The ArticuLight

Group 9 Scott Bell, EE Keng Chu, EE Benjamin Simms, CpE Michael Taub, EE

Motivation

Current Problems with light sensor systems:

- Light fails to turn on
- Lens of sensor becomes obstructed, dirty or old
- Expensive cost for detecting motion and installation (Approx. \$400)

Solution:

To create a motion-controlled lighting system that will be controlled through hand gestures to move, rotate, and adjust brightness levels of the light for the user to work on projects on workbenches at any time of day. We are hoping this will help eliminate shadowing, as well as creating a hands-free device, so the user can use both hands while working on their project. We felt this needed to be invented because we feel this will allow for users to finish and produce final projects at a faster rate.

Goals and Objectives

ArticuLight offers:

- Hands-free light for work benches
- Edit movement through creating hand gestures in view of camera
- Rotation of light angle through hand gestures
- Make light bright/dim through hand gestures
- Allows for less shadowing when working on a project

Market Requirements

Specifications	Description
Pitch/Yaw and Angle/Degrees of Freedom	 Up to +/- 90° of movement left and right (yaw) Up to +/- 90° of movement up and down (pitch)
Robot Vision	Will use a camera to identify hand gestures to control the movement of the actuators
Stand	The mount will be modular: - Mountable - Scalable by adding additional lights
Environmental Robustness	Able to handle temperature and humidity variation: - 20° to 100° temperature range - Waterproof and dust proof
Response Time	Software to hardware interface will have a response time less than 3 seconds
Manual Reset/Zeroize	Device will be able to manually stop and reset the system

Key Specifications

- Accuracy: how close the device will move the light source to focus on specific location.
- Durability: Number of uses and sustained usage of device
- Actuation Time: time taken when computation is finished to complete the movement
- Computation Time: Time it will take the system to read a gesture from the camera and send a stimulus to perform actuation

Engineering Specifications	Value
<mark>Accuracy</mark>	<mark><= 1 cm</mark>
Durability	1000+ uses
Actuation Time	<mark>Between 3 – 5 seconds</mark>
Power Input	120V AC
Weight	<= 7 lbs
Computation Time	<mark><= 2 seconds</mark>
Arm Length	24 inches
Light Voltage	120V

Hardware Block Diagram

Hardware Components

Microcontroller

- We chose the ATmega328P microcontroller because we felt it had the best specs for our project and is compatible with our motor controller.
- Some of these specs include but are not limited to:
 - Input voltage: 1.8 5.5 V DC
 - Operating voltage: 1.8 5.5 V DC
 - Digital I/O pins: 27
 - PWM channels: 10

MCU	ATmega3 28P	MSP430G 2553
Input Voltage (V-DC)	1.8 - 5.5	1.8 - 3.6
Operating Voltage (V-DC)	1.8 - 5.5	1.8 - 3.6
Digital I/O pins	27	83
PWM channels	10	8
Flash Memory (KB)	32	16
Price (USD)	~5	~3

Jetson Nano Developer Kit

- Implementing deep learning such as vision requires a decent amount of processing. The Jetson Nano is marketed for embedded deep learning and will be used in this project.
- Features:
 - "Jetpack" A modified Ubuntu Linux installation
 - 128-core Maxwell GPU for parallel AI tasks
 - ARM A57 CPU
 - CSI camera connections
 - 40 pin GPIO header
 - 5V 2A input, 3.3V pins

Motor

• We decided to choose a Servo Motor for our design. We felt this was the best motor to choose because of the specifications it had, such as great rotational angle and able to handle the most weight as you will see in the table below compared to other servo motors.

