
Group 5 Field Radio: DCV1

Field Radio
__

The University of Central Florida
Department of Electrical Engineering and Computer Science

Dr. Lei Wei Senior Design I: Spring 2022
Group 5:

Brian Taylor (Electrical Engineering)
Elier Bermudes (Computer Engineering)
Daniel Sypioe (Computer Engineering)
Noah Madison (Electrical Engineering)

Sponsored by and in association with Amateur Radio Club @ UCF

Figure 1. UCF Seal

Group 5 Field Radio: DCV1

Table of Contents
Field Radio 0

Table of Contents 1

Executive Summary (1-2 page, expandable) 1

1. Project Description: Handheld SDR Radio based on LIME (10 pages, done) 2
1.1 Project Background 2

1.1.1 Description 2
1.1.2 Motivation/Goals 2
1.1.3 Demonstration Plan 4
1.1.4 Related Work 4
1.1.5 Risks 4

1.2 Requirements and Deliverables 5
1.2.2 Engineering Specifications 7
1.2.3 Additional Specification 7

1.3 Diagrams 8
1.3.1 Software Block Diagram 8
1.3.2 Hardware Block Diagram 9
1.3.3 House Of Quality Diagram 9

2. Research and Part Selection 11
2.1 Technology Comparison (10-15 pages) 11

2.1.6 Audio Amplifier 16
2.1.7 RF Amplifier 16
2.1.8 T/R Switches 17
2.1.9 ADC 18
2.1.10 Accelerometer 19
2.1.11 GPS 20
2.1.12 Case Materials 20
2.1.13 Battery 21
2.1.14 Touchscreen 22
2.1.15 Speaker 23
2.1.16 Microphone 24

2.2 Part Selection (30-40 pages) 25
2.2.1 SDR Receiver 25
2.2.2 Embedded System 26
2.2.3 ADC 29

Group 5 Field Radio: DCV1

2.2.4 Accelerometer 29
2.2.5 GPS Module 30
2.2.6 Case Materials 31
2.2.7 Low-Level Software 34
2.2.8 High-Level Software 37
2.2.9 Antenna 39
2.2.10 Amplifier 43
2.2.11 Rx Conditioning 48
2.2.12 Battery/Battery Charger 52
2.2.13 Touchscreen 53
2.2.14 Speaker 55
2.2.15 Microphone 58

3. Design Constraints and Standards (10-15 pages) 60
3.1 Constraints 60
3.2 Related Standards 63

3.2.6 JTAG 68
3.2.7 Frequency Modulation 68
3.2.8 Single SideBand Modulation 68
3.2.9 Soldering 69
3.2.10 Software/Hardware Standards 69

4. Design (25-30 pages) 73
4.1 Hardware Design (15-20 pages) 73
4.2 Software Design (10-20 pages) 85

5. Integration (10-15 Pages) 101
5.1 Overall Integration 101
5.2 PCB Design 101
5.3 Overall System Testing 103

5.3.1 Test Configuration/Environment 103
5.3.1 Part Testing 104

6. Administration (5-10 pages) 110
6.1 Milestone Discussion 110
6.2 Budget and Finance Discussion 111
6.3 Safety Precautions 115
6.4 Troubleshooting 115

7. Conclusion 117

8. Appendix 121
Copyright 127

Group 5 Field Radio: DCV1

Python 127
Raspberry Pi 127
LimeSDR 127

List Of Tables
■ Table 1. Bandwidth Transmission Specifications
■ Table 2. Engineering Specifications
■ Table 3. LimeSDR Mini vs CaribouLite
■ Table 4. Embedded System Comparison
■ Table 5. Low-Level Software Comparison
■ Table 6. High-Level Software Comparison
■ Table 7. Antenna Comparison
■ Table 8. Audio Amplifier Comparison
■ Table 9. RF Amplifier Comparison
■ Table 10. TR Switches Comparison
■ Table 11. ADC Comparison
■ Table 12. Accelerometer Comparison
■ Table 13. GPS Comparison
■ Table 14. Case Materials Comparison
■ Table 15. Battery Composition Comparison
■ Table 16. Touchscreen Comparison
■ Table 17. Speaker Comparisons
■ Table 18. Microphone Comparison
■ Table 19. Digital System Block Diagram
■ Table 20. Estimated Cost Table
■ Table 21. Troubleshooting Table

List Of Images
■ Figure 1. UCF Seal
■ Figure 2. Software Block Diagram
■ Figure 3. Hardware Block Diagram
■ Figure 4. House of Quality Legend
■ Figure 5. House of Quality Diagram
■ Figure 6. LimeSDR Mini
■ Figure 7. CaribouLite SDR
■ Figure 9. Size comparison of Raspberry Pi models [44]
■ Figure 9. Size comparison of Raspberry Pi models [44]
■ Figure 10. Omega2 [40]

Group 5 Field Radio: DCV1

■ Figure 11. Banana Pi BPI M2 Zero [53]
■ Figure 13. Accelerometer modules (HiLetgo MPU-6050), (Adafruit

ADXL335)
■ Figure 13. Accelerometer modules (HiLetgo MPU-6050), (Adafruit

ADXL335)
■ Figure 15. GPS Modules [20], [18]
■ Figure 15. GPS Modules [20], [18]
■ Figure 16. PETG [55]
■ Figure 17. Polypropylene [54]
■ Figure 18. PLA [56]
■ Figure 19. Windows 10 Logo
■ Figure 20. Raspberry Pi OS Logo
■ Figure 21. Raspberry Pi OS Lite Logo
■ Figure 22. Python Logo
■ Figure 23. Final Antenna (“Nagoya NA-320A Triband HT Antenna

2M-1.25M-70CM (144-220-440Mhz) Antenna SMA-Female for BTECH
and BaoFeng Radios”)

■ Figure 24. Balun[4]
■ Figure 25. SMA Connector [32]
■ Figure 26. SMA Adapter
■ Figure 27. Wide Band Tuned [46]
■ Figure 28. Multiband Tuned [47]
■ Figure 30. MIC Amplifiers
■ Figure 30. MIC Amplifiers
■ Figure 31. WideBand Controllable Gain LNA [2]
■ Figure 32. RF Limiter
■ Figure 33. Circulator
■ Figure 34. Batteries
■ Figure 35. Battery Case [5]
■ Figure 36. Touch Screen [28]
■ Figure 37. GPIO speaker adapter [42]
■ Figure 38. Pimoroni [14]
■ Figure 40. HDMI options [22], [36]
■ Figure 40. HDMI options [22], [36]
■ Figure 42. USB Options [25], [31]
■ Figure 42. USB Options [25], [31]
■ Figure 44. Speakers [50][11]
■ Figure 44. Speakers [50][11]
■ Figure 45. GPIO Microphone [3]
■ Figure 46. USB Microphone [29]

Group 5 Field Radio: DCV1

■ Figure 47. 3.5mm Microphone [9]
■ Figure 48. EIA/IEEE 12207 Process Tree
■ Figure 49. ISO/IEEE Primary Process Flow
■ Figure 50. RF Front End Block Diagram
■ Figure 51. Digital System Block Diagram
■ Figure 52. Power System Block Diagram
■ Figure 53. Power Switching Block Diagram
■ Figure 54. General System Block Diagram
■ Figure 55. Hand held radios
■ Figure 56. 5V Buck Schematic
■ Figure 57. Variable Output Boost-Buck Converter
■ Figure 58. RF Switch Schematic
■ Figure 59. 10-Pin ADC schematic
■ Figure 60. Power Mosfet Schematic
■ Figure 61. Overall Full System Schematic
■ Figure 62. PiXel Desktop Enviroment
■ Figure 63. KDE Plasma Desktop Environment
■ Figure 64. Gnome Desktop Environment
■ Figure 65. Software Flow Chart
■ Figure 67. HDSDR Interface [23]
■ Figure 67. HDSDR Interface [23]
■ Figure 68. SDR# Interface [48]
■ Figure 69. Home Page
■ Figure 70. Settings/Connections Page
■ Figure 71. Communications Page
■ Figure 72. Blender Logo
■ Figure 73. Cura Logo
■ Figure 75. PCB Front and Back
■ Figure 75. PCB Front and Back
■ Figure 76. 900MHz RF Filter Environment Preparation
■ Figure 77. SMA to BNC connection
■ Figure 79. Speaker and Raspberry Pi [11]
■ Figure 79. Speaker and Raspberry Pi [11]
■ Figure 80. Laptop Microphone
■ Figure 81. USB Microphone
■ Figure 82. LimeSDR connection and loopback test.
■ Figure 83. Timeline Legend
■ Figure 84. ABET Timeline
■ Figure 85. ARC@UCF Timeline
■ Figure 86. Comprehensive Timeline

Group 5 Field Radio: DCV1

■ Figure 87. LimeSDR Mini Permission
■ Figure 88. CaribouLite RPi Hat permissions
■ Figure 89. Raspberry Pi Permissions
■ Figure 90. Banana M2 Permissions
■ Figure 91. 3D Printing Permissions
■ Figure 92. Radio Permissions
■ Figure 93. Amplifier Permissions
■ Figure 94. Qorvo Permissions
■ Figure 95. NPA Permissions
■ Figure 96. Amazon Permissions

Group 5 Field Radio: DCV1

Executive Summary
Since the invention of radio communications in the late 1800’s, its

applications have reached a wide array of disciplines ranging from physics,
telecommunications, radar, amateur radio and much more. With the rise of
digital processing and computers in the mid to late 1900’s, radio technology
became even more accessible with the advent of devices such as modern HAM
radios, portable radios (long range handheld and car radios), as well as software
defined radios [21] [27].

With guides and technology becoming more user friendly every decade,
people can now enter the field of amateur radio communications with relatively
little to no prior experience in electrical engineering, signal processing, and
mathematics. In order to engage in amateur radio communications though,
people must complete an amateur radio licensing examination. Upon completion
of the examination you are now allowed on certain bands and wavelengths
specified by the FCC and can engage in hobbyist radio, volunteer emergency
services, and much more.

Some of the downsides with modern day radio communication, specifically
software defined radio, is that the set up cost is very high and may deter those
who are just entering the field. In addition to this, when it comes to portable
software defined radio options you are limited to the final design of the
manufacturer and oftentimes they are installed with proprietary software that
cannot be changed or replaced. Due to this, the Amateur Radio Club of the
University of Central Florida has designated us with the task of creating a
portable software defined radio system that is modular with common components
as well as being open source and upgradeable so that future engineers can
develop the system further.

In order to achieve such a task we aim to design a software defined radio
based on the Raspberry Pi and Lime SDR mini, alongside complementary
components which cost no more than $500 to produce. The device will feature a
speaker, microphone, and push to talk button which will enable the consumer to
listen to their favorite AM/FM stations as well as communicate with others on
FCC regulated wavelengths. It will also feature a touch screen to visually display
the necessary functions and features of the radio. This will include separate
pages to access regular listening, communications, a waterfall display, a settings
page, as well as a signal bar on the right hand corner of the screen. In the final
stages of prototyping, measures will be taken to make the product water-resistant
to sweat and mild water droplets allowing the device to be taken outdoors without
risk of damage due to weather or accidents.

The most critical aspect of our device is the combination of our embedded
system, radio receiver, and amplifier. The Raspberry PI and Lime SDR must be
integrated seamlessly and in a way that is computationally efficient in order to
reduce any disruptions to service. The amplifier on the other hand must be
selected carefully since a number of factors can affect its performance such as
the input/output impedance, heat dissipation, and the type of filter it uses.

1

Group 5 Field Radio: DCV1

1. Project Description: Handheld SDR Radio
based on LIME

1.1 Project Background

1.1.1 Description
This project will be a user-friendly handheld software-defined radio. Per

our initial research, the LimeSDR mini and LimeSDR are both good candidates to
serve as the base for our project, and we will be using additional hardware to add
various features and make it more user-friendly.

A software-defined radio is a radio communication system where radio
features which would otherwise be handled by individual pieces of hardware are
otherwise implemented by software written on a computer. This technology
although not new has had massive gain in popularity due to new IC Fabrication
advances dramatically reducing the cost. This new availability of low cost SDR
transceivers is what inspired this project.

We have the following customers and sponsors:
UCF (Customer): Senior design project to be delivered to demonstrate

competence in engineering for degree completion
Amateur Radio Club (Customer/Sponsor): Provides funding and resources

for the project in exchange for the deliverable and source code to be given to
them at the end of the semester

Amateur Ham Radio Community (Customer): Will have access to the
source code and design to be able to recreate or purchase their own version of
what we will be working on

1.1.2 Motivation/Goals
The reason that we are working on this project is that there is currently no

open-source design for a modular, portable, low-cost, and user-friendly SDR
available to the HAM radio community. This is problematic because a lot of the
most prominent handheld radios available in the market have closed-source
designs, and are often made with shoddy materials. These generally do not meet
FCC guidelines and are a big issue for the community as a whole.

We aim to fix the aforementioned lack of an open-source handheld SDR
by using the LIME to develop a baseline that future hobbyists, developers, and
students can build off of to add additional features to. This was at the request of
the Amateur Radio Club, our Sponsor. The main goal of the project is to meet all
of the functional requirements while still allowing for expandability and community
reproducibility. so that the optional requirements could be introduced and the
original feature perfected at a later point. Because of this less than traditional
motivation our design approach will try and match. This means a large portion of
our design process is not in a vacuum but rather in consideration with that open
source community objective.

2

Group 5 Field Radio: DCV1

Basic Goals

The following features are absolutely required for the final project to work.
If it is missing any of these, it should be considered unsuccessful:

● Receive and transmit FM (Frequency Modulation) signals
● Within budget ($500 maximum production cost)
● Single T/R antenna
● Display
● External Controls
● Open Source Software Design

Advanced Goals

The following features are very important for the final project to have, and
we should strive to meet all of them before aiming for any of the stretch goals,
unless the goals could be worked towards in parallel. If the project meets all of
these goals, it deserves an A:

● Low production cost
● Adjustable output power level
● Long battery life
● Configurable
● Multipurpose
● Easy to use
● Portable
● Fully Programmable from a computer
● Modular
● Memory presets for FM use

Stretch Goals

The following features are optional, but the design of the base product
should support these being added as either software expansions or hardware
plugins. If it includes any of these, it should be considered a great success:

● Touchscreen
● Receive SSB AM (Amplitude Modulation) signals
● Automatic repeater signal discovery/scanning
● Store either demodulated voice or I/Q (Quadrature) samples to a microSD

(Secure Digital) card
● Expanded UI (User Interface) through phones via bluetooth, USB

(Universal Serial Bus), or HTTP (Hypertext Transfer Protocol) over wifi
● Waterproofing against rain
● Battery level Indicator
● Satellite communication tracking features
● Waterfall display via spectrum scope

3

Group 5 Field Radio: DCV1

● APRS (Automatic Packet Reporting System) support including: GPS
(Global Positioning System), and time sync (should be in the form of a
hardware plugin)

● Expanded transmission support for 900Mhz at 1W-4W
● Additional encoding and decoding modes, including AM FM DFM APRS

DSTAR Fusion DMR DRM codec2 SSB
● Receive NOAA (National Oceanic and Atmospheric Administration)

weather radio signals and support for alerting with SAME (Specific Area
Message Encoder)

1.1.3 Demonstration Plan
The goal of our demonstration would be to show off as many of the goals

that we have satisfied in a short amount of time and with no uncertainty on the
part of any stakeholders. Many of the goals could be proven to have been met in
our documentation, and thus these goals will not be demonstrated. This includes
an open-source software design, proof of modularibility, and low production
costs.

Other goals may take too long to demonstrate, such as programming the
device from a computer. Finally, some goals may be so obvious that they do not
have to be specified, such as the fact that our project has a display and a single
antenna. Thus, our demonstration will be something that shows off the following
goals:

● Receive and transmit FM signals
● Receive AM signals
● Adjustable power level
● Memory presets for FM use

To show this off quickly and easily, we will connect to various nearby FM
radio stations which we have set on the device ahead of time. Additionally, we
will transmit a signal over FM/AM bands and use a separate radio to receive
those signals. Lastly a separate RF power meter will be used to measure the
output power.

1.1.4 Related Work
One of the most powerful digital radios on the market today is the RFinder

Android Radio retailing for $1,299. It combines an android smartphone with a
powerful transceiver capable of outputting 4 watts of RF (Radio Frequency)
transmission power. Via the RFinder you are able to connect to an EchoLink
node and the device will auto configure its settings in order to provide the best
quality TX/RX transmissions on DMR and FM stations.

The RFinder will also allow you to connect to 3G, 4G, and WiFi if in the
event you are unable to connect to an EchoLink with support from ATT, Verizon,
and Google mobile services. Since it is powered by Android, you are able to
download and install supported apps that enable you to use the push-to-talk
feature on the device for transmissions. With repeaters in almost all countries,
the RFinder is used in many environments and applications ranging from remote

4

Group 5 Field Radio: DCV1

industrial worksites, search and rescue operations, and amateur radio uses. The
main drawbacks of the RF finder we found were cost and lack of open source
upgradability.

1.1.5 Risks
There are various risks that we will have to deal with that are either

general risks for any senior design project, or risks specific to this project. We
have attempted to come up with ways to mitigate these risks as much as
possible.

Due to both the size of the group and the length of time that this project
will be worked on, it is perfectly reasonable to assume that there will come a
point where a group member may face unforeseen circumstances and be unable
to complete their portion of work for a given period. Fortunately, our group
consists of an even split of two Electrical Engineering majors and two Computer
Engineering majors. Also the Radio club itself has multiple members with a
significant amount of expertise in the subject matter. Therefore, as long as we all
do our due diligence when it comes to documenting what we are working on,
there will always be somebody else on the team available with enough overlap in
knowledge to complete a team member’s part.

Another significant risk is part availability. With the global chip shortage,
many electronic parts are in high demand right now and are difficult to obtain. To
help prevent this from affecting the timeline of our project completion, the
Amateur Radio Club @ UCF has already ordered some of the expensive or hard
to obtain parts that we would need to complete the project, including a LimeSDR.
Also, Multiple backups for each system required to meet the aforementioned
goals are discussed in the part selection section. Lastly, a significant amount of
necessary components are already owned by the radio club and if necessary we
have been given permission to use their part library since the final product will be
going to the club regardless. These mitigation approaches should allow for
enough variability where this concern can be mitigated significantly.

A frequent issue that we have seen cited by our predecessors in Senior
Design have been that their project was difficult to complete due to
miscommunication or lack of communication between the group members and
the stakeholders. This miscommunication could potentially be with the sponsor or
potential customers. In our case, the Amateur Radio Club serves as both a
sponsor and a customer, so as long as we keep the channels of communication
with them open there should be no issues. Additionally, one of our group
members is an officer in the Amateur Radio Club, so they will have constant
contact and opportunities for communication with our primary customer and
benefactor. Finally, one of our group members has communicated directly with
chip manufacturers and got assurance that they are willing to work with students
to make sure we have the chips to meet project deadlines and goals. The

5

Group 5 Field Radio: DCV1

approaches should be able to minimize the aforementioned communication and
mismanagement issues prevalent in many senior design projects.

1.2 Requirements and Deliverables
Because this is a sponsored project The Amatuer Radio Club at UCF has
consulted and had input on several requirements for the deliverables:

RF requirements

● Support out of the box for FM RX/TX, and AM RX for configured amplifiers
● Able to transmit and receive on multiple bands on a single antenna
● Support repeater interaction features: CTCSS standard subaudible tones

(88-200hz) and tone squelch (RX/TX); half duplex operation (TX/RX offset,
offset polarity (+ 0 -)), touchtone generation

Portability

● Have a transmitting power output of 3-5 watts for a minimum of 25
minutes

● Able to remain on standby demodulating FM signals for a minimum of 5
hours

● Easily sunlight readable screen
● Charge through USB at 5 volts
● Have multiple field configurable and modular amplifiers at one time for

different frequency bands

Programmability

● Entirely open source and free for adaptation by the radio community
● Completely and easily programmable including reusable SDK and

documentation on all code
● Able to connect to a computer and be reprogrammed over USB or WIFI in

the field

Spurious Emissions/EMI

● Filter stairstep radio synthesizer output to prevent spurious emissions
● meet emi, modulation, Drift, and frequency accuracy as defined by the

FCC
● Discussed further in related standards under constraints

Easy to Use

● Has built in Microphone and Speaker
● GUI for controller and setup of radio in the field
● GUI documentation allowing for easy adoption

6

Group 5 Field Radio: DCV1

● Connectors, fasteners, and components that do not require uncommon
tools: E.G. should use common components no apple style design

● Documentation on common hardware use case for repair

Configurable and multipurpose

● Matches community standards and expectation for cost and complexity
allowing for widespread community adoption

● Amplifiers should be modular and fairly interchangeable without
compromising noise characteristics

● Uses well documented open source libraries
● Supports common connector types

1.2.1 Bands Table

This table shows the different goals that we have for transmission bands.
Type: Bands

Minimum 2m/146Mhz

Base Dual band (2m/70cm) switched

Stretch 2m/146Mhz, 70cm/440Mhz, 1.25m/220Mhz,
0.333m/900Mhz,

Table 1. Bandwidth Transmission Specifications

1.2.2 Engineering Specifications
This table shows the different engineering specifications which we will be
attempting to accomplish with our product. Demonstrable specs will be indicated
by an asterisk and highlighted, and these specs will be shown during the
showcase.

7

Group 5 Field Radio: DCV1

Type: Minimum Spec: Base Spec: Stretch:

Output Power* 3 Watts for 25
minutes

5 Watts for 25
Minutes

5 Watts for over
30 Minutes

Demodulation* FM RX and TX Min + AM
TX/RX

Base + APRS +
packet Radio

Repeater
Functionality

CTCSS standard
subaudible tones
(88-200hz) and
tone squelch
(RX/TX);

Min + (TX/RX
offset, offset
polarity (+ 0 -)),
touchtone
generation

Base + standby
smart station
scanning and
waterfall display
+ duplex
operation

Battery Life 3 hours fm standby 5 hours fm
standby

6 hours fm
standby

Size 8 x 5 x 4 inches 7 x 4 x 3 inches 6 x 3 x 2inches

Manufacturing
Price

Under $600 Under $400 Under $200

Controls* Serial Button Touch

Table 2. Engineering Specifications

1.2.3 Additional Specification

Minimum

On device Gui + Display + speakers + microphone + EMI Standards met (see
Requirements)

Base

Minimum + hot swappable amplifiers + pc connectivity

Stretch

Base + touch screen + local hotspot for configuration + client side pc gui

8

Group 5 Field Radio: DCV1

1.3 Diagrams

1.3.1 Software Block Diagram
The following diagram provides a generalized layout/order of software
functionality. The receiver will have 2 modes Tx, and Rx before a mode can be
accessed the modulation scheme and frequency must be selected. From there it
diverges as the diagram outlines.

9

Group 5 Field Radio: DCV1

Figure 2. Software Block Diagram

1.3.2 Hardware Block Diagram
The following figure gives a generalized diagram of all of the features and how
they should interact at a hardware level. The embedded system is further
elaborated on in the digital system section. The battery control circuit, although
necessary for functionality of the system, will not be a part of the actual handheld
and will be external to the system. This diagram in particular is for a high
abstraction explanation of different features that will exist and how they are to
interact with other project features and systems. It is not meant to be an
exhaustive description of every component, more of a summary.

Figure 3. Hardware Block Diagram

Legend
● Blue - Elier
● Green - Daniel
● Red - Brian
● Orange - Noah

10

Group 5 Field Radio: DCV1

1.3.3 House Of Quality Diagram
The following diagram is a house of quality representing correlation between
requirements and features. Each feature is marked with a symbol denoted by the
Legend representing the correlation amount. This Figure is useful for denoting
the importance of each feature of the final system and how they will be
prioritized. It also serves as a reference to us for what features should be
optimized and what correlations/interactions these optimizations will create.

Figure 4. House of Quality Legend

Figure 5. House of Quality Diagram

11

Group 5 Field Radio: DCV1

2. Research and Part Selection

2.1 Technology Comparison
For each part of our system, we have created a table to compare the

different options that we considered, as well as stated which part we selected.
The selected

2.1.1 SDR Receiver

Software Defined Radio (SDR) is a versatile tool and by far the most
important module on the entire system. Proposed uses for the system as a whole
are local radio, emergency stations, air traffic control, and even signals from the
International Space Station. These uses will require a wide range of radio
frequencies, channels, and demodulation capabilities. Because of the wide range
of performance metrics of the SDR this part had to be carefully considered as it
will have a massive effect on the system as a whole. Some metrics looked at
which are discussed more in depth in the part selection section are: filters,
frequency range, output power, and FPGA processing power.

Luckily, SDR receivers have become widely accessible and affordable in
recent years with hobbyist models such as the NooElec NESDR Mini 2 costing
as little as $25. Higher end SDR receivers such as the LimeSDR, HackRF One,
and portable SDR receivers cost $299. There are also many windows and
multiplatform SDR software programs such as the sdr Console V3, SDR Sharp #,
and SDRplay SDRuno that work with the SDR receivers that allow you to cycle
through the radio frequencies and perform additional functions. [7] [30]
Feature LimeSDR Mini CaribouLite (MHz)

Frequency Range 10MHz - 3.5 GHz Channel 1: 779-1020 or
389.5-510
Channel 2: 3-6(GHz)

RF Bandwidth 30.72 MHz 2.5 MHz

Sample Rate 30.72 MSPS 4 MSPS

TX Channels 1 2

RX Channels 1 2

Transmit Power 10 dBm 14 dBm

Interface USB 3.0 SMI (GPIO powered)
Table 3. LimeSDR Mini vs CaribouLite

12

Group 5 Field Radio: DCV1

When making this decision, we were beholden to what our sponsor has
requested. If the LimeSDR Mini had proved incapable of performing well in the
aforementioned proposed use case, then we would have suggested that the
CaribouLite had been used. However as our Sponsor has a preference for the
LimeSDR Mini, as long as we are able to show that the LimeSDR is capable of
performing, then it should be the one that is used.

After analyzing the specs on the LimeSDR Mini, we have decided that it is
more than capable of doing what we need it to do, and because of that we have
selected the LimeSDR Mini over the CaribouLite. One possible issue is the
supply chain. Due to recent stocking issues the LimeSDR Mini may not be
obtainable. Because of this a remade version with a slightly faster and more
available FPGA was made; this is still just a minor version change, meaning it's a
drop in replacement, and is supposed to be stocking soon.

If the supply of LimeSDR Minis remains low due to stock issues coming
into the month of May, we will pivot and instead switch to using the CaribouLite
instead of the LimeSDR Mini. The sponsor has agreed that this may be
unfortunate but necessary. The CaribouLite can meet our goals but significantly
limits the upgradability and experimental prospects.

2.1.2 Embedded System

This decision was a complex one, as we had to prioritize dimensions,
price, and overall capabilities all in equal weight. As two of our largest
requirements for this project are the price and size, we chose the Raspberry Pi
Zero 2W. Obviously, It is a better choice than the Raspberry Pi Zero W due to
having stronger overall performance and more available stock at only a $5
increase in price. Another good reason for choosing the pi was compatibility.
Although the drivers are available for linux we know for a fact the Raspberry pi
series has been used with the LimeSDR before. This Prior known compatibility is
a significant plus because all USB transceivers modules are not equal so the
possibility of incompatibility is not small for unknown products.

