
The Arcane Game Board

Lucas Lage, Fernando Valdes-Recio, Kayla

Freudenberger, J. Anton Strickland

Dept. of Electrical and Computer Engineering,

University of Central Florida, Orlando, Florida,

32816-2450

Abstract — This paper will present the design approach
and implementation of the Arcane Game Board. The Arcane
Game Board is a computer and electrical engineering project
designed to automate physical player movements and
introduce the possibility of long-distance gameplay while still
utilizing a tangible game board. For the purposes of this
project, the Arcane Game Board is programmed and designed
to play Chess. This project is implemented using stepper
motors and an electromagnet beneath the board’s surface to
accomplish hands-free piece movements along with an
interactive web application for user inputs. The Arcane Game
Board will accommodate exactly two players playing against
one another and can be played from the same or separate
devices provided both have access to the web application.

Index Terms — Robot Control, Printed Circuits,
Electromagnetic Devices, Application Software, Autonomous
Systems, Mobile Applications

I. INTRODUCTION

Board games have withstood the test of time and continue

to be enjoyed by young and old alike. Chess, in particular,

has been around for at least 1500 years and has long been

hailed as a true game of strategy and competition. The

simplistic grid layout has kept this game accessible while

still maintaining unique gameplay and challenge; easy to

learn, difficult to master. With the COVID-19 pandemic

keeping people socially distanced, our group wanted to

create a game board that was able to operate long-distance

while still maintaining the classic board game feel.

The Arcane Game Board utilizes a combination of

software and hardware to create and interactive and unique

gameplay experience. The key feature of this project is the

game board’s ability to move pieces without human

intervention. This feature will be accomplished with an X-

Y cartesian robot beneath the play surface which uses Nema

17 Stepper Motors to move an electromagnet to all possible

piece locations. When actively moving the pieces, the

electromagnet will be powered on and subsequently move

the chess pieces, of which each have a small magnet

embedded inside. We will be using an ESP-WROOM-32D

microcontroller to control all the moving parts of this

project; namely the stepper motor drivers and the relay

which toggles the electromagnet.

On the user end, we developed a web application which

is where the player will indicate their desired moves by

clicking and dragging the pieces. These moves will then be

communicated to the microcontroller, allowing the physical

board to replicate these piece movements in real time.

II. MAJOR SYSTEM COMPONENTS

During our project research we decided on several

components that fulfill our hardware needs. The figure

below is a diagram of our major hardware components. In

this section we will discuss these components in detail.

Fig. 1. Overview flowchart of major system components and
corresponding power and data connections.

A. Microcontroller

The main component that makes the whole project

possible is the ESP32 – WROOM – 32D manufactured by

Espressif Systems. This microcontroller features a dual-

core 32-bit LX6 microprocessor at 160MHz and a 240MHz

Core Clock making it a fine choice for our project. One of

the major benefits of using this microcontroller is that it has

an integrated Bluetooth and Wi-Fi module which vastly

saves both money and complexity in terms of the hardware

design. The ESP32 will be used to control the stepper motor

drivers and the electromagnetic relay based on information

sent to it from our web application.

B. Motors

To accomplish our movement, we are using 2 Nema 17

stepper motors. We chose stepper motors because they have

reliable open loop position control which allows us to have

accurate positioning without the need for additional

sensors. The Nema 17 motors are popular motors for use in

3D printers which has led to their mass production and

subsequent cheap cost. The low cost and high positional

accuracy of these motors made them the best choice for our

movement design.

C. Stepper Motor Drivers

To drive our Nema 17 motors, we are using the

TMC2209 manufactured by Trinamic. The major benefits

of using this motor driver is the sensorless homing,

StealthChop mode, and large voltage range. The sensorless

homing saves us additional complexity by reducing the

need for sensors and the large voltage range gives us more

freedom in our power system design. Additionally, the

StealthChop mode negates most of the noise when the robot

is operating, creating a more enjoyable user experience.

