forest and National Grasslands - Resource Management,
https://www.fs.usda.gov/detail/cibola/landmanagement/resource
management/?cid=stelprdb5368839

[3] Schlobohm, Paul, and Jim Brain. Gaining an Understanding
of the National Fire ... - NWCG. NWCG Fire Danger Working
Team, July 2002,
https://www.nwcg.gov/sites/default/files/products/pms932.pdf.

[4] Cohen, Jack D., and John E. Deeming. United States
Agriculture the National Fire ... - Fs.fed.us. May 1985,
https://www.fs.fed.us/psw/publications/documents/psw_gtr082/p
sw_gtr082.pdf

[5] “Understanding Fire Danger (U.S. National Park Service).”
National Parks Service, U.S. Department of the Interior, 2021,
https://www.nps.gov/articles/understanding-fire-danger.htm

[6] “IPC Standards for Printed Circuit Boards: PCB Design.”
Mcl, Millenium Circuits Limited, 10 Mar. 2022,
https://www.mclpcb.com/blog/ipc-standards-for-
pcbs/#:~:text=IPC%2D2221%20is%20the%20standard,rigid%20
and%20MCM%2DL%20PCBs

[7] van Rossum, Guido, et al. “Python Enhancement Proposals.”
PEP 8 – Style Guide for Python Code, 1 Aug. 2013,
https://peps.python.org/pep-
0008/#:~:text=The%20Python%20standard%20library%20is,insi
de%20parentheses%2C%20brackets%20and%20braces.

[8] Smith, Diane M. Sustainability and Wildland Fire The
Origins of Forest Service Wildland Fire Research. USDA, May
2017,
https://www.fs.usda.gov/sites/default/files/fs_media/fs_documen
t/sustainability-wildlandfire-508.pdf.

[9] National Fire Incident Reporting System Complete Reference
... FEMA, Jan. 2015,
https://www.usfa.fema.gov/downloads/pdf/nfirs/nfirs_complete_
reference_guide_2015.pdf.

[10] “Anemometer.” University of Technology Sydney, 11 Aug.
2017, https://www.uts.edu.au/partners-and-
community/initiatives/after-da-
vinci/models/anemometer#:~:text=The%20four%2Dcup%20velo
city%20anemometer,at%20Armagh%20Observatory%2C%20No
rthern%20Ireland.

[11] Ouellette, Veronica. “Types of Anemometer.” Sciencing, 2
Mar. 2019, https://sciencing.com/units-anemometer-measure-
8146408.html.

[12] Max, et al. “The Complete Library of Types of Anemometer
- Industrial Manufacturing Blog.” Linquip, 20 Aug. 2021,
https://www.linquip.com/blog/the-complete-library-of-types-of-
anemometer/.

[13] National Geographic Society. “Anemometer Functionality.”
National Geographic Society, 9 Oct. 2012,
https://www.nationalgeographic.org/encyclopedia/anemometer/#
:~:text=The%20arms%20are%20attached%20to,used%20to%20
calculate%20wind%20speed.

[14] Beach, Emily. “Differences between a Wind Vane and an
Anemometer.” Sciencing, 2 Mar. 2019,
https://sciencing.com/differences-between-wind-vane-
anemometer-4801.html.

55–172. 1.