Similar to the LimeSDR Minis, there are supply chain concerns regarding
the Raspberry Pi Zero 2W due to high consumer demands combined with low
supply. Because of this, we have planned to pivot to an Embedded System
similar to the Raspberry Pi Zero 2W if we are still unable to purchase a
Raspberry Pi Zero 2W. The system we have chosen as a potential replacement
is the Omega2, as it has a similar pin count and a USB 2.0 slot which would be
more convenient to use than the Micro USB port on the Pi zero for structural
reasons. The main and obvious drawback is the lower speed and lack of known
compatibility so the first choice by a long shot is the PI. However, since this is a
real world project we are willing to switch to whatever is required. The flexibility is
the only way we can combat supply chain issues and make sure the project
meets requirements

13

Group 5 Field Radio: DCV1

Raspberry Pi Zero W Raspberry Pi Zero
2W

Omega2

SoC/SIP Broadam BCM2835 RPi RP3A0 with
Broadcom
BCM2710A1, 512MB
RAM

MT7688 SoC
featuring 580
MHz MIPS
CPU

CPU Single-core Arm11 @
1 GHz

Quad-core
Cortex-A53 @ 1 GHz
(overclockable to 1.2
GHz)

Single-Core @
580MHz

GPU VideoCore IV VideoCore IV N/A

Memory 512MB DDR2 PoP 512MB DDR3
wire-bond

16MB Flash
64MB DDR2
DRAM

Storage MicroSD Card MicroSD Card Supports
MicroSD or
USB Swap

Video Mini HDMI Mini HDMI N/A

Audio Mini HDMI Mini HDMI N/A

Wireless 802.11 b/g/n WiFi 4,
Bluetooth 4.1 LE with
PCB antenna

802.11 b/g/n WiFi 4,
Bluetooth 4.2 LE with
PCB antenna

Dual mode 2.4
GHz 802.11
b/g/n wifi with 2
dBi directional
chip antenna

USB Micro USB OTG port Micro USB OTG port USB 2.0

Expansion 40-pin GPIO header 40-pin GIP header 32-pin GPIO
header

Power Supply 5V/1.2A 5V/2.5A 3.3V/240mA

Dimensions 65 x 30 x 13 mm 65 x 30 x 13 mm 42.9 x 26.4 x
9.9 mm

MSRP $10 $15 $25
Table 4. Embedded System Comparison

14

Group 5 Field Radio: DCV1

2.1.3 Low-Level Software

Windows 10 Raspberry Pi OS Raspberry Pi OS
Lite

Weight Heavy Medium Light

Ease of Use Very easy Medium Difficult

Ease of
Development

Difficult Easy Medium

Open-Source No Yes Yes

Size 32GB 8GB 4GB

Virtual-Machine
Friendly

Yes Yes Yes

GUI Yes Yes No
Table 5. Low-Level Software Comparison

This decision was a simple one, and the comparison between different
Operating Systems was mostly done as a safeguard to make sure we had
considered other options. As we are developing on a Raspberry Pi Zero, some
variant of Raspberry Pi OS was obviously the correct choice. Due to the low
performance power of the Raspberry Pi Zero 2W, we chose Raspberry Pi OS
Lite. If our development cycle for this project was longer, we may have chosen a
more specialized OS with better performance for our specific use case. However
due to the nature of Senior Design and its limited development time, we chose to
go with a tried and true OS.

2.1.4 High-Level Software

C++ Java Python

Speed Fast Slow Slow

Ease of Use Difficult Medium Easy

Community
Support

Low Medium High

Memory Usage Low Medium High

Developer
Familiarity

Medium Medium High

Table 6. High-Level Software Comparison

15

Group 5 Field Radio: DCV1

Similar to the Operating System decision, the choice of which high-level
language to use for development comes down to which we can use to minimize
our development time as much as possible. We chose Python because it is an
extremely powerful language able to quickly and easily implement complex
features through extensive use of external libraries. Additionally, the two
members of our team who will be working on the software the most have
expressed a personal preference for Python, and due to this it is the language we
will be developing on.

There is an argument to be made that for our use-case, it may be better to
develop in C++ to have our system run faster. While this might be true, this
increase in speed comes at the cost of development time. For this project our list
of basic goals is fairly small, while we have an extensive list of stretch goals. Due
to this, it is best to minimize the time it takes to implement features so that we
could implement more features overall, even if it comes at the cost of some
performance speed. This lack of processing speed should not be a significant
drawback and if need be we are willing to incorporate c++ dlls for processing
intensive software modules.

2.1.5 Antenna

Baofeng UV-5X3 Nagoya NA-320A Diamond HT
Antenna

Power 10 Watts 10 Watts 10 Watts

Price 18.99 for 2 20.98 for 1 32.14 for 1

Bandwidth Adequate Adequate 2m/70cm only

VSWR Lower than 1.5:1 Lower than 1.5:1 Not rated

Rating 4.5/5 out of 121 4.5/5 out of 18944 5/5 out of 11

Size (inches) 17.7 17.7 15

Connector SMA SMA BNC
Table 7. Antenna Comparison

Antenna are easily replaceable parts of a radio system, and thus this
decision holds little weight. Due to this, we simply chose an Antenna with a low
price and high reviews. That being Antenna 1, The Baofeng UV-5X3. This also
comes in a two pack which is a plus for demonstration if both radios use the
same antenna. As mentioned in the technology comparison a lot of the
performance metrics associated with antennas are not verifiable without
purchasing an significantly expensive tested antenna. So price may not mean

16

Group 5 Field Radio: DCV1

quality. Also If finding stock of this Antenna proves difficult, our Sponsor is able
to provide an Antenna for us.

2.1.6 Audio Amplifier

PAM8403 TDA7052

Amplifier Class Class D Class D

Supply Voltage 2.5-6V 3-18V

Current 16ma 4-8mA

Power (8 ohm load) 1.8W 1.2W

Channel Stereo Mono

Input Impedance 100kOhms

Frequency Response 20kHz 20kHz

Voltage Gain 24dB 38-40dB
Table 8. Audio Amplifier Comparison

The speaker system we selected came with an audio amplifier integrated
circuit solution that features the PAM8403 Class D audio amplifier. Compared to
designing our own audio amplifier this component comes pre-soldered and costs
less than purchasing all of the components separately. Since radios can operate
in mono playback mode our option if we wanted to design our own would be the
TDA7502.

2.1.7 RF Amplifier
We selected multiple switched amplifier modules for each band with the

same characteristics similar to the discussed 5W 433MHz Metal RF Power
Amplifier Modules. For each band's amplifier the same approaches and
performance metrics will be considered. But each band will not be explicitly
discussed in detail because of the fact that they are all made using the same MIC
and that is subject to change as more of the stretch goals are attempted. All of
the amplifiers are made by the same manufacturer so the un documented
characteristics are assumed to be the same for each band. Some of the
important differences between the amplifiers are the supported bands that they
are capable of working with, as well as the size, availability, and price.

The main decision was influenced by the massive benefits to cost, size,
versatility and efficiency. This choice is also aligned with the open source goal in
that it allows for repurposing of the overall system without changing the
schematic and reprinting the PCB. The users can just order a new amplifier in a

17

Group 5 Field Radio: DCV1

band needed and start using it immediately. However, due to possible issues the
specific amplifiers may change after testing. The overall plan will be multiple
amplifiers each tuned for individual band requirements.

RS-UVPA 5W
UHF/VHF Power
Amp

RF Power
Amplifier
20M-512MHz

5W 433MHz
Metal RF Power
Amplifier Module

Type MultiBand Tune WideBand
untuned

Switch Single
Band

Heat Dissipation Small Heat sync
plus optional fan

Heat Sync Heat Sync

Impedance 50 ohm 50 ohm 50 ohm

Power 5W 5W 5W

Filter necessary? Has built in Filters Yes Has built in Filters

Availability 2-3day shipping 30 day shipping Said 15 day
shipping but that
was 20 days ago.

Modularity To Large for our
needs

Smallest option Small but would
need multiple

Price (USD) 129 36.88 Around 45 for all
bands covered

Bands 2m 1.25m and 70
cm

20M-512MHz 70 cm

Table 9. RF Amplifier Comparison

2.1.8 T/R Switches
There were a lot of different T/R switches available to use in our system.

Given our requirements, we chose these 3 to begin with for comparisons
because they all met the power requirements of our system. The
MASW-008955-TR3000 is an appealing option due to its DC capabilities making
it easier to work with, however almost all of its other functional characteristics are
worse. Due to this, we will not be choosing the MASW-008955-TR3000 unless its
DC capabilities are found to be necessary after more testing is done.

The SKY13414 and SKY13588 are both significantly more appealing
options for our use case and when selecting parts we quickly knew we would be
using one of these. Both of these have low insertion loss and high isolation,
making them compatible with the LimeSDR and our use case. Between the two,
we decided that we would be using the SKY13588.

18

Group 5 Field Radio: DCV1

Considering the current supply chain issues, if we are unable to find stock
of the SKY13588 we will instead be using the SKY13414. The reason we are not
using the SKY13414 in the first place is due to the power capabilities of the
SKY13414. When looking at the datasheets for the system its power capabilities
made us concerned that it would not be able to work as consistently and reliably
as the SKY13588.

SKY13414 SKY13588 MASW-008955-T
R3000

Protocol Direct GPIO Direct GPIO Direct GPIO

Type SP4T SP3T SP3T

Max RF reverse
power

DigiKey Says 70
dBm but the
datasheet says
33dBm

70dBm 42dBm

Max RF power
Throughput

DigiKey Says 37
dBm but the
datasheet says
27dBm

39dBm 35dBm

Isolation 31dB 40dB 20dB

Insertion Loss 0.45dB 0.45dB 0.6dB

Frequency Range 100MHz-3.8GHz 100MHz-6GHz DC-3.5GHz

Technology Absorptive and
Reflective

Reflective Reflective

Price 1.35 1.24 1.74
Table 10. TR Switches Comparison

2.1.9 ADC
When deciding on an ADC, we had to compare the communication

protocol as well as the number of bits and channels on the device. Due to the
relatively low cost of ADCs overall, the cost of the actual ADC was barely a
concern as none of the ADCs we found ever got close to costing even as little as
$5. Additionally, we are more concerned with the number of measurement
channels than the resolution of those channels. Due to this, we prioritized the
number of measurement channels above the number of bits. Additionally,
communication protocol was not a concern at all as the Raspberry Pi Zero 2 W is

19

Group 5 Field Radio: DCV1

capable of communicating over both I2C and SPI protocols with hardware and if
need be bit banging anything else.

Due to a combination of all of the aforementioned criteria, the ADC that we
chose was the MCP3008. It was the device with the largest number of channels
that we found, while still being cheap and working at the same voltage range as
the rest of our system. In addition, all of the ADCs which we compared are
extremely popular products with widely available software libraries, meaning that
even if we decide to switch later, the software of the system will not have to be
significantly modified and concerns of support will be non-existent if adjusting to
a different ADC is necessary.

ADS1115 MCP3008 ADS1015

Protocol I2C SPI I2C

Voltage Range 0-5v 0-5v 0-5v

#Bits 12 10 16

#Channels 4 8 4

Technology Delta-Sigma SAR Delta-Sigma

Price (USD) 1.50 3 2.50
Table 11. ADC Comparison

2.1.10 Accelerometer

Adafruit ADXL335 HILetgo MPU-6050

Input Voltage 5V 5V

Dimensions 0.75”x0.75” 0.5”x0.75”

Acceleration Range +3G +16G

Weight 0.52oz 0.63oz

Bandwidth 50Hz 50Hz

Price $16.17 $3.33
Table 12. Accelerometer Comparison

The compared accelerometers both have high ratings on amazon and are
compatible with our current design. Since the accelerometer is a stretch goal, we
will choose the cheaper option and upgrade if in the event we have budget to
spare. On top of that, the HiLetgo option also comes in a pack of 3 so we will

20

Group 5 Field Radio: DCV1

have more to spare if one is dead on arrival. In addition, our team members have
prior experience working with the HiLetGo accelerometer and have found it
reliable and easy to use. So because of the significantly lower price, ease of
implementation/design and better size and acceleration specs, we chose the
MPU-6050.

2.1.11 GPS
From a purely functional and price standpoint the VK2828U7G5LF is the

clear winner. However because this is an extra stretch goal/feature the NEO-6M
has significantly more support and as discussed previously we are not trying to
reinvent the wheel. This is just a stretch goal so the cost can be considered less
important as it will not be included in the manufacturing costs and will be a
separate add on module. In conclusion, although the Neo-6M and BN-880 both
have large pre-existing community support, at half the price the NEO-6M is a
clear winner.

NEO-6M BN-880 VK2828U7G5LF

Protocol UART UART UART

Popularity This is by far the
most popular
option with
multiple guides
and tutorials

This is another
popular option
with some
examples and
guide for previous
uses with the Pi
platform

This option has
the least Support
with no evidence
of previous
implementation

Supported GPS
bands

L1 and L2 Dual
Band

L1 and L2 Dual
Band

L1 and L2 Dual
Band

Voltage 3.6-5V 5V 3.3V

Size 27.6mm*26.6mm 28mm*28mm 25mm*25mm

Update Rate 1-5Hz 10Hz 10Hz

Clock Accuracy unrated unrated 0.5 PPM TXO

Additional Feature none Accelerometer,
Altimeter, and
Compass

Compass

Price (USD) 12 25 10.30

21

Group 5 Field Radio: DCV1

Table 13. GPS Comparison

2.1.12 Case Materials
When it comes to materials there are countless options, but given our

need for durable water resistant materials our choices are limited. When
comparing PETG and Polypropylene, PETG is more durable while also being
cheaper and easier to print with. When it comes to PETG vs PLA, the two
materials are extremely similar with PLA being easier to work with as most 3d
printers are tuned for it specifically. Due to this, we will be using PLA during
development due to how common, widespread, cheap, and easy to use this
material is. During production however, we will switch to PETG as it is more
suited to our product’s needs since it is possible the radio will be outdoors for a
not insignificant amount of time and in the sun often, which has been shown to
be a condition PLA is unable to hold up in, over long time periods.
The highlight means used for testing

PETG Polypropylene PLA

Strength Medium Medium High

Durability High Low High

Price Low High Medium

Ease of Use High Low High

Water Resistant Yes Yes No
Table 14. Case Materials Comparison

2.1.13 Battery
The choice between Lithium Ion batteries and a different kind of battery

would be determined by many factors including: our ability to recharge our
device, how long the device will last, and how large/heavy the device will be.
With non-rechargeable batteries, we are forced to allow the user to have easy
access to the battery compartment to be able to replace the batteries whenever
they run out. However by choosing to use Lithium Ion batteries, we are allowed
to prevent access to the battery compartment and instead have a port on the
device to recharge the batteries. This choice just gives more physical design
versatility as well as better SWaP characteristics.

Lithium Ion batteries do come with the downside of a significant price
increase for the development and manufacturing costs of the system, as we
would be including the cost of batteries in our Bill of Materials, as opposed to
normal batteries where that cost could be ignored as it would be the User’s
responsibility to provide batteries. This downside was deemed acceptable.

22

Group 5 Field Radio: DCV1

Characteri
stic

Lithium Ion Batteries Other types (Lead Acid)

Longevity Extreme longevity, very low
self-discharge rate with
relatively low maintenance

Does not require any maintenance
at all, and is very reliable. Long life
cycle, and can withstand inactivity
but lower overall lifespan due to a
very limited cycle life.

Charging
speed

Extremely fast in comparison
to other battery types. Can
fully charge in 2.5 hours.

Extremely slow charge rate. Full
saturation can take up to 16 hours.

Voltage
Capacity

Boasts a very high voltage
capacity, meaning it will last
longer when charged.

Low specific energy, and low
power density. Poor weight to
energy ratio.

Stability Environmentally friendly and
generally more stable. It is
not temperature restricted
and can be stored both
uncharged or charged. Long
periods of use will not
generate heat.

It is not environmentally friendly
and must be stored in a charged
condition to prevent sulfation.
Different versions have different
restrictions, flooded versions
require watering.

Weight About 70% lighter than lead
based batteries. Weight to
energy ratio is extremely
favorable for handheld
products such as this project.

Lead is heavier in comparison to
alternative elements (even nickel
iron cells) and due to its low
specific energy has little to show
for its higher weight.

Cost Has become cheaper with
time, but originally was more
expensive. Averaged $132
per KWH in 2021 and $101
per cell.

Simple and inexpensive to
manufacture. Low cost per
watt-hour, best value power per
KWH. Lead can be recycled and
reused in new batteries.

Table 15. Battery Composition Comparison

2.1.14 Touchscreen
The JniTyOpt 3.5 Inch Display was the clear choice due to its unique

ability to natively support 3.5mm Audio Output. This would allow us to
significantly cut down the size and costs of our Speaker as we would be able to
choose one with a 3.5mm Audio Jack, which are by far the cheapest, smallest,
and most common kinds of speaker. Another contributing factor to the decision
was the ease of mounting. The chosen screen has pre-made mounting holes and

23

Group 5 Field Radio: DCV1

more easily fits with our physical design goals. These two factors alone were
enough to influence our decision. [28]

JniTyOpt 3.5 inch
Display

iUniker Raspberry Pi
Screen

Refresh Rate 60Hz 60Hz

Screen Size 3.5 inches 3.5 inches

Resolution 480x320 480x320

Video Support HDMI GPIO

Audio Support 3.5mm Audio Output None

Touchscreen Resistive Capacitive

Power Micro Usb GPIO

Power Consumption 130mA/5V 5V

Weight 9.1 oz 2.12

Dimensions 3.46 x 2.99 x 0.47 in 3.94 x 1.97 x 1.18 in

Price $28.99 $29.99
Table 16. Touchscreen Comparison

2.1.15 Speaker

GPIO Bluetooth HDMI USB 3.5MM

Price $13 $16 $30 $20 $8

Size Medium Medium Very Large Medium Small

Availability None Average Average Average Average

Ease of
Use

Medium Difficult Difficult Easy Easy

Power
Source

Pins Independe
nt

HDMI Port USB Port 3.5MM
Port

Table 17. Speaker Comparisons

24

Group 5 Field Radio: DCV1

There are many different options when it comes to audio output. We can
immediately rule out using converters to output audio through the HDMI port as
this would require too much space. A speaker that connects to the GPIO pins

would be nice for multiple reasons. However this was ruled out because
we have a lot of other devices that will be heavily using the GPIO pins making it
significantly more difficult to use than any other connection type. This could also
lead to software issues down the line; if too much GPIO latency is introduced the
device may not be functional. Bluetooth was quickly ruled out at least partially
due to required power however this feature may be added just for convenience
as a secondary option.

This leaves us with deciding between a USB speaker and a 3.5mm audio
speaker. Unfortunately the Raspberry Pi Zero 2W does not have a built-in 3.5mm
audio jack port, so we would normally be forced to select the USB speaker with
the USB hub. However, the touch screen that we selected has a built-in 3.5mm
audio jack port, so we will be able to go with a 3.5mm speaker. This is the best
option by far due to it being the cheapest, smallest device, while still being readily
available and very easy to use. [22]

2.1.16 Microphone

GPIO USB 3.5MM

Price $7 $4.50 $8

Size Small Tiny Tiny

Availability Low High Average

Ease of Use Medium Easy Easy

Power Source Pins USB Port 3.5MM Port
Table 18. Microphone Comparison

Similar to audio output, there are many different choices for audio input. In
this case, the GPIO-based solution would not take up all 40-pins, so it is not as
bad of a choice as it was in the case of audio output. However, due to the
reasons discussed in the speaker section, if it is possible we would prefer to keep
as many of the GPIO pins free for future expandability as we can. Because of
this, we are left with two compelling options: either a direct USB or 3.5MM
solution.

There is no cheap and simple solution that would make the 3.5mm audio
jack input work. This is mainly because the Raspberry Pi Zero 2W does not have
a slot for 3.5mm audio, and the screen that has a 3.5mm audio jack port is output
only. So in order to incorporate a 3.5mm we would need another module, but
since a usb hub will already be available the USB option is more convenient.

25

Group 5 Field Radio: DCV1

Because of the aforementioned convenience and price benefits, we chose to use
a USB microphone. [29]

2.2 Part Selection (30-40 pages)

2.2.1 SDR Receiver

Figure 6. LimeSDR Mini

The SDR selected will play a critical role within the system itself, as our
RF capabilities are completely limited by the capabilities of our SDR Receiver
component. As the sponsor wishes for the project to be based on LIME
technology, the preferred SDR receiver we will use to design the project will be
the LimeSDR Mini. Using an SDR Receiver generally means an SDR system will
be required to handle significant amounts of digital signal processing, this would
require a powerful and fast external FPGA. The FPGA on the Lime mini is the
Altera Max 10 which is a significantly powerful FPGA and a major selling point.
On top of this the SDR module needs a good RF front end; the Lime SDR has a
decent one with a preamp providing up to 30 mW of output power and adequate
RF switching capabilities. This SDR is also Duplexed and supports a Wide band,
which Supports our project goal of Versatility and bandwidth as described in the
goals section.

The LimeSDR Mini features the same radio transceiver as the full sized
LimeSDR model at a fraction of the size, cost, and weight. The main differences
between the two boards are that the LimeSDR Mini is a two channel device
instead of a four channel, as well as having a slightly less impressive FPGA. One
benefit for our purposes is the inclusion of SMA antenna connectors rather than
micro U.FL antenna connectors. This allows us to use hot swappable antennas
and amps without an adapter. As the current supply chain shortage continues,
we felt it critical to consider backup plans for this component given that it fulfills
one of the most critical roles possible within the project. The LimeSDR Mini

26

Group 5 Field Radio: DCV1

features an RF frequency range from 10MHz to 3.5GhHz, and uses two separate
channels for TX and RX with multiple different matching networks connected to
the RF transceiver. These separate connectors for TX and RX allow for the
possibility of Duplex operation and significantly Easier T/R switching for half
duplex.

Figure 7. CaribouLite SDR

For this purpose, we also considered a Cariboulite SDR receiver as a
secondary option to the SDR receiver. It also stands as a high bandwidth TX/RX
SDR that is designed to be a highly compatible radio HAT for the Raspberry Pi
platform. The CaribouLite is the most affordable still open-source SDR evaluation
platform as well with TX capabilities. Also it is designed to complement the
current SDR climate by being scalable and standalone with the uncommon
capability of simultaneous dual channel software control. Aside from cost,
another main benefit is availability. The Cariboulite Does have a guaranteed ship
date of may 15 which makes it a good backup if the lime has supply chain issues.

Unique to the CaribouLite, is it’s utilization of the SMI present on all 40-pin
versions of the Raspberry-Pi platform, this allows for an impressive data
exchange rate of ~500 Mbits between the HAT and the RPI interface chosen
(such as the raspberry pi zero 2 w). This interface is especially useful for its
accessibility with Linux applications, as it is programmable from almost any Linux
application with Broadcomm’s API.

The statistics comparing the LimeSDR mini to the Cariboulite show that
while the LimeSDR mini sacrifices a bit of transmit power, it operates with a much
higher sample rate and analog bandwidth than the Cariboulite, and has
significantly higher hardware capabilities as a result. Although not completely
necessary for the current defined goals. The main goal of open source versatility
makes the LimeSDR a significantly better choice. (“LimeSDR vs LimeSDR Mini”)

27

Group 5 Field Radio: DCV1

2.2.2 Embedded System
The embedded system is a very critical part of our project design. Our

SDR handheld radio will only be as strong as the computational strength of our
embedded system and SDR components, so if this were to be the weak link in
comparison to the LimeSDR, we would be limited to the strength of our
embedded system. Primarily, the embedded systems role in this SDR radio
stands as the primary computer for any non-RF related task expected of the
project, the “master” of any communication occurring within the project itself. For
example, the microphone audio input, decryption, storage and display would all
be the simultaneous job of this embedded system to take the microphones input
and perform whatever task the user would like to do with said audio input coming
from the microphones (I.E. if the user wishes to store whatever the microphone
hears as data, the embedded system would accomplish this goal by writing to an
SD card).

The embedded system has the added requirements of size restrictions
(many computers can be automatically thrown out as they are too large, this
project is designed to be handheld and cannot have a computer larger than our
system restrictions) as well as power restrictions (we cannot exceed a few watts
as this would threaten battery life as defined in our design expectations). Due to
these restrictions, the primary candidates for our embedded systems include
smaller, single board based computers featuring serial communication protocols
and multiple digital/analog GPIO pins available for components to be attached to
(preferably with power capabilities).

The chosen embedded system we will design the SDR Radio around will
be the Raspberry Pi Zero 2W. The Raspberry Pi is a small and powerful single
board computer that uses the Linux operating system and comes with multiple
embedded systems. This more than fulfills many of the required and optional
features of the portable radio. We specifically chose the “Raspberry Pi Zero 2W”,
as the primary versions of the Raspberry Pi (such as the Raspberry Pi 4) are
often extremely power hungry and draw an amount of current that would not be
suitable for our needs. A good example of this is the Raspberry Pi 4 maxing at 7
watts, while the smaller and cheaper Raspberry Pi Zero 2W maxes at 3 watts.
Via the Raspberry Pi’s onboard GPIO modules can be plugged directly into the
GPIO in the form of a Pi Hat such as a touchscreen, battery holder/charge
controller, or GPS module. Onboard USB ports and a 3.5mm audio port allow for
the SDR receiver to be connected as well as a speaker and microphone.

Shown below is a picture comparison of the Raspberry Pi Zero 2w vs the
Raspberry pi 4, showing the overwhelming size difference between them. This is
another factor we had to consider, and ultimately influence our decision [43].

28

Group 5 Field Radio: DCV1

Figure 9. Size comparison of Raspberry Pi models [44]
We also considered looking at other options such as the Onion “Omega2”

computer, potentially as a backup to the Raspberry Pi should we run into supply
chain issues as Raspberry Pi’s are considerably difficult to find in the current
climate. The Omega2 is very close in statistics to the Zero 2W, requiring 3.3V
GPIO in and using USB 2.0. It also has multiple drawbacks including: non
removable limited storage and low computational power with a clock speed of
about 400 MHz compared to the Pi's 1 Ghz. With these drawbacks this option is
also $10 more expensive making it significantly worse than the Raspberry Pi
Zero 2 W. However, it is a suitable alternative with high levels of community
software support should supply issues cause this backup plan to become
necessary.

The Omega2 is shown below and is significantly smaller than the Zero
2W, which would benefit our project in the interest of being handheld. However
this size difference isn't much and we decided the margins in which it is smaller
than the Zero 2W does not make a definable critical difference.

Figure 10. Omega2 [40]
To compare the Pi zero and Onion2 As shown by the technology

comparison chart: there were significant downsides with the lack of HDMI video

29

Group 5 Field Radio: DCV1

output. This would mean we are required to use their closed source OLED
expansion boards which requires access to all32 pins or a workaround PCB
system would have to be designed by us. Their board may leave us without
options for GPIO and it would limit the processing power significantly as the
HDMI transceiver would not be done with built in hardware. This would take a
significant amount of time to work out. Most likely requiring us to design our own
audio and video encoder interfaces, which would directly increase the size of our
PCB and thus drastically affect our overall system (since we are not creating our
own TX amplifier pcb size is important to overall size). For these significant
drawbacks we plan to keep the Omega2 as an absolute last resort to the
Raspberry Pi Zero 2W.

