Gaspar Dantas Sonu Thummar Justin Rehg Lody Morillo

Group 24

Automated Inventory Tracking System

Meet the SW Team

Sonu Thummar CpE - SW

Gaspar Dantas CpE - SW

- Reduce waste within households
- Allow users to manage day-to-day shopping
- Visibility of active products in the inventory
- Reducing cost of grocery purchases
- Minimizing time expenditure creating grocery lists

- User friendly interface
- Reusability across platforms
- Notification systems
- Bluetooth connection for SW HW communication
- Lightweight HW Design

Index Requirement 1 The software should be able to store items from the inventory in a database 2 The software should have an API service to retrieve product details. 3 The software should be able to insert records directly from the scan and allow users to add inventory items. The software should be able to delete the data 4 5 The software should be able to link to the scanner through bluetooth 6 The software should be able to send notifications to the user regarding item expiration date 7 The software should allow the user to add/remove expiration dates through datetime pickers 8 The application should be reusable across different platforms

SW Requirements

General Workflow

Technologies

- Platform independent
- Custom, animated UI support
- Ability to simulate/test on different devices while maintaining scalability
- Extensive Bluetooth libraries
- Widget based development
- Similar performance to native apps

- Clean Code
- Generic Programming
- Event Based Data Model
- Easy to debug
- Business logic oriented

Software Architecture

l businessmodels		
product		
🕻 product_businessmodel.dart		
【 product_provider.dart		
l datamodels		
🖿 product		
【 product_dao.dart		
橇 product_datamodel.dart		
features		
main_inventory		
【 main_inventory_bloc.dart		
🖌 📩 📩 📩		
🖌 🛃 main_inventory_presenter.dar		
🛃 main_inventory_view.dart		
🖌 🛃 main_inventory_viewevents.da		
📃 📩 main_inventory_viewmodel.da		
🖿 manage_item		
anage_item_bloc.dart		
manage_item_blocevent.dart		
📩 manage_item_presenter.dart		
a manage_item_view.dart		
💦 📩 📩 📩 📩		
k manage_item_viewmodel.dar		

- User Table ID and email
- Product Table ID, Name, Measure, Expiration, UPC and UserID
- User Table ID (PK) \rightarrow UserID (FK)
- Fauna DB

User Interface

Main Inventory

Edit Item

API

Önutritionix API

API v1.1 Quickstart - UPC Scanning

Submit a UPC, and we return back nutrition data. Over 220,000 UPCs currently supported! In this example, we used UPC **49000036756** (2 Liter Bottle of Cherry Coke)

GET Request:

https://api.nutritionix.com/v1_1/item?upc=49000036756&appId=[YOURID]&appKey=[YOURKEY]

Response:

{

"item_id": "51c3d78797c3e6d8d3b546cf", "item name": "Cola, Cherry", "brand id": "51db3801176fe9790a89ae0b", "brand_name": "Coke", "item description": "Cherry", "updated at": "2013-07-09T00:00:46.000Z", "nf_ingredient_statement": "Carbonated Water, High Fructose Corn Syrup and/or Sucrose, Caram el Color, Phosphoric Acid, Natural Flavors, Caffeine.", "nf_calories": 100, "nf_calories_from_fat": 0, "nf total fat": 0, "nf_saturated_fat": null, "nf_cholesterol": null, "nf sodium": 25, "nf_total_carbohydrate": 28, "nf_dietary_fiber": null, "nf sugars": 28, "nf_protein": 0, "nf_vitamin_a_dv": 0, "nf vitamin c dv": 0, "nf_calcium_dv": 0, "nf iron dv": 0, "nf_servings_per_container": 6, "nf_serving_size_qty": 8, "nf serving size unit": "fl oz",

Flowchart

Activity Diagram

- Push notifications are sent on the phone
- Notifications based on expiration date (1 week, 1 day prior)
- Item expired notifications

- Scanner captures UPC and sends to board
- Board configures UPC and scan in/scan out bit as an array
- Array is sent to phone via Bluetooth (captured via listeners)

SW – HW Integration

- Login Functionality
- Reconfigure UI to Fauna datatypes
- Alerts
- Finish Bluetooth integration with HW

Pending SW Objectives

Software Progress

Meet the HW Team

Justin Rehg CpE - HW Lody Morillo EE - HW

UPC

QR

1 Dimensional	2 Dimensional
 Represented by lines in sequence, these lines represent numbers. Most scanners can read 1D barcodes Most products use a 1D barcode 	 Can be represented in many different ways Requires a specific scanner that can capture and process the image.

