
ArticuLight – A gesture

controlled articulating lighting

system

Scott Bell, Keng Chu, Benjamin Simms, and

Michael Taub

Dept. of Electrical and Computer Engineering,

University of Central Florida, Orlando, Florida,

32832, U.S.A

Abstract — This paper will be presenting both circuitry

and mechanical design that will show people just how much

more advance work benches can become. Today, current work
benches lack light positioning. For example, when working on
a project on a work bench, shadows casted from the non-

moveable light can cause obstacles as it disorients your view
of where you are trying to work on that specific portion of the
project. This paper’s primary focus is on the design. It was our

purpose to create an adjustable light to help overcome
shadows as well as positioning lighting to whatever the user
prefers. Furthermore, we are hoping to make sure that the

light movement is quick and accurate according to the user’s
gesture. While there will always be some type of shadowing
from the light, we are hoping that the speed and accuracy are

prioritized the most in our design. The data presented
throughout this paper will show our focus and reasoning for
the design we chose.

Index Terms — Camera Serial Interface (CSI), Inter-

integrated Circuit (I2C), OpenCV, Serial Peripheral Interface
(SPI), and Universal asynchronous receiver-transmitter
(UART).

I. INTRODUCTION OF ARTICULIGHT

The objective of the ArticuLight device is to implement

a gesture controlled articulating light fixture through the

use of computer vision. A camera connected to an

embedded computer will analyze the gestures of the user

and perform the relative action associated with the gesture.

The planned gesture implementations are switching the

light on or off, resetting the arm position, moving the light

to a desired location through the articulating arm, setting a

home position for the arm, moving the arm to the stored

home position, setting the dimness of the light, and

powering off. ArticuLight’s technical specifications are as

follows: the system will be powered by 120V AC at 60 Hz.

This will power everything in the system including the

embedded computer and light bulb. The arm will articulate

with an accuracy of less than or equal to one cm in distance

from the gestured location that is instructed to the system.

The system will have a software to hardware interface of

less than three seconds per gesture and the computation of

issuing an instruction from a gesture will be two seconds.

The entire system will weigh in at less than or equal to

seven pounds and will contain an arm that is twenty-four

inches in length. Motors connected to a motor controller

will be the driving force that implements the articulation of

the arm, and the arm will articulate with up to 90 degrees

of movement in both the yaw and pitch orientations. The

physical footprint of the system will be designed so that it

will be mountable while also being capable of sitting on a

stand.

II. OVERVIEW OF PCB DESIGN

For our PCB board we wanted it to be able to power it up

from the wall outlet. It made sense since our light was going

to be powered by 120VAC. We needed to design our circuit

where we could utilize both AC and DC voltage. All the

electronics we will be using will be running on DC voltage

except for the light. There were two main components that

we needed to implement into our circuit design. The first is

a step-down transformer to reduce the full 120VAC to

about 12VAC. Once we got our voltage reduced, we

needed a way to turn the AC voltage to DC. The easiest way

to turn AC signal to DC signal was with a full bridge

rectifier. Using 4 diodes connected into a box shape going

one direction we built a simple ac to dc converter. Since the

output dc voltage is not a pure dc voltage as it is still

pulsating and not a continuous signal, we added capacitors

to smooth the DC voltage. One of the requirements was that

our circuit board needed a microcontroller. We opted for an

ATmega328P. The jetson nano and Atmega328P both

required 5V input voltage. The ATmega328P TX pin

outputs 5V, whereas the JETSON could only receive 3.3V

otherwise we would run the risk of burning out the pin. So,

a voltage divider was implemented on the PCB for the serial

TX pin.

During our initial design we went from using 4 diodes to

a single-phase rectifier, reducing the number of

components in the circuit board. Due to the significant

difference in current required for the Jetson and motors and

the ATmega328P, we split the power into two voltage

regulators. One for the Jetson and motors, and one for the

ATmega328P. The voltage regulator could only handle an

output 5v with a maximum current of 1.5A, so a PNP power

transistor was added to enable the amperage to be increased

to accommodate a current draw from the Jetson and servo

motors.