Motor	Operating Voltage (V)	Rotation Angle (degrees)	Stall Torque (kg)	Price
HPS-3527SG	5-7.4	270	35	\$33.99
DS3218MG	4.8-6.8	270	20	\$15.99
DS3225	4.8-6.8	180	25	\$20.99
MG996R	<mark>4.8-7.2</mark>	<mark>180</mark>	<mark>12</mark>	<mark>\$13.99</mark>
HST-35H	9-12.6	240	35	\$23.99

Camera

Camera	Raspberry Pi Camera Module 2	Raspberry Pi High Quality Camera	Arducam IMX219 Visible Light Fixed Focus Camera	Arducam IMX219-AF Programmable/ Auto Focus Camera	Arducam IMX219 Low Distortion M12 Mount Camera
Image sensor	IMX219	IMX477	IMX219	IMX219	IMX219
Maximum Resolution	8 megapixels	12 megapixels	<mark>8 megapixels</mark>	8 megapixels	8 megapixels
Horizontal FOV (degrees)	62.2	Depends on lens sold separately	<mark>62.2</mark>	65	75
Full Resolution Frame Rate	N/A	N/A	<mark>21 fps</mark>	21 fps	21 fps
720p Frame Rate	60 fps	60 fps	<mark>120 fps</mark>	120 fps	120 fps
Price	\$25	\$50	<mark>\$19</mark>	\$30	\$32

Socket Specifications using an LED Bulb

Light Socket	E-12	<mark>E-19</mark>	E-26	E-39
Power (W)	75	<mark>60</mark>	60	660
Voltage (V)	125	<mark>125</mark>	250	240
Luminosity (Lumen)	400	<mark>840</mark>	800	36000
Size (mm–diameter)	12	<mark>19</mark>	26	39
Weight (oz)	6.4	<mark>2.04</mark>	0.564	8.2

Relay

Solid State:

- No moving parts
- Lasts much longer
- Higher cost

Electro-mechanical:

- Normally open or closed
- Can carry a large amount of current
- Parts tend to wear out more quickly

Specification of Relay	Solid State	Electro-Mechanical
Operating Current	70 mA	12.5 mA
Output Voltage (DC)	30 VDC	Cannot drive DC output
Output Current	0.1A to 10A MAX	0.1A to 2A MAX
Single Channel Relay Price	\$7 - \$12	\$9 - \$15

Voltage Regulator

Type of Regulator	Linear Voltage Regulator	Switching Voltage Regulator
Pros	 Low output ripple voltage Fast response time to load or line changes Low electromagnetic interference (EMI) and less noise 	 More complex design, which allows for handling higher power efficiency Able to provide output, which can be greater or less than or invert the input voltage
Cons	 Efficiency is low Requires large space – heatsink is needed Voltage is above the input cannot be increased 	 Higher output ripple voltage Slower transient recovery time EMI produces very noisy output Very expensive

Jetson Nano Software Block Diagram

Microcontroller Software Block Diagram

Machine Learning Software

- Jetson-inference: visual detection in real time using Jetson Nano
- Uses TensorRT with C++ and Python releases
- Contains libraries with multiple compiled models for different uses: object detection, semantic segmentation, image classification, posenet
- Object detection and posenet will be used
- PyTorch: Used for retraining the selected model to detect ASL alphabet letters

Machine Learning Models for Gesture Detection

Model	SSD-Mobilenet-v2	Pose-ResNet18-Hand
Architecture	Standalone. Uses convolutional neural networks with global average pooling.	Requires use of other ML models such as SVMs for gesture detection. Uses convolutional neural networks.
Accuracy	Most accurate of available models	Depends on implementation
Speed	Fastest of available models	Depends on implementation
Return type	Classification label and location in image	Vector key points for each part of hand

Computer Vision Software

- Already implemented by NVIDIA
- Accesses MIPI CSI camera through csi://0 path
- Instantiates camera feed as an object with image as property
- Removes need for dedicated software such as OpenCV faster and more streamlined programming

What's the difference?

Computer Vision Software

 Converts image data from camera to useful data for machine learning model

Machine Learning Software

 Utilizes a model for classifying images from data supplied by computer vision software

Schematics

Schematic view of Laser Calibration

- Calibration system design for zeroing servo motors
- Laser would be mounted on top of the arm with the receiver as a detachable module from the base
- Allows us to add an offset to the servo actuation control if needed

Schematic view of Microcontroller

 Allows us to communicate with a servo controller over I2C or send the PWM signal directly to the motors.