In order to use the sensorless homing feature and

StealthChop mode, we must operate the TMC2209’s by

utilizing the UART connections to pass information back to

the microcontroller. Unfortunately, the ESP32 crashes

when using UART2 meaning we will not be able to use

sensorless homing and StealthChop in our final design. [1]

D. Electromagnet and Relay

The electromagnet will be toggled on and off to move

pieces across the board. For our design we selected a 5V

electromagnet with 50N holding force manufactured by

Uxcell. This electromagnet was selected because of its low

power consumption and reasonable size, measuring 25mm

x 20mm. To toggle the electromagnet on and off, we are

using the SRD-05VDC-SL-C which is a simple and

commonly used electromagnetic relay. This relay is Form

C meaning it is a single pole, double throw (SPDT) switch

and has a nominal coil voltage of 5V. It requires at least

71.4mA nominal coil current which is larger than the

ESP32 is able to output. Therefore, to operate our relay, we

must use a 2N2222 N-P-N transistor to amplify the current.

E. Power System

The Arcane Game Board is designed to be plugged into

a wall outlet using a 12V 5A AC/DC adapter. This adapter

connects directly to the custom board via a barrel jack

connector. Our hardware design can be broken into three

main sections: the microcontroller, the motor drivers, and

the electromagnet; each of these require different voltage

inputs. The table below details the voltage and current

demands for these components.

VOLTAGE AND CURRENT DEMANDS

Component
Voltage

Range (V)

Operating

Voltage (V)

Operating

Current (A)

TMC2209 4.75 – 29 12 0.85 each

ESP32 3.0 – 3.6 3.3 0.06

Electromagnet – 5 0.67

Table 1. Summary of component voltage and current draw

As such, our design requires two step-down voltage

regulators to power the microcontroller and relay; the motor

drivers do not require any voltage step-down since the input

from our AC/DC adapter is exactly 12V. For our design, we

selected the LM2596 Switching Step-Down Voltage

Regulator manufactured by Texas Instruments. We are

using the 5.0V and 3.3V Fixed Output versions. The

LM2596 was chosen because it is simple, requiring only

four external components, and highly efficient, over 70%.

In addition, this component accommodates a large range of

input voltages, up to 40V, and up to 3A output load current.

III. X-Y CARTESIAN MOVEMENT

Cartesian movement of the electromagnet is handled by

an H-Bot system beneath the playing surface much like the

one shown below.

Fig.2. H-bot Diagram

Its kinematic and inverse kinematic equations of motion are

as follows:

𝚫𝐗 = (𝚫𝐀 + 𝚫𝐁)

𝚫𝐘 = (𝚫𝐀 − 𝚫𝐁)

𝚫𝐀 = 𝚫𝐗 + 𝚫𝐘

𝚫𝐁 = 𝚫𝐗 − 𝚫𝐘

In the equations above 𝚫𝐗 is the displacement along the

x-axis, 𝚫𝐘 is the displacement along the y-axis, 𝚫𝐀 is the

arclength displaced by the pully when rotating motor 𝐀,

and 𝚫𝐁 is the arclength displaced by the pully when

rotating motor 𝐁.

IV. PCB DESIGN

Autodesk Fusion 360 was used to design the schematics

and custom printed circuit board for this project. The goal

of the PCB design was to incorporate all of our major

systems into a single custom board. This entailed designing

all of the necessary schematics as well as generating and

organizing the board layout. Due to the COVID-19

pandemic affecting supply chains, we were forced to

modify our original PCB design as a result of the TMC2209

motor drivers going out of stock. Consequently, we will

instead be slotting in our TMC2209 development boards

directly into our custom board.

A. Schematics

The goal for the custom printed circuit board was to

design it such that it could interface with all the major

system components discussed in Section II. This involved

designing the necessary circuitry for each component using

the schematic design functionality of Fusion 360. Fig. 3

depicts the schematics designed for the Microcontroller,

LM2596 Voltage Regulators, and Mechanical Relay.

