
 GoPro PTZ Tower Camera
Michael Serignese, Andre Samaroo,

Chisom Ikejiani
 Dept. of Electrical and Computer

Engineering, University of Central Florida,
Orlando, Florida, 32816-2450, USA

 Abstract — This paper presents the design of a
pan-tilt-zoom camera system that is tripod mounted in order
to provide a greater effective field of view. The goal of the
project includes realization using consumer-grade
prefabricated hardware, and therefore focuses on software
architecture and communications exchange.

 Index Terms — Cameras, 802.11n

 I. Introduction

 Commercial-grade pan-tilt-zoom (PTZ) tripod
mounted camera systems are used to capture video
from above ground level in order to maximize the
quality of the shot when recording scenes that
include sports action scenes. These cameras can be
expensive and therefore inaccessible for purchase to
general audiences. If we then examine the nature of
the camera setup, logically break down its pieces,
and rebuild the device using consumer-grade
hardware, we implement the design in a more
accessible manner.

 II. Overview of Tripod-Mounted Cameras

Tripod-mounted pan-tilt-zoom camera systems
have three key components. The key components
are as follows:

 The media capture device;
 The motor system;
 The control system.

The media capture device is responsible for
physically sampling the frames of real-world video
and audio in a digital form. The media capture device
may also be responsible for storing the video, or it
may transmit the digitally encoded signal upstream
to a separate computer system for storage, due to
limitations in storage capacity. The media capture
device is also responsible for implementing the zoom
feature of the setup, implemented either with fixed
lenses or digitally.

The motor system is responsible for moving
the media capture device to the appropriate angles,
panning and tilting as necessary in order to capture
the scene according to the operator's instructions.
The motors must be rated with an appropriate
wattage to provide the power necessary to move the
weight of the media capture device at the desired
speed. Additionally, the motor type must step in a
manner resembling continuous motion in order to
avoid vibrations that would interfere with capture
quality.

The control system is responsible for
supporting the full range of features of the device.
The control system also takes responsibility for
bringing the media capture device and the motor
system under the command of itself. The control
system connects to and sends commands to the
media capture device and the motor system that
grants user control. Furthermore, the control system
is also responsible for receiving and displaying the
video streamed from the media capture device while
also encapsulating the motor software.

III. Transformation of Commercial to Casual Parts

The media capture system is implemented with the
GoPro Hero 7 action camera. The GoPro camera is
a class of consumer audio-video recording devices
that have 802.11n wireless communications built into
the device with an onboard micro Secure Digital
(micro-SD) card. The 802.11n radio transmitter is
capable of using 5GHz or 2.4GHz frequencies, and
the maximum supported transmission bitrate is 300M
bits per second according to the specifications of
IEEE 802.11n-2009 in high throughput mode.

The micro Secure Digital card installed in the
GoPro is a microSDHC Class 10 card with a digital
throughput of 10 MB per second.

The digital video format used by the device
is H.264 (AVC1) in High Profile mode, using the
yuvj420p color profile. The digital audio format is
AAC at a bandwidth of 48000 Hz, and a bitrate of
179k bits per second. The media is encapsulated in
an MP4 container (version 4.1). When the GoPro
video stream is previewed over the wireless
interface, the media is encapsulated in the Transport
Stream (ts) format.

The motor system is implemented with two Hitec-422
servo motors, a Raspberry Pi zero W, a Sparkfun
servo HAT, aluminium mounting hardware, and a 3D
printed housing unit.

The 2 servo motors provide 2 degrees of
freedom, panning and tilting. The servos have an
operating voltage range between 4.8 and 6 volts.
The small operating voltage makes them easy to use
without a separate power source so we can reduce
the number of electrical components under the
device housing unit. They also have a current draw
between 8 and 180 mA, which is consistent with the
control boards delivering power to the servos [1].