Figure 11. Banana Pi BPI M2 Zero [53]

The Banana Pi BPI M2 Zero is another alternative to the Raspberry Pi
Zero 2W that could be considered. It boasts an extremely similar form factor
while still having all of the same requirements that we need, such as mini-hdmi
output, micro-usb port, micro sd card port, and built-in wifi and bluetooth. This
would be just as good as the Raspberry Pi Zero 2W hardware wise. The reason
that we would choose the Raspberry Pi Zero 2W over this is that there is more
software support specifically for the Raspberry Pi Zero 2W as it is a more popular
system than any of its rivals. [53]

2.2.3 ADC
An ADC will be necessary for the measurement of the volume/gain

combination knob, the battery voltage and the voltage going into the TX
amplifiers controlling the output power. This is a mostly simple part with only the
supply voltage, number of channels and communication protocol mattering. We
mainly chose this part based on the availability of libraries and popularity. Since
we have 3 voltages to measure the min number of channels is 3 but it is possible
we may need to measure more after testing. Because of this the more channels

30

Group 5 Field Radio: DCV1

the better. The ADC we chose was the MCP3008 for reasons described in the
Technology comparison.

2.2.4 Accelerometer
A stretch goal that we have as a group is to make the device as versatile

as possible. To do this we can add an accelerometer component that interfaces
with the Raspberry Pi and can update the system on the user's acceleration and
velocity in real time. If in the event the user is stationary or moving at a pace
similar to walking or running, all features can be enabled. This is mainly required
for APRS. For anything over running speeds, a warning message can be
displayed on the screen which prompts the user to allow low resolution GPS
estimation.
Size:

Accelerometers are very small components that oftentimes are no larger
than a quarter. Due to this the only changes we would need to make would be
the necessary mounting brackets as well as space to feed the wires.

Price:
This is an optional feature therefore the lowest priced accelerometer

available should be chosen without compromising integrity of the data.

Additional Features:
Most common accelerometer modules utilize the standard IIC

(Pronounced eye squared see) communication protocol or some similar
interfacing technique. Some accelerometers come with additional features that
include a gyroscope sensor, temperature, compass, and data logging
capabilities. For our project scope though, a standard accelerometer is enough
and because this is for stretch goals the end user has the ability to easily modify
the component as they see fit.

Figure 13. Accelerometer modules (HiLetgo MPU-6050), (Adafruit ADXL335)

31

Group 5 Field Radio: DCV1

2.2.5 GPS Module
A GPS module is a necessity for the APRS repeater functionality goal. Although
this is a stretch goal the best option should still be chosen. There are multiple
things to consider for the GPS module including: Size, Price, Supported Bands,
Update Rate, Clock Accuracy, and communication protocol.

Size:
Since this is supposed to be an add on a possible addition to the frame and size
requirements may be needed. However ideally it could be internally integrated
with no additional space required other than antenna cutouts.

Price:
Again since this is an additional feature it does not necessarily have to meet
price requirements but due to the open source repeatability goal/requirement the
lowest cost option should be chosen.

Supported Bands:
GPS currently has 3 bands denoted by L1, L2, L5. L5 is relatively new and won't
have any non-military modules supporting it. Each band not only gives us the
maximum possible updates per second but also the amount of time it takes for
the GPS to Acquire the constellation. Because the L2 constellation is so much
newer and thus faster any module chosen will preferably use this band.

Update Rate:
Each individual GPS has a different update rate which is the number of updates
in position per second. This is generally limited by the module itself but
sometimes it is linked to the constellation. The APRS standard has no
requirement for GPS update rate so a reasonable update rate should be
considered to generally not affect APRS performance. But, since we want the
versatility described in the requirements this could potentially be on a plane
meaning the update rate should be as fast as possible.[19] [62]

These are some GPS modules which we have considered:

32

Group 5 Field Radio: DCV1

Figure 15. GPS Modules [20], [18]

2.2.6 Case Materials
For our system to be water-resistant we have to have all of the electrical

parts enclosed in a case, as having them exposed to the elements would make
them vulnerable to being shorted by any droplet of water. When it comes to
prototyping, one of the best solutions available to us would be 3D printing a case.
UCF has a 3D printer available for public use to all of its students as long as we
bring our own materials, but we would still need to decide on a material based on
if it meets our requirements.

Price:
The material for our case is a low-priority part of our system as it would

likely be changed once the design is out of the prototyping stage, and 3D printing
is unlikely to be employed if this product were even to be manufactured at a large
scale commercially. Additionally, due to the small size of our product any
difference in material costs are unlikely to have a large effect on the overall costs
of our system as we likely would not be buying a large amount of 3D printing
material.

Shock-Resistant:
Our radio system would likely be often used outdoors and while a user is

moving, so it is extremely likely to be dropped. Due to this, we would like for our
case to be durable and shock-resistant to a reasonable degree. This would be to
minimize the damage on any internal electrical components. Another possible
solution if needed for durability may be a hybrid of flexible and rigid components.
This could be something like a ninja flex bumper on the edge if necessary. This
would also need to be attached to the hard shell so the possibility of gluing to the
material. So both of these factors will be considered in the shock resistance
metric shown in the technology comparison section.

33

Group 5 Field Radio: DCV1

Water-Resistant:
Due to the nature of 3D printing, any case we make is likely to have

inferior water-resistance compared to something coming out of a factory. This is
just due to the physical layered nature of the FDM 3d printing process. To make
up for this, we should choose a material which is known to be particularly
water-resistant when used for 3D printing to help make up for this gap. However
this may also not be water resistant enough so other options will be considered
like sealing and painting. Because of this paintability which could directly affect
water resistance will also be considered in the same vein.

Temperature-Resistant:
The device would likely be used in a wide range of temperature extremes

ranging from sub-zero temperatures in northern US states during winter to
temperatures over 100 in Florida during the summer. Due to this we would like to
have a material which can withstand various temperature extremes. This criteria
may be more difficult to fulfill than the others due to the way that materials work,
so our goal would simply be a material that can withstand temperatures from 60F
to 80F indefinitely. Ranges beyond this would be good but not necessary. The
main reason this is considered is longevity. If this system is placed outside even
in a weatherproof box, thermal expansion cycles could eventually cause cracks
to form. [59]

Here are some materials we considered:

Figure 16. PETG [55]
PETG

PETG is a semi-rigid material that has very good impact resistance. Its
surface is softer than other similar materials so it is prone to wear, however it
does have good water resistance as it is often used to manufacture water bottles.
The material is also good at dealing with rapidly changing temperatures.

Some of the negatives of PETG are that the surface sometimes has thin
strands coming off of it due to errors in the printing process. This happens
commonly but is not a significant issue for our purposes. Due to the nature of
PETG we will likely not be using it for our prototyping process, but may suggest
printing with it be considered when the final product is being manufactured.

34

Group 5 Field Radio: DCV1

Figure 17. Polypropylene [54]

Polypropylene

Polypropylene is yet another water-resistant material. Compared to PETG,
this material is weaker, although it does support higher temperatures. The higher
temperatures that Polypropylene supports are not necessary for our project, and
it is much more expensive. The main positive of this material is that it is
lightweight and does not wear down easily. In addition, the finish on
Polypropylene is smooth and the material itself has relatively high impact
resistance.

Some of the negatives of Polypropylene is that it is prohibitively expensive
compared to nearly any other 3D printing material that we looked at, which would
significantly increase our development costs if we were not able to find a way to
only pay for the exact amount of the material that we used in our design.
Additionally, the material often warps during printing so multiple prints might be
needed. Overall, due to the positives of this material being relatively unimportant
for our needs, and the negatives being too large to handle, this is not great
material for our purposes.

PLA

Figure 18. PLA [56]

35

Group 5 Field Radio: DCV1

Polylactic Acid, AKA PLA, is an extremely popular material in desktop 3D
printing. It is common, cheap, durable and easy to print Because of the wide
range of positives, extrusion-based 3D printers generally print mainly PLA. PLA
is a fantastic material for the majority of use cases and the majority of printers
are optimized for it. From an ethical ecological standpoint PLA is derived from
crops such as corn and sugarcane, making it renewable and most importantly
biodegradable.

Some of the downsides of PLA are that it has low heat resistance and
does not hold up well against sunlight. These 2 factors make it unsuitable for our
needs as the product would likely be used outdoors very often. In addition, the
filament has low impact resistance and can often break from becoming brittle
over time. Despite these downsides, due to the cost and ease of use, this
material will be the main choice for prototyping. Depending on testing results, this
material may be considered for production, but we would likely use something
that better meets our needs such as PETG instead. However PLA is a fantastic
prototyping material and will be used extensively for that purpose.

2.2.7 Low-Level Software
When defining low-level software, what we mean is the operating system

that we will use on our embedded system, which will likely be the Raspberry Pi
Zero 2 W. When choosing an OS, we are looking for each of the following
features:

Lightweight:
Whatever embedded system we end up choosing will likely be extremely

weak, because for that decision we are focusing more on power optimization,
footprint, price, and supported features. Because of this, what little processing
power we have should not be wasted on the OS.

Simple:
The software for this project will likely not start to be designed until May, at

which point we would likely already only have 3 months to finish the project.
Because of this, we want an OS which is extremely easy to use and program in,
as we have to go from complete beginners in it to having our project done in just
a few months due to the short timespan of the summer semester.

Open-Source:
One of the major selling points of our project will be the open-source

software design. While it may be considered technically acceptable if we built our
open-source code on closed-source software, it would be more true to the
intention of the stakeholders if the OS that we decided to use was also
open-source, so that all of the code could be viewed by someone for free.

Small:

36

Group 5 Field Radio: DCV1

Our project has very low requirements in terms of storage. Most of the
files that we will store on the radio will be the compiled code which will be running
on the system, as well as the OS it is running on. Because of this, it is very likely
that our OS itself will take up a majority of the file storage space, with some
OSes taking up 4GB, 8GB, or even 32GB. So we would like to have a small OS
so that we can buy less storage.

Virtual-Machine Friendly:
Some of our group members will be outside of Orlando for the duration of

the project, and will likely face difficulties when it comes to being able to access
the hardware that we will be testing on. Because of this, it would be helpful if the
OS we decided to use is easily virtualizable through VMWare or other similar
programs. This way the team member who is not in Orlando can still contribute.

Considering all of what was discussed above as being factors that we are
prioritizing, here are some of the options we considered:

Figure 19. Windows 10 Logo
Windows 10 is currently one of the most popular OSes on the market and

is used in businesses and homes everywhere. Additionally, all of us have
experience using it and would not have trouble navigating it. Unfortunately,
Windows 10 would not work for our use case at all, and this consideration serves
more as an example of everything that could be wrong with an OS for our
purposes.

Windows 10 is not lightweight at all, as there are many programs which
will attempt to run or update in the background such as OneNote, Windows
Updater, etc. Windows 10 is also not simple to run embedded firmware code on,
despite being very simple to develop for. This is due in part to the desktop
environment, as well as lack of access to the UNIX Command Line Environment.
Additionally, Windows 10 is not open-source, as Microsoft’s business model
revolves around selling Windows 10 licenses to businesses. Next, Windows 10 is
an extremely large installation, coming in at around 32GB due to the OS
reserving space for updates. This would mean that each of our devices would
need 64GB of storage to also be able to store our executable code. Finally, it is
not even possible to run Windows 10 on a Raspberry Pi Zero 2 W. This is
because the Raspberry Pi Zero 2 W and Raspberry Pi 1 both run on ARMv6
CPUs, while Windows 10 requires ARMv7 CPUs. One last positive of
Windows10 is that it is easily virtualizable.

In conclusion, Windows 10 is one of the worst possible choices that we
could make when deciding what OS to run on the Raspberry Pi Zero 2 W. This
goes to show that even the best products can fail to fulfill your requirements
based on your use case. [16]

37

Group 5 Field Radio: DCV1

Figure 20. Raspberry Pi OS Logo
Raspberry Pi OS is considered the “default” option when it comes to

installing an OS on a Raspberry Pi. It is optimized specifically for the Raspberry
Pi series of devices, so there is a guarantee of a minimum level of functionality
with them. It meets many of our requirements, but there are a few trade offs
compared to some other options.

The Raspberry Pi OS is more lightweight than Windows, as most Linux
distributions are usually more lightweight since it is up to the user to decide a lot
of the programs that they will be installing, as opposed to Windows which comes
with a lot of bloatware. The OS is very user-friendly and easy to understand,
especially since some of our team members have previous experience using it.
The OS is open-source since it is based on Linux, and only requires a minimum
of an 8GB microSD card, 1/4th the amount of space that Windows 10 needs.
Lastly, the Raspberry PI OS is virtualizable.

The Raspberry Pi OS is a great choice for Raspberry Pi’s in general, but it
has some trade offs which will be considered in the Raspberry Pi OS Lite section.

Figure 21. Raspberry Pi OS Lite Logo
Raspberry Pi OS Lite is an even more lightweight version of Raspberry Pi

OS which is designed specifically for weaker Raspberry Pi devices such as the
Raspberry Pi Zero 2 W. Similar to the OS it is based on, this OS meets many of
our requirements but has trade offs compared to the full version of Raspberry Pi
OS.

The Raspberry Pi OS Lite is even more lightweight than Raspberry Pi OS,
as there are even less programs running in the background taking up processing
power. The OS is also open-source, and requires only an 4GB microSD card,
1/2th the amount needed for the full version. Additionally, it is easy to virtualize.

38

Group 5 Field Radio: DCV1

The Lite version is unfortunately not very user-friendly as it does not ship
with a Graphical User Interface (GUI) installed by default. Without a GUI, most
programming would have to be either done on a Command Line Interface (CLI),
or written on a separate computer then moved onto the Raspberry Pi Zero 2 W.
Additionally, with the current costs of storage devices going from an 8GB OS
installation to a 4GB OS installation results in a negligible cost decrease. [41]
(“Raspberry PI OS Lite vs Desktop: comparison between the 2 distributions”)

Conclusion: I believe development for this project should be done on the
Raspberry Pi OS Lite. Although the full version may have a GUI, the finished
product will need a lightweight OS and transitioning from one OS to another is
bound to cause problems throughout development. It would be easier to develop
a finished product first on the lite version of the OS, then not have to transition
after software has finished development and testing.

2.2.8 High-Level Software
For our high-level software, we have a plethora of options when it comes

to programming languages available for us to use when developing on an
Debian-based operating system such as C++, Java, Python, and many more.
Each language comes with their own set of pros and cons when it comes to
development and end result.

C++ is a very fast language that has been in use for several decades and
therefore has a wide range of development applications across many platforms
as well as tons of community support and engagement. Several functions such
as the waterfall and sampling will be much more efficient to operate via C++ as
opposed to Python and Java, but the main drawback is development complexity.
C++ does not have as high a level of abstraction as Python and Java, therefore
we will have to create our own functions and libraries in a language with a fairly
complex syntax. Alongside this, our group members have more experience with
other languages, so it does not seem feasible to learn and develop with this
programming language within the given time frame for the project.

Java is a better option than C++ due to its superior community
engagement and accessibility for other developers since it is one of the most
widely used programming languages for application development on the
enterprise level. Java comes standard on the Raspberry Pi Operating System as
well as having libraries such as PI4J which enables communication between the
embedded system and its GPIO pins. It has been noted that there are some
compatibility issues with the java libraries when it comes to accessing the gpio on
some raspberry pi models since most are developed based on the Raspberry Pi
models 3 and 4, but there are plenty out there to choose from that can work for
our specific tasks. There are also several built in libraries such as JavaFX which
lets developers easily and efficiently design graphical user interfaces.

Python Programming Language

39

Group 5 Field Radio: DCV1

Figure 22. Python Logo
Python is native to the Raspberry Pi Operating System and is a very

powerful and developer friendly high level programming language that will be the
foundation of our Software Defined Radio program. Python has a plethora of
libraries that will be useful when creating complex features of the program such
as the graphical user interface, communicating to the low level software and
operating systems, and interacting with the GPIO of the Raspberry Pi.

One drawback of using python is that we may have to be conservative in
both the time and space complexities of our program since the model of the
Raspberry Pi that we are using only comes with 512MB of memory. Most of the
memory will be allocated to the operating system and additional drivers needed
for the touchscreen/modules therefore lightweight libraries should be used
wherever applicable. Therefore we should prioritize any processes that are
related to signal processing/analysis between the LimeSDR and the Raspberry
Pi as well as sound I/O so that communications can occur in real time with limited
delay.

Open source development is an important selling point of our project
therefore we will provide code and documentation online for the Amateur Radio
Club to use at their discretion. For this task, we will use the Github repository
framework to manage our documentation, handle version control, and also
collaborate with each other for remote development. There is also substantial
community engagement and documentation on multiple forums and discussion
boards which satisfies our requirement of being open source as long as we are
within guidelines and copyright regulations.

GPIO Interfacing

Using the RPi.GPIO library we will be able to communicate to the GPIO
pins of the Raspberry Pi via Python . Even though the library does not support
i2c, serial communications, and PWM, it is capable of being read for a simple
voltage divider circuit to check to see if the pin is active or not. This can be
useful in multiple applications such as a physical push to talk button, a power
button, and much more. There are other libraries that include SPI such as the
spidev library that can be useful for getting readings from our battery level
monitoring circuit as well as a microphone circuit for communications.

Graphical User Interface (GUI)

In order to create the graphical user interface for the software defined
radio, a graphical library is needed. One of the simplest and most lightweight

40

Group 5 Field Radio: DCV1

graphical libraries that Python has to offer is the Tkinker library and comes
standard to Python. Most of the library's built-in classes are implemented in the
C language so they should be much faster than other libraries that are solely
designed based off of Python or Java. Using this library we can create a
cross-platform window that displays all pertinent information and functions to the
SDR program. In order to maximize performance and efficiency we will be
grouping similar functions into separate selectable windows so that higher level
functions such as the waterfall/panadapter can run without being limited by
background applications.

Audio Interfacing

For audio there are several file formats and methods we can utilize within
Python and its available sound based libraries. When we receive the audio
samples from the frequencies that we connect to it will be in the form of a stream
of information that must be processed. We can simply convert the input audio
stream into a .wav file and use a library to play the audio. This will require a
number of libraries including pyaudio, wave, and sys.

Using the standard sys and subprocesses library, we can also access the
low level software of the operating systems command prompts. Via these
functions we are able to modify elements of the Raspberry Pi itself including the
bluetooth and microphone recording if in the event a usb microphone is utilized.

On the Raspberry Pi operating system, to record audio the command
arecord and its functions can be used to produce a .wav file which can be
accessed via the aforementioned wave library. Using the subprocesses library
we are also able to change the volume of the system.

2.2.9 Antenna
The antenna is the easiest component of the RF frontend. The antenna

must only meet 6 criteria: power, price, frequency, VSWR, durability, and size.
Since for RF transmission we are not trying to break any new ground; the classic
1/4 wave whip antenna will be perfect. However since we also want versatility a
multiband antenna is preferable.

Power

The requirements specify that output power should be 5 Watts for the
three main bands. This is the power output of the amplifier, not the EIRP: It would
be impossible to have a perfect radiation efficiency. Since antennas are cheap
and easy to manufacture, this should be easy to meet with common off the shelf
antennas.

However, we do have the issue of return loss vs radiation efficiency. A
common issue with cheap off the shelf antennas is that the VSWR will be low
(<1.5) but the EIRP will also be low meaning a high return loss even but the
antenna will not be radiating efficiently. This is caused by a large internal
absorption of rf energy causing the power to be converted to heat. Since this
would not be published on the description of any antenna that is not significantly

41

Group 5 Field Radio: DCV1

over budget due to testing antenna we will decide based on user reviews for this
specification.

Wavelength

The wavelength of our bands obviously cannot be adjusted as they are the
required amateur bands specified by the system requirements. The fraction of
the wavelength is an important metric for determining antenna efficiency since
this antenna will be multi-band; the middle band will always have the optimal
antenna length and efficiency whereas the upper and lower end of the band will
be less optimal. However, this generally should not affect antenna performance
too much according to the experience of the radio club faculty advisor.

Frequency

The required bands were 144MHz-148MHz, 222-225MHZ, and
420-450MHz at an output power of 5W. One thing to note is multi band antennas
may lose efficiency in different bands. The actual impedance of the antenna is
also an important metric as it defines what we can use for the amplifier and in a
perfect the entire system would have the same impedance. So, to cut down on
impedance, the entirety of our design was decided to be 50 ohm which is
generally an industry wide standard so everything should be easier to find and
build for at this impedance.

VSWR

The Voltage Standing Wave Ratio is a measure for antenna efficiency that
specifically gives a good idea of the ratio of power into the antenna to power
radiated. This has to do with impedance matching characteristics at a specific
frequency. More specifically it is a measure of the voltage ratios between different
sections of the system. So a difference in impedance causes a voltage difference
leading to reflection. These reflections are the main way this characteristic is
measured.

VSWR is by far the most important characteristic of an antenna because
what isn’t transmitted can be reflected and can cause damage to amplifiers and
possibly even to the SDR. This is due to reflected power heating up the final
amplifier transistor causing it to degrade and possibly break down over time. An
ideal antenna would transmute 100% energy the amplifier provides. This is of
course not reasonable. Using other handheld transmitters as references, the
VSWR should be at least less than 2 the lower the better.

Price

The price for this component was budgeted for was 30 dollars but since
one of the main goals is for it to be a low-cost DIY transceiver the lower the cost
the better. Since most isotropic ¼ wave whip antennas are extremely simple the
antenna must only meet the other characteristics. The antenna we landed on
was $19 dollars, meets all the criteria and has good reviews.

42

Group 5 Field Radio: DCV1

Final Decision
We considered 3 different choices. The Diamond HT Antenna, Nagoya

Antenna, and Baofeng Antenna. We settled on the Nagoya Antenna, and the
comparison between them can be found in the technology comparison section.
[13], [37], [63].

Figure 23. Final Antenna (“Nagoya NA-320A Triband HT Antenna 2M-1.25M-70CM
(144-220-440Mhz) Antenna SMA-Female for BTECH and BaoFeng Radios”)

A note on directional antennas:
Directional antennas allow for an increased receive and transmitter power

with a reduced antenna aperture. For this application we decided that they are
not necessary. However eventually if someone wanted to use this design for fox
hunts a directional antenna would be ideal. With this in mind the entire system
will be designed to allow for any 50 ohm antenna in the band. To accomplish this
baluns and common connectors will be used. So although we are not using a
directional antenna we are making it as easy as possible to use one.

The 900 MHz stretch goal:

The 900MHz band stretch goal would require another separate antenna;
the efficiency of a single antenna is reduced not only for the number of bands but
also for the distance between the bands. So an antenna that could handle all
bands would either be a very well-tuned multiband antenna that would be costly
or would have non ideal VSWR characteristics. Therefore, for this stretch goal
should we try and attempt it an entirely different antenna would be required.

Baluns

There is a possibility of an unbalanced impedance match. Due to this, a
balun might be employed. A balun is like a tuner for the VSWR. It allows the

43

Group 5 Field Radio: DCV1

impedance at different frequencies to be tuned; this may be necessary especially
if a wide band amplifier is used. A balun is essentially a transformer that allows
one side to work with anything because of the essentially zero impedance. The
other side will always be at 50 ohms because it is isolated.

Figure 24. Balun[4]

Connectors:

Since the two most preferred options by the radio club are the LimeSDR
Mini and the Caribou Lite Raspberry Pi hat, the antenna we will be using for the
radio will have a coaxial RF SMA that will allow the entire system to use
consistent connectors reducing cost and complexity. Since SMA is also a
handheld radio industry standard parts for it are also easier to source. The not
only goes for the Antenna but every RF coax connector in the system will be
SMA.

44

Group 5 Field Radio: DCV1

Figure 25. SMA Connector [32]

SMA connectors are generally rated for 500 cycles so for this case it may
be a good idea to use an SMA-to-SMA adaptor to add to life of connector so the
adapter wears out not the top connector these adapters will most likely be what is
connected to the case of the transceiver as well since the internal components
will use SMA too. Because of this we have also picked out adapters to act as
something that can wear down instead of the built in connector. This should not
have any effect on VSWR or impedance matching.

Figure 26. SMA Adapter

45

Group 5 Field Radio: DCV1

2.2.10 Amplifier
The requirements for output power are 5 Watts/ 37dBm/ 7dBW possibly

with an adjustable gain. The Output of the Lime Mini is at around 15 mW
depending on the band. Because of this we not only need a power amplifier
stage, but also a preamp stage. The amplifier stage should be able to handle the
required bands of 144MHz-148MHz, 222-225MHZ, and 420-450MHz at the
desired power outputs. Amplifiers are tricky, most operate on and are tuned for
only a small bandwidth.

In a perfect world the transceiver would be able to send and receive on all
frequency bands within the SDRs capabilities at the 5W output without changing
anything. However the main limiting component for this will always be the
amplifier. Since this is such an important part of the RF front end multiple
solutions and implementation methods were considered.

Heat dissipation

Regardless of VSWR and impedance matching the amplifier will have
internal uncontrollable resistances which will always generate heat. To extend the
life of the amplifier good heat dissipation is a requirement. This allows for better
performance and prevents damage. For this reason, an amplifier with a good
heat sync will be ideal.

Impedance

As with the antenna the impedance system wide was chosen to be 50
ohm. This impedance will also be matched as best as possible to the SDR and
the antenna. Since these amplifiers are untested and may use high tolerance
components an impedance mismatch great enough may require a balun
transformer to prevent significant reflections. However this not only adds to cost
and complexity it also reduces Radiated power due to additional resistive losses
in the balun.

Modularity

The amplifier should be a relatively straight forward modular component to
replace since the SDR has such a wide band it would be a shame not to plan for
parts being swapped to allow the use of the entire SDR. Because of this the
amplifier should be accessible in the case and should use SMA connectors to
allow for easy replacement. This is more a physical design aspect so it will be
discussed further in its respective section we just need to note the size cannot
make this impossible.

Price

This is obviously one of the most important amplifier characteristics
influencing the choice between working options. The amplifier will also be a
costly part no matter what the choice so minimizing cost is the goal.

46

Group 5 Field Radio: DCV1

The 900 MHz stretch goal

Currently the best option is multiple switched tuned amplifiers. This means
the 900MHz stretch goal would require an extra amplifier and extra time tuning
and testing. Because of this the current plan is to get the main bands working
then if time allows purchasing and testing the 900MHz transmission amplifier.
However this would not affect the ability to receive 900MHz that would only need
an antenna which the radio club already has.