The microcontroller must interface directly with the two

TMC2209 motor drivers and the relay by sending and

receiving signals. Therefore, there is very little external

circuitry needed to operate. As per manufacturer’s

guidelines, we added capacitors to the power supply to

avoid potential power rail collapse as well as adding an RC

delay circuit to the EN pin to ensure power supply to the

ESP32 during power up. Additionally, since we will be

using the two UART connections on the microcontroller for

the motor drivers, it is necessary for us to connect a 1KΩ

resistor to both TXD0 and TXD2.

The voltage regulator schematics consist of four external

components and the values of these components are

selected based on the operating conditions. Based on the

datasheet information, it was determined that the inductor

value must be 33uH given our input voltage and load

current for both regulator circuits. For the output and input

capacitor selection, we determined a 220uF and 680uF low

ESR electrolytic capacitor would fit our specifications,

respectively. Both capacitors needed to have a voltage

rating of 1.5 times greater than the output/input voltage

therefore, we selected input capacitors with a rating of 25V

and output capacitors with a rating of 10V. The datasheet

also provided us with a table of catch diodes to use which

included the MBRS340T3 being used in our design. [2]

The SRD-05VDC-SL-C is an electromagnetic relay with

5 pins: 2 for the coil, middle pin for common, and the last

two are for normally open and normally closed. This relay

has a nominal coil voltage of 5.0V and a nominal current of

71.4mA. The ESP32 will send a signal to toggle the relay

switch which will then turn the electromagnet on and off.

As discussed earlier, we must use the 2N2222 transistor to

amplify the current going to the relay coil from the ESP32.

We have also connected a 1N4148 flyback diode across the

two relay coils to protect against large voltage spikes.

B. Board Design

The final board layout is depicted in Fig. 4 below. Our

board is 2 layers and measures 107mm x 76mm x 1.6mm

which is just small enough to not interfere with the robot.

Each major circuit is outlined and labeled on the board

making it much easier to identify and test any potential

Fig. 3. Custom PCB Schematics – Microcontroller, Voltage Regulators, Relay

problems. The design was created such that it would be

convenient to connect the external components. The motors

connect on opposite sides of the board to reflect the location

of the motors relative to the board, similarly with the

electromagnet connection.

We are using JST connectors for the motors and the USB

serial connection to ensure a more solid connection

between the pins. This is helpful, especially for the motors

as a better connection means our motors will run much

smoother and ultimately result in more precise piece

movements on the board. We are soldering the

electromagnet wires directly into the board to ensure a solid

connection.

Fig. 4. Custom Printed Circuit Board Design

V. FIRMWARE

The robot functions using firmware developed by our

team to establish and maintain a WebSocket connection to

the web-app, maintain the game state of the board, and

operate the robot according to the moves a player makes.

Each of these function groups were loaded into a

corresponding controller class to be referenced by the core

program, which contained high-level logic control such as

scheduling and passing Queues from the Game Controller

to Robot Control.

Fig. 5. Firmware Stack Diagram

A. Controller Class Breakdown

WirelessController is responsible for maintaining the

wireless connection, as well as processing incoming data

into a C++ friendly format to be used by the program later.

2 open-source libraries were used in order to streamline the

design process: ArduinoWebsockets and ArduinoJson. The

former allows for the creation of a websocket client which

triggers actions on received messages. The latter offers a

robust method of deserializing JSON files into C++ objects

with very quick access, static or dynamic memory

allocation, and minimal impact on performance.

GameController handles game-state and piece data which

allows for path planning. Queues of moves are build inside

of functions which take positions and pieces as arguments

– allowing for unique movement conditions to be dealt

with. Most notably, knights and the retirement of captured

pieces posed a risk of collisions on the board which needed

to be dealt with efficiently and without much computational

overhead. The resulting position of the robot head is also

tracked – allowing for quick dX/dY calculations based on

the future positions of the system.