In order to control the servos, we used a
Raspberry Pi zero W for general communication and
a Sparkfun servo HAT to easily control the servos.
The Pi uses a Broadcom BCM 43438 for wireless
communication [4]. The wireless chip is IEEE 802.11
compliant with bluetooth capabilities as well. The
Raspberry Pi has a micro-USB port for power
delivery and a second micro-USB port for data
control. However, the data port can also be used for
power. The Sparkfun servo HAT is an intermediary
device that uses a PCA 9685 pulse width modulator
to control the servos with better synchronization than
the clock built into the Raspberry Pi [2]. The servo
HAT has 16 channels for attaching servos and a
USB-C port for power. The 2 devices are connected
through the Pi’s GPIO pins so that they can share
power and data. This means that the power port on
either device can power the whole system. The
Sparkfun servo HAT also gives us access to the
Sparkfun servo library which contains simple but
useful functions for interacting with the servos.

Another part of the motor system is the
mount which includes the frame for the pan-tilt rig
and the housing unit for all the motor components.
The aluminium frame is part of a kit made specifically
for the Hitec HS-422, so the frame fits exactly and
provides the full pan and tilt function. The aluminum
frame is coated with a rust resistant paint that will
provide protection against light rain, which this
project is expected to experience [3]. The housing
unit is 3D printed from ABS plastic in the texas
instruments innovation lab. The plastic body means
that the housing unit is lightweight but sturdy. The
3D printing aspect allows us to make a custom case
that includes mounting posts for the panning servo
and a tight fit that will prevent rainwater from getting
underneath the cover.

The control systems’ software is implemented with
NodeJS, Electron, and Python. The physical control
is implemented with a wireless Xbox core controller.

NodeJS provides asynchronous event
handlers, interprocess communication, and high

quality documented libraries available to use in the
javascript language outside of the web browser. At
the core of the control system NodeJS is used to
interconnect the software of the media capture
system and the motor system asynchronously.

To create the graphical user interface of the
control system, Electron, a software framework was
used to design cross-platform graphical user
interfaces using only Javascript, HTML, and CSS.

The physical controller used to relay user
input to the control system was the Xbox core
controller. The core controller can be connected with
either USB-C or the bluetooth protocol
interchangeably. After pairing the controller can be
probed for input using the Python wrapped xinput
library, a Windows API that allows applications to
receive the output of input devices.

IV. Implementation of the Media Capture Device

The GoPro Hero 7 publicly exposes a wireless
access point with its 802.11n-capable radio
transmitter that can be associated to by an arbitrary
peer device in ad-hoc mode. The transmission is
protected by WPA2 cryptographic standards in order
to avoid malicious interference by third parties where
the device may be used in a public environment. The
wireless access point SSID and password key are
generated automatically by the GoPro device, and
can be accessed digitally using its touchscreen
interface. When a peer associates with this wireless
access point, the GoPro awaits HTTP GET requests
with a crafted URL in order to expose its
configuration settings and controls over the wireless
interface. The IP address of the GoPro is preset to
10.5.5.9. The embedded HTTP server software
responds on port 80 using the UDP protocol to
encapsulate the data payload. In order to maintain
the connection to the device, the GoPro expects a
periodic “keep-alive” datagram to arrive on UDP port
8554 every 3 seconds.

The HTTP URL structure that GET requests
are applied to is http://10.5.5.9/gp/gpControl/,
followed by unique directory parameters that
determine the type of command that is issued, and
the associated arguments. We use the Python
Requests library and a Python thread responsible for
transmission in order to open the request and
transmit the GET payload. The GoPro’s status can
be read by sending a GET to
http://10.5.5.9/gp/status. This indicates whether a

http://10.5.5.9/gp/gpControl/
http://10.5.5.9/gp/status

command executed successfully. We define the
commands using a dictionary mapping to the unique
URL associated with the command on the GoPro.
This command dictionary program acts as a driver
between the Control System and the Media Capture
device. The API is text-based pipes, so the Control
System gets a file handle for the standard input of
the GoPro driver process. By writing the names of
the commands contained by the command dictionary
on the standard input of the process, the Control
System can manage the GoPro with a large degree
of abstraction away from the details of the GoPro
device.