Wide Band Amplifiers

Figure 27. Wide Band Tuned [46]

Wide band untuned with switch filters

The need for tuning is clear, without tuning the amplifier would amplify
noise outside of the band and possibly become non linear due to out of band
noise power. The impedance of an untuned amplifier is also problematic since it
is nearly impossible to ensure perfectly flat impedance and gain over a wide
band. One possible option was a wide band untuned (non selective) amplifier
could be used with multiple filters for each of the bands. This may be an effective
yet inexpensive option; the main draw would be the necessity of a wideband high
adjustable gain preamp. Because of the differing insertion losses of each
component including the amplifier switches and filters the preamp gain would
have to be set for each band. This would not be characterizable without testing
since more of the cheap modules within our budget do not provide tests for
things like this. Because of this added complexity, uncertainty and testing we
decided against this option. [17]

Multiband tuned

47

Group 5 Field Radio: DCV1

Another option would be a wideband amplifier tuned to add our specified
bands. This would be incredibly hard to do without switching and would be cost
prohibitive. One option was found which is out of budget but more concerningly
undocumented. Spending 20 bucks on a single band amplifier is one thing
because of the low cost ease of testing and relative simplicity of the design.
Spending 130 on a similarly undocumented untested and unknown amplifer is
out of the question. Performance is not guaranteed and this could put the project
significantly over budget should it not work out. For this reason we decided
against this option.

Figure 28. Multiband Tuned [47]

Smart tuning

This may be beyond the scope of the project but because of the sheer
versatility of the SDR a fully software configured self-tuning routine is possible. It
is possible to run through several steps and fully characterize the S domain
characteristics of the amplifier and antenna combinations from here the
harmonics and reflections can be predicted by something like a Kalman filter this
would allow the performance of the transceiver to rival that of precision tuned
single frequency transmitters.

The main drawback of this method is the necessity of an RF attenuator
which was decided against in the RX conditioning section. Another drawback is
the sheer complexity of something like this. This could be considered research
paper level stuff because of this we decided against it for now, but this may be a
stretch goal down the line. [12] [15]

Multiple Switched Tuned Amplifiers:

48

Group 5 Field Radio: DCV1

This is the old way of doing things. It is tried and true and will work. The
main drawbacks are size, cost, and versatility. Another important drawback would
be the necessity of control circuitry for the amplifiers since we still need switches.
We have come to the conclusion that the benefits of this method significantly
outweigh the drawbacks. This method’s benefits are smaller power loss,
selectivity, and reduced harmonic distortion.

Tuned amplifiers are basically filters and amplifiers in one. Harmonics get
reduced because only a narrow band gets amplified. They are selective, meaning
noise outside of your band is not going to be amplified; This helps with SWR,
effective power, and reflections. This is important because the output of the lime
SDR may have harmonics at high frequency due to the stair step characteristics
of synthesized rf although additional filtering may be necessary.

This is obviously the ideal method from an electrical specification’s
standpoint. So we decided for each of the required bands a single dedicated
amplifier would be selected, hopefully giving the best output characteristics. This
also allows for cost optimization should one amplifier not meet standards.[46],
[45].

0.1W (20dBm)
Working Voltage: 5-7.2V (DC)

Buying vs Building our own Amp

There is of course the option of building our own. Building an RF amplifier
at the frequencies relatively straight forward, even at 900 MHz the wavelength is
about 33 cm or 13 inches. So in order to prevent large amounts of interference
the max length of a trace should be 1/17 of the wavelength or about .75 inches
which should be doable if right after the amplification the signal gets passed
through a coax connector. Generally there are 2 ways to go about this, firstly
MICs (monolithic ICs). Most of these are going to be designed to be in the 5G
/phone range so finding one that works in the necessary bands will be a
challenge. This option is also expensive. The main upside is the ease of
implementation and low noise. Good examples of possible components are

Figure 30. MIC Amplifiers

This of course is not the only way to go about building an amplifier; power
transistors still work comparatively well; these are what the above modules are

49

Group 5 Field Radio: DCV1

made with the main issue we could come across is noise; the TAT7472A1F has a
3dB noise figure. For these designs the noise figure would be completely based
on the circuit design. As a group we agree that we don't have the rf experience
necessary to know all the tips and tricks when designing so building is off the
table. However, using a single amplifier puts a lot of trust in an unknown cheap
amplifier. [33] [34] [35]

Power Supply

The chosen amplifiers need a voltage of 7.2 voltage to output the required
5W. One important thing to consider is power supply noise. This needs to be
carefully prevented from the noise of the switch and the internal noise should be
kept outside of the bands and the desired IF frequencies and their harmonics.
This will be accounted for in the power section.

Preamp

Figure 31. WideBand Controllable Gain LNA [2]
Another thing to consider is intermediate amplification. Because the output

of the sdr is so low (about 15 mW) it may not be able to meet the minimum input
power for the 5-watt power amplifier. This is also where variable gain could be
applied since the SDR does not allow for it. However since variable gain was a
stretch goal performance will be the first priority. [61], [24].

2.2.11 Rx Conditioning
The plan is to make the system Half duplex. Although full duplex is

possible with the chosen sdr that requires bulky filters for each band adding
complexity and size. So, since for our application duplex is not necessary we
decided against it. Half duplex will still be a challenge. The output power of the
system is 5 Watt which means the voltages could be up to 20 volt peak or 40 volt
PkPk. For obvious reasons these voltages could damage the front end of the sdr
if proper isolation is not set up.

Because of the importance and complexity, multiple RX protection circuits
were considered including Rf limiters, circulators, Duplexers, and T/R Switches.
Another thing to consider is the input signal. DSP can do alot but some things are
always easy and more effective to implement in hardware for this multiple RX

50

Group 5 Field Radio: DCV1

signal conditioning options. These options were Squelch, noise filtering, and
preamps.[17], [15], [12].

RF limiter

Figure 32. RF Limiter
This component would basically be a variable attenuator limiting the RF

passed through to the SDR. The main benefits would be less control circuitry and
software control needed to protect the SDR. This is because these are automatic
so protection is guaranteed and there is no way to mess this up with
misconfiguration. Another key benefit is failure: generally these components fail
as an open circuit whereas a digitally controlled rf switch could fail closed or in an
unknown state. Another great benefit is low insertion loss. The highest insertion
loss I could find was only 0.1 dB: This will sound better when put into the context
of the other options.

There is another benefit from a growth standpoint. Because one of the
main goals for this project is future open source growth and building the most
versatile platform possible, this option may be ideal for it. It would allow for the
SDR to receive an attenuated version of what it is sending; this would allow for
precise software tuning as discussed in the amplifier section.

There is one major function drawback to this option and that is a non flat
response. Meaning at certain frequencies in the Limiters band there may be
more or less power throughput. This would have to be accounted for potentially
lowering the power throughput just to protect the SDR. Another possible issue
from this is volume. At different frequencies the SDR may just be completely
silent whereas at other bands the audio output could be dangerously loud. This
would require a pre configured software squelch to just even out the non flat
response.

All in all, this sounds like the perfect solution from a purely functional point
of view. Which to be fair it is, but its drawbacks significantly outweigh the
benefits. The main drawback is price: The cheapest Pin diode I could find was 30
dollars which depending on the design our limiter may need 2 diodes. Another
drawback is heat; rather than completely block the power, the RF limiter acts as a
variable resistor and dissipates a significant amount of power. This power would
have been transmitted. Related to the heat issue, another drawback is size. The
above picture is 4in long and 300 dollars.

Because of the drawbacks this method was ultimately decided to be a
backup at best.

51

Group 5 Field Radio: DCV1

T/R Switch

One possible solution depending on the sdr Tx/Rx may be a RF switch.
This would disconnect the receiver when transmitting and the transmitter when
receiving. This has a higher insertion loss then an RF limiter but is the cheapest
option. One main drawback is the necessity of control signals from the PI. But
because these are Cheap Simple and offer a significant amount of control over
transmission type we decide these were the best options. Plus the size is
significantly better as it is just the size of a small IC.

For digital communications there are generally 2 options for RF switches.
The first being RFE MIPI and the second being protocol-less direct digital.
Because of the required speed and the lack of hardware support for RF MIPI on
the PI Bit banging that protocol would be a significant waste of processing power.
Because of his protocol, GPIO is the only option.

For RF switches there are also 3 isolation modes. Absorptive, Reflective,
and Hybrid. The Absorptive provides a 50 ohm impedance path to ground for the
connections that are switched off. This mode would not be ideal because we
would lose a lot of transmitting power in the current configuration. The next mode
would be reflective: this mode basically turns the switch off modes to an open
circuit which would be dangerous if the power had nowhere to go but since we
need the power to radiate through the antenna then this is the configuration we
need. Lastly there is hybrid which turns everything reflective but also has the
option to turn the antenna connection to an absorptive load preventing amp
damage when used. Although this mode is nice it's not necessary. This is by far
the best option.

Circulator

Figure 33. Circulator
This is probably the worst option from a cost and size standpoint but it was

included specifically because of the additional future potential. A circulator is a 3
port device using 2 ferromagnetic elements. Basically it allows for direct
cancellation on one port due to phase mismatch and output on the other. RX
would not receive the TX signal at all. This would have issues with insertion loss

52

Group 5 Field Radio: DCV1

and possibly noise but not a significant amount more than any other options.
Another issue would be Size and frequency selectivity. This option main would
need 1 for each band. This obviously affects the size with each being roughly an
inch square. And at around 30 dollars each for our power requirements it is just
not feasible.

The main reason for going with this would be for the possibility of software
defining duplexing. This is a moderately new method that uses a SDR to achieve
nearly perfect duplex without large filters. Basically this method has the SDR
produce a symmetrical out of phase signal that can self cancel if summed with
itself. This is the holy grail for handheld radios on feature alone but for now the
complexity, cost and size are too much for this project so we decided against it.

Squelch

A common feature in many radios is squelch. This feature allows the radio
to suppress the received demodulated audio, basically completely cutting off
weak signals. A possible way to implement this in hardware would be a variable
attenuator. This may be necessary if the received power of something is higher
than the receiver can demodulate. Or in other words the receiver is clipping.
Another use for this feature is noise deadening but this feature should generally
be implemented in software with other noise gates to allow for better audio
options.

Filtering

The RX input may have multiple different noise sources, for example a
clock in the circuit has a specific harmonic or the LNA is particularly sensitive to
the frequencies generated by a car starter. Although the SDR itself will be a
shield there are multiple place noises like this could be picked up so after testing
a filter may need to be added to the second iteration of the pcb.

Possible LNA

The SDR has a built-in LNA but because the switch that was chosen has
an insertion loss of .6-1dB, an additional low noise preamp may be necessary.
Any additional conditioning/filtering will add loss to the system. So based on the
final performance given the switch in the loop the decision for adding a second
LNA to the sdr input will be made, if necessary, after testing. This would not be
ideal because of the added noise, complexity, size, and cost.

2.2.12 Battery/Battery Charger
The preferred battery lifetime for the device is five hours and the battery

would have to power the Raspberry Pi, the LimeSDR Mini, and any peripherals
that are added to the system. For the system, the most versatile battery type we
could use would be the lithium ion battery. Lithium Ion based batteries come in
many form factors such as a complete portable power station solution or a
combination of lithium batteries and a battery charging module. The battery

53

Group 5 Field Radio: DCV1

charging module would charge the batteries using a 5V input source as well as
provide information on the voltage level of the batteries which we could then use
to calculate the battery life percentage.

We believe lithium-ion batteries are better for our system due to the fact
that they possess a higher energy density, voltage capacity, and lower
self-discharge rate than any other rechargeable chemical-composition of
batteries, meaning this battery can be recharged more on average without
burning out and are significantly more stable than alternate compositions. The
only reason we would want to choose a lead acid based battery or any other type
of battery would be purely for cost, as lithium ion batteries generally cost slightly
more than competition.

For the purposes of our project, we have a number of factors to consider
when choosing how to implement these lithium batteries. We require a big
enough power bank to be able to power this radio for up to 5 hours, constantly
powering multiple 5V outputs such as the Raspberry Pi Zero 2W or LimeSDR
mini (optionally 3.3V for the LimeSDR mini, depending on which mode we intend
to use) for both low power modes (when device is not being actively used) and
active modes. These batteries must also power the TX amplifiers and RF
switches, which are also currently rated for 7.2V and 5V respectively, obviously
requiring to be able to handle the current load produced by all of these
components as well.

All in all, the battery system must be able to sustain both 7.2V and three
5V connections for over 5 hours with varying current loads. To accomplish this
task, we opted to select two Panasonic’s NCR18650B configured in parallel with
each other, as connecting in parallel allows us to increase the overall current
capacity and amp-hour capacity without increasing the voltage going into the
system.

Figure 34. Batteries

This product is available both on amazon and orbtronic for immediate
purchase. This power bank of two batteries in series will be sufficient for our watt
hour needs and the batteries themselves possess built-in qualities such as PCB
protection for overvoltage and overcurrent protection. This battery has the
drawback that it cannot be allowed to discharge completely, but we can prevent
this problem within our system by turning off the system before the battery is
completely discharged. While the battery also requires consistent use to be of

54

Group 5 Field Radio: DCV1

worth, we hope that this project will not encounter long periods of inactivity (such
as multiple months of inactivity) or will require new batteries. [57]

For the casing of the batteries, these particular panisonics are a very
standard size of 18650 which is very slightly larger than AA battery standards,
but have plenty of battery holders available on websites such as digikey or
mouser for this purpose. We do not have high requirements for this battery
holder, it simply must have the standardized metal prong V+ and V- connections
for each battery to hold them in series and be secure around the base of the
battery holder.

Most battery holders are very cheap (generally under $10) and the amount
of CADding work to design our own far outweighs the price of simply choosing an
already created product for this specific purpose. As both of the batteries will
directly connect to a power regulation PCB anyway, the holder needs no
capabilities to regulate power itself, just simply hold the source of it. As for the
accessibility of the batteries, we plan to attach this battery holder to the back of
the radio, which means if we make the back detachable, then anything sitting on
it will also become detachable, thus making the batteries easily accessible and
changeable for the consumer.

The battery case we chose has part number “BK-18650-PC4” and is
produced by MPD (Memory Protection Devices). It was chosen for its 2 cell size
and through-hole PCB capabilities, which lines up with our needs perfectly for the
purpose of the battery holder. This case is shown below.

Figure 35. Battery Case [5]

This product is massively in stock on digikey and can be found at the link
provided in the references section.

2.2.13 Touchscreen
One of the required features of the Amateur Radio Club’s SDR Radio

project is the ability to display information and control features within the
software. To do this we will be implementing a touchscreen display that will be
connected to the Raspberry Pi Zero. There are many different kinds of
touchscreens available for us to use in a wide variety of formats and features.

55

Group 5 Field Radio: DCV1

Ideally the touch screen should be water-proof or at the very least,
water-resistant since the SDR Radio’s primary application environment is outdoor
uses. Resistive touch screens usually perform better than capacitive touch
screens due to their double layer screen technology that is used to detect user
input; but for prototyping purposes a capacitive touch screen would work just as
well as since they utilize a glass screen which is resistant to small amounts of
water. We may also develop a waterproofing feature for the entire device which
will also aid in the performance of the touch screen module.

Within our price range for the touch screen module, our selection is limited
to models that are 3.5 inches large with a fairly low screen resolution. When
selecting our touch screen module, one aspect to note is the connection type
from the touch screen to the Raspberry Pi Zero. Many touch screen module
options that are compatible with the Raspberry Pi can only be connected to the
system via soldering the touch screen module directly to the 40-pin GPIO on the
Raspberry PI. Once this is done, the Raspberry Pi’s GPIO cannot be used for
anything else other than operating the touch screen module so this would only be
a viable option if in the event we are certain that we will not be needing the
GPIO.

Figure 36. Touch Screen [28]

One of the best options available within our price range is the JniTyOpt 3.5
inch Touchscreen Display available on Amazon.com for $28.99. This touch
screen comes as part of a plug-and-play package which includes: the touch
screen module, an HDMI cable, HDMI to micro HDMI adapter, micro USB cable,
copper mounting screws, and a stylus. Onboard the touch screen PCB are
several useful I/O features including: a 3.5mm stereo audio output, a power

56

Group 5 Field Radio: DCV1

button in order to turn off the backlight within the display, and two buttons that act
as backlight/volume shortcut controls.

Compared to the iUniker Raspberry Pi Touchscreen, a module whose
design is common for Raspberry Pi Zero compatible 3.5 inch touch screens at
the same price range, the technical specifications are relatively the same. The
main difference between the JniTyOpt 3.5 inch Touchscreen Display and others
on the market is that instead of using HDMI for video and audio connection, most
others rely on using the full GPIO of the Raspberry Pi without the inclusion of the
3.5mm audio output.

2.2.14 Speaker
The kind of speaker that we decide to go with depends on the device we

end up choosing. This is because different kinds of devices will have different
audio output capabilities which will affect how we decide to output audio. These
could include (in order of difficulty): rerouting GPIO headers, outputting audio
over bluetooth, splitting an HDMI signal, connecting to a USB port, or connecting
to a 3.5mm audio jack. Because there are so many different options, we have
looked into one option for each variant.

Figure 37. GPIO speaker adapter [42]

Rerouting GPIO Headers

The Pimoroni Speaker pHAT for Raspberry Pi Zero retails at $13 and is
designed specifically for the Raspberry Pi Zero. If chosen would be an extremely
easy to implement solution for audio output. The main problems with this device
are that it has been discontinued, so finding one for cheap would be difficult, and
it uses all 40-pins of the Raspberry Pi Zero. This would make it more difficult to
attach other devices which would also use the GPIO pins. Therefore this device,
and any other device which uses a lot of GPIO pins, is a non-viable option.

57

Group 5 Field Radio: DCV1

Figure 38. Pimoroni [14]

Audio over Bluetooth

This bluetooth audio speaker kit from Amazon is being sold at $16. A
bluetooth speaker would make it so that we are not hampered by as many wired
connections from the Raspberry Pi Zero to the audio output. Unfortunately,
bluetooth speakers would use up a lot more power, while also requiring their own
power source. Thus this kit, and any other bluetooth speakers, are non-viable
options.

Figure 40. HDMI options [22], [36]

HDMI Signal Splitting

The Raspberry Pi Zero comes with a Mini HDMI port equipped to output
both video and audio. If we wanted to make use of that port, we could use a mini
HDMI to HDMI adapter, then plug an HDMI cable into that adapter and an HDMI
splitter, and finally output our audio through a device connected to the 3.5mm
headphone jack. The major downsides to this solution include the extremely high

58

Group 5 Field Radio: DCV1

cost compared to the other solutions, as we would be spending $20 on just the
adapter and splitter before even factoring in the cost of the speaker. Additionally,
this would take up a lot of space for a relatively unimportant feature.

The major positive to this solution is that it would likely be easy to
implement on the software end (assuming sending a blank video signal is easy).
The other positive is that it still allows us the option of outputting video through
the mini HDMI port. If this solution were only to be used for the speaker, I would
consider it completely non-viable. If however on the display end of things we
decided to go with a display that requires an HDMI signal, this may be worth
considering.

Figure 42. USB Options [25], [31]

Connecting to a USB Port

Using a USB-based device as a speaker would be useful for multiple
reasons. Unlike the mini-HDMI port, which requires both an adapter and a
splitter, it is very easy to find a cheap Micro USB to USB A Hub for as little as $7.
Then on top of that, USB speakers are very common devices as they are used
outside of development, so there are a lot of options for what to get. Finally, USB
devices are usually extremely easy to find the appropriate software for in terms of
drivers, and the extra USB ports from the HUB might be useful for other external
devices. Of the options listed so far, I would choose a USB Hub + USB Speaker
by far as it comes in at around $20, would have a small footprint on size if we
chose a good combination, and would be very easy to handle on the software
end.

59

Group 5 Field Radio: DCV1

Figure 44. Speakers [50][11]

Connecting to a 3.5mm Audio Jack

The easiest, cheapest, and simplest option would be to use a speaker that
connects to a 3.5mm audio port. This first example comes in at only $8. The
biggest downside to this is that the Raspberry Pi Zero 2 W does NOT have an
on-board 3.5mm audio jack, so this option would only be available if a different
embedded system were chosen. Fortunately, the touchscreen that we have
selected DOES come with a 3.5mm audio jack that supports audio out, so we will
be able to select a 3.5mm speaker. We have chosen the Degraw speaker as the
Tangxi shipping time was much longer than the Degraw speaker.

2.2.15 Microphone
The kind of microphone that we decide to go with depends on the device

we end up choosing. This is because different kinds of devices will have different
audio input capabilities which will affect how we decide to input audio. These
could include (in order of difficulty) rerouting GPIO headers, connecting to a USB
port, or connecting to a 3.5mm audio jack. We have considered an option for
each variant

Figure 45. GPIO Microphone [3]

Rerouting GPIO Headers

This microphone retails at $7 and is designed specifically for the
Raspberry Pi Zero. If chosen would be an extremely easy to implement solution
for audio output. The main problem with this device is the fact that it uses GPIO
pins, as many of the devices we may end up wanting to implement may take up
all 40 GPIO pins. If the GPIO pins are not in high demand, this would be an
excellent solution as it is extremely small, cheap, easy to find, and easy to
implement.

60

Group 5 Field Radio: DCV1

Figure 46. USB Microphone [29]

Connecting to a USB Port

Using a USB-based device as a microphone would be useful for multiple
reasons. USB Mics are very common devices as they are used outside of
development, so there are a lot of options for what to get. Additionally, they are
extremely cheap, as the microphones shown above are sold for $4.50 each.
Finally, USB devices are usually extremely easy to find the appropriate software
for in terms of drivers. Unfortunately, as the Raspberry Pi Zero 2 W is very limited
in terms of USB ports, we would require a USB Hub to effectively make use of
this. Additionally, for this specific USB microphone it would be difficult to get
clean audio from the user as we would have to have the device exposed. Overall,
this option is worth considering, especially if due to a decision in terms of a
different part we are already forced to use USB ports.

Figure 47. 3.5mm Microphone [9]

Connecting to a 3.5mm Audio Jack

Similar to the USB port based microphones, this 3.5mm Audio Jack based
microphone is very cheap, simple to use, and is low cost at around $11.
Unfortunately, the Raspberry Pi Zero 2 W does NOT have an on-board 3.5mm
audio input jack, so this option would only be available if a different embedded
system were chosen.

61

Group 5 Field Radio: DCV1

3. Design Constraints and Standards (10-15
pages)

3.1 Constraints
Constraints are determined by the team to be the most significant

logistical challenges to the project’s success but also serves as a guideline
throughout the research, design, prototyping, and development phases of the
project. The factors outlining the constraint categories were first determined by
the Senior Design administration and then refined to be applicable to our project
with the Amateur Radio Club’s end goals in mind as well as our project
requirement specifications, availability of components, and other circumstances.
By creating these constraints we are able to refer back whenever a roadblock is
met to decide the best course of action.

The key constraints that we will focus on during the duration of our project
are design, economic, time, manufacturing, sustainability, ethical, health, safety,
environmental, societal, and political. Some constraints work hand in hand and
therefore can be viewed as categorically similar such as the health and safety
constraints or societal and political constraints.

Design Constraints

Design constraints are factors that either negatively affect our project
design or provide us a challenge, both of which will add to our knowledge and
skills within the field of radio technology and computer/electrical engineering.
Many of the constraints presented throughout the design section affect which
components we will ultimately choose as well as provide us a basis as to what
the physical characteristics of the device will be.

The physical design constraints of our project comes from the very nature
of our device. Since the device is meant to be portable, it cannot be too
cumbersome to carry both in the hand as well as in a carrying case such as a
backpack. It also should not be excessively larger or heavier than current
portable software defined radios. In addition to the size parameters of the
device, many applications of portable software defined radios are held in an
outdoor environment and therefore the product needs to be durable to a certain
degree. This should include: remains undamaged after any minor fall, screen is
resistant to mild water droplets, water resistance to rain, and stability of
mechanical components after extended use.

The particular components we choose are necessary but ultimately
arbitrary since there are many different combinations of parts we could use in
order to accomplish our task. Nevertheless, many of the components we need to
create the device generate a fair amount of heat energy since they are
performing rigorous tasks on small motherboards and have to be placed near
another component that is also generating heat. Notably these are the processor

62

Group 5 Field Radio: DCV1

of the embedded system, the RF amplifier/switches, as well as the processor and
the screen of the touch screen.

Normally, we would use heatsinks on any microprocessor that is
generating heat, but in doing so we will run into a number of problems. If we put
a heatsink on all the processors the size of the device will increase drastically
and the placement of the heatsinks might interfere with each other. If we simply
get smaller heat sinks, then the amount of heat we are dissipating will not justify
the additional cost. Even implementing a heatsink on the RF component proves
difficult since it is a relatively high wattage device in an extremely small package.
The heatsinks for this type of component are usually made from larger amounts
of metal leading to increased size and weight; oftentimes up to five times the
dimensions than the original component. The only way we can overcome this
challenge is to selectively place our heatsinks as well as providing any
mechanical advantage we can, for example, the addition of non-obstructing vents
to the casing of the device.

Another key aspect of our project is that it is to be open source. Due to
this, we are aiming to keep the use of more obscure or outdated programming
languages at a minimum so that we reach a wide target audience of entry level
programmers and amateur radio enthusiasts. For example, many students and
engineering professionals know the C language well, but someone who is just
entering the field of amateur radio will most likely start with Python or a similar
object oriented programming language and they will likely be deterred if they
have to learn a complicated language to upgrade their device.

Economic and Time Constraints

One of the main constraints during Senior Design 1 and 2 determined by
our team is managing our time in accordance with the duration of the spring and
summer semesters. Everyone in this team works at least twenty hours a week,
so efficient usage of time is a major obstacle to the success of the project.
Instead of having sixteen weeks for research and preparations in a fall semester
and fourteen weeks of design and corrections in the spring with almost a month
of break between terms, we have fourteen weeks during the spring semester for
the first half of the project and roughly twelve weeks in the summer for the
second half with less time separating the two semesters. To overcome this we
are going to have to purchase our components and start testing them earlier than
we normally would as well as have frequent meetings with ourselves and our
project advisors/consumers to ensure there will be no unexpected challenges.

Although funded by the Amateur Radio Club, the total cost of components
should not exceed five hundred dollars. This will include our prototyping and
development costs as well as shipping. Outside of project funding, in order to
develop and test the project some team members may be required to obtain an
Amateur Radio License. Costs of the license examination range between fifteen
and fifty dollars depending on what level of certification needs to be achieved. To
alleviate the cost of components during our prototyping phase, we will use the
facilities available to engineering students at the University of Central Florida as

63

Group 5 Field Radio: DCV1

well as the lab spaces of the Amateur Radio Club. This will give us access to a
wide set of high-quality tools and through hole components necessary when
completing the breadboard development phase.

Manufacturing and Sustainability Constraints

The second most important constraint is component availability. The
components must be widely available and mostly unaffected by the current
semiconductor shortage. For this reason popular parts should be used. In
addition to this, many major PCB manufacturing companies receive an influx of
orders during the end of each semester due to the amount of students from
colleges and universities around the world ordering parts for their senior design
projects as well as all the orders they would normally accept from other
companies and manufacturers. This leads to a shortage of components that
already adds to the global microprocessor shortage and delay in order
completion.