RobotController acts as the interface between the

hardware and software layers in the form of signal control,

motor stepping, and queue logic. Due to a recently

presenting bug regarding the ESP32s hardware serial ports,

the UART functionality is disabled. However, once the

error is resolved by either Espressif or a suitable

workaround is found the RobotController contains motor

configuration functions which are confirmed to work.

These same functions also allow for the StallGuard™

features of the TMC2209’s to be used for sensorless

homing. A 3rd party open-source library was used in this

class as well – TMCStepper. It allows for the previously

mentioned configuration and StallGuard™ functions as

well as allowing for future TMC supported stepper motor

features.

B. Key Methods and Functions

WIRELESSCONTROLLER METHODS

Method Name Description

getMove(doc) Takes a deserialized JSON file and

loads it into a struct containing only

unsigned integers and a char – saves

space in the stack during runtime and

avoids memory leaks.

connectWifi() Activates the ESP32s WiFi module

and connects to the provided network

with hardcoded credentials.

socketConnect() Connects to our server’s webSocket

– will automatically connect to WiFi

if needed.

GAMECONTROLLER METHODS

Method Name Description

retirePieceAt(pos) Identifies the Piece at the given

position and queues a path to the

graveyard.

movePieceAt(pos,

end)

Identifies the Piece at the given

position and queues a path to be

executed

xyToMotors(dx,

dy, magnet)

Creates an individual Move

instance which can be fed into

RobotControl.

transpose(pos) Determines the optimal direction to

move a Piece such that it does not

interfere with other Pieces.

ROBOTCONTROL METHODS

Method Name Description

queueMoves(Queue) Takes a Queue of movements

and adds it to itself – the

original queue is deallocated.

stepMotors() Sends a ‘step’ signal to the

TMC2209 Stepper Motor

Drivers while adhering to step

scheduling.

loadMove() Pops a Move off of the

Queue, loads the direction

and magnitude of the motor

vectors, and de-allocates the

memory of the popped off

Move.

disable/enableMagnet() Activates or deactivates the

magnet – when the magnet is

activates a small delay is

inserted.

C. Development and Testing

Most of the embedded software authored by the team

focused on the physical and internal layers of the program,

as opposed to the communication layer in

WirelessController. Working with the constraints of C++,

the Arduino Framework, and Embedded realities such as

watchdog timers and relatively primitive error detection

and recovery were all hazards.

All of the firmware authored by our team was written in

Microsoft Visual Studio Code utilizing PlatformIO – an

extension which allows for embedded system development

and testing. A large part of this decision centers around the

ease-of-use regarding library management and unit testing,

as well as the team’s previous experience and familiarity.

We followed a test-driven-development (TDD) cycle

over the course of development. When a class was

implemented, any feature more complex than a simple

return or set statement had a corresponding test procedure

designed alongside it in a separate test stimulus file for that

class, file, or functional group. These tests use Unity for

their framework. Not only is Unity native to PlatformIO –

it allows for native testing on a connected ESP32. This

ensured that our tests would not face porting issues. Unity

also supports successive tests separated by stimulus files,

meaning that testing the final PCB designs with the full

battery of tests required only a single function call.

D. Implementation

Our team needed to develop a method of effectively

storing Piece information for the GameController to be able

to effectively plan moves and retire pieces correctly.