The Python driver program identified as GPC, for
“GoPro Control”, is organized as follows.

A. The GoPro Class

The GoPro is represented as a class GoPro. The
class does not provide methods but instead logically
represents the state and configuration settings of the
device. The fields include the Access Point (AP)
SSID ‘ap_ssid”, the AP password ‘ap_password’, the
IP address ‘ip_address’, the link-level address
“mac_address”, and the keep-alive period
‘keepalive_period’. These configurations settings are
read from the file “gpc.conf” in the working directory
of the gpc.py application using Python’s configParser
library.

Figure 1:GoPro class instance member initialization

B. The Command Classes

The commands are logically enumerated and
associated with a command string in the class
CommandEnum as unique elements.

Figure 2: Class definition and example elements

The commands are then defined in terms of their
arity, the HTTP GET URL template that manages the
functionality of the command, special command

mappings, and a field that indicates whether we want
a result returned from the GoPro.

The arity of the command, under the
dictionary key ‘arity’, describes the number of
arguments required by the command; if the
command issued does not match the arity in the
definition, the command is rejected and does not
execute in order to avoid unintended side effects on
the GoPro.

The template of the command, under the
dictionary key ‘template’, is the tail of the control URL
http://10.5.5.9/gp/gpControl, and when appended to
this control URL, with the appropriate arguments
formatted into position, and a GET request applied in
the described fashion, the GoPro command will be
carried out on the device.

The mapping of the command, under the key
‘template’, provides special transformations of the
command string input from a user-friendly format to
the raw format expected by the GoPro. An example
of this is the DEFAULT_BOOT_MODE command.
The GoPro provides media boot modes of video,
photo, and multishot, but expects ‘0’ to represent
video, ‘1’ for photo mode, and ‘2’ for multishot. We
create a mapping with an embedded dictionary so
that a command can be written “default_boot_mode
video” that automatically transforms this into an
equivalent “default_boot_mode 1”.

Finally, we determined whether the driver
returns a result using the ‘want_result’ key in the
dictionary. Many of the GoPro commands emit
results that are unnecessary for controlling the
GoPro, and instead the GET_STATUS command is
used to determine whether the GoPro device is in an
error state, or ready to begin filming.

Figure 3:

C. The Message Class

Now that a Command has been defined, we wrap
the Command in a Message class instance that
holds the command and knows how to transmit itself
to a GoPro. The Message class uses the template of
the command in its private _build_url function to
construct the final URL that constitutes the literal
GET command that the GoPro understands directly.
The transmission is performed using the Python
Requests library in Message’s send_to(gopro)
method. We take an instance of the GoPro class and
apply this method on it. The Message.send_to
method is capable of implementing synonym

http://10.5.5.9/gp/gpControl

commands that are not directly available on the
GoPro, such as GET_BATTERY_LEVEL that is
implemented in terms of an invocation of the
GET_STATUS command, and Message.send_to is
also an ideal region of code to implement
pseudocommands, such as sending a wake-on-lan
datagram that does not directly utilize the _build_url
template paradigm. After the GET is transmitted to
the GoPro, the return result can either be saved if
the “want_result” field in the Command definition is
set to true, or otherwise discarded.

The Gopro, Command, and Message classes are
tied together in the main function. The GoPro is
instantialized, reading the file from disk and then
parsing it with Python’s configParser. A daemon
thread is constructed that is responsible for sending
keep-alive packets to the GoPro’s IP address until
the termination of the program. Since the thread is
operating in Python’s daemon mode, when the main
thread terminates, the daemon thread will not
persist, and will terminate immediately. When this
preceding initialization is complete, the GPC driver
program enters an eternal loop reading from
standard input. Text that is written to its standard
input is stripped of leading and trailing whitespace,
and the class method Message.from_text() is
invoked in order to transform the input from raw text
into a Command and arguments. If the text
presented to the program is formatted correctly, the
text will parse into a Message, and the Message is
then sent to the GoPro. Desired replies are captured
and printed to standard out for processing by an
external program.