FIGURE 1

PCB BOARD

FIGURE 2

PCB BOARD

Our circuit board design was created on a software

program called easyEDA. Design was sent out and we

received our board in about a week. We started to assemble

our board and quickly ran into our first issue. We were not

getting a signal to from the ATMEGA to a single servo

motor. We redesigned our circuit board on the breadboard

and started to test things again.

One of the issues we encountered was the need to

decouple the Vcc, AVcc, and ARef pins which was done by

adding decoupling capacitors from these pins to ground.

Once the capacitors were added, the issue of PWM output

was still present. We re-examined our circuit design and

found some flaws in the design.

The AMEGA AVcc was not connected to power and

traces for the ground pins were not in the PCB layout that

was sent to JLCPBC for printing. We ran two wires for

power and ground and retested the board, but still had the

same issue. After more circuit analysis, we concluded the

pull up resistor on the reset pin may be the cause. We

removed the 10k pull-up resistor from the circuit board and

we finally had a PCB that functioned as intended.

III. MECHANICAL DESIGN

The mechanical design of the ArticuLight can be broken

down into 5 major components. The segments/wire guides,

the camera mount, the servo mount and stands, pulley

design, and the case or housing.

A. Segments/Wire guide

The arm is a continuum arm design. This uses a spring,

or some equivalent tubing that would return to a center

resting state. The center spring has multiple segments with

the wires fastened at the top, by the camera. This shifts the

pivot point from the base of the arm to the top. Each

segment is essentially the base of the interlocking

connectors which have 4 near the edges to act as the wire

guides, with a small plastic spring added to prevent the wire

from chewing through the plastic allows the wire to flex

around the hole better and a center hole the diameter of the

spring which provides a very tight fit.

B. Camera Mount

The camera mount was designed to accommodate the leg

stands of a raspberry pi camera stand. A segment was used

as the template with two legs extended from the top. The

center hole was widened to accommodate the light socket.

C. Servo Mount and Stands

The servo mounts were designed as an L bracket with

bolt holes that lined up with the servo mounting holes. The

original design was not strong enough to account for the

amount of torque placed on them by the actuation of the

arm, so we made the mounts nearly 3 times thicker. The

stand was made from L brackets for corner joints and sheet

copper. The bracket provides stability for the servo during

actuation, not allowing it to flex and the copper extends

behind the motor to both give it more rigidity and act as a

heat sync.

D. Pulley Design and Cable Selection

The pulley design was made to allow the center gear

through the center to allow us to connect the 2 leg servo

actuation arm. A channel was built into the print so that the

servo actuation arm would fit inside of the pulley. Along

with the mounting holes for bolts to secure it in place, the

inset actuation arm gives allows us to distribute the force

across the pulley instead of the mounting bolts. A set screw

hoes was added to fix the wire to pulley. Deep sea fishing

line was selected for the guide wire because it is a coated

steel wire that is very strong and very flexible. The coating

increases the longevity of the wire guides.

E. Case/Housing

The case was originally built out of plexiglass with 3D

printed corner connectors. The connectors allowed us to

assemble the case without the use of hardware such as bolts

and screws. Upon testing, we noticed that the plexiglass

would flex when the arm was moving. This was skewing

our testing results since the amount of flexing was not

constant. This also would likely cause the case to break

over time. The case was redesigned to be sturdier, using

wood. This added the rigidity and strength needed to

prevent excess movement from the servos.

FIGURE 3

FRAME/ARM DESIGN

IV. Software (Nano Focus)

To implement computer vision and gesture detection,

python scripts on the NVIDIA Jetson Nano developer kit

were written. The articulight software on the Jetson Nano

is based on the software for trt_pose_hand. This

(trt_pose_hand) library uses a pretrained model based on

Resnet-18 that intakes a 224x224 prepared image and

returns locations in the image where it detects the

locations on the hand that map to parts of the hand, i.e.,

three digits for each finger and certain locations of the

palm. With the returned orientations of the hand, we train

a support vector machine using svm.py for multi-class

classification on the gestures we want to train. This script

will save the SVM as a .sav model which is loaded in

articulight.py for classification. To train the model, we run

image_collection.py, which saves images and their labels

(which gesture it corresponds to) to train the SVM model

for gesture recognition.