Knights – with their unique ability to hop pieces – were of

particular concern to us. In order for the board to be truly

hands-free they had to skirt around other pieces on the

board with enough precision to not attract the magnet of the

other pieces. Capturing and the subsequent retiring of

pieces also posed a challenge; we wanted the pieces to be

stored in formation. These goals required 3 data points:

- Piece Faction [Black or White]

- Piece Type [King, Queen, Bishop, Knight Rook,

or Pawn]

- Starting Column [A-H]

While a class could be created containing all of these

separately, we wanted to achieve as light-weight of a

solution as possible. Using enumeration and bit-wise

masking we devised an ID system that contains all of the

above data in a single 8-bit data point (in our code an

unsigned 8-bit integer.) The 0th bit signals the faction –

AKA color – of the piece. Bits 1 through 3 signal the

Piece’s Type (King, Queen, etc.) All of the remaining 4 bits

are used to specify the starting column as an unsigned

integer. Allowing functions to move and retire pieces by

specifying their positions, looking up the ID, and executing

the appropriate actions. This includes transposition for both

Knights and retirement – as shifting the pieces to the

vertices of the board removed the requirement for

computationally complex path planning.

Chess moves also required chained actions by the robot.

These are classic examples of a First-In-First-Out queue

structure – so we implemented a wrapper class around the

standard C++ queue. In addition to supporting all of the

C++11 functions, our Queues are capable of enqueueing

other Queues and other small streamlining actions. These

functions – when paired with the dynamic sizing and simple

structure – allowed for computationally efficient,

straightforward, and flexible methods to be written for the

GameController class.

Transposition was one of the last major hurdles for piece

pathing. We define transposition here as the proper

movement of a piece from the center of a chess square to

the vertices of the board – ensuring that pieces do not

collide so long as they only move in the X or Y direction.

The code treats the direction of transposition as a function

of overall movement. Because we assume that moves

received by the web-application are valid, no error checking

is required.

𝑑𝑋𝑇 =
𝑑𝑋

2 ∗ |𝑑𝑋|

𝑑𝑌𝑇 =
𝑑𝑌

2 ∗ |𝑑𝑌|

While the above was sufficient for most moves, it does

assume that dX and dY are not 0. This meant that it was

only valid for moving knights. For retiring pieces, we

instead base it on the quadrant the piece is currently in –

moving towards the center of the board to ensure we never

collide with the edges of the board.

During all phases of implementation, we strove to

maintain proper segmentation of the code. If data was

passed to another function it was always done either as a

struct/class defined by our team, or as a c++14 standard

object. This ensures that any library swapping can be done

quickly and at a local level, rather than having to modify

the entire program.

VI. SOFTWARE

While the software design has taken several pivots

throughout the semester, a majority of the final design

matches the original plan in terms of tools used and overall

design layout. The web application that serves as the main

interface between the user and the chessboard, consists of

two main parts, a front-end and a back-end. The full stack

web application can be accessed in several different ways.

Some of these ways include through desktop, tablet, or

mobile browser. The web application can also be

downloaded directly to a users cellphone and ran locally

like a native application, due to its progressive web

application properties.

Fig. 6 shows the final design for the entire web

application, including both the front-end and the back-end.

As we can seem the front end design can be accessed

through various medians, such as mobile or desktop. The

data flow is then split into two directions. We store some

data locally on the users device to using client-side caching,

in order to quickly enable local features without the need of

a server call. We also send data regularly to the

bidirectional WebSocket in order to bridge the connection

between the chessboard and the application.

Fig. 6. Web Application Design

A. Front-end

The front-end of the web application has been

extensively developed to handle logic, caching, dataflow,

and component rendering. The front-end contains a wide

array of standard features found in most applications,

including routing, user validation, and responsive design.

We chose a React framework which allowed us to develop

a component-based application. Using the component

system that React focuses on, our software team was able

to develop reusable JavaScript components for rapid

prototyping. The React framework also enabled us to use

other React compatible tools, such as Redux, WebSockets,

and the Material UI CSS library.

Using Redux, we were able to cache data locally to the

device of the user, in order to quickly access and render

essential data for the game’s history feature. Since the data

needed for this feature is relatively small, we use Redux in

this instance in order to bypass the need for an external

database. Doing this allows us to cut down on hosting fees,

reduces latency within the application, and simplifies the

code.