Schematic view of Motor Controller

 Microcontroller communicates with the motor controller over I2C.

Schematic view of Power Supply/Voltage Regulator

Functionality Hardware (starting from power to voltage regulator)

- Reducing 120V AC to lower voltage
- Converting AC voltage to DC Voltage
- Capacitor to reduce voltage ripples
- Ziner Diode to obtain stable output voltage

Functionality Hardware (After voltage regulator where does it go next)

- After the voltage flows through the regulator it then flows to the Jetson Nano microcontroller
- After the voltage is regulated to fit the specs of the Jetson Nano, the Jetson then powers the motor controller, which in turns then powers the servo motors to adjust the arm of the light.
- Powers the camera

Functionality Hardware (Finish rest of components here)

 Once the arm of the light stops moving, it is up to the user's discretion, on controlling the light through gestures that the camera is programmed to understand.

Functionality Software

- When the Jetson Nano detects a gesture with meaning, a signal will be sent to the microcontroller through UART to alter the state of the system
- Microcontroller will communicate with tertiary devices through C++
- The microcontroller will then perform the necessary actions such as moving the arm via motor actuation and dimming

ArticuLight Frame Concept Design

Rapid Prototyping - Initial Design of Frame

Initial Design of interlocking segments

High degree of mobility

Rigid structure

Light weight

Rapid Prototyping – Wire Guide

Wire Guide

Interlocking Segments

Rapid Prototyping – Fully Assembled Frame

Design Flaws:

- System was too rigid which
- would cause it to crimp when actuated
- System would also rotate during movement, causing the guide wires to wrap around the frame

Rapid Prototyping – New and Improved Design

- Dimensions adjusted to allow the connecting pieces to be looser
- Channels added to prevent rotating

Alternate Design of Frame

- Modelled as a continuum robotic arm, allows for very flexible movement
- Will allow us to add 3rd degree of freedom which is one of our stretch goal, extension and contraction

Power options

Wall plug-in

- 12 V Power Supply
- Cord length is 12 feet, however actual length from project to wall outlet is 8 feet.

Specifications
Stable Voltage
Able to plug into extension cord for more length
No discharge

Battery pack power supply

- Allows for portable design if needed
- Stable and clean power
- Different possible types of batteries that can be used

Type of Battery	Voltage (V)
AA , AAA , C, or D	1.5 for non-rechargeable1.2 for rechargeable
9V	9 for non-rechargeable 8.4 for rechareable
Coin cell	3 non-rechargeable
Flat pack	3.7 rechargeable
Car Battery	12 rechargeable

Administrative

Work Distribution

	Input Power	Voltage Regulation	Software Programming	Gestures
Ben			P	S
Keng	S	P		
Michael	P	S		
Scott			S	P

Budget and Financing

Part	Quantity	Cost	Seller
NVIDIA Jetson Nano Developer kit	1	\$99	NVIDIA
CanaKit 5V 2.5A Raspberry Pi	1	\$9.95	Amazon
PNY 128GB Micro SD card	1	\$13.99	Amazon
Arducam IMX219 camera	1	\$18.99	Uctronics
Servo motor HPS-3527SG	2-4	\$26.99 each	Amazon
Adafruit 16-ch controller	1-4	\$14.95 each	Adafruit
Metal Wire Loom	2 feet	\$19.95 per 18"	Amazon
Electromechanical Relay	2	\$10.22	Amazon
E-26 Light Socket	1	\$8.99	Amazon
LED Bulb	1	\$2.50	Amazon
Frame/Case Material	1	\$20	N/A
Noctua NFA4x20 PWM fan	1	\$14.95	Amazon
AC Bulb LED Dimmer Module	1	\$28.95	Ebay
Total		\$326.64 - \$425.47	

Project Progress

Legend: (in percent)
Research: 90
Design: 75

Parts Acquired: 80

Prototyping: 70

Building: 60

Testing: 40

Constraints found during prototyping

- Cord length for power source
- Type of battery to use for a hybrid power mode (so far, we found our design to be powered by batteries it would only last about 10 minutes before batteries are drained). This was tested with AA.

Questions?