A. Image_Collection.py

Written for gathering a dataset for the program svm.py,

it loads a GUI using the PySimpleGUI library top navigate

saving images to the Jetson Nano and which gesture the

image corresponds to. When the script starts, it prompts

the user for the name of the dataset and tells the user the

path that it is going to save the dataset to. Once the name

of the dataset is inputted, the number of gestures is then

prompted. It loops through the number of gestures and

gathers the names of the gestures from the user. Then, the

GUI is opened. The GUI has buttons for the following:

Save Image, Save 600 Images, Save 100 Images, Next

Gesture, Previous Gesture, Toggle Train/Test, and Exit.

When any of the save image buttons are pressed, an image

is saved to the dataset directory in their own directories

dependent on the gesture it represents. The next gesture

and previous gesture buttons are for selecting the gestures

the user wishes to save images to. The toggle train/test

button allows the user to save images to a training and

testing dataset. Once the exit button is pressed, the

program cleans the directories up, renames them to

iterative names (1, 2, 3, etc) and creates a json file for the

labels of the respective gesture for each image. Then, this

directory is used in svm.py to train a support vector

machine.

B. Svm.Py

A support vector machine is used in this project to

classify the data that the hand model returns when a hand

is passed into it. Svm.py takes the dataset images and

trains the returned values of the hand model supplied by

NVIDIA. After the svm model is trained, a json file is

created with the respective labels of the hand gestures, as

an svm outputs a number representing the classification.

The svm model is saved to the project directory to be

loaded in another script later through pickle, a file

loading python library. Once the svm model is trained, it

is loaded and the camera is booted up to test the

performance of the model. An issue that we faced in this

software is that the svm model seemed to randomly

assign gesture classifications and the programming of the

json file would not result in expected behavior. To

overcome this, we named the gestures that the json file

mapped to the svm outputs as ‘one’, ‘two’, ‘three’, etc

and mapped them manually through trial and error. If

more time was available, this would be investigated

further.

C. ArticuLight.py

ArticuLight.py uses the trained SVM model from

svm.py to achieve real-time gesture detection. It passes

each frame into the hand model and the outputs of the

hand model into the SVM model, and performs actions

based on these gestures. The gestures and their actions

are outlined in the gesture section. An issue that we

came across developing ArticuLight.py was that the

SVM model would identify a gesture that was not

intentionally supplied by the user. To overcome this, we

added a gesture buffer that keeps track of the previous

gestures. For a gesture’s behavior to process, it must be

held for one second. Because the program process

frames at a constant frequency, in this case 8 frames per

second, we can know that if the buffer has the same

gesture 8 times in a row, the gesture was held for one

second in real time. Therefore, instead of taking the

gesture and performing an action based on the gesture,

we check if every gesture in the buffer is the same and

compare that gesture with the expected behavior.

 V. Software (ATmega328P Focus)

The ATmega328P was selected for its ability to

communicate over both I2C and Serial with the Jetson

Nano and for the 6 PWM digital pins. This

microcontroller utilizes the Arduino IDE and libraries

which made programming the chip straightforward. The

program initializes which pins will be connected to the

servo motors. In the setup, the servo motors are set to

their resting position and start serial communication with a

9600 baud rate. In the main loop, once data is available in

the serial buffer, the program saves the first byte which is

used to determine what actions the servos will take. If the

first byte is an ‘x’, then the program parses and captures

the next integer for both x and y which is then compared

to the center of the frame to determine how many steps

will be needed for each servo to center the pointer

landmark to a defined window in the center of the frame.

We added logic to ensure that neither servo angle variable

can go below 0 or above 180 degrees. We attempted to

implement this on the Jetson Nano and have the

ATMEGA strictly move the motors, however, this caused

more of a delay in computation which was reflected in the

servo actuation being slower. This had the further effect

of flooding the Serial buffer, which would be parsed by

the loop causing the arm to continue moving even after the

hand itself has stopped. If the first byte is a ‘w’, then the

program parses the integers for the pixel coordinates of

the thumb landmark and using those values, calls the map

function to map the frame size to a set range centered on

90 degrees. This allowed us to tune the size of the angle

step based on the frame size which in turn moves the

servo to that specified position which is also saved as the

x and y angle if the follow me function runs after this.