Using React also allowed us to utilize the extensive

Material UI package. Using this package for the skeleton of

the application provided use the tools necessary to both

rapidly prototype the application, while still allowing some

flexibility in terms of appearance. Material UI has several

premade components that we can “plug and play”, while

still opening those components to receive a fair amount of

customization, in order to best fit the needs of the app. The

greatest benefit that we experienced from using React with

Material-UI was the ability to quickly develop a responsive

design all from one code base. This means that we could

offer the application across several platforms, including

mobile, tablet, and desktop, while only developing one

central codebase. This is achieved by defining several

breakpoints to detect which device the user is developing

on, and only showing the proper components associated

with their device of choice. Another direct benefit of using

these two tools together, was the overlap that is found

between the mobile browser version of the application,

versus the native mobile version of the application. Because

React allows us to convert our web application into a

progressive web application, we can develop both the

native and browser versions of the application from one

central codebase. This played a crucial role in the

development process as we would not have had enough

time to develop all of the different platforms without it.

The final most critical tool used by the front-end was the

client-side WebSocket connection. Alongside the front-

end, our team hosts a back-end in order to open a data

stream between both the chessboard, and other players

logged into the web application. Using the client side

WebSocket allows us to take in data without needing to

make an API call. This was crucial for two essential

features; sending moves out to the chessboard, and

receiving moves from other players playing the same game.

Our application allows users to log in and play each other

over the internet. In order to provide the real-time

experience without any delays while two players are

playing, use of the WebSocket was crucial. Using the

WebSocket also allowed us to eliminate polling on the

board side of things, which cleared up memory for other

processes as well as reduced the overall power demand.

Overall, the bidirectional nature of the WebSocket was

crucial for the success of our application.

B. Back-end

Our application used the WebSockets on a Node.js server

in order to enable a data stream between clients. We also

utilized Express.js after we deployed the application in

order to run as the engine for the Node.js server. Both

Node.js and Express.js are incredibly lightweight and quick

back-end frameworks, and worked well for our server.

For our specific case, the back-end served as a middle

ground between our application’s clients. Both the two

player gameplay, as well as the board interaction relies on

our back-end. In the final iteration of the application, we

were able to host the back-end in order for anyone around

the world to be able to establish a connection, as opposed

to only those on local wifi.

C. Gameplay and Final Features

Our application grew significantly since it was first

conceptualized with our Adobe Xd prototype. Originally,

we decide on a desktop only application which would host

a local chess game that users can play on the same device.

After several iterations, we finalized an app that allows

gameplay across two separate devices, anywhere in the

world, which is hosted online. Our application also includes

a stretch goal of “Player vs AI” feature that utilizes the

Stockfish AI in order to provide players with a computer of

average difficulty to play against. In addition to these two

play styles, we also offer a custom “Senior Design Chess

Game Experience”, with custom pieces. Finally, our largest

feature that went beyond the original scope of the project

was the responsive design of the front end. Being a

progressive web application with responsive design, the

application can be played on a computer, mobile browser,

tablet, or downloaded and played locally on either a tablet

or mobile device. This feature was added with the idea of

increasing accessibility to our application to a large variety

of users. Overall, the software team was able to meet and

exceed all of the originally listed goals.

VII. HARDWARE

A. Design Considerations

The majority of our purchased hardware components are

Sourced from commonly used 3D printer parts. We chose

to use these parts because of their wide availability and low

cost due to their mass production. Our team is self-funded,

so the significant cost savings of buying individual

components rather than purchasing a kit drove us to design

and build our own Cartesian motion system. Off the shelf

components such as the linear rails, pulleys, NEMA 17

stepper motors, etc, were model and loaded into

SolidWorks so that supporting fixtures could be designed

to complete the build of our H-Bot system. These

components all use metric fasteners, so the custom

components were designed to also use metric fasteners to

cut down on the complexity of future assembly and

disassembly. In fact, over 90 percent of the arcane game

board is designed to be held together using M5 socket head

cap screws.