V. Implementation of the Motor System

The main function of the motor system is to
move the camera so that the operator can follow the
action. This requires the system to take control data
as input but no output data to the controller. The
Raspberry Pi takes the control data from the laptop
over wifi and sends it to the Sparkfun servo HAT
which signals the servo to move into the necessary
position. This system is the most hardware oriented
of the project but it is very simple. The main
consideration for the system components are the
power consumption and response time. The power
consumption is important because we want the
devices to operate on the same power level. If we
use a 12 volt brushless motor on a board that uses
3.3 volts, the two devices would need separate
power sources. If that were the case, we would fail to

achieve our goal of reducing the number of cables
running to the device. The response time is
important because we are live streaming the video,
so a slow response in the motor system compounds
down the pipeline to affect the stream quality.

A. Power

The two control boards, the servo HAT and the Pi,
are connected through the GPIO pins . This gives
access to both the 5 volt line for powering the servos
and the 3.3 volt line for powering the board. It also
means that we can run power to either device and
power the whole motor system. This allows more
flexibility when it comes to the type of power cable a
customer can use. Since the board uses such a low
voltage, we cannot use a standard 12 volt AC power
supply, otherwise we would burn out the control
boards as we found out by tragic error. We instead
used a 5 volt supply that was recommended by the
official Raspberry Pi website. We also have servos
that operate on a similar voltage, so we can use the
same power supply and avoid using two different
power cables. Also, the power supply comes with
either a barrel end or a micro-USB end. While the
micro-USB version would allow us to easily plug in
the cable without a barrel-to-USB adapter, the barrel
end would be better because we can use barrel
cable extenders to meet the 25 foot height of the
tripod. However, for the purposes of our
demonstration, we are using a standard tripod, so we
went with the micro-USB power adapter instead. The
final result is one power cable for the motor system.

B. WiFi

The wireless communication is what helps us reduce
the number of wires running to the project. To get the
controller and servos talking we use a wifi
connection from the Raspberry Pi. The Pi uses the
BCM 43438 to connect to a network so that it may
talk to other devices. In this instance, we are using
the wifi network from the GoPro Hero 7 since it also
connects to our laptop. The GoPro network also
gives us a stable wifi network so that we don’t have
to connect to a new source everytime we move
locations. Usually, we would write a
wpa_supplicant.conf file with the name of the
network and the password, but since we use the
same network we only need to do it once and the Pi
will use the same credentials stored in the
wpa_supplicant file. This also provides a stable
network address so that we don’t have to worry

about finding the Pi IP address on excessively large
networks such as the UCF campus wifi.

This aspect of the motor system affects
response time the most since the speed of the wifi
network dictates the data transmission. We are using
a smaller network with only our 3 systems so the wifi
speed is relatively unaffected, but the unusual setup
of the camera as the source of the wifi makes an
initial connection slow. For the motor system, there is
no significant reduction in speed, so response time
remains unaffected.

C. Servo Control

The servo 3 wire connection connects directly to the
Sparkfun servo HAT through one of the 16 servo
channels. Since we only used 2 servos, pan and tilt,
we only needed 2 channels. The servo HAT is
connected to the Pi through the GPIO pins to share
power and data easily. The Pi runs the python code
that controls the servos and the servo HAT uses the
pulse width modulator to regulate the control data.
Even though the servos can be controlled from the
GPIO pins on the Pi, the clock can be unreliable and
will affect the performance. So we use an external
pulse width modulator to regulate the signals going
to the servos. Thus we use the servo HAT.