Lastly, if the first byte is an ‘r’, then the servos are reset to

90 degrees with those angle values stored as well. Once

these characters are checked, the Serial buffer flushed,

which has the ATMEGA run through anything else on the

Serial buffer before continuing with the loop. This has the

side effect of slowing down the program slightly but that

was not noticeable.

VI. GESTURE CONTROL

 To alter the states of the system, gesture control is

implemented through computer vision. The Jetson Nano

will recognize a gesture and issue commands to the

ATmega328P microcontroller on a gesture basis. The

following sections outline the implemented gestures and

their respective functions to altering the state of the

system. To prevent the gestures from issuing commands

accidentally, each gesture must be held for one second

before activating their respective behavior.

A. Moving Arm to Desired Position

To move the arm and light to a desired position one time,

a thumbs-up gesture is supplied to the camera. The top

portion of the thumb in this gesture supplies the reference

to which the system will align to. After the gesture is

recognized, the Jetson Nano will submit the location of the

thumb point in the frame, to which the ATmega328P will

map this position to a servo angle that represents its

location. After the commands of the gesture are complete,

the arm will have the camera oriented so that the camera

has centered the thumb and therefore moved the light to that

location.

B. Setting the arm to follow a hand

A gesture is implemented that activates the following

logic of the system. To activate the system to follow a hand,

the gesture ‘Rock On’ must be supplied for one second.

This gesture is one which the pinky, index finger, and

thumb are extended, and the other digits are closed in the

palm. Once the gesture is supplied and the system is

following a hand, the gesture should be broken. To prevent

the system from activating and immediately deactivating,

the ’Rock On’ gesture must be broken before it can be

deactivated. Once activated, no gesture must be present for

the system to follow the hand, only a hand must be present.

The software grabs the location of the index finger on the

hand and uses it as a reference to supply information to the

ATmega328P to center the index finger to the center of the

camera, resulting in a following behavior.

D. Resetting the arm’s position

The last gesture that was implemented is the reset

gesture. After the gesture activated servos move the arm

while the device is in use, the reset gesture will instruct the

servos to set their positions to neutral. This corresponds to

a servo angle of 90 degrees. To reset the servos, a gesture

known as the ‘peace sign’ must be held for one second and

the Jetson Nano will instruct the ATmega328P to set the

positions of the servos to 90 degrees.

VII. TABLE OF COMPUTATION TIME TESTS

From the ten different tests that were done, we got an

average of 0.84 seconds. This is well below our 2.0

second goal that we wanted to achieve for the

computation time.

VIII. SERIAL COMMUNICATION

As the ArticuLight implements both an embedded

computer and a microcontroller, communication between

these devices is imperative. The Jetson Nano can

implement the GPIO, I2C, I2S, SPI, and UART

communication protocols. We decided that the UART

protocol using the Serial libraries on each respective device

would be the best way for the Jetson Nano to communicate

with the ATmega328P microcontroller. This is because the

libraries for establishing connections are easy to use and

allows testing of the communication to be straight-forward.

IX. MOTOR SELECTION AND CONTROL

A. Servo Selection

The motors we had to select from were, DC brushed, DC

brushless, Stepper, and Servo motors. From our research,

we determined that best choice would be use a servo

motor because they provide higher accuracy and precision

in an angular or linear position since the sensor inside the

servo provides position feedback. They have a constant

torque across its speed range due to the gears inside the

servo motor and are quicker than a stepper motor. Most

servo motors have a limited rotation anywhere between

180 to 270 degrees. One major consideration is that

programming a servo motor is more complex than that of

a stepper motor because of our articulation time

specification. They also require tuning and positional

feedback and has a higher cost than that of the other

motors. When it comes to repeatability, accuracy and

speed, servo motors have the advantage and are the best

choice for this project. Due to the length and weight of

the arm, servo motors with high enough torque were

needed.