When taking into account sustainability, we look to existing devices
available on the market. Many standard handheld radios and portable software
defined radio solutions rely on disposable batteries and thus are not sustainable
for two reasons: the cost of constantly purchasing replacement batteries and the
waste generated by the disposal of such batteries. Therefore we have decided
to implement the rechargeable battery feature found in higher end portable radio
models. By choosing the best component within our price range within each
category, we ensure that the device will have a long life without needing to be
repaired constantly.

Ethical, Health and Safety Constraints

In regard to health and safety constraints, most of our challenges lie in our
power delivery system. Due to the use of 18650 Lithium Ion Batteries, we must
ensure the safety of the user by implementing measures that protect the batteries
from any of the following scenarios: overvoltage, undervoltage, short-circuit,
overheating, being submerged in water, and excessive humidity. If these
conditions do occur the batteries are at risk of explosion which can result in
extreme physical injury and damage to the surrounding area. The flame
produced by the battery is a special kind of electrical fire that can be extremely
dangerous without the aid of a class D fire extinguisher. (Brooks)

Ethically, our constraints are mainly due to radio and software regulatory
practices and responsibility falls on both us as the developers and the end user
of the device. Users are expected to use our device within compliance of FCC
regulations. Regardless of this, if in the event highly restricted wavelengths are
not blocked by the radio receiver, we will be implementing limitations to ensure a
user cannot accidentally enter confidential radio space. Designing the software
component of the software defined radio will also require the usage of various
third-party extensions and programming language add-ons. We will need to
ensure that we are following best copyright practices as well as obtaining all
necessary licensure to use any data, figures, and components.

64

Group 5 Field Radio: DCV1

Environmental, Societal, and Political Constraints

Since our device is designed for indoor and outdoor usage, the
environment does not provide many constraints while designing our project.
Radios are robust devices capable of being used in the most remote areas
imaginable and during the harshest natural disasters. Although the environment
itself cannot provide any major challenges we can test for within the allotted time
frame of the project, pollution creates an interesting issue.

One major constraint to our project is the disposal of Lithium Ion batteries.
They are considered hazardous waste and therefore must be brought to a
certified electronics recycler instead of being disposed of in residential or
commercial trash and recycling bins. Lithium based batteries themselves contain
less toxic components than other traditional battery types but lithium mining
practices contribute negatively to the environment in forms of pollution,
deforestation, and carbon dioxide emissions. To alleviate this we plan to use
highly reputable 18650 Lithium Ion batteries that are long lasting, durable, have a
high number of recharges, and are efficient so that they do not need to be
replaced as often as other forms of battery technologies. [60], (Brooks).

Many of our societal and political constraints arise from the laws and
regulations of engineering and radio technology. Each state has their own laws
governing the ownership and usage of radio equipment and broadcasting
therefore we as developers must ensure that we create a device that is within
these legal limitations.

3.2 Related Standards
Standards are the guidelines that govern any reputable device and are

implemented by companies, governments, and non-profit organizations in order
to keep technology safe and accessible for all that use it. In addition, standards
can describe common hardware features and communication protocols shared
between devices. In the following sections we will describe the standards that we
have imposed upon ourselves so that we can give the Amateur Radio Club a
desirable finished product as well as standards set by our professors and
organizations that provide us a challenge and the credentials to pass this course.

3.2.1 FCC Standards

Must comply with transmitting noise and power standard set by FCC CFR
Title 47:part 97
Including but not limited to:

● Angle modulation must have a modulation index less than 1.
● No non phone emissions shall exceed the bandwidth on phone quality

emissions using the same modulation scheme
● The total bandwidth of side band emissions shall not exceed A3E

emission quality which is full quality dsb amplitude modulation of voice in

65

Group 5 Field Radio: DCV1

low frequencies with spurious side band amplitude at a maximum of what
is defined in FCC CFR title 47 part 95.635 unwanted radiation

● The baud rate of radio teletype emissions must not exceed that which is
defined in part 97 for each band

● The meaning or intention of any transmission not use for direct control of a
satellite as defined in part 97 must not be obscured

● All components must meet EMI standard defined in fcc part 97
● The last constraint we considered is the requirement of amateur licenses

by the FCC to transmit on amateur bands one of the group mates already
has a license but because of this transmission testing must be done with a
liscensed amatuer present. So other teammates may need to get a license

3.2.2 I/O Standards

USB Standards

The project will utilize USB ports in a number of applications ranging from
connecting a usb hub, touchscreen, and the LimeSDR to the embedded system.
The Raspberry Pi Zero has onboard micro-USB input ports capable of
transmitting data; one of which is solely used for the input power. Micro-USB is
of the second generation of USB technology and has a maximum transfer rate of
480 Mbps. For second generation USB devices, three speed levels are used to
categorize the device and are as follows: Low-speed, Full-speed, and
High-Speed.

Low-speed and Full-speed devices like our microphone use 0-0.3 V to
recognize a low logic level and 2.8-3.6 V to recognize a high logic level. These
signals are transmitted via a data wire pair in half-duplex mode. High-speed
devices such as the touch screen and radio receiver use the same data lines but
with low level logic signals ranging from -10 to 10 mV and high logic signals
ranging from 360 0 440 mV. Ground is terminated at either 45Ω or 90Ω. Since
we are using a USB bus to host a number of components, we are going to have
to try to allocate resources to the most taxing processes (the touch screen and
radio receiver) and disable minor components when they are not in use.

Alongside the maximum data transfer rate, second generation USB
technology also has a potential bottleneck due to its power standards.
Compared to current third generation USB technology which boasts a maximum
power transfer of 240 W (48V/5A); USB 2.0 has two primary modes it can vary
between. Low power devices have a maximum power of 0.5 W (5V/100mA) and
high power devices have a maximum power of 2.5 W (5V/500mA). Since we are
using a USB bus, the voltage of the bus supply has the potential to drop to 4.4 V.

Bluetooth Standards

One of our optional requirements as described by the Amateur Radio Club
was to have Bluetooth compatibility. Standard bluetooth communication
operates at a range of 2.40 and 2.4835 GHz, and has band protection at the
2MHz and 3.5MHz frequencies. While transmitting data, bluetooth uses

66

Group 5 Field Radio: DCV1

frequency-hopping to send packets of data to one of almost 80 designated
channels. The standard bit rate of this transmission is 1Mbit/sec but newer
technology has increased this limitation to 3 Mbit/sec. Several protocols have
been adopted to support the bluetooth interface including Point-to-Point,
TCP/IP/UDP, and Wireless Application Protocol.

Unrestricted access to the Raspberry Pi Zero over bluetooth could result
in unintended behavior from the device due to outside interference. Due to this,
until proper bluetooth support is implemented we will likely simply be disabling
bluetooth functionality on the device to prevent any unforeseen circumstances
arising from bad actors attempting to access the device and making it run
arbitrary code.

Video Standards

The Raspberry Pi Zero w2 has an onboard mini High Definition Media
Interface (HDMI) port in compliance to HDMI standards capable of transmitting
video/audio data to the touch screen of the device. As such, it is in compliance
with the EIA/CEA-861 standard which sets requirements and regulations upon
electrical/peripheral devices including cables for the use of uncompressed digital
interfaces. [8]

Since the Raspberry Pi Zero is a lightweight embedded system its
graphics capabilities are limited to 1080p and we are able to use a standard
Category 1 HDMI cable and HDMI to Mini HDMI adapter to display video instead
of a more expensive Category 2 HDMI cable. With this we are able to display
video at a quality of 1080p60Hz, although the Raspberry Pi is limited to 30
frames per second (fps). This is much more than enough for our intended use
case, and we may end up outputting video at a lower resolution to save on
processing power. This is because higher screen resolutions have a less
pronounced effect on small screens which are being seen up-close, which is
exactly what our radio would be.

Audio Standards

The speaker system of the device uses a 3.5mm TRS audio input cable
that connects to the touch screen. TRS is an acronym for Tip, Ring, Sleeve; and
refers to the three sections on the tip of the cable that provide a connection to the
left audio source, right audio source, and the ground. Via the TRS standard, we
have the option of playing back audio in either the mono or stereo format.

We are likely going to use a USB microphone for our input data and as
such we can expect the component to follow either one or all of the current USB
audio standards. UAC 1.0 devices are those which are multi-platform
compatible. UAC 2.0 devices encompass High and Full speed USB devices
which are used for applications that require high sample rates such as audio
functions. UAC 3.0 devices burst data in order to constantly reside in a power
saving mode and will shut down when not in use. Three synchronization modes

67

Group 5 Field Radio: DCV1

are also available standard to USB technology and are asynchronous,
synchronous, and adaptive.

According to UL 1492, which outlines audio/video devices in accordance
with NFPA 70, our device fits the requirements of being a device that reproduces
audio including radio products, radio receivers, and amplifiers. Since our
product’s target audience is amateur radio enthusiasts the lowest probable age
of our consumer would be a teenager; we must also be in compliance with UL
696, the Standard for Electric Toys. The Standard for Information TEchnology
Equipment Safety (UL 60950-1) and the Standard for Audio/Video, Information
and Communication Technology Equipment (UL 62368-1)

The aforementioned UL 696 would include standards related to the
packaging of our device if it were to be mass-produced. One exception in those
standards is that it does not apply to outdoor devices. Due to one of the goals of
our devices being water-proofing, an argument could easily be made that the
device should be considered an outdoor-device, and thus it would be exempt
from UL 696.

The other 2 standards could have most of their requirements met as long
as we follow common protocol when it comes to minimizing any danger that our
device might produce. For example, we would be required to make sure that
there are no chemical hazards, heat hazards, or electric shocks being produced
by our device. Concurrence with these standards should be considered outside
of the scope of our portion of this project, as it would require a lot of testing to
justifiably say that our device is not a risk for any of these. Additionally, even if
our team went through with that repetitive testing, any further development on the
device that adds hardware components would invalidate those tests, and thus
our efforts would be wasted. Due to this we will not be spending an excessive
amount of time verifying that we are meeting these safety standards.

Power Standards

Since we are using lithium-ion batteries, we must ensure that the
manufacturer of the battery cell is reputable and follows all standards so that we
meet all health and safety requirements for our project. One of the most
important standards for lithium based batteries is the UL 1642 certification that
specifies requirements that must be met when using rechargeable lithium-ion
batteries as a power source. Based on this certification, we know if the
manufacturer is producing battery cells that pass the following tests: low
pressure, temperature cycling, heating, shock, vibration, crush, impact, abnormal
charging and short-circuiting.

The batteries that we chose to buy have this aforementioned certification.
By virtue of having this certification, we can more safely claim that our device is
able to withstand wide ranges in temperature. This is important because if even
one part of our device, such as the battery, is unable to withstand temperatures
past a certain point, then the entire device would have to be labeled as not being
able to withstand those temperatures. [57]

GPIO Communication Standards

68

Group 5 Field Radio: DCV1

Our design of the device aims to use as few GPIO pins on the Raspberry
Pi as possible so that we can make changes as we see fit while developing and
prototyping and also to maximize the modular potential of the device for the open
source community. The main components of our device that can be switched out
for a similar component without compromising the integrity of the core
functionality are the microphone and the speaker input. Additional modules
could also be added to enhance functionality such as a GPS, thermometer,
gyroscope, and much more.

Many sensors and modules use specific standards in order to
communicate to the Raspberry Pi for instance: I2C, SPI, and UART. Upon setup
of the Raspberry PI we will ensure that all applicable communication standards
are enabled and that the consumer will be able to modify the device as they see
fit. However, for the Mosfets and RF switch, directly driven GPIO will be used for
easy control. The raspberry pi standard for Digital GPIO is 3.3v at a maximum
current of 16mA. The Speed of the GPIO is then defined by the processor which
for our purpose should be fast enough for what we need.

3.2.3 SPI Communication Standards:

Serial Peripheral interface is a 4 wire duplexed synchronous one to many
serial communication standard. Commonly used in embedded system
communicating subsystems are broken up in master and slaves. Although both
subsystems can trasnmit information uninterrupted master subsystems can initiat
communication by addressing a specific slave whereas slaves need to be
addressed first. The wires used are MOSI, MISO, SCLK, and CS. MOSI
transmits from the master to the slaves MISO transmitts form the Slave to the
master. SCLK is a clock used to synchronize communication output by the
master. CS is a line held either high or low by the master to address a specific
slave interface.

3.2.4 CTCSS standard subaudible tones

Continuous Tone-Coded Squelch System or CTCSS is a single frequency
multi user protocol allowing for multiple different subaudible tones to transmit on
the same channel at the same time without interference. This can be considered
a type of in-band signaling that is used to allow two users to transmit without
listening to other users on a shared radio communications channel. This is
sometimes also called tone squelch. To accomplish this it adds a low
imperceptible frequency audio tone to the voice. This allows more than one
group of users on the same radio frequency (sometimes referred to as
co-channel users).

The CTCSS circuitry mutes users who are using a different subaudible
CTCSS tone or no CTCSS creating virtual sub channels. This happens without
creating any additional actual channels. Actual channels would be on separate
frequencies but with Tone Squelch all users with different CTCSS tones are still
transmitting on the identical frequency This has the drawback over traditional
channels of having transmissions interfere with each other; however; the

69

Group 5 Field Radio: DCV1

interference is usually imperceptible. Because the CTCSS is just designed for
working on separate tones there is no security allow for this to be used in
amatuer radio according to FCC part 97.

3.2.5 Dual-tone multi-frequency signaling

Dual Tone multi-frequency signaling (DTMF) or sometimes referred to as
the trademark touch-tone is a dual tone audio standard for transmitting 16
symbols with 8 audio frequencies. Commonly used in telephone systems for
transmitting numbers this standard is a type of Multi-frequency. This
semi-automated signaling was built for a complimentary automated switching for
both speedy and cost effective phone routing. This standard is defined by
multiple AT&T standards.

Our system will likely not support data-transmission for symbols such as
numbers over radio waves, so we likely will not be specifically attempting to
support this standard as the radio is not meant to transmit numbers.

3.2.6 JTAG

The goal of the project is to eventually Have a configurable FPGA for
novel Modulation, encoding, and transmission schema like JT65 and/or Codec 2.
JTAG is a debug/programmer standard for embedded systems. It will eventually
be used to program the FPGA. To go into more detail JTAG is a hardware
interface and communication protocol commonly used to debug programs and
upload in production/ testing environments. Originally developed by a
consortium, the Joint (European) Test Access Group, in the 80s to solve the new
and daunting challenge of debugging and mass producing printed circuit boards
(PCBs). JTAG has been in almost everything since it was first used in the Intel
80486 processor in 1990. In that same year IEEE introduced standard 1491 that
same year.

3.2.7 Frequency Modulation

Frequency modulation is a modulation schema where data is encoded in
frequency variation of the RF carrier. This is traditionally done with a nonlinear
frequency mixer but in our case it can be synthesized directly with the SDR. The
current standard for narrow band fm Channels is 15khz variation with 2 khz
padding on either side for frequency drift and intermodulation.

3.2.8 Single SideBand Modulation

Single-sideband modulation (SSB) or single-sideband suppressed-carrier
modulation (SSB-SC) is a type of modulation used to encode analogue or digital
Data to a wave, And example would be audio signals, Encoded onto by radio
waves. This modulation is a refinement of Traditional Amplitude Modulation the
Mainly refining the needed transmitter power and bandwidth by increasing the
efficiency. Traditional Amplitude modulation produces an output signal with a

70

Group 5 Field Radio: DCV1

bandwidth that is twice the maximum frequency of the original unencoded
baseband signal. Single-sideband modulation uses half of that or the bandwidth
needed is the maximum frequency of the unencoded transmission. This of
course increases device complexity and adds complexity tuning at the receiver.

In AM transmitters Mix and RF carrier with the baseband signal in the final
RF amplifier this is known as high level modulation. This results in the original
signal to be encoded on both Side bands of the RF carrier. Obviously this is not
necessary; a suitable receiver should be able to extract the entire original signal
from either the upper or lower sideband. The main disadvantage is SSB
Modulation must be done at a low level and amplified in a linear amplifier Which
can be expensive. But it allows for better amplifier efficiency. Another
disadvantage is SSB reception requires a significant amount more frequency
stability and selectivity beyond that of inexpensive AM receivers. This is the main
reason broadcast radio still uses traditional AM. So the Main use of SSD is In
point to point communications Because Receivers can get more expensive

3.2.9 Soldering

While prototyping and developing our software defined radio we will
encounter soldering by hand in a few instances. During these times it is crucial
that we follow the best practices outlined by the National Aeronautics and Space
Administration (NASA) and the Institute for Printed Circuits (IPC) in order to keep
ourselves safe from inhaling toxic chemicals, unwanted burns, and other
accidents. Following these guidelines will also ensure that the contact between
components are durable and acceptable to prevent short circuits, burning the
components or motherboard, and disconnection.

NASA-STD-8739.3 provides the documentation on how to safely and
efficiently. They recommend that the work area be cleaned and organized before
starting work and ensuring that the environment is controlled to limit accidents
and contaminations. Both NASA and the Occupational Safety and Health
Administration (OSHA) urge that a ventilation system be used whenever a
soldering station is on and heated due to the toxic vapors that come from lead
based soldering tin. Once ready to begin soldering, electrostatic discharge
should be performed on a ground material to avoid component damage and all
tools should be inspected to ensure that they are all functioning properly. [38]

3.2.10 Software/Hardware Standards

For software standards, we will be combining common standards that
have been developed by major corporations as well as self-created standards
based on the knowledge and skills we have acquired throughout our education
and employment. By creating a set of best practice and development guidelines
before we start any programming, we provide the end user with clear and
concise code that they can extrapolate on as well as safeguarding ourselves
from having differing programming syntaxes and errors in the program.

71

Group 5 Field Radio: DCV1

Furthermore, implementing software standards will aid us in avoiding
non-productive work, reducing risks, reaching quality goals set by the Amateur
Radio Club, and relieving some of the burden of our time constraints.

The main organizations we will draw our software standards from are the
International Organization for Standards (ISO) and the institute of Electrical and
Electronics Engineers (IEEE), both of whom are global leaders in the production
of international standards. Leading experts from around the world come together
at committee meetings held by these organizations in order to regulate the field
of technology for the advancement of humanity. From the International
Organization for Standards, we will be utilizing the ISO 9001, ISO 12207, and
ISO 15504 standards. These standards govern the overall quality of the product
we are creating via means of constructing a robust software life cycle process as
well as setting a model as to how we should work productively.

The ISO 90001 Quality Management standard can be implemented
without obtaining the certificate of authentication and provides the guidelines on
how to verify whether or not our decision making process is concrete. This
standard places an utmost importance on the communication, planning, and
teamwork aspects of development. By aiming to exceed customer goals with
consistent meetings, being transparent with obstacles and accomplishments, and
providing engineering feedback we are able to better direct our workflow to key
tasks and streamline areas such as part selection.

In order to be prepared and minimize the risk of redesigning our software
framework, a meticulous procedure of engineering based problem
compartmentalization will result in a software process that manages multiple
interrelated components and programs. Throughout the development and
prototyping phases of the project, we will take from the ISO 9001’s standards on
improvement and evidence-based decision making. While testing our
components we are going to take note of performance and all drawbacks not
listed in the specification parameters. Via the data we gather while testing we
are going to be able to make informed decisions on whether or not a component
needs to be swapped out for a better one, if we can use a lower cost component
to aid overall cost, and see if there are any areas we can make more efficient via
the use of higher level functions.

72

Group 5 Field Radio: DCV1

Figure 48. EIA/IEEE 12207 Process Tree

The ISO/IEEE 12207 systems and software engineering - software life
cycle processes standard was developed to outline a software life cycle process
that can apply to enterprise level solutions. Even though we as a group do not
plan to commercialize the device, what the Amateur Radio Club decides to do is
at their discretion. In order to make as smooth of a transition of technology as
possible we plan to research, prototype, and develop with scalability in mind in
terms of both our hardware components and software.

The figure above depicts the EIA/IEEE 12207 process tree where the
software process life cycle is divided into three sub-trees consisting of factors
that comprise the primary workload, support workload, and organizational
workload, respectively. By completing each factor within the subcategories, we
ensure that the project will be completed in an efficient and effective manner.
Towards the end of the process life cycle we can start focusing on the optional
tailoring branch which encompasses making any final adjustments to the device
before it is time to present. During the tailoring portion we will also place an
importance in completing any unfinished stretch goals as described by the end
user. Specifically this will encompass tasks such as waterproofing our device,
adding the waterfall/panadapter feature to the software defined radio program, a
data storage ability, and global positioning system support.

A procedural representation of the process tree is depicted below in the
ISO/IEEE Primary Process Flow Diagram. The separate stages of the primary
process flow diagram show the main components of the process tree and can be
extrapolated further to show correlations between each of the factors needed to
be successful in our project. We can refer to the project milestones provided to
us by the administration in terms of this process flow diagram by linking the
separate phases of Senior Design 1 and 2 to these components.

73

Group 5 Field Radio: DCV1

The acquisition phase of the project is the beginning of Senior Design 1
when we select our project and covers the verification/validation by professors as
well as a joint review with the Amateur Radio club. Until the end of Senior
Design 1 we are in the supply and development phases of the project and can
complete our initial documentation, component selection,and configuration
management. During this time we will also undergo the steps of the acquisition
phase again with the addition of quality assurance of hardware and core
functionality of the software aspect of the project. At the start of Senior Design 2
we will have a functioning prototype to further our development. We then can
enter the operation phase and resolve any problems that arise during testing.
The end few weeks of Senior Design 2 we are going to have a fully functional
device and enter the maintenance phase to ensure we have repeatable and
demonstrable functions for the final presentation showcase.

Figure 49. ISO/IEEE Primary Process Flow

The ISO/ IEC 15504-5 Information Technology Process Assessment
enables us to self-critique the processes we have outlined above. There are a
few components of the process tree that rarely apply to us such as the Audit and
Training factors. Since we have a bill of sale the audit can only be updated once
new parts are introduced and in order to complete this project all members are
supposed to have the necessary level of knowledge in electrical and computer
engineering. Instead of removing these sections altogether we have revised the
audit to consist of a mandatory review and editing meeting where potential
problems in the documentation and development can be addressed. This
specification also guides us on which characteristics of our software defined
radio we can demonstrate during the final presentation showcase and how they
are relevant to the engineering curriculum.

74

Group 5 Field Radio: DCV1

4. Design (25-30 pages)

4.1 Hardware Design (15-20 pages)
RF Subsystem

The RF frontend will work as follows: The SDR will be connected to the
power and RF switch board which will be controlled by the pi. Testing may
determine that the RF switch should be controlled by the SDR GPIO but for now
the Raspberry pi will control them because it is the simplest to implement. From
here there will be two modes: transmit and receive. For the receive mode the
power to the amplifiers and the input switch shall be turned off. Then the RX
switch will be turned on allowing the sdr to receive.

For the transmit mode the receive switch will be off, the band will be
selected and the correct amplifier will be powered. This ensures the SDR will
never be exposed to the full power of the power amplifiers and the amplifiers will
not waste power while in standby. One issue is push to talk latency. We want the
push to talk button to almost instantly turn on transmt because of this it may be
necessary to either make that control the system from an analog circuit or make
that a priority when writing the software. Another thing that could change the final
design is receiver loss and noise

To achieve the discussed achievable gain there will be multiple options
that will be possible. Firstly the power to each amplifier will be controlled by
mosfets allowing for thiem to be shut off when not in use. The power going to the
Power amps will also have a controllable voltage as discussed in the power
system this will control the power gain for those amps between 2.5 and 5 Watts.
This will need to be further tested

The second method for controllable gain will be the RF switch. The RF
switch is a SP4T switch that allows the pi to select between direct SDR output.
The LNA preamp output or RX. The 4th switch connection will be connected to a
SMA adapter for possible 900MHz options. This wont allow for perfect
continuous gain control but it will assist in the other options when amplifier
backoff becomes an issue.The third Gain control method will

be controllable power output of the SDR. This will allow controllable input
into the antenna directly from the LNA of the LNA to the power amps. The
internal Amplifier of the SDr is not well characterized and the dynamic range it
gives will have to be tested. But since perfect gain control is a stretch goal, if
some of these options fail the output power will still have enough variation to be
useful for whatever the use case.

Another possible addition is a filter on the output of the PreAmp or the
output of the SDR directly. Because of the strict EMi regulation put forth by the
FCC the EMI out of the band of transmission needs to be below the thresholds
described in design constraints. One possible noise source is the SDR itself
because of the frequency of the DAC it is possible that there are high frequency

75

Group 5 Field Radio: DCV1

Noise Bands caused by the RF synthesis itself. This is most likely filtered by the
SDR modules itself but this concern was mainly the sponsor’s.

Figure 50. RF Front End Block Diagram

Digital Subsystem

The digital system works with 4 communication types excluding the
internal communication of the SDR which may have to be interfaced with later
based on testing. The first and main communication protocol is USB. With USB
the Microphone, the SDR, and the Touchscreen will communicate with the pi.
Because the pi only has one usb port everything will pass through a USB Hub
The USB hub will have the Pi as the only host hopefully decreasing overhead.

The second way the digital system will communicate will be over GPIO.
This is by far the simplest and will generally operate in one direction. EG the
buttons will send the Pi there state the Pi will never respond. Likewise the RF
switches will be controlled by the Pi but from a completely analog perspective the
Switches will just receive something like a High for on and a low for off.

The third Protocol is HDMI: The HDMI will carry the Video signal to the
screen and the audio signal to the speakers. This option is ideal because the
Raspberry pi has a built-in HDMI transceiver which will allow for minimal required
onboard processing unlike certain I2S or GPIO audio options.

The Fourth and final Protocol is SPI: This protocol will be used to connect
to the monitoring ADC. The Monitoring ADC will be used for measuring the
Volume, gain adjustment, Output Power, and battery level indicators. The volume
and Gain knobs will just be potentiometers. The battery output will require a
voltage divider to shift the levels to within the chosen ADC’s range. The Output
power monitor will be connected directly after the mosfets to monitor the voltage

76

Group 5 Field Radio: DCV1

going into the power amps. This presents the issue of potentially non linear
power output vs input voltage curve of the power amps. So to rectify this concern
the power output will be tested with an RF meter. This protocol also has onboard
controllers but it will take a bit of processing power and latency to run tests so for
the software design this will be a separate SO file that will just be called every 30
seconds or so. If this does not allow for real time monitoring of volume and
Gain/squelch the ADC may end up getting monitored directly by the SDR gpio
pins.

V1 V2 V3 State

0 0 0 External SMA

0 0 1 Direct TX connect

0 1 0 LNA

0 1 1 RX Mode

1 0 0 All Isolation/Test Mode

1 0 1 50 Ohm Sync

1 1 1 Shutdown mode
Table 19. Digital System Block Diagram

Figure 51. Digital System Block Diagram

77

Group 5 Field Radio: DCV1

Power Subsystem

The Power Subsystem Provides power to every system on the Radio. The
voltages and current were determined by the part requirements. The main
batteries will be the Panasonic 18650B NCR as discussed in the part selection
section. The battery voltages will be regulated to a single stable 5V output and
another variable output with a voltage range of 5V-7.2V.

The power going into the amplifiers is controlled by two dual mosfet
modules connected to the raspberry pi. This allows for output power control and
selection as explained in the RF subsystem section. The mosfets will be used as
a switch allowing the gpio on the Pi to turn on or off voltages on different parts of
the rf subsystem. The on resistance of the mosfet at our current will provide a low
power dissipation and therefore a low power drop of less than .01 volts.