Servos worked best for this project because
of their precision. Servos have high precision
because of the signal wire which tells the motor what
position to turn the rotor. Even if you try to manually
move the rotor, the servo will try to correct the
position until the force against the motor is greater
than its stall torque. Precision is key when controlling
the speed and position of the camera from a
distance in order to follow the action being recorded.

In code, the sparkfun servo python library
has all the functions needed to control the servos.
The functions are wrapped in the qwiic_pca9685
module for this servo HAT. It includes a
move_servo_position() function that takes the
channel on the board and the position of the rotor in
degrees as input and moves the rotor on the
corresponding channel accordingly and a
get_servo_position() function for storing a position
for later use. While the library is great on the Pi, it
really needs to communicate with the controller.

Voltage Range 4.8V - 6.0V

No-Load Speed (4.8V) 0.21sec/60°

No-Load Speed (6.0V) 0.16sec/60°

Stall Torque (4.8V) 45.82 oz-in. (3.3kg.cm)

Stall Torque (6.0V) 56.93 oz-in. (4.1kg.cm)

Pulse Amplitude 3-5V

Current Drain - idle
(4.8V)

8mA

Current Drain - idle
(6.0V)

8.8mA

Current Drain -
no-load (4.8V)

150mA

Current Drain -
no-load (6V)

180mA

Max Rotation 195°

Travel per µs 0.0975°/μsec

Max PWM Signal
Range

500-2500μsec

Table 1: Spec sheet for Hitec HS-422 servo [1]

The response time of the servos is very
quick. For a continuous sweep, the rest time
between a change in degrees is 0.01 seconds which
is consistent with the specifications on the data
sheet. However, when testing moving the servo from
0 degrees to 180 degrees, there were some issues.
The servo jittered while turning to 180 degrees and
didn’t complete the turn with the same rest time. This
was because the servo did not have enough time to
make the turn, rest, and then make the next turn.
This is consistent with the specification in table 1 that
it takes 0.2 seconds to turn 60 degrees, which
means that it needs a minimum rest time of 0.6
seconds. In a test, I looped the 0-to-180 code while
reducing the rest time each loop. I found that the
servo would start to jitter at the 0.6 second rest time.
However, this response time doesn’t affect the
system that much because the controller will move
the servo in small increments of 2 or 3 degrees.
Using the 0.2sec/60 degree specification, that would
mean it takes 0.003 seconds to move a degree, so
as long as the rest time is larger than that, the servo
shouldn’t jitter. This also means that we can have a
sampling rate of 3 milliseconds, however that would
be faster than we need. The slew rate can be
improved by using a 6 volt power source, but the

reduction in response time is not sufficient enough to
warrant that.

D. Housing unit

The physical components of the system include the
housing unit. We used a 3D printed custom unit
based on designs from similar products and projects.

Figure 4: 3D print files for housing unit on TinkerCad

The design needed to accommodate a tripod mount,
have a servo at the center, and be large enough to
house the control boards while also being able to
spin. The last consideration is another reason why
we chose to use the Pi Zero. It’s the smallest of all
the communication board options. The alternative
would be an excessively large base for the boards
and servo to sit side-by-side or an excessively tall
base so that the servo can sit on top of the control
boards. The design also considers power cables. We
chose to make 2 slots instead of 2 holes because of
the tripod mount. Since the mount is screwed in
under the base of the housing unit, it covers part of
the base. This mount can also be a different size
depending on the tripod. We found that we would
have to make the base larger so that we could have
access through the bottom. So the slots can
accommodate a tripod mount of any size smaller
than the 13 cm base. We considered printing the
mount shape, a square platform, directly onto the
base, but that would cause the 3D printer to make an
understructure for the empty space under the base
for support that would ruin the design. The design

also has mounting posts for the panning servo so
that it can remain centered and secure.