B. Servo Control

To control the servo motors in our design, requires the use

of a pulse width modulation (PWM) signal which is used to

determine the output position of the motor. The Jetson

Nano was used for the computer vision and machine

learning algorithms and an ATmega328P was selected to

act as a servo controller. The ATmega328P was selected

because it uses the Arduino bootloader which contains

libraries to control servo motors. Servo control will be

accomplished with the Jetson sends the X and Y

Test # Computation

Time (in

seconds)

1 .75

2 .81

3 .89

4 .73

5 .89

6 .81

7 1.01

8 .85

9 .82

10 .84

coordinates over UART to the ATmega328P which will

then output the required PWM signal to the motors. The

Jetson nano by-itself has the capability to produce clean

PWM signals that are needed to accurately control the servo

motors for speed and accuracy, as those were one of our key

engineering specifications. The parameters of the pulses

that are sent to the motor define the position of the rotation,

which will vary depending on the constraints of the motor

itself. For are servo control design we created a code that

programs the servo motor to have a degree radius of 180

degrees before it stops. So, for the loop code, all it is doing

is writing the position to the servo from 0 to 180 degrees

with a 10-millisecond delay. Another factor we have to take

in effect with servo control is stability. Stability is

important because servo motors operate with continuous

current to reach a specified position, velocity, or torque.

X. TABLE OF ARTICULATION TIME TESTS

XI. ELECTRICAL SYSTEM

Looking at the system overall, the hardware will have a

power regulator that will be designed to take 120 volts AC

input from an outlet and output 12 volts DC, although when

tested gave out 17 volts DC after flowing through the three-

phase transformer as outlined above in section II. Due to

the Jetson Nano using a 5 volt DC input, a node will be

made to have 12 volts going to the motor controller relay

and another to a DC to DC converter to step-down the

voltage for the Jetson. Fuses will be used ag various stages

to prevent over voltage in order to protect the circuit and

the components from power surges, short circuits, or

accidental overdraw of power. The Jetson will connect to a

motor controller and microcontroller to send an enable

signal to the component as needed. The signal sent to the

motor controller will include the PWM that will activate the

motors, gears, and pulleys to move the light to the

appropriate position. A signal to the light system will be

connected to a potentiometer circuit to regulate the amount

of AC voltage going to the light, enabling us to dim or

brighten the light as desired.

XIII. ADMINISTRATIVE

In this section, you will be reading about the progression

of the ArticuLight over the course of the two-semesters that

we were tasked to complete this project. You will see three

subsections. The first one will be a figure of our project

milestones, which will show our development of our

project in both senior design I and senior design II. It will

also show the date when that specific task was started and

the deadline that we gave ourselves to complete it. The

second section will show the current progression of where

our project is currently at and the third section will show

our budget that we spent on creating and producing our

design.

A. Milestones

The milestone start and end dates were set based on the

corresponding tasks needed and with accordance with each

team member’s schedule and responsibilities. Most of the

milestones that are in the first half of the implementation

are based on research and familiarization with system

components, while functionality will be the focus of the

second half during senior design II. Moreover, these

milestones were achieved by multiple group calls, meetings

in person, and scheduled help sessions with the professors.

TABLE 3

MILESTONE OF PROJECT PROGRESSION

Test # X – Axis

Movement

Y – Axis

Movement

Instantaneous

Movement

1 1.731 1.823 0.033

2 1.845 1.815 0.04

3 1.735 1.808 0.04

4 1.844 1.817 0.033

5 1.773 1.793 0.033

6 1.809 1.842 0.037

7 1.744 1.779 0.031

8 1.826 1.812 0.038

9 1.772 1.808 0.041

10 1.812 1.806 0.32

Std.Dev 0.04385 0.01681 0.08980

B. Project Progression

TABLE 4

PROJECT PROGRESSION

C. Budget

The total estimated expected budget is outlined in Table

#. This project is self-financed by the group members. After

taking time to research the components needed for our

design, we decided to go with the products that offered the

benefits we needed while keeping the overall project cost

had a fair price.

TABLE 5

COST OF PROJECT

Part Quantity Cost Producer

Jetson Nano 1 $99 NVIDIA

CanaKit Raspberry

Pi 3 B+ Power

Supply

1 $9.95 Amazon

PNY128GB Micro

SD Card

1 $13.99 Amazon

Raspbery Pi Cam

v2

1 $26.57 Amazon

D956WP

Servo Motor

2 $109.04

each

Amazon

Step down

transformer

1 $20

Metal Wire Loom 2 feet $19.95 Amazon

E-26 Light Socket 1 $8.99

for 5-

pack

Amazon

LED bulb 1 $2.50 Amazon

Frame/case

material

1 $15 N/A

Total $280.95

XIV. CONCLUSION

In summary, this two-semester long project is a valuable

experience for the group by teaching us the general skills

needed in the field, such as, how to work in group, how to

conduct professional meetings/presentations and how to

professionally write a technical report.