B. Specifications

• Exterior Dimensions: 27 in (685.8mm) by 23 in

(584.2mm) by 4.5 in (114.3mm)

• Traversable Area: 16.56 in (402.38 mm) by 13.62 in

(346 mm)

• Playing Board Weight: 15 lbs (6.8 kg)

• Playing Square dimensions: 1.44 in (36.58 mm) by

1.44 in (36.58 mm)

• Chess Piece Dimensions: 0.59 in diameter (15 mm)

by up to 1.58 in (40mm) tall

• Movement Speed: 1.12 in/s (28.41mm/s)

C. CAD

Above are two images of a partially assembled version

of our CAD model of the arcane game board. The walls

and bottom are cut sections of 3/4th in thick unfinished

spruce pine fir Board. This was wood was selected for its

light weight yet sturdy properties so that we can stay

within our weight requirement of 20 lbs while not

compromising overall strength. Metal inserts were drilled

into the wood so that M5 bolts could be repeatedly

screwed in and out of our boards without compromising

any tapped threads.

ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance and

support of Dr. Samuel Richie and the University of Central

Florida ECE Department.

REFERENCES

[

1]
Trinamic, "TMC2209 Datasheet," 26 June 2019.

[Online]. Available:

https://www.trinamic.com/fileadmin/assets/Products/I

Cs_Documents/TMC2209_Datasheet_V103.pdf.

[Accessed March 2021].

[

2]

Texas Instruments , "LM2596 SIMPLE

SWITCHER® 4.5V to 40V, 3A Low Component

Count Step-Down Regulator," 5 April 2021. [Online].

Available: https://www.ti.com/product/LM2596.

[Accessed 14 July 2021].

ENGINEERS

Lucas Lage is a senior at the University of

Central Florida and will be graduating with

a Bachelor of Science in Computer

Engineering in August 2021. After 3 years of

Full-stack development experience, Lucas

will be moving out to Salt Lake City, Utah,

where he will be designing and overseeing application

development as a Full-stack application architect.

Fernando Valdes-Recio is a senior at the

University of Central Florida and will be

graduating with a Bachelor of Science in

Computer Engineering in August 2021.

After graduation He hopes to take what he

learned about engineering and robotics from schooling and

internships and apply them in an automation geared

position, ideally at Lockheed Martin.

Kayla Freudenberger is a senior at the

University of Central Florida and will be

graduating with a Bachelor of Science in

Electrical Engineering in August 2021. After

graduation, she plans to pursue a career in

Forensic Engineering.

J. Anton Strickland is a senior at the

University of Central Florida and will be

graduating with a Bachelor of Science in

Computer Engineering in August 2021.

After graduation he plans to pursue a career

in embedded system software in Boston, MA.

	Lucas Lage, Fernando Valdes-Recio, Kayla Freudenberger, J. Anton Strickland
	Dept. of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida, 32816-2450
	Abstract — This paper will present the design approach and implementation of the Arcane Game Board. The Arcane Game Board is a computer and electrical engineering project designed to automate physical player movements and introduce the possibility o...
	Index Terms — Robot Control, Printed Circuits, Electromagnetic Devices, Application Software, Autonomous Systems, Mobile Applications
	I. Introduction
	II. Major System Components
	Fig. 1. Overview flowchart of major system components and corresponding power and data connections.
	Table 1. Summary of component voltage and current draw

	III. X-Y Cartesian Movement
	Fig.2. H-bot Diagram

	IV. PCB Design
	Fig. 4. Custom Printed Circuit Board Design

	V. Firmware
	Fig. 5. Firmware Stack Diagram

	VI. Software
	Fig. 6. Web Application Design

	VII. Hardware
	Acknowledgments
	Engineers

	Fig. 3. Custom PCB Schematics – Microcontroller, Voltage Regulators, Relay