The housing unit is weather proofed against
light rain. The cover extends over the base so that
no water gets on the electronics and the hole in top
for the tilting servo connection is patched with water
resistant putty to create a seal. However, the cover
does not completely go over the base because the
print tolerance adds an extra millimeter or two. So
the cover sits closely above the base, but still covers
the electronics. We would fix this error by making the
cover opening larger, but 3D printing in the texas
instruments lab takes too long and we couldn’t
remedy the issue in time.

VI. Implementation of the Control System

The Xbox core controller is connected to the
workstation computer that hosts the control software.
The Control System deploys a graphical user
interface that is used in tangent with the controller for
passing user input into the system. On activation the
control system spawns both the media camera
system and the motor system using interprocess
communication. It then sets event listeners that
deploy functions as messages from the GUI or
controller are received. The xinput library is used to
parse the incoming controller input into a dictionary
that contains the status and values of all buttons and
analog triggers. The button triggers are mapped to
either the media capture device or the motor’s
servos. Before passing along the commands the
magnitude of the analog trigger is scaled down to
allow precise control over the corresponding system.
The messages received are then run through the
corresponding algorithms to handle camera and
motor controlling.

A. The Graphical User-Interface

The graphical user interface is quickly made with the
usage of the electron framework. A simple create
window function is passed that creates a window
instance with the dimensions and design preferences
set as arguments. Event listeners for communicating
with the front end are also set for in app functionality,
from here commands to the other systems can also
be set using inter-processing communication directly
from the user interface.

B. Spawning other processes

After the GUI is set up other processes are ready to
be spawned and managed by the control system. In
order to spawn another process the NodeJS module
‘child_process’ is imported and the spawn() used for
each correlated script. The spawn function takes
three inputs: a command to run, a list of string
arguments, and an object of options. As the scripts
for all the systems are in python the initial command
for spawn used is ‘python3’ with corresponding
argument list passing the location of the file. The
exception being the spawn of the motor system that
is hosted on the Raspberry Pi, an ssh into the pi is
used before passing the same commands in the
arguments list.

C. Asynchronous Events

The spawned subprocesses all run asynchronously
while pulling in and pushing out data, to handle this
state of events an event handling system is
implemented. On one side there is an emitter that
when reached sends out a signal that a listener can
capture before executing the desired commands. In
NodeJs the child_process module attaches listeners
to the subprocesses so the stdout,stderr, and exit
codes of the corresponding spawns are efficiently
monitored.

The xbox controller’s event listener receives
input from the subprocess that contains a dictionary
containing the changed state of any pressed buttons
and the value of any activated analog trigger. After
the dictionary is received, parsing it into a JSON
object is attempted and if successful a button ‘input’
event is emitted. He ‘input’ event is captured by a
custom button event handler that parses the JSON
object and outputs the data over to each individual
subprocess as pre-mapped user controls.

D. Command Transfer

The raw input received from the xbox controller is
parsed and sent over to the sub processes as
camera control commands such as zooming the
camera, toggling the camera's display, the activation
or deactivation of recording, and the starting of the
live stream. Translation of the zoom command works
by first detecting the controller’s input on the right
thumb stick. The analog joystick has a maximum
range from -32768 to 32767, which is adjusted to a

range of -1 to 1. The adjustment of range allows the
user to zoom the camera at a fine speed. In order to
start the livestream the d-pad up button is pressed,
this sends a start stream command over to the
GoPro which starts udp transfer of video at the
host/port address ’udp://10.5.5.100:8554’. The
motor subprocess receives a command that signals
the two servos to move either clockwise or
counterclockwise respectively.

Figure 5: Zoom command logic and send off

Button/Analog trigger Usage

START Start Recording

BACK Stop Recording

LEFT THUMB Display On

RIGHT THUMB Zoom in/out

DPAD UP Start Stream

LEFT JOYSTICK Pan and tilt

RIGHT JOYSTICK Zoom in/out

Table 2: A table mapping the controllers commands

VII. Project Results

The project results are broken down into its key
constituent components.