The battery voltage will be monitored by an SPI adc connected to the pi.
This will allow for a low complexity solution to battery monitoring and charge
control. Another step to avoid unnecessary complexity is the charging setup. The
batteries will be made hot-swappable in design so they can be charged outside
of the actual system, and the case in which they are contained will be directly
able to be charged with a USB-C cable for simplicity and accessibility.

Figure 52. Power System Block Diagram

78

Group 5 Field Radio: DCV1

Figure 53. Power Switching Block Diagram

Full System Overview

The Entire system combine will work like described in the description to
meet the requirement specifications. The Pi will be the main controller for the
entire system controlling all other subsystems. The Pi will connect to the screen
and run software for a GUI which will allow for the SDR power control mosfets
and RF switches to be controlled over the touch screen.

This design obviously has one major risk or potential flaw. The pi may not
be able to provide enough processing power for graphics, power, and RF control.
Since this is a possibly the main design choice to combat that will be switching
controls / processor heavy operations to the FPGA on the SDR. The first
components to go would be those which are determined to affect the overall user
experience the most. So first and foremost the volume squelch and PTT controls
would be switched over to the SDR with no necessary system architecture
change.

79

Group 5 Field Radio: DCV1

Figure 54. General System Block Diagram

Physical Design

The physical design must be handheld and durable. We also need to
dissipate a large amount of heat from the Pi, SDR, and Amplifiers. The amplifiers
come with preinstalled heat syncs. The plan for the pi and the SDR is to
thermally couple them to a metal plate. But because transmission are generally
shorter than 30 seconds and the unused components will be in a low power
mode active fan or thermoelectric cooling was decided against

80

Group 5 Field Radio: DCV1

A good comparison of the size of everything compared to common of the shelf
hand held radios:

Figure 55. Hand held radios
Since the largest components are going to be the screen at 4in in width

and the width must be able to accommodate that. The size of the amplifiers will
also be a challenge possibly requiring us to physically cut the amplifiers thinner.
The outer case will be plastic and 3d printed except for the metal parts for heat
sync.

The case will also function as a battery holder designed to allow easy
battery hot swapping or charging. This decision is discussed in the part selection
and power subsystem sections further. The batteries and casing will be
removable from the radio itself and easily charged via a standardized USB-C
cable that can be plugged into any power source (via wall adapter if necessary)
and left alone. The casing itself features overcharging protection so the user
does not have to actively check the batteries once they begin the charging
process. The batteries themselves also feature a protective IC so that they can
guarantee their safety while being recharged.

Each amplifier will be shielded so as to not pick up noise from clocks or
switches on other modules. This is important to meet FCC regulations as
unwanted noise can be easily picked up and amplified especially by the wide
band LNA. This is luckily easily tested with an oscilloscope and is a priority in the
testing section.

81

Group 5 Field Radio: DCV1

3D Printing
For our device enclosure, we are planning to use 3D printing to create a

case that will hold all of our components as well as the lithium-ion battery cells.
As mentioned in the case materials section, we will be experimenting with
different 3D printing filaments that are only compatible with the standard extruder
style printers. Of this style of 3D printer, the two forms are either a standard XYZ
CNC style or a Delta style. The latter of the options are best suited for projects
that have high vertical height requirements and have to print with a very high
level of accuracy. The former is a more common style of printer and is able to
handle the case we model. Alternatively, we have the option of using Resin 3D
printing which utilizes various compounds that react to a UV light which hardens
the material and forms the final product. This style of printing is very cost
effective and is not applicable in the current design of the project, but when the
Amateur Radio Club is satisfied with the end product they have the ability to use
the model we create to make a more robust case from this procedure.

We will likely need to follow certain steps to ensure that our final print
comes out in acceptable quality. First and foremost, the case has to be designed
in a minimum of 2 separate parts. One part is the actual case itself which will
hold all the components of the software defined radio, and the other is the back
cover for the battery cell bank. If in the event we choose to use only 2 separate
parts in our case design, the printing process will have to be paused at the
halfway mark in order to mount all of the main components in the casing and let
the casing resume printing around everything. This proves difficult as the print
has to remain in the exact same position as when the pause first occurred or else
the filament will be printed off centered and the casing will be ruined.

The best course of action, then, is to print in 3 separate pieces. One for
the battery cell cover, another for the lower half of the casing where we are able
to mount all of our components, and the last to enclose the device. This is the
easiest route we can take when it comes to finalizing the design for our radio
case. Since this is likely going to be our final design after case testing, we will
need to find a good solution for waterproofing as this design will need to be
joined together with some sort of fastening mechanism and will not provide a
watertight seal.

Before the print starts there are several factors we can take into account
to ensure we have the best quality case we can produce. First is the speed of
the print itself. 3D printing is generally a very time consuming task and for the
size of print we are aiming for, the duration could easily reach over a day's worth
of time. To alleviate this we can speed up the print at the cost of the end quality
and durability. Aside from speed we are able to alter the printing density. Instead
of extruding more filament out of the print head extruder, .gcode rendering
software lets us choose what internal support structure is going to be
implemented; for example, we can choose from a solid packed print, a
honeycomb structure that has spaces in between, or a crossed pattern also with
empty space. Finally, we are able to change the heat at which the filament is
extruded at and also the temperature that the print bed itself cycles at. Filament
heat changes how the filament will bead and join to another strip of filament

82

Group 5 Field Radio: DCV1

whereas bed temperature will have an affect on factors such as stability during
printing, warping, and finished print removal.

Power Supply Overall Schematic

Our power supply schematic has multiple distributions of power that are
necessary to power the entire system. Since the Panasonic batteries are
connected in parallel, the voltage coming into the system is 7.4V which is the
voltage of the two batteries added together. The power necessities of our board
include multiple 5V outputs and an output range of 5V-7.2V with all values in
between this range included, as the purpose of this is to be able to control the
watt output of our radio and vary the frequency bands we are operating on by
extension. For this reason, we need to design a PCB capable of receiving 7.4V
battery power and utilizing buck-boost converters to split this power amongst two
separate outputs that our other components can attach to as needed.

Initially, we require a consistent 5V output from our power system that will
never fluctuate in order to power multiple components such as the Raspberry Pi,
touchscreen and LimeSDR. As the power requirement for this section never
changes, this becomes a much simpler overall goal to reach than the power
amplifiers will be, and we chose to use a standardized buck converter to shrink
our input voltage from the 7.4V nominal provided to our 5V output. The power
from the batteries will slowly drain as the batteries are used, or by extension be
higher than the nominal when batteries are fully charged, so our buck converter
must be able to sustain both the upper and lower boundaries of our voltage
range from the two Panasonic 18650B batteries. Using the data sheet, we can
see that this range is from 8.4V to 6V, and means any buck converter that can
output at 5V while having boundaries that contain this range will work. For this
project, we selected the “TLS4125DOEPV50XUMA1” buck converter, an optireg
switcher produced by Infineon technologies. It functions primarily as a 2.5A step
down regulator, and can accept any input voltage from the range of 3.7V to 35V
while outputting at a fixed 5V output voltage. Other benefits of this buck converter
include its extremely low current consumption (rated at 31 nanoamps) with high
switching frequency ranges/oscillation frequency. If chosen to be used, it also
has spread spectrum frequency modulation for improved EMI performance and a
wide temperature range, proving its full sustainability within our project and
featuring our project well. The schematic for the 5V fixed output regulator is
shown below.[26]

83

Group 5 Field Radio: DCV1

Figure 56. 5V Buck Schematic

Within this schematic, there are many design choices that are made for
the sustainability of the overall project and performance of this regulator. As if this
regulator fails our entire system will turn off, we felt it wise to add an extra
capacitor to the input voltage in order to improve EMI performance and to also
add an extra capacitor in series to our output voltage to smooth the ripple as
much as possible. The signal “RT” with its attached pull up resistance is
connected to a reset functionality in line with the “RO” which is kept as an under
or overvoltage protection as well as overcurrent protection within the system so
the selected IC will automatically protect itself in case of an unprecedented
situation rather than frying the component itself and needing a replacement. The
value of the resistors refer to the setting of the reset values themselves, such as
the 33K ohm resistor attached to RT being set so that the expected input voltage
of the system being 7.7V and resetting if the voltage is to ever drop below 5.1V.
As the batteries cannot sustain themselves if they are totally discharged to this
point anyway, it is a safety measure that will protect us from anomalies. While
there are many buck converters that would have worked for this purpose and
possibly some with higher efficiency (the above selection is rated at ~95% when
in rated conditions), we struggled to find a buck converter with this specific
voltage range that was available and in stock. Using the digikey search
marketplace only returned less than 100 immediately available ICs, and thus
eliminated much of its competition (such as the TPS TI IC series were all
primarily sold out for those that exist within our voltage boundaries). This IC is
also very cheap in comparison to its competitors which can often be more than
five dollars for the single component alone, while this IC is currently priced at
$3.35 per IC.

Now that we have a stable and optimized 5V output regulator to be
supplied to the USB hub and provide power to our major components, we must
now stabilize the power for the power amplifiers. This poses a unique challenge
as these power amplifiers must be capable of being given anywhere from the 5V
minimum to 7.2V maximum at any given time in a controllable manner so the
user can both select the power output of the system as well as the frequency the

84

Group 5 Field Radio: DCV1

radio is outputting on. To accomplish this, we require a variable output
boost-buck converter capable both step-down and step-up dc-dc switching
regulation for battery power, as after the batteries drain from their nominal
voltage it is possible that we will require more power than we are actually getting
from the batteries (for example, the system can be changed to the 7.2V output
while the batteries are outputting 6.5V). To accomplish this task we chose the IC
TPS630702, which possesses an input voltage range from 2V to 16V and an
adjustable output voltage of 2.5V to 9V, which fits within our ranges perfectly. The
IC was chosen due to its high efficiency rating (up to 90% when producing an
output current higher than an amp) and high switching frequency, peaking at 2
MHz oscillation which is very important to the general design of our board due to
the response to changing the voltage needing to be completed as fast as
possible. This TPS series IC has a counterpart known as the TPS630701 which
features a static fixed output, so it is important to distinguish specifically that this
is the TPS630702 and is being used in its adjustable buck-boost version.

However, the TPS630702 itself is not enough to change throughout the
entire range of the voltage, so we must add a potentiometer in series with a
second resistor that we can use to adjust the voltage at will. The added
resistance will decrease our output voltage as the resistance is increased, as
without the potentiometer the current schematic outputs our maximum voltage of
7.2V. Due to the fact that the rest of the circuit is held by a schottky diode, we are
not concerned with the possibility of an overcurrent and added a capacitor after
the addition of the potentiometer to smooth voltage ripple for a stable output. As
this IC features a gated oscillator control scheme, it provides a high efficiency
over a wide load range and only seems to fall in efficiency when Vout drops
below 5V. The IC uses a hysteresis window to regulate the output voltage with
this system and switches continuously with a fixed duty cycle when below the
upper threshold of the load range. In each switching cycle, the internal N-channel
MOSFET switch is turned on and causes both inductors to begin storing energy,
and this highly efficient process will allow us to eliminate output voltage droop as
well as provide overcurrent protection within the circuit to protect the IC in a
similar manner to the 5V regulator. The schematic for this IC is shown below.
(Infineon) [51][52]

Figure 57. Variable Output Boost-Buck Converter

85

Group 5 Field Radio: DCV1

The remaining major component that will require power is the RF Switch.
This will feature three RF channel utilization and provide a connection for the
antenna, but only requires 3.3V to be powered. Instead of making a new
regulator and taking battery directly from the batteries, the Raspberry Pi Zero 2W
has multiple pins with 3.3V capability which can directly connect to the pins
labeled as “V1”,”V2”, and “V3” in the following schematic. The RF Switch’s Vdd
can be set to 5V conveniently, which means we can tie that pin directly to the
output of our original regulator to stabilize our system and show that the RF
switch will receive all proper power as shown below.

Figure 58. RF Switch Schematic

Knowing that one of our design constraints consist of the overall power of
the system being able to run for a long period of time without needing to be
charged, we felt a good design constraint would be the ability to monitor the
power level remaining in the system similar to a phone battery-level indicator. To
accomplish this, we decided to utilize a 10 pin ADC module that has the
capabilities to communicate with the serial communication protocol known as
SPI. We can connect this directly to the Pi as the Pi’s SPI capabilities are not
currently being used and would be able to directly report the amount of voltage
that is coming from the batteries. To power this ADC, it requires a constant 5V
output which we can use the earlier created 5V buck regulator to supply. We then
add the battery connection directly to channel 1 with a voltage divider to protect
the component which can then be communicated as a value over SPI to the Pi,
which we can then display on the screen. The current draw and power draw from
this is minimal and the benefit of being able to monitor our power at any given
moment far outweighs the negative of the slightly higher current requirements, as
the watt hours of our batteries far exceeds our necessities.

86

Group 5 Field Radio: DCV1

Figure 59. 10-Pin ADC schematic

The Power Mosfet circuit has multiple GPIO connections allowing the
Power going in each of the amps to be completely switched off. We opted for this
option rather than multiple high power RF switches because generally the higher
the power the RF switch the more noise and insertion loss. The mosfets will have
a low on resistance causing a slight voltage drop of less than .01 volts. The gates
of the mosfets have a “on voltage lower than the voltage of the pi's gpio so direct
driven GPIO will provide adequate IV characteristics to allo the mosfets to act as
a relatively ideal switch. Because the turn on voltage of the mosfets is so low the
gates need to be adequately pulled down and although the pi can do this but
since the plan is to have low power mode this may not be enough. Because of
this at the very least resistor footprints will be added to the PSB and unpopulated
in case the low power modes won't be able to pull down GPIO. from here the
output of the fets are connected directly to pin headers to allow for the

87

Group 5 Field Radio: DCV1

Figure 60. Power Mosfet Schematic

All in all, the full system schematic showing the connections across the
entire radio is shown below. The overall schematic is designed to work together
with each component designed with its effect on the overall system. The
regulators are designed for low EMI in the relevant bands; the mosfets are over
specification to allow for lower heat generation that would affect the nearby RF
switches.

88

Group 5 Field Radio: DCV1

Figure 61. Overall Full System Schematic

4.2 Software Design (10-20 pages)
4.2.1 Avoiding Anti-Patterns

One of the requirements for our project is that all of our code will be
open-source. The intent behind this is that once completed, our project would be
iterated on by others. While for some other projects writing code that just barely
works could be considered acceptable, in our case part of the development
process is leaving behind code which we could be proud of and that other
students would be able to iterate on without a lot of trouble. Because of this, we
will attempt to consider various anti-patterns during development. [49]

An anti-pattern is a common design problem that usually comes up in
software development due to developers who are any combination of lazy,
incompetent, mismanaged, misinformed, or rushed. Because this code will be
passed on to others, we will try our best to avoid these patterns as much as
possible. Here are some of the common patterns that we might run into, how
likely we are to run into them, and how we specifically will attempt to avoid them.

89

Group 5 Field Radio: DCV1

Spaghetti Code

This generally refers to unorganized code, and comes up often whenever
development focuses on adding one feature at a time instead of taking a big
picture view of how the overall device’s features will be organized. One common
way to avoid this problem is to have frequent code reviews where somebody else
takes a look at how you are implementing a solution. While this normally helps,
this might not be enough of a fix for our small group as at most only 3 other
people would be reviewing code, and not all of us are programmers.

To help avoid this issue further, once the software development process
starts we will be making diagrams that describe the flow of code so that we can
keep track of how things are organized. The idea behind diagrams is that if your
code is too complicated to make a drawing of, then the code itself is too
complicated and you have failed to keep it organized.

Golden Hammer

This anti-pattern refers to how once developers find one tool that works,
they will try to apply it to everything even if it might not necessarily be the best
tool for the job. Unfortunately this anti-pattern is one we may have to deal with
allowing, as there are a lot of different moving parts in our project. If we looked
for the best possible solution to each different part then we would not finish on
time when Senior Design 2 began. A good way of dealing with the impact that
this anti-pattern might have on the code is proper modularization and separation
of responsibilities between different sections of the code. What this would
accomplish is that even if a tool is being used improperly, it would be easy to
swap out for something that works better for that specific task.

Specifically in our project, the use of an OS, Python, C++, and LimeSuite
may end up being excessive. Due to this, we will plan for allowing any of these to
be swapped out into something else or absorbed into something else.

Boat Anchor

This anti-pattern simply refers to putting in code that solves a problem that
we will have in the future. This should be easy to avoid as we ourselves do not
know in which direction the project will be taken after we have finished it, so we
would not be able to account for future features during development.

Dead Code

This refers to code which has been left in the code base which does
nothing. This anti-pattern commonly shows up in matured codebases which have
been under development for years. As our code will only be worked on for a few
months, this is extremely unlikely to happen. To minimize it we will reconsider the
inclusion of code whenever a system that it touches is modified.

God Object

90

Group 5 Field Radio: DCV1

This refers to having a single object with too many responsibilities. In
particular we are at risk of falling into this anti-pattern with our Python code,
which will be in charge of speaking to the OS, GUI, and LimeSDR. During our
development cycle we will pay particular attention to making sure that if any one
Python file is getting too large that it be split up into separate sections.

Cargo Cult

This pattern refers to implementation of a solution which is not the right fit
for our problem. It commonly happens when a developer uses an outside
solution to solve their problem, without fully understanding the outside solution.

The problem that we are working on is new and unique, so instances of
using others open-source code solutions will be sparse. To minimize these
instances even further, our code reviews will involve sharing whenever a section
of the code requires outside assistance to implement. By knowing this, our team
can work together to check that section of the code to see if it works properly for
our system.

Magic Numbers and Strings

This refers to the lack of symbolic constants when defining specific
numbers or strings with significance to the business logic and flow of the
software. For example, if the codebase has an if condition such as “if
(numberOfWindows > 3)”, this would be poor. A way to improve this would be to
have a constant such as “#define maxWindows 3” and then have our if statement
read as “if (numberOfWindows > maxWindows)”. The reason that this is better is
that without proper naming, somebody would not be able to understand why the
number 3 is significant for this if statement. While this could be explained in a
comment above the code, self-documenting code is often better, so if an if
statement requires a comment to explain a magic number then that just should
not be a magic number in the first place.

To avoid this problem, we will be checking for magic numbers and magic
strings in our code review sessions whenever somebody is adding new code to
the existing codebase.

Interface Bloat

This problem often comes when designing the UI of a system. This refers
to making a poor interface due to lack of prioritization when it comes to deciding
which features are useful and which are not. We will easily avoid this due in part
to our time constraints, as with how little time we have to develop this project
there will not be a chance to add so many features that our interface gets
bloated.

Poltergeist

91

Group 5 Field Radio: DCV1

This problem refers to the use of a layer of abstraction that does nothing
but call some other part of the code to do something. This is similar to the Boat
Anchor problem mentioned previously, as it may occur whenever somebody is
attempting to future-proof their code by adding layers of abstraction which are not
currently being used, but that they think may end up being used later. To avoid
this problem, we will be trimming our code down at the end of software
development to get rid of any code that is not doing anything meaningful.

Shotgun Surgery

This problem is more likely to occur on a matured database. It refers to
when implementation of a new feature requires precise changes across multiple
areas of the code. This is extremely likely to happen to our codebase when it
gets further developed by others, but it is unlikely to occur during initial
development of the system. No particular efforts will be made to avoid this
anti-pattern.

Copy and Paste Programming

This specifically refers to the issue of copying and pasting code from our
own codebase from one section to the other. For the issue of copying and
pasting code from the internet, see Cargo Cult Programming.

The reason that this antipattern is bad is that what will usually end up
happening is that a developer would write code in one section, and then need to
use that code somewhere else. The problem with copying and pasting the code
from one section to another is that if a bug is found in that code, then that code
needs to be changed in every single section that it was copied and pasted. If the
code was modified slightly for each of these sections, it may be very difficult to
track down each instance of the code.

To avoid this issue, we will be making use of proper programming
practices such as turning code into methods whenever possible. This would allow
us to reuse code as much as possible without having to change code multiple
times.

Error Hiding

This simply refers to when the code is catching an error but we do not
report it properly to the user. This is likely to happen to our code as we will likely
not have proper error catching methods in place for each possible error.
Unfortunately this error is one that we likely will not be addressing during
development, as error catching can be a sinkhole in terms of development time.
While this normally would be prioritized during normal development to avoid
issues related to users being frustrated with the end product, we do not have the
time available to dedicate to this part of software development.

Manual Memory Management

92

Group 5 Field Radio: DCV1

This refers to attempting to manually handle each byte of memory as
opposed to allowing the language’s built-in garbage collector to from doing its
job. This antipattern is very easy to avoid in Python as code written in Python
does not usually involve memory management.

4.2.2 Version Control

Our group will be implementing proper version control practices in order to
streamline the software development process as much as possible. While
version control practices might be skipped in a very small group of developers,
with all 4 of us working together on software simultaneously it would be best if we
stayed organized. Additionally, one part of the requirements for this project was
that we were required to maintain open-source code so that the project could be
continued by future students. Thus because of both the need for this group to
remain organized and the requirements that our code be open-source, we have
decided to host our code on a public GitHub repository. Finally, we will be
handing over admin privileges over the GitHub repository to the standing officers
of the Amateur Radio Club.

The process for implementing code will be as such:
1. Create an item with acceptance requirements
2. Create an appropriately named software branch based off of the dev

branch
3. Complete the item while maintaining properly scoped commits
4. Begin a Pull Request to bring the code into dev
5. Address all comments brought up until a majority of peers approve of the

code changes
6. Bring the code into dev

To create an item with acceptance requirements, we must hold planning
meetings where we will decide what the members of the team who are working
on software will be developing next. These items should usually be specific, such
as “Add navigation buttons to the home page”. Non-specific items such as “Add a
homepage” should be broken up into smaller chunks until it is easy to define
what the minimum work that has to be done to have that item be considered
‘complete’ is.

When beginning work on an item, it is bad to work directly on the dev
branch because this might affect what somebody else is working on, and you
may end up leaving the software in a broken state if you stop working on your
item halfway through. Because of this, it is best to make a new branch, based off
of dev, for you to make all of your changes in. Usually these branches should be
named either feature/~~~, refactor/~~~, or bugfix/~~~. These correspond to
branches that introduce, remove, or change a feature of the code, a branch that
changes the code without actually changing what the user sees, or something
that fixes a bug.

While working on the item, it is usually helpful to separate the changes
into commits based on what was done. This can make it easier to parse all of the

93

Group 5 Field Radio: DCV1

changes commit by commit during the Pull Request, and can make it easier for
the developer to undo a batch of changes at once if they know exactly which
group of changes was incorrect based on the commit messages.

A Pull Request is a feature on GitHub that allows developers to show their
code to other developers on their team so that they can approve it before the
code is combined with the main codebase. Making sure that code only enters the
main code base through pull requests is a good practice because it ensures that
multiple eyes have seen and verified every single line of code which has been
integrated. This minimizes bugs, inefficiencies, and other potential problems. The
process of how to begin a Pull Request changes whenever GitHub updates, so it
is best to look up how to do this.

While reviewing somebody else’s Pull Request, the standard procedure
which we will be following is that if you see a problem in their code, you should
put a comment about it and refuse to approve the Pull Request until your
comment has been addressed either with a reply or with a change in the code.
The person who created the Pull Request should be taking everyone’s feedback
into account. Once nobody has any more feedback to give and the code changes
have been deemed complete, it is safe to bring the code into the development
branch of the GitHub Repository.

Desktop Environment

PiXeL

Figure 62. PiXel Desktop Enviroment

The Raspberry Pi OS comes pre-installed with a modified version of the
LXDE (Lightweight X11 Desktop Environment), called the PiXeL (Pi Improved
Xwindow Environment, Lightweight). This desktop environment has been

94

Group 5 Field Radio: DCV1

designed specifically with the Raspberry Pi Suite in mind. Its benefits include the
fact that the install process is simple, it has an easy to use menu, and it has very
good performance due to both being a lightweight desktop environment and
having been designed specifically with the Raspberry Pi in mind. Its negatives
include an overall unappealing interface, and difficult to access settings due to
different settings being modifiable through different menus. These are relatively
minor downsides as they would only affect the development process, as an end
user would not be directly accessing the desktop once development is done.

KDE Plasma

Figure 63. KDE Plasma Desktop Environment

KDE (K Desktop Environment) Plasma is a desktop environment for Linux
systems which borrows heavily in its design from OS’ such as Windows XP. Its
benefits include simple to access settings, and an overall well-designed interface.
Its main negative is that the performance of the desktop environment is poor.
This is a huge negative because on the Raspberry Pi Zero 2 W there is only ½
GB (GigaBytes) of RAM (Random Access Memory).

GNOME

95

Group 5 Field Radio: DCV1

Figure 64. Gnome Desktop Environment

GNOME (GNU Network Object Model Environment) is the most popular
desktop environment for Linux devices. It has easy to access settings, similar to
KDE Plasma, and is well-designed overall. Unfortunately, it is hard to learn for
beginners, and similar to KDE Plasma it requires more processing power than a
lightweight desktop would require. Because of that, this desktop environment is
not suitable for our project.

LimeSuite

LimeSuite is a collection of software drivers meant to support many
different hardware platforms, including the LimeSDR, LimeSDRMini, and
LimeSDRMini 2.0. Installing LimeSuite is necessary to allow SDR applications to
work, and installing this is the first step when attempting to use the LimeSDR,
even before plugging it in.

The installation process for LimeSuite is different depending on which OS
it is being installed on. As we will be using a Linux-based OS, we will have to
follow the Linux installation instructions. The easiest way to install LimeSuite
would be to install it via PPA (Personal Package Archive), which is just inputting a
few commands into the terminal and letting our package manager handle the
rest. The other way to install LimeSuite would be to download the source code
and build LimeSuite ourselves, which is a more involved process. Either way we
would be getting the latest version of LimeSuite from the github repository, so it
may be worth noting the exact version of it that we are installing in case future
versions break dependencies.

Firmware Management

96

Group 5 Field Radio: DCV1

While LimeSuite described the suite of software we install on whatever
system we are using to communicate with the LimeSDR, it is still necessary to
update the software on the LimeSDR itself. This involved updating both the
firmware, and the gateware.

Updating the firmware refers to updating the software on the
microcontroller on the LimeSDR. Updating the gateware refers to updating the
CLBs (configurable logic blocks) on the FPGA (field-programmable gate array)
on the LimeSDR.

The act of updating both the firmware and gateware is handled by
LimeSuite, as each installation of LimeSuite is packaged with the latest firmware
and gateware which will work with it, and only a single command is needed to
begin the update process.

LimeSDR Test

Before starting on development, it is important to check that the hardware
and installed packages are working. To do this, we follow the instructions at
https://wiki.myriadrf.org/LimeSDR-USB_Quick_Test . By following these
instructions, we can verify that the LimeSDR is able to communicate with its host
device, transmit radio signals, and receive radio signals. The loopback test is
enough to verify that the hardware works, while the other 2 tests are meant to
show a beginner how to use LimeSuite.