Barcodes

Feature	Description	The second
Dimensions	Length: 2.7 inches Height: 6.3 inches Width: 3.5 inches	
Internal CPU	32-bit	
Scanning Modes	Manual Continuous	
Connection Mode	Wired USB 2.0 Wireless USB 2.4 GHz	
Price	\$28.40	Rous Fe

Tera Barcode Scanner

MSP430G2553IN20 Specifications				
Speed	16MHz			
Storage	16KB			
Low Supply-Voltage Range	1.8V to 3.6V			
Power Consumption	230uA(Active) 0.5uA(Standby)			
I/O pins	20			
USCI	UART I2C Synchronous SPI			
Operating Temp (°C)	-40 to 105			
Price	\$1.80 each			

MSP430G2553IN20

- Change in framework.
 - From Native to Flutter
 - After finding out Native would not work for our needs.
- PCB Design mistake
 - We had a missing/incorrect component
 - Had to redesign the schematic

Component	Price
Projected Budget	\$400
Tera Scanner	\$28.40
MSP430G2553 (x2)	\$3.68
HC-05 Bluetooth Module(x2)	\$15.98
MSP430G2ET Devkit	\$15.00
Raspberry Pi Zero	\$25.00
ASUS Tinkerboard	\$89.49
Components	\$27.89
Current Total	\$205.44

Hardware Progress

Usage of Components

•Bluetooth: Will be used for communication between Phone and Scanner

•USB 2.0 Port: Will be used to plug in the scanner to send information to the Bluetooth module to then send to the phone

•The LED lights

- To show Bluetooth light is powered on
- To show an item has been scanned in
- To show an item has been scanned out

•Microcontroller: Will be programmed to take data from the scanner and sends it to the phone via bluetooth

•Switch: Will turn the PCB on/off

PCB Components Price List

- 1. 6 Pin Headers (\$1.32 each)
 - •1 st 65935-0635 will be used to hold the Bluetooth module
 - 2nd 65935-0635 will be used to hold the slide switch
- 1. LED (Pack of 5, each color for \$3.95)

•LED1

•LED2

•LED3

- Microcontroller (\$2.48)
 •MSP430G2553IN20
- 1. USB-A (Pack of 5 for \$2.95)
- 2. Bluetooth (\$7.99)

Total: \$27.91

U

Type of Components Used on PCB

- 6 Pin Headers (componentsearchengine.com)
 •1 st 65935-0635 will be used to hold the Bluetooth module
 - 2nd 65935-0635 will be used to hold the slide switch
- 1. LED (github.com/adafruit/Adafruit-Eagle-Library)
 - •LED1
 - •LED2
 - •LED3
- Microcontroller (ultralibrarian.com, •MSP430G2553IN20
- 1. USB-A (github.com/adafruit/Adafruit-Eagle-Library)

- •Brand: Adafruit
 - connect directly to a digital I/O pin of a microcontroller to turn on and off.
 - Simply connect 3 to 6VDC to the + pin and ground to the - pin
 - 5 Ruby Red, Warm White, and Royal Blue "1206 size" LEDs, matched with a 100 ohm resistor
 - 4mm x 9mm / .16" x .35"
 - 2mm thick
 - Holes are 7mm / .28" apart

Slide Switch

•Brand: Adafruit

- Work great as on/off switches or selector switches
- They have 0.1" spacing and snap in nicely into a solderless breadboard.
- Weight: .33g

Bluetooth

•Brand: HiLetgo

- Connects to other Bluetooth 2.0 devices
- Easy to install on to PCB and will be used control information from phone to PCB and vise versa
- Working Voltage 3.6V to 6V
- Size: 37.3mm (Long) *15.5mm (wide)
- Weight: 3.5 grams