A. Media Capture Device Results
We judged the result of the media capture device in
terms of the bitrate of the transmission of the preview
media at a distance of 30 feet. A command is issued
for a high ceiling on the bitrate, STREAM_BITRATE
invoked with a bitrate of 1M bit per second. Using the
ffmpeg media library, the bitrate is measured and

performed nominally as determined in the research
phase of the project.

B. Motor System Results
We judged the result of the motor system in terms of
the slew rate with the GoPro hardware attached. We
intended for the motors to move at a speed sufficient
to capture rapid motion from a wide angle. The
pan-tilt speed of the motor was sufficient to capture
action sports.

C. Control System Results
We judged the result of the control system in terms
of the responsiveness to controller input. When a
button is pressed on the controller, the delay in
transmitting the controller command to the GoPro is
consistently less than one second, and meets our
criteria for responsiveness.

VIII. Conclusion

Since the Project Results produced a satisfactory
mark in each of its key components, we believe the
design of the PTZ Tower Camera is acceptable and
ready for deployment

Acknowledgement

The authors would like to thank Dr. Samuel Ritchie
for guiding us during the process of implementing
this design.

 The Engineers

 Michael Serignese is a graduating
Computer Engineering student who
plans to begin his career by
transforming his internship at
Lockheed Martin into a full-time job.
He plans to develop software
whether that be high-level software
architecture or embedded systems

design.

Andre Samaroo is a graduating
Computer Engineering student who
plans to work with small engineering
companies in different roles to
discover the right field within
computer engineering to continue
studying in graduate school.

Chisom Ikejiani is a graduating
Computer Engineering student who
plans to pursue a career in the
specialized field of embedded systems
design or fintech, two fields he is very
interested in.

 References

[1] Servocity, “HS-422 Servo-Clockwise (stock)-Stock
Rotation,” (n.d.),
https://www.servocity.com/hs-422-servo/ , Accessed
20 July, 2021

[2] Sparkfun, “SparkFun Servo pHAT for Raspberry Pi,”
(n.d.), https://www.sparkfun.com/products/15316 ,
Accessed 12 March 2021

[3] RobotShop, “Lynxmotion Pan and Tilt Kit / Aluminium,”
(n.d.),
https://www.robotshop.com/en/lynxmotion-pan-and-tilt-
kit-aluminium2.html , Accessed 12 March 2021

[4] All About Circuits. “The Raspberry Pi Zero W Adds Wireless
Capabilities with Wi-Fi and Bluetooth,” 28 February 2017,
https://www.allaboutcircuits.com/news/the-raspberry-pi-zero-
w-adds-wireless-capabilities-with-wi-fi-and-bluetooth/ ,
Accessed 16 April 2021.

[5] GoPro Hero API. “GoPro Documentation”, 28 April,
2021. https://goprohero.readthedocs.io/en/latest/API/.

https://www.servocity.com/hs-422-servo/
https://www.servocity.com/hs-422-servo/
https://www.sparkfun.com/products/15316
https://www.robotshop.com/en/lynxmotion-pan-and-tilt-kit-aluminium2.html
https://www.robotshop.com/en/lynxmotion-pan-and-tilt-kit-aluminium2.html
https://www.robotshop.com/en/lynxmotion-pan-and-tilt-kit-aluminium2.html
https://www.allaboutcircuits.com/news/the-raspberry-pi-zero-w-adds-wireless-capabilities-with-wi-fi-and-bluetooth/
https://www.allaboutcircuits.com/news/the-raspberry-pi-zero-w-adds-wireless-capabilities-with-wi-fi-and-bluetooth/
https://www.allaboutcircuits.com/news/the-raspberry-pi-zero-w-adds-wireless-capabilities-with-wi-fi-and-bluetooth/
https://goprohero.readthedocs.io/en/latest/API/