Flow Chart

The figure below describes the flow of information on the software end of
things. At the heart of our software ecosystem will be our operating system, and
python.

97

https://wiki.myriadrf.org/LimeSDR-USB_Quick_Test

Group 5 Field Radio: DCV1

Figure 65. Software Flow Chart

The operating system will handle a lot of the background tasks which we
are not prepared to code from the ground up. This can include responsibilities
such as resource allocation, communicating with a microphone for audio input,
communicating with a speaker for audio output, task scheduling, etc. This might
include something as complex as knowing the correct routing algorithms to be
able to send audio out through an hdmi port which is connected to a touchscreen
with a 3.5mm audio port.

Our python code will handle creation of the Graphical User Interface
(GUI), as well as communication between the different software modules that we
will be implementing. For example, our python code would be in charge of things
such as making sure that when somebody presses a button on the touch screen,
such as the home button, that the GUI responds appropriately, such as by
changing screens to the touch screen.

Communication of the LimeSDR is difficult and would take multiple layers
of abstraction to do. There is a public tool called LimeSuite which helps speak
with the LimeSDR, but it is based on C. Thus to be able to speak with the
LimeSDR, we need to be able to make calls to LimeSuite inside of code. This is
done easily in C, so we will have to have our Python code speak to a C++ script,
which will then speak with LimeSuite, which will then handle communication with
the LimeSDR.

4.2.3 User Interface

98

Group 5 Field Radio: DCV1

Related Works

There are many existing software defined radio programs available for
amateur radio enthusiasts to utilize to meet their needs. Most of the programs
themselves are free to install and use, come with documentation and tutorials,
and are user friendly for those who have the basic knowledge and skill set
required. Since our software defined radio will be based on a limited resource
embedded system with a very small screen, we will not be able to include a full
set of features as seen in many software defined radio programs. Nevertheless,
we will be able to replicate some of the most common functionality of popular
programs in our software defined radio.

HDSDR

One of the most popular software defined radios available today is the
HDSDR. Its primary uses include listening to regular radio stations, ham radio
applications, astronomy, and spectrum analysis. It offers many features that
match the requirements of our own software design radio program such as a
waterfall display, I/Q modulation for signals, recording and playback, as well as
options to select standard bandwidths.

Currently the HDSDR is only available on the Windows platform, but there
is development for Linux and Mac based systems, an area where our system
should excel since most of its software components will be cross platform.
Another downside to the HDSDR is that it is for use on recommended receivers,
all of which offer a much lower bandwidth than the LIMESDR at far higher prices.
The HDSR also has very in depth options for RF front-end frequency calibration.

99

Group 5 Field Radio: DCV1

Figure 67. HDSDR Interface [23]

100

Group 5 Field Radio: DCV1

SDR#

Figure 68. SDR# Interface [48]
Regarded as one of the best software defined radio programs available for

entry level radio enthusiasts, SDR# provides a free and intuitive design for use
on RTL-SDR. It is recommended that it is to be used with the $199 Airspy, but
can be used free with any RTL-SDR.

SDR# was designed to have all the basic/advanced features that you may
need as part of their standard installation package, but just as our product is
designed to be modular and modified by the amateur radio club and community,
SDR# offers modular compatibility with third-party plugins. As such, there are
functions for almost any signal analysis and display task you could need for
example, the fast fourier transform, waterfall display, and functions to reduce
signal distortion. It is one of the most accessible software defined radio
programs on the market; available on windows, linux, as well as on the
Raspberry Pi Operating system (Raspberry Pi model 3b+ minimum hardware
recommended).

Waterfall Page

The waterfall page is part of our stretch goals and would feature a
waterfall/panadapter. Once the user has selected this page, the system will stop
all unnecessary functions and allocate most resources to computing and
displaying the waterfall. Functions will return to normal once a different page is
selected.

101

Group 5 Field Radio: DCV1

Home Page

The home page of the SDR program will contain some of the most
commonly used features for amateur radio enthusiasts including a display to see
what frequency you are currently on, a seek feature to go to the next radio station
with stable connection, an option to change whether you are on the AM or FM
channel, an option to record media, and 5 customizable preset channels you can
select from. Via the navigation bar on the top of the screen, the user is able to
select between all other pages and functions available on the SDR software.

Figure 69. Home Page

Settings/Connections Page

The settings page of the SDR program will enable users to change certain
features of the system as well as perform tasks such as updating the firmware of
the system and its components whenever available. It features an adjustable
volume and brightness control function, a power saver mode, an option to
connect to a bluetooth speaker, an option for dark mode for accessibility, and a
check for updates button.

If in the event the user was in a situation where he or she needed to have
extended battery life, for example spending the day in a remote area, the power
saver feature could be utilized. In order to maximize battery life the most power
consuming tasks will be limited until power saving mode has been turned off.
One of the most power draining pieces of hardware is the backlit touchscreen.
During power saving mode, the touch screen's brightness will be limited to 50%

102

Group 5 Field Radio: DCV1

of its maximum value and will enter sleep mode after a predetermined time to be
woken upon touch. The second piece of hardware that could potentially drain
power quickly would be the speaker system since the higher a speaker’s volume
is set to, the more energy it will draw to amplify the sound input. To counteract
this, the speaker's volume will be limited to 70% of its maximum volume (with the
exception of a connection to a bluetooth speaker). The waterfall feature will also
be inaccessible to the user due to its high visual and computational requirements
of the embedded system.

Figure 70. Settings/Connections Page

Communication Page

On the communications page, the user will have most of the same
functionality as the home page with the exception of its limited amount of presets
and a visual push to talk button. Once a user is connected to a channel and a
band accessible for communications, they will be able to communicate with
others on the same channel.

103

Group 5 Field Radio: DCV1

Figure 71. Communications Page
4.2.4 Microcontroller

Our system will be making use of the Raspberry Pi Zero 2 W as if it were a
microcontroller to handle things such as communication, on/off signals,
outputting sound, and more. While a lot of these functionalities will be enabled
over USB communication as this is the easiest to deal with method of
communication available, and supports a modular design, there will come a point
where we will be required to interact directly with devices through the pins on the
Raspberry Pi Zero 2W.

There is a built-in library on the Raspberry Pi systems called wiringPi.h.
This library is useful to be able to do things such as send power out through a
certain pin, or change the function of a pin if it is being used for multiple
purposes. This library is based on C, so using it would be tricky for us. We plan
on using Python instead of C so we will have to set up some kind of abstraction
layer where we could call the functions from this C script from Python. The
reason we would do this over just programming in C++ is that Python is a lot
easier to use for developing the front-end of our software, and switching between
languages frequently could introduce translation issues when going from one
layer to another.

4.2.5 3D Printing
Our system will be exposed to the elements so a 3D printed case will be

necessary. A bare metal design would make it immediately fall apart and stop
working if it was out while in the rain, and a generic case would not properly fit all

104

Group 5 Field Radio: DCV1

of the components that we have since this is a unique design. When it comes to
3D printing, going from an idea in your head to a physical product is a multi-step
process that involves both software and hardware processes.

Blender

Figure 72. Blender Logo
Blender is a 3D modeling program used by artists, video game

developers, 3D printing enthusiasts, professional engineers, and more. Blender’s
main selling point is that it has a vertical slice of everything that somebody would
need when 3D modeling, including modeling, rigging, and rendering. It is under
the GNU General Public License (GPL), making it available for us to use during
this project.

Although we will not be using the animation or rigging aspects of blender,
we will be taking advantage of it to create a 3D model of what the case for our
system will look like. Once this 3D model is finished, we will export it to Cura.
[1]
Cura

Figure 73. Cura Logo

Cura is software specifically designed for 3D printing. How Cura works is
that it prepares models for 3D printing by converting them into a language that a

105

Group 5 Field Radio: DCV1

3D printer can understand. For example, by importing a model from Blender,
Cura is able to convert that into .gcode which can be understood by a
commercial 3D printer as instructions for how to print the aforementioned model.
This is both extremely useful and extremely necessary for us to be able to print
our 3D model of our system’s case, as Blender itself does not directly support 3D
printing and does necessitate the use of external software. Cura does allow use
of a stripped-down version of itself for free which will be more than enough for
our purposes since our case will essentially just be a rectangular prism with
some mounting holes. [58] [59]

106

Group 5 Field Radio: DCV1

5. Integration (10-15 Pages)

5.1 Overall Integration
EMI is a significant integration challenge to minimize EMI on all pcb

shielding will be liberally used since shields are cheap. The plan is to 3d print the
casing and use off the shelf hardware to fasten everything together. The plan is
to get the actual functionality running outside of the enclosure. So firstly we will
test the SDR without any additional components to make sure we can modulate
and demodulate while directly streaming to the pi. From there we will test the
output when directly connected to the amplifiers and RF frontend without the pcb.
From there the same test will be done with an attenuator in the loop to simulate
the rf switch in the loop. Then the PCB can be ordered and full system testing
can be done. Then the enclosure will be built and the final testing will be done.

5.2 PCB Design
One thing that was important to consider when designing the PCB was

EMI the generally accepted standard is 1/17 the minimum wavelength is a good
maximum trace length. We want the maximum frequency to be 900MHz which
gives a minimum wavelength of .33m which equates to a desired maximum
trace width for rf routes of 0.0195m. This is to prevent self interference and
distortion. So for the design of the PCB the trace width was carefully considered
for tracks that matter. This restriction was less important for the RX path so that
is the longer trace.

Another thing to consider was connectors to and from the board for this
project since the board itself need not be hot swappable the connectors will be
soldered on. However the connectors that go to hot swappable components will
also be soldered to latching jumpers. This will be matched by easily swappable
connectors soldered to the amplifier. Lastly the actual RF connector was chosen
to be high quality SMA with adequate frequency range.

The size was another limitation on the board; the board should not be
wider than the desired screen size and as stated in the next section the
components at least for this iteration were not chosen for small footprints.
Because of this the pcb was designed to not exceed the width of the screen.
Another physical characteristic we accounted for in PCB integration was
mounting. M3 mounting holes were placed in each corner to account for this.

Component size was chosen based on necessity and ease of installation.
Although the plan is to use a solder mask and reflow the entire board the
minimum resistor size was chosen to be 0603 to be easily manageable. The
capacitor size was chosen to generally be 0805 for larger capacitances in power
filters and 0603 for smaller decoupling caps. The inductors were chosen to have
appropriate saturation currents, dc resistances and shielding first so they came
or to be rather large.

107

Group 5 Field Radio: DCV1

Another thing we needed to consider when designing the pcb was heat
dissipation. Although the mosfets will have a low on resistance the PSU will still
get hot at maximum heat draw for this reason extra thermal relief vias were
added under the regulator ics. The heat vias were connected to large ground
planes providing adequate heat dissipation and thermal mass.

For this first design the SMA connectors chosen were designed to be
vertical facing. This will allow for easier testing. However SMA connectors
generally use a similar if not the same footprint so it should be easy to find right
angle connectors to save size in the final iteration with no redesign required.
When the PCB is fully tested a second iteration may be built to account for size
constraints and final implementation.

The last challenge in the pcb design was the RF switches which are
designed to have an output impedance of 50 ohm. Because the frequency is
relatively low even at 900 Mhz the impedance wont be high enough to be 50
ohm. Because of this the track was just designed to be short so as to not add
extra impedance on top of the 50 ohm SMA interconnects. The track lengths of
the RF section were designed to be short and rules of thumb were used for
layout. These PCB design techniques should be adequate for our RF frequencies
and purposes but after testing a second iteration may be necessary.

108

Group 5 Field Radio: DCV1

Figure 75. PCB Front and Back

109

Group 5 Field Radio: DCV1

5.3 Overall System Testing

5.3.1 Test Configuration/Environment
The project was primarily tested in a live laboratory environment within the
University of Central Florida, in which we utilized many resources provided to us
by the University such as Tektronix Oscilloscopes, Tektronix Dual Arbitrary
Function Generators, Keithley 2230-30-1 Triple Channel Power Supplies, and
Tektronix DMM 4050 Digital Multimeters. This lab was accessible at any time via
an electronic door lock that all senior design students were given unlock access
to. This lab also featured SMD Rework stations, Soldering and desoldering
stations and digital microscope inspection sections that were provided with
supplies such as jumper cables, electrical alligator clips and other basic
necessities commonly associated with the equipment being provided. The
equipment provided such as the Tektronix oscilloscopes were verified for their
accuracy and functionality. Within this lab we set-up and tested all of our RF
Amplifiers, individual parts as well as we will assemble our PCB as this lab also
provides other instruments such as a reflow/infrared oven for the soldering of
surface mount components.
Some such testing we were able to do was to utilize the soldering station
provided by the university to set up our initial testing environment such as putting
live wires to Vin and GND to be able to utilize the RF filters and amplifiers that
were previously discussed. One such example is shown below such as the 900
MHz RF Filter utilized in such manner to be able to be given power from the
Keithley triple channel power supply in an easy manner for ease of use and
testing:

Figure 76. 900MHz RF Filter Environment Preparation

110

Group 5 Field Radio: DCV1

We then had to prepare our testing environment with another radio in order to
ensure we can produce a similar environment for testing these components to
our actual radio environment. For this, we chose to use the Icom T2H handheld
radio for signal generation connected to an antenna then received by another
antenna utilizing an SMA to BNC connection connected to an oscilloscope. This
was able to let us test the effect of the LNA without needing a low power UHF
frequency generator. This method was also used to test the other amplifiers in
and outside of their relevant bands. A picture of this general testing setup is
shown below.

Figure 77. SMA to BNC connection

As we can utilize a very similar setup for all of our filters and amplifiers, we
can utilize this testing environment to simulate a similar response out of our
ICOM radio comparable to our actual finished product. Pictured within the above
picture is the low noise amplifier, showing that we are able to utilize this
connection regardless of the type of filter as the RF filter pictured above has the
same connector. The input power can also be controlled by measuring with an rf
meter at different distances from the filter attachment when the PTT is on.
Showing the controllable power capabilities.

5.3.1 Part Testing

Speaker Testing

111

Group 5 Field Radio: DCV1

Figure 79. Speaker and Raspberry Pi [11]

Objective: The speaker will be tested for audio clipping, support for Linux
devices, support for Windows devices, output volume, and overall audio quality.

Environment: The Speaker was tested in the Radio Room at UCF in the back of
the SD lab. It was connected to a Raspberry Pi running Raspberry Pi OS Lite, as
well as a desktop computer from the SD lab running Windows 10.

Procedure:

1. Solder speaker connections
2. Connect to Raspberry Pi
3. Attempt to output audio
4. Connect to Windows PC
5. Attempt to output audio

Conclusion:

To test the speaker we had to solder the connections from the speaker’s
board to the speaker ourselves. This involved using the soldering iron in the
Senior Design Lab. The speaker system we bought comes with both a left and
right speaker, but for the purposes of testing we only soldered one speaker to our
system.

We were unable to output audio through the Raspberry Pi as we had not
figured out how to output audio through Raspberry Pi OS Lite at the time of
testing. By connecting the speaker to one of the desktop computers at the Senior
Design Lab, we were able to make it output audio from a youtube video. One of
the problems we ran into was that when the speaker’s volume dial was dialed
past the halfway point, the audio would begin to stutter and cut out. When dialed
even further past the halfway point, it began making a chirping sound similar to a
fire alarm. This issue was difficult to troubleshoot.

112

Group 5 Field Radio: DCV1

After connecting the speaker to multiple systems, we noticed that the point
at which it began to chirp changed based on which laptop it was connected to.
On all platforms the speaker was still loud enough to hear at the points before the
chirping began. Due to this, we plan to simply ignore this problem as it does not
merit buying a different speaker as that would cost more money and take up
more space than this one does.

Microphone Testing

Objective: The microphone will be tested for audio clipping, support for Linux
devices, support for Windows devices, input volume, and overall audio quality.

Environment: The microphone was tested in the Radio Room at UCF in the back
of the SD lab. It was connected to a Raspberry Pi running Raspberry Pi OS Lite,
as well as a desktop computer from the SD lab running Windows 10. At the time
the room was quiet and there was little echo at the volumes we were speaking
during testing.

Procedure:

1. Connect to Raspberry Pi
2. Attempt to record audio
3. Connect to Windows PC
4. Attempt to record audio
5. Connect a different microphone to a Windows PC
6. Attempt to record audio
7. Compare audio recordings

Conclusion:

The microphone that we were testing connects to a USB 2.0 port and is
supported by both Linux and Window devices. Testing this device involved no
breadboarding or soldering as it only had to be plugged into a working system.

Once again we were unable to measure audio being inputted to the
Raspberry Pi as Raspberry Pi OS Lite as there was no transmission medium
available to indicate success. Additionally, installing the drivers to have the
device work on Linux devices was difficult to do over an SSH connection.
Because of this, we decided to test the microphone by connecting it to a
Windows computer.

Once we devices to test on a Windows computer, drivers became an issue
again. Windows had attempted to recognize the device and automatically install
drivers to support the device, but the drivers that Windows installed were not
compatible with the device. Troubleshooting this took a while, and we ended up
having to manually uninstall the drivers that Windows installed and going to the
manufacturers website to install the drivers on our own. Once that was done, we
were able to reset the computer and test out the microphone using Audacity.

113

Group 5 Field Radio: DCV1

We compared the performance of the microphone to that of the built-in
microphone in one of our laptops. The top waveform corresponds to the laptop
microphone, while the bottom corresponds with the USB microphone. When
speaking at the same volume in the same environment we noticed that the USB
microphone is a lot more sensitive, and is more susceptible to noise overall.
Additionally, when speaking loudly we often ran into issues related to audio
clipping. Due to the nature of the device and the limited resolution of audio
transmitted over amateur radio bands, this clipping has been deemed acceptable
and we have decided that the microphone we chose is still good enough.

Figure 80. Laptop Microphone

Figure 81. USB Microphone

RF Component Testing

Each component in the RF system must be tested to ensure it meets the
requirement specifications and the FCC standard and constraints. To ensure this,
each component must have a testing protocol tailored to its purpose.

Amplifier Testing

Each external amplifier will be tested with an oscilloscope to check for noise
sidebands and EMI.

The Power Amps will be tested at different voltage inputs with an RF meter to
find the power output vs input voltage curve that can be applied to correct the
readings later.

Antenna Testing

Objective: The Antenna will be Tested for VSWR, output power vs absorption,
and heat dissipation.

114

Group 5 Field Radio: DCV1

Environment: The Antenna will be Tested in the Radio Room at UCF in the back
of the SD lab a nano VNA will be used for VSWR and an RF power meter to test
output power. And an ICOM radio with controllable output power was used for
power and transmission testing.

Procedure:

1. The antenna will be tested with a portable RF meter to see transmitted vs
absorbed power.

2. The Antenna will be tested with a VNA to see that it meets impedance and
VSWR characteristics.

3. Lastly the Antenna will have 5 Watts of RF power pumped into it at each
band separately to ensure the heat is properly managed.

SDR Testing

Objective: The output of the SDR will be tested with an Oscilloscope to ensure
high frequency harmonics are present on the output.

Environment: The SD Lab was used with a Raspberry pi 3 running Raspberry pi
os and 5Gsps Oscilloscope and a Laptop running windows 11. For the SDR the
Lime Mini has not shipped so the equivalent full size LimeSDR was used for this
test.

Procedure:

1. The LimeSDR was attached to the Windows 11 laptop and Lime Suite
Was installed. The connection was then tested to ensure the SDR was
working properly.

2. The LimeSDR was then connected to the Raspberry Pi Lime Suite was
installed and connected to the LimeSDR

3. Test output waveforms were then uploaded to the SDR in a loopback
configuration.

4. The same Test Files were played again with the SDR connected to the
oscilloscope to test for high frequency harmonics.

Conclusion:

The Lime SDR was unable to connect to the Windows 11 laptop due to driver
issues. So the LimeSDR was then connected to the Raspberry which
successfully verified the LimeSDR was working. From there the loopback test
was attempted but the LimeSDR crashed while updating; will be attempted again.

SDR connection Testing

Objective: the LimeSuite Quick test will be run on the raspberry pi to ensure the
LimeSuite SDK works on the Pi and the USB port can properly communicate.

115

Group 5 Field Radio: DCV1

Environment: A raspberry Pi 3b will be connected to the LimeSDR and the
loopback test will be done from the LimeSuite documentation.

Procedure:

1. The LimeSDR will be connected and the firmware will be upgraded using
Limesuite.

2. The given configuration file will be loaded into setting the RF switched to
loop back the SDR.

3. The Given play file is transmitted through loopback an an FFT is
measured

Conclusion: the following output was shown on the Raspberry Pi showing an FFT
that closely matches the result expected by the documentation proving the SDRs
functionality in multiple modes.

Figure 82. LimeSDR connection and loopback test.

116

Group 5 Field Radio: DCV1

6. Administration (5-10 pages)

6.1 Milestone Discussion
For this project we are restricted due to both due dates imposed on us by

UCF/ABET, and due dates imposed on us by our sponsor. Because of this, we
have to make sure we weigh the priority of different tasks to ensure that we are
able to meet the due dates for both of our stakeholders.

These timelines account for mandatory due dates of when things have to
be turned in, and progress based due dates which would serve as a good sign of
whether or not we are making enough progress on the project to finish on time.
The overall time should roughly follow these diagrams, leaving a large amount of
time for integration and unpredictable challenges.

Figure 83. Timeline Legend

ABET Timeline

Figure 84. ABET Timeline

Radio club timeline

Figure 85. ARC@UCF Timeline

117

Group 5 Field Radio: DCV1

Combined Timeline

Figure 86. Comprehensive Timeline

During the entirety of Senior Design 1 we were able to meet most of the
deadlines provided to us with the exception of one due to the shipment of some
of our components being delayed. In order to achieve this, we followed strict
weekly meeting times consisting of a virtual meeting on Tuesdays and Thursdays
ranging from one to four hours per session. Depending on if we experienced any
stumbling blocks throughout the phases of the project or not, a meeting on
Saturday or Sunday was expected to catch up on any work that we are falling
behind on. By following the timeline set forth by the administration (depicted
above) and ourselves (Section 3.2.10: Software/Hardware Standards), we rarely
found ourselves working at the last minute. Meetings that landed on the day on
or before the submission deadline were spent reviewing and editing the
document, ensuring that we are meeting page requirements and that our
document is of professional quality.

As we reach the end of Senior Design 1, we have already entered the
prototyping phase of the project and are ahead of schedule for Senior Design 2.
We are planning to spend the time between the end of Senior Design 1 and the
beginning of Senior Design 2 reviewing what we have done as of yet, completing
the majority of our final PCB design, and integrating most of our components to
the embedded system. Currently, we do not foresee any circumstances where
the project cannot be completed and are confident that we will be able to meet all
the milestones presented to us during Senior Design 2.

Since the second semester of the project requires hands-on assembly and
testing, our usual meeting format cannot suffice and we will have to adjust
accordingly. To counteract this we will be utilizing the facilities at the University of
Central Florida and our homes to conduct meetings. There are expected to be
situations where one or more team members are not able to meet in person
during these times, so we will have an active voice chat and a team member
recording all necessary information to ensure that everyone stays up to date with
the current development progress.

118

Group 5 Field Radio: DCV1

6.2 Budget and Finance Discussion
The Club Faculty Advisor of ARC@UCF and CECS computer cluster

researcher, Steven Dick, will be sponsoring this project on behalf of ARC@UCF
as well as providing access to their laboratory and tools they have available. In
addition, Steven will be doing his part to provide as many of the materials as
possible so that we would not have to spend as much money. Steven set our
development costs at around $500-$700, most of which would go towards the
LimeSDR Mini and the Raspberry Pi Zero 2W. This budget excludes additional
accessories such as GPS that can be implemented as a hardware extension.

Due to supply chain issues, we have had trouble ordering the LimeSDR
Mini, as well as the Raspberry Pi Zero 2W, which are the most important as well
as most expensive parts of our system. To get around this, we have been using a
full LimeSDR, as well as a Raspberry Pi 3. This cut hundreds of dollars off of our
development costs, and allowed us to come significantly under budget when
selecting parts. In regards to the rest of the products we ordered, the list of
products we ordered was approved by our sponsor since it was well under the
$700 spending limit set on us at the beginning of Senior Design 1.

The Bill of Materials outlined below shows every component that we have
ordered and plan on using in our project design. Additionally, we have a separate
column for what the costs would be when these parts are ordered at a larger
scale (1000+). Note that some of these parts are to be used purely during
development, such as the LimeSDR, and will be replaced later on with different
parts, such as the LimeSDR Mini.

Development costs are not an aspect of this design that we have to worry
very much about, as our sponsor is going to keep any parts we ordered after the
prototype is done, so no components will be tossed out.

Production costs are an important factor to consider when designing our
project. Part of the intent behind this project was to make an open-source SDR
radio which an average amateur radio enthusiast could easily reproduce on their
own. Because of this, if any of the parts that we ordered were prohibitively
expensive, it would defeat the purpose of our project. Our budget for production
costs comes in at around $300-$500, so the estimated total price of our parts
when ordered at a large scale must be within $500. Researching, we found that
radios that generally perform similar functions to our SDR radio are significantly
more expensive, often in the $5000 range. This means that the system we are
designing would significantly lower the monetary barrier to entry for this specific
part of the amateur radio hobby.

Keeping track of how much we were spending was important to our
sponsor because everything that we were ordering was being paid for directly by
their personal checking account. Because of this, we kept a thorough list of
everything that we needed and we had the sponsor themselves order the parts
and send them to us after they had looked at our list of required components and
approved them. This allowed them to give us any suggestions if they believed
that a specific component was overpriced or if we had chosen a component
which they have had previous negative experiences with.

119

Group 5 Field Radio: DCV1

Overall, it was relatively easy to meet the financial constraints imposed on
us by our sponsor. The development costs came up hundreds of dollars under
budget due to supply chain issues preventing us from getting what we even
wanted, and the amount allocated for production costs was a generous estimate.
As this product is further developed after our share of development, I can see the
production costs lowering significantly, especially if some kind of deal could be
made with the producers of the LimeSDR, as the LimeSDR is the main
expenditure. Alternatively, this product could be sold as an add-on kit with
everything except the LimeSDR, and likely come in at easily under $100.

Component Description Quantity Vendor(s) Estimated
Cost

LimeSDR
Mini

Software
defined radio
component,
primary core
of SDR radio

1
Limemicro
LLC

$199

Raspberry Pi
Zero 2 W

Embedded
Control CPU

1 iUniker
(Amazon)

$10

144MHz
Amplifier

Radio
Frequency
Amplifier

1 eBay $20

433MHz
Amplifier

Radio
Frequency
Amplifier

1 eBay $12

Antenna SMA antenna
for required
bands

1 Luiton $20

Touchscreen
Display

Resistive
based water
resistant HUD
for user to
interact

1 JniTyOpt $30

Speaker Multipurpose
speaker(s) for
signal
production

1 Degraw $12

Microphone Multipurpose 1 KISEER $10

120

Group 5 Field Radio: DCV1

microphone

Battery/Batter
y Controller

Battery and
casing
system
capable of
supporting
power to
system

4 Mab $7.49

Battery
Charger

Charges
batteries

1 EBL $7.99

Battery Case Holds
batteries

2 Digikey $6.35

Waterproof
Casing

Protection of
radio system
and casing,
3D printed

1 - $20

Gasket Sealant for
waterproof
casing in
case PLA is
used

1 - $12

MCP3008 8 Channel 10
Bit SAR ADC

1 Digikey/AdaFr
uit

$3.50

USB Hub 4-Port USB
Hub to
support
multiple USB
devices

1 Degraw $7

Miscellaneou
s

Electronic
components
(Resistors,
Capacitors,
etc)

- Mouser,
Digikey, Etc

~$10

Total
Estimated
Cost

$395.50

Table 20. Estimated Cost Table

121

Group 5 Field Radio: DCV1

6.3 Safety Precautions
Safety is one of our most important concerns when designing the project.

As opposed to some senior design projects where the goal is to simply produce a
device solely for the final demonstration, our project is going to be taken by the
Amateur Radio Club and developed further. When they obtain the device, it must
be functional and designed in a way where the device cannot cause any bodily
harm to the user.