In the group meetings that were hosted, contributing

ideas to the group, discussing various constraints with

engineers, and going to the lab to investigate has given us

the necessary experience that can never be obtained from

our school education. We also observed that the main

concepts or “little pieces” we learned from our engineering

classes have become a big picture in reality. For example,

in the electronics study, we learned about rectifiers, which

is important as it allowed us to control the current flow in

our design because most of our components used only

allowed a max current flow of 5 Amps or less.

Furthermore, while progressing through our project

design, we learned why it is important for engineers of

different disciplines to work together. For example, for the

gesture recognition it was super useful having a computer

engineer on our team, which allowed software

implementation to be more successful.

ACKNOWLEDGEMENT

During this project, the group gratefully appreciates the

help of the following mentors and consultants for spending

their free time with the group, guiding along, and providing

valuable information and feedback to help the group

succeed in the creation of the project. We kindly thank for

the help of the people: Samuel Richie and Lei Wei. We

would also like to give a special shoutout to our group

member Scott Bell, for allowing us to use his at home lab

to build, test, and prototype multiple components at his at

home lab.

REFERENCES

[1] NVIDIA. (2022). Hand Pose Estimation And Classification.
[online] Available at: https://github.com/NVIDIA-AI-
IOT/trt_pose_hand [Accessed 26 Jul. 2022].

[2] Dethe, H. (2019). Face Tracking OpenCV, Python, &

Arduino. [online] Learn Robotics. Available at:
https://www.learnrobotics.org/blog/face-tracking-
opencv/#:~:text=First%2C%20open%20CMD%20and%20t
ype%20the%20following%20codes%3A.

[3] Arduino Project Hub. (n.d.). Face Tracker Using OpenCV

and Arduino. [online] Available at:
https://create.arduino.cc/projecthub/shubhamsantosh99/face
-tracker-using-opencv-and-arduino-55412e.

Scott Bell is currently a Technical

Sergent in Air National Guard with 18

years of military experience. He has

served 12 years on Active Duty as a

Bioenvironmental Engineering

Craftsman, performing industrial

hygiene and environmental

compliance evaluations, radiological surveys, and

chemical, biological, radiological, and explosive

(CBRNE) emergency response and 6 years as a Client

Systems Craftsman establishing tactical communications

kit assembly and operation, network connection, network

access, encryption, maintenance, and disassembly for

Joint operations and hurricane response for the state of

Florida. He will be receiving his BSEE from UCF, as well

as a minor in Robotics and Intelligent Systems. His

current interest lies in Hardware Description Languages

(HDL) programming for Field Programmable Gate Arrays

(FPGA), Robotics, or Control Systems Engineering. He

has recently accepted a position with Aeornix Inc. as a

FPGA Hardware Engineer with the aspiration to expand

his knowledge to utilize FPGA technology for machine

learning and to design digital control systems for robotic

systems.

Keng Chu, is currently pursuing a

Bachelor of Science degree in

Electrical Engineering at the

University of Central Florida. He

recently accepted and started working

at Lockheed Martin as a System

Integration and Test Engineer at

Kennedy Space Center. He is currently on the Artimis

Orion program supporting the launch abort system (LAS)

on the Orion crew module.

Benjamin Simms, a senior student of

the computer engineering department

at University of Central Florida. He

will be receiving his BSCpE from the

University of Central Florida. After

graduation he is planning on joining

the workforce in the field of software

engineering.

Michael Taub is receiving his BSEE

from University of Central Florida. He

is presently working as a Customer

Service Team Leader at Publix

Supermarkets. He will be starting

classes towards his PMBA

(Professional Masters in Business

Administration) in the fall of 2022. His

current research interests are in

business engineering, economics, and financing as he

hopes he can be a manager at an engineering firm to help

budget and manage projects more efficiently.