As stated multiple times throughout the project, the main component that
is a safety hazard is the lithium-ion battery cells. There are several procedures
we will undergo in order to inspect the quality of the lithium-ion battery cells
before we turn them over to the Amateur Radio Club including: delivering the
product with discharged batteries or advising them that there is charge in the
device, providing new batteries that we did not prototype with, and ensure they
are aware of proper lithium-ion battery disposal practices. By doing these tasks
as well as any other standard procedures we mitigate the risk of injury and limit
developer responsibility.

There are many things the user can do to safely use and ensure that the
portable software defined radio will last long. First and foremost, as with all
electronics, regular maintenance should be performed on the device including:
regularly charging the battery cells with either a reputable charger or the one
provided, removing any dust and debris from the crevices and speaker system,
periodically checking cables and connections. Aside from general maintenance,
the user is expected to store the device in a cool/humidity-free environment,
avoid extreme weather conditions and large bodies of water if possible, and
never use harsh chemicals on or near the device. It is also recommended but
not necessary to use gloves and protective eyewear while working on the
internals of the radio.

6.4 Troubleshooting
While developing the device we thought to consider some potential

problems which might occur during development. A common problem during
development is misattribution of errors to sources, so we decided to create a
table to help associate common problems with common solutions. By making
this, during development we will more easily be able to prevent ourselves from
getting stuck because we think something is causing a problem when it is
actually something else causing the problem. This allows for effective
troubleshooting while at the same time helping accomplish the open source
goals.

The general approach to solving an undefined Problem will be to first
isolate the problem as much as possible. Then find all the relevant modules/
components. Then to check the relevant input of the component. Relevant input
in the broad sense meaning any system that directly influences the performance
or functionality, This could be something like the connections, the Power or the
Logic. From here if a faulty input is not discovered the system itself will be

122

Group 5 Field Radio: DCV1

isolated and tested with a working system to ensure functionality. If this does not
show attempts to diagnose a problem with this general approach will be applied
on the system itself. Recurrently iterating until the problem cause is discovered or
a fault component that can be replaced is found. If this system does not work
most likely the module itself has issues with multiple interactions and needs to be
fully replaced.

Problem Solution

Touchscreen wont turn on ● Check Power connection
● Check HDMI connection

Submerged Device ● Immediately shut down device and
place in an electronics safe water
absorbing material

Low Audio Quality
Distortion
Hissing or Whistling
Humming
Clicking, Buzzing or Pops

● Check speakers for dust and debris
● Search for stronger signal
● Make sure you are connected to one

signal
● Refer to Battery Malfunctions below
● Refer to Poor Signal Below

No audio Output ● Check 3.5mm cable connection
● Check power connection
● Make sure system is not on mute or is

set to a low volume

Corrupted Memory ● Eject and factory reset the microSD
card. Reinstall Raspberry Pi OS as
well as the SDR software and any
necessary drivers.

Battery Quickly Loses Charge
Battery Malfunctions
Device Wont Turn On

● Check discharged voltage of the
battery cells to make sure they are not
dead

● Check charged voltage to ensure
battery cells are functioning properly

● Replace batteries
● Charge Batteries

Poor Signal ● Make sure the signal is not impeded by
walls, hills, structures, or mountains.

● Set antenna vertical
● Tighten Antenna

Table 21. Troubleshooting Table

123

Group 5 Field Radio: DCV1

7. Conclusion
When this project first started, we were confident that everything would go

smoothly as we were doing a funded project via the Amateur Radio Club. As we
are nearing the end of Senior Design 1 we can confidently say that although
there were some unforeseen circumstances that we will discuss later, we were
able to design a portable software defined radio with minimal setbacks.

The requirements that the Amateur Radio Club have set for their device
were fairly standard when compared to similar products available on the market
today. These features included: casual listening to frequencies on multiple
bands, a battery life that lasts for several hours, a display and control system to
access features, T/R functionality so a single antenna can be used, 5W of
transmission power on specific bands, and finally an open source design that is
fully programmable from either a laptop or desktop. Similarly, there were optional
features of the device that we could implement at our discretion as the expected
project timeline as described by the sponsor stated that they planned to utilize
two separate Senior Design 1 and 2 sessions so that they could implement
additional features as well as perfect the system design. Alongside their list of
optional features, we also had the opportunity to propose alternative system
designs and features we thought would be beneficial to either the lifespan of the
device or the end user's experience. These features included: GPS support, a
touch screen module, a waterfall display/panadapter, data storage, internal
battery charging and battery level indicator, expandable communication
capabilities such as bluetooth and usb interfacing, and waterproofing measures.

Upon reviewing these requirements we decided on several features that
we would support in the initial design of the device. The main features that
comprise our portable software defined radio are: a touch screen and inputs to
control both the hardware and software components, a LimeSDR to receive radio
transmissions, a suitable amplifier, an integrated power system, and the
Raspberry Pi Zero 2W for the embedded system to tie in all our components.
Although we do not have any materials or modules to support GPS,
waterproofing, or the panadapter, we will try to implement low cost solutions after
the device is in an operational state.

While researching the necessary components we needed to design our
portable software defined radio based on the requirements set forth, we had to
keep several circumstances in mind. The most important drawback to our project
is that with the budget that the Amateur Radio Club provided for prototyping and
development we needed to order parts in varying quantities so that our
construction of the device will not be hindered by having a crucial component
malfunctioning, getting destroyed in prototyping, or being dead on arrival; and
this would consume a vast majority of our budget. Not only would buying several
units of the same component hinder us, we are currently in a semiconductor
shortage. Due to this, there is a limited availability of components and many
components are no longer in production. There were several times we had to
purchase a part from a third-party retailer and the prices were inflated to several
times of the original market prices.

124

Group 5 Field Radio: DCV1

When we first started this project, we were all confident in our capabilities
as engineers to complete the assignment and meet the expectations of our
sponsors and advisors. As such, we delegated the workload at the beginning of
the project based on the skills that each person held and adjusted assigned tasks
whenever necessary. Since all project team members have a general idea of
what professional field we would like to enter post-graduation, we did not assign
any tasks to an individual with the goal of strengthening their weaknesses. For
example, those who are to work with electrical hardware will be doing minimal
programming and those who are to be software oriented won’t develop core
hardware solutions. Instead, we delegated assignments based on the
individual's strengths in order to develop the best product we could as well as to
hone in on our skills in our desired fields.

Due to our open source design, we have decided to select programming
languages that either already have massive community
engagement/documentation or can be learned relatively easily so that the
average person can start their amateur radio experience. Out of all the
languages that are available to us, we have chosen python to be the core of our
software program as it has the easiest syntax, smallest learning curve, and one
of the largest active communities out of all the programming languages.
Although we intended to create most of our program in the python language, we
have to use more complex languages such as C/C++ in order to communicate
with the radio receiver module. Despite this, users are not expected to change
the source code we have as we will provide most of the functionality a basic user
would need; alongside this, the more experienced user should have the skills and
knowledge to edit the integration code with the aid of online documentation.

For prototyping we were able to verify multiple system modules. Firstly we
showed the LimeSDR’s functionality with a loopback test we were also able to
confirm the LimeSDK works with the Pi because the LimeSuite tool uses that
specific SDK. from here we also verified the functionality of the PI for the
Following: Firstly the communication with the LimeSDR was verified through the
API in the loopback test. Next the communication with the Screen was verified
through the HDMI and touch screen test. Lastly the functionality of the amplifiers
was partially tested with the attenuators test.

The first iteration of the PCB was designed to match the requirements and
specification given in the design section. The RF section was given adequate
isolation and shielding for the required bands. The power supply traces were
designed to provide the maximum required current continuously. Adequate heat
dissipation was accounted for for all components with issues. This board should
more than meet the design specifications however if needed additional iterations
are a possibility.

During our research and prototyping phases this semester, we have
identified some challenges that we might run into during the development portion
of Senior Design 2. While prototyping the LimeSDR receiver and Raspberry Pi
Zero, we found that the drivers given to us might not support everything that we
had hoped to complete from the requirements list. Due to this, we will have to
create either our own drivers or an additional driver interface that is able to

125

Group 5 Field Radio: DCV1

communicate with the pre-existing drivers so that we can get the best input
signals. We also might have to upgrade the embedded system we are using to a
more robust model such as a Raspberry Pi model 3 B+ or a BananaPI since the
one we are currently designing our device around comes with very limited
resources and Input/Output options.

On the hardware side, we will run into efficiency and power issues in the
beginning but after identifying the problems on the first iteration of the PCB we
will be able to solve them. Primarily, we are trying to reach a goal that consists of
the battery life for the device lasting at least five to six hours. Standard 18650
lithium–ion batteries come in a variety of milliamp hour capacities and a simple
battery upgrade could suffice, but since we have not recorded the power draw of
the full system at maximum performance we will not know how much of a power
difference we will need to compensate for. The RF components of the radio
receiver system will also generate a tremendous amount of heat energy that we
will not experience throughout the short periods of use during testing. We will
have to wait until we have reached considerable progress in our development to
see how much heat is generated and if it has the ability to affect the performance
of the neighboring components.

Throughout the development of our project there have been multiple
instances where we have considered what additional impacts our device will
have to the amateur and hobbyist radio communities. As of right now our
projected impacts can be condensed into three categories: social, political, and
environmental.

For our social impact we expect that our product will be used and
maintained by the Amateur Radio Club and that they will produce more devices
to be used by radio enthusiasts. Since we also offer a modular, open source
design, we also intend to draw in users that have no prior interest in radios. They
are able to pick and choose what features are a part of their device and can add
software functionality as needed so the possibilities are endless. Our device
features an Embedded System capable of running many different operating
systems and is able to connect to the internet via WIFI; so users could even
create an entire computer system with a fully integrated radio onboard.

Since we are making a device that has similar products already available
on the market we had to create selling points that would make our portable
software defined radio more attractive to the Amateur Radio Club than the option
of already buying a prebuilt system for their applications. Our product is expected
to cost considerably less than the standard portable software defined radio and
should have a growing user base. If the Amateur Radio Club decides to market
the device there is the potential that other companies might take notice of the
product and produce a device that shares our open source design. The
companies we chose our components from might also restrict us from purchasing
large quantities of their items; which will result in a redesign of our device with
new components.

Our software defined radio has the potential to last years if properly
maintained and as such, it will have very little negative impact on the
environment. Users are expected to charge the provided lithium-ion battery cells

126

Group 5 Field Radio: DCV1

and dispose of them at an approved electronic materials recycling center after
about 300-500 recharge cycles where the battery cells will be deconstructed and
all usable parts will be sent back into production. Similarly the components we
chose came from reputable suppliers and are also expected to have a long life.
For minor components such as the microphone, one with superior quality can be
chosen prior to assembly to increase performance and overall device life.

127

Group 5 Field Radio: DCV1

8. Appendix
Works Cited

[1] “About — blender.org.” Blender, https://www.blender.org/about/. Accessed 25

April 2022.

[2] “AD603 Voltage Adjustable Gain Amplifier.” https://ebay.to/3MYfD7L.

[3] “Adafruit I2S MEMS Microphone Breakout.” Adafruit Industries,

https://www.adafruit.com/product/3421. Accessed 9 April 2022.

[4] “Balun One Nine v1 - Tiny Low-Cost 1:9 HF Antenna Balun and Unun with

Antenna Input Protection.” Amazon.com,

https://www.amazon.com/NooElec-Balun-One-Nine-Applications/dp/B00R

09WHT6/ref=psdc_667846011_t3_B01N2NJSGV. Accessed 9 April 2022.

[5] “BK-18650-PC4 MPD.” Digikey,

https://www.digikey.com/en/products/detail/mpd-memory-protection-device

s/BK-18650-PC4/2330513. Accessed 9 April 2022.

[6] Brooks, Emilie. “Lithium Extraction Environmental Impact.” Eco Jungle, 31

December 2021,

https://ecojungle.net/post/lithium-extraction-environmental-impact/.

Accessed 9 April 2022.

[7] “CaribouLite RPi HAT.” Crowd Supply,

https://www.crowdsupply.com/cariboulabs/cariboulite-rpi-hat. Accessed 26

April 2022.

[8] “CEA 861-F-2013 (ANSI) - A DTV Profile for Uncompressed High Speed

Digital Interfaces.” ANSI Webstore,

128

Group 5 Field Radio: DCV1

https://webstore.ansi.org/standards/cea/cea8612013ansi. Accessed 9

April 2022.

[9] “CHASDI Omnidirectional 3.5mm Dongle Microphone.”

https://www.amazon.com/CHASDI-Omnidirectional-Microphone-Controller

-Mirrorless/dp/B07QJ9KDGS/.

[10] “COBOL Report Apr60.” Wikimedia Commons,

https://en.wikipedia.org/wiki/File:COBOL_Report_Apr60.djvu. Accessed

25 April 2022.

[11] “Degraw DIY Speaker Kit.” Amazon.com,

https://www.amazon.com/Degraw-DIY-Speaker-Kit-Amplifier/dp/B07CRVR

G83/. Accessed 10 April 2022.

[12] “Design and Analysis of a Continuously Tunable Low Noise Amplifier for

Software Defined Radio.”

https://www.researchgate.net/publication/331735915_Design_and_Analysi

s_of_a_Continuously_Tunable_Low_Noise_Amplifier_for_Software_Defin

ed_Radio.

[13] “Diamond HT Antenna 2m/70cm, BNC, 15in.” Amazon.com,

https://www.amazon.com/Bundle-Diamond-Antenna-Guides-Reference/dp

/B00WOLPBSO/. Accessed 9 April 2022.

[14] “DIY Bluetooth Speaker Box Kit.”

https://www.amazon.com/Bluetooth-Speaker-Electronic-Sound-Amplifier/d

p/B0871G4166/.

129

Group 5 Field Radio: DCV1

[15] “DSP-Driven Self-Tuning of RF Circuits for Process-Induced Performance

Variability.” DSP-Driven Self-Tuning of RF Circuits for Process-Induced

Performance Variability.

[16] “Enable Embedded Mode.” Microsoft Docs, 4 October 2021,

https://docs.microsoft.com/en-us/windows/iot/iot-enterprise/os-features/em

bedded-mode. Accessed 26 April 2022.

[17] “433MHz RF Bandpass Filter Module PCB Double Sided Board BPF Module

Electronic.” ebay,

https://www.ebay.com/itm/313811380030?hash=item49109da73e:g:LmQA

AOSw8IFhy~5v.

[18] “Geekstory BN-880 GPS Module.”

https://www.amazon.com/Geekstory-Navigation-Raspberry-Aircraft-Contro

ller/dp/B078Y6323W/.

[19] “Geekstory BN-880 GPS Module U8 with Flash HMC5883L Compass + GPS

Active Antenna Support GPS Glonass Beidou Car Navigation for Arduino

Raspberry Pi Aircraft Pixhawk APM Flight Controller.” Amazon.com,

https://www.amazon.com/Geekstory-Navigation-Raspberry-Aircraft-Contro

ller/dp/B078Y6323W. Accessed 26 April 2022.

[20] “GPS Module GPS NEO-6M.”

https://www.amazon.com/Microcontroller-Compatible-Sensitivity-Navigatio

n-Positioning/dp/B07P8YMVNT/.

[21] “Ham Radio History.” ARRL, http://www.arrl.org/ham-radio-history. Accessed

9 April 2022.

130

Group 5 Field Radio: DCV1

[22] “HDMI Audio Extractor.” Amazon.com,

https://www.amazon.com/Extractor-Converter-Adapter-Splitter-Compatabl

e/dp/B084RN22MW/. Accessed 9 April 2022.

[23] “HDSDR - Screenshots.” hdsdr, http://www.hdsdr.de/screenshots.html.

Accessed 9 April 2022.

[24] “HiLetgo 0.1-2000MHz RF WideBand Amplifier 30dB High Gain Low Noise

LNA Amplifier.” Amazon.com,

https://www.amazon.com/HiLetgo-0-1-2000MHz-WideBand-Amplifier-Nois

e/dp/B01N2NJSGV/. Accessed 9 April 2022.

[25] “HONKYOB USB Mini Speaker.” Amazon.com,

https://www.amazon.com/HONKYOB-Speaker-Computer-Multimedia-Note

book/dp/B075M7FHM1/. Accessed 9 April 2022.

[26] Infineon. “OPTIREG™ switcher TLS4125D0EPV50.” Infineon Technologies,

5 February 2021,

https://www.infineon.com/dgdl/Infineon-TLS4125D0EP%20V50-DataSheet

-v01_00-EN.pdf?fileId=5546d46270c4f93e01710b608b523b33. Accessed

25 April 2022.

[27] “The Invention of Radio Technology.” ThoughtCo, 10 May 2019,

https://www.thoughtco.com/invention-of-radio-1992382. Accessed 9 April

2022.

[28] “JniTyOpt 3.5 inch Display.”

https://www.amazon.com/JniTyOpt-Raspberry-Interface-Resolution-Suppo

rts/dp/B0931Z7MX5/.

131

Group 5 Field Radio: DCV1

[29] “KISEER USB 2.0 Mini Microphone.”

https://www.amazon.com/KISEER-Microphone-Desktop-Recording-YouTu

be/dp/B071WH7FC6/.

[30] “LimeSDR vs LimeSDR Mini.” Lime Microsystems,

https://limemicro.com/products/boards/limesdr-mini/. Accessed 26 April

2022.

[31] “LoveRPi 4 Port MicroUSB to USB Hub.” Amazon.com,

https://www.amazon.com/LoveRPi-MicroUSB-Port-Black-Raspberry/dp/B0

1HYJLZH6/. Accessed 9 April 2022.

[32] “Maxmoral SMA Male to Female Connector RF Coaxial Adapter.”

Amazon.com,

https://www.amazon.com/Maxmoral-Female-Connector-Coaxial-Adapter/d

p/B07239N158. Accessed 9 April 2022.

[33] “MIC Amplifier AFT09MS007NT1 NXP USA.” Digikey,

https://www.digikey.com/en/products/detail/nxp-usa-inc/AFT09MS007NT1/

4461952. Accessed 9 April 2022.

[34] “MIC Amplifier NPA1003QA.” MACOM,

https://www.macom.com/products/product-detail/NPA1003QA. Accessed 9

April 2022.

[35] “MIC Amplifier TAT7472A1F.” Qorvo,

https://www.qorvo.com/products/p/TAT7472A1F#parameters. Accessed 9

April 2022.

132

Group 5 Field Radio: DCV1

[36] “Mini HDMI Adapter.”

https://www.amazon.com/ULT-WIIQ-Standard-Aluminum-Raspberry-Camc

order/dp/B0924KF735/.

[37] “Nagoya NA-320A Triband HT Antenna 2M-1.25M-70CM (144-220-440Mhz)

Antenna SMA-Female for BTECH and BaoFeng Radios.” Amazon.com,

https://www.amazon.com/Nagoya-NA-320A-2M-1-25M-70CM-144-220-44

0Mhz-BTECH/dp/B01K10B9XK/. Accessed 9 April 2022.

[38] “NASA Technical Standard: Soldered Electrical Connections.” The NASA

Electronic Parts and Packaging Program, 18 January 2001,

https://nepp.nasa.gov/docuploads/06AA01BA-FC7E-4094-AE829CE371A

7B05D/NASA-STD-8739.3.pdf. Accessed 9 April 2022.

[39] “NEO-6 series | u-blox.” U-blox,

https://www.u-blox.com/en/product/neo-6-series. Accessed 26 April 2022.

[40] “Omega2 – Onion.” Onion.io, https://onion.io/omega2/. Accessed 26 April

2022.

[41] “Operating system images – Raspberry Pi.” RaspberryPi.com,

https://www.raspberrypi.com/software/operating-systems/. Accessed 26

April 2022.

[42]“Pimoroni Speaker pHAT.” Adafruit Industries,

https://www.adafruit.com/product/3401. Accessed 9 April 2022.

[43] “Raspberry PI OS Lite vs Desktop: comparison between the 2 distributions.”

peppe8o, https://peppe8o.com/raspberry-pi-os-lite-vs-desktop/. Accessed

26 April 2022.

133

Group 5 Field Radio: DCV1

[44] “Raspberry Pi Zero 2 W – Raspberry Pi.” RaspberryPi.com,

https://www.raspberrypi.com/products/raspberry-pi-zero-2-w/. Accessed

26 April 2022.

[45] “RF Amplifier Ultra Wideband Gain 20dB Medium Power Amplifier Board

5M-6GHz.” https://ebay.to/3CLVugK.

[46] “RF Power Amplifier 20M-512MHz 5W Linear Amplifier for FM Radio

Remote Interphone.” eBay, https://www.ebay.com/itm/174362238519.

Accessed 9 April 2022.

[47] “RS-UVPA 5W UHF/VHF Power Amp.” HobbyPCB,

https://www.hobbypcb.com/index.php/products/uhf-vhf-radio/rs-uvpa.

Accessed 9 April 2022.

[48] “SDRSharp | Amateur Radio – PEØSAT.” Amateur Radio – PEØSAT,

https://www.pe0sat.vgnet.nl/sdr/sdr-software/sdrsharp/. Accessed 9 April

2022.

[49]“6 Types of Anti Patterns to Avoid in Software Development.”

GeeksforGeeks, 15 January 2021,

https://www.geeksforgeeks.org/6-types-of-anti-patterns-to-avoid-in-softwar

e-development/. Accessed 10 April 2022.

[50]“Tangxi Mini Stereo Speaker.”

https://www.amazon.com/Tangxi-Stereo-Speaker-Pillow-Player/dp/B07SG

K8T8W/.

[51]Texas Instruments. “LM2621Low Input Voltage,Step-UpDC-DC Converter.”

November 2015,

134

Group 5 Field Radio: DCV1

https://rocelec.widen.net/view/pdf/y3iuum7fts/snvs033d.pdf?t.download=tr

ue&u=5oefqw. Accessed 10th April 2022.

[52]Texas Instruments. “TPS63070 2-V to 16-V Buck-Boost Converter With 3.6-A

Switch Current.” ti.com, Texas Instruments, March 2019,

https://www.ti.com/lit/ds/symlink/tps63070.pdf?ts=1650925377945&ref_url

=https%253A%252F%252Fwww.google.com%252F. Accessed 21st April

2022.

[53]“13 Raspberry Pi Zero Alternatives.” It's FOSS, 30 October 2020,

https://itsfoss.com/raspberry-pi-zero-alternatives/. Accessed 10 April 2022.

[54]“3D Printing with Polypropylene.” Simplify3D,

https://www.simplify3d.com/support/materials-guide/polypropylene/.

Accessed 10 April 2022.

[55]“Tips for 3D Printing with PETG.” Simplify3D,

https://www.simplify3d.com/support/materials-guide/petg/. Accessed 10

April 2022.

[56]“Tips for 3D Printing with PLA.” Simplify3D,

https://www.simplify3d.com/support/materials-guide/pla/. Accessed 10

April 2022.

[57]“UL1642 Certification of Lithium-ion Battery.” LiPol Battery's,

https://www.lipolbattery.com/UL1642_Certification_of_Lithium-ion_Battery.

html. Accessed 9 April 2022.

[58]“Ultimaker Cura: Powerful, easy-to-use 3D printing software.” Ultimaker,

https://ultimaker.com/software/ultimaker-cura. Accessed 25 April 2022.

135

Group 5 Field Radio: DCV1

[59]“Ultimate 3D Printing Materials Guide.” Simplify3D,

https://www.simplify3d.com/support/materials-guide/. Accessed 10 April

2022.

[60]“Used Lithium-Ion Batteries | US EPA.” US Environmental Protection Agency,

https://www.epa.gov/recycle/used-lithium-ion-batteries. Accessed 9 April

2022.

[61]“Vega Barebones - Ultra Low-Noise VGA Module for RF & SDR.”

https://www.amazon.com/Vega-Barebones-Low-Noise-30MHz-4000MHz-

Capability/dp/B08LNYKHSM/.

[62]“VK2828U7G5LF GPS Module.” Cytron.io,

https://www.cytron.io/p-vk2828u7g5lf-gps-module. Accessed 26 April

2022.

[63]“Walkie Talkie Antenna for Baofeng UV-5X3 Antenna Upgrade Triband HT

Antenna 144-220-440Mhz Antenna SMA-F.” Amazon.com,

https://www.amazon.com/2M-1-25M-70CM-144-220-440Mhz-SMA-Femal

e-Compatie-LUITON/dp/B0793JRVS7/. Accessed 9 April 2022.

Copyright
The following is a list of all relevant permissional requests, licensure, and

copyright needed for the completion of this project.

136

Group 5 Field Radio: DCV1

Copyright Permissions

Figure 87. LimeSDR Mini Permission

137

Group 5 Field Radio: DCV1

Figure 88. CaribouLite RPi Hat permissions

138

Group 5 Field Radio: DCV1

Figure 89. Raspberry Pi Permissions
The Banana M2 Images have an image release and an open source license:

Figure 90. Banana M2 Permissions

139

Group 5 Field Radio: DCV1

Figure 91. 3D Printing Permissions

Figure 92. Radio Permissions

Figure 93. Amplifier Permissions

140

Group 5 Field Radio: DCV1

Figure 94. Qorvo Permissions

Figure 95. NPA Permissions

141

Group 5 Field Radio: DCV1

The following general format was used for the amazon images:

Figure 96. Amazon Permissions

Python
The python programming language is a completely free open source

development tool that has no restrictions on private or commercial use. All of the
modules and add-ons that we have selected as of right now are all either part of
the GNU License, MIT License, Apache 2.0 License, or are simply just open
source and free to use to the public and companies.

Raspberry Pi
Raspberry Pi embedded systems utilize a series of licensing and

copyrights including the Creative Commons Attribution-ShareAlike 4.0/3.0
International, Creative Commons Attribution-NoDerivatives 4.0 International,
BSD 3-Clause, MIT License, and General Public License. Under these
documents, we are able to copy, share, and distribute certain files as wella s
create devices as we see fit.

LimeSDR
The LimeSDR suite of tools is open source under the Apache 2.0 License

and can support a wide range of communication standards and frequencies. The
Apache License ensures that we can develop drivers and use the LimeSDR suite
of tools without running into the issue of patent infringement. Our only restriction
from the Apache License that affects us is that we are not allowed to use the

142

