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Abstract  —  The Helicopter Collective Control for Flight 

Simulators is a consumer-directed product for use in casual 

flight simulation software. Traditionally, most consumer 
controls are intended primarily for airplanes rather than 
helicopters, and therefore the availability of realistic and 

affordable helicopter specific controls is quite limited. To 
combat this, we have designed a collective control which is 
designed to fill this market niche. Our collective control can 

be powered via a battery or a wired connection, connects 
wirelessly to a computer to operate flight simulation software, 
and replicates the look and feel of existing helicopter 

collectives to provide an enjoyable simulation experience. 

Index Terms  —  Aerospace Simulation, Embedded 
Software, Bluetooth, Calibration, Mechanical Systems. 

 

I. INTRODUCTION 

Consumer flight simulation products are widely available 

for purchase and there exists a significant market for these 

products in order to replicate the experience of flying for 

the casual user. However, the vast majority of products 

available today are oriented towards airplane simulation 

rather than helicopter simulation. The primary example of 

these products is the HOTAS, which stands for “Hands on 

Throttle-and-Stick”, a class of flight simulation products 

which consist of a joystick and throttle lever as well as an 

assortment of generic buttons and switches to control a 

variety of aircraft. While these controls are affordable and 

widely available, they are generic and therefore do not 

accurately represent the look and feel of the controls of any 

specific aircraft. Also, while controls such as HOTAS 

devices, joysticks, and pedal controls may translate well 

between the two kinds of aircraft, helicopters have a unique 

control known as a collective lever which does not have a 

direct counterpart in an airplane. The collective lever is 

responsible for adjusting the pitch angle of all the helicopter 

blades simultaneously which therefore alters the amount of 

lift produced by the blades. This is used to both ascend and 

descend as well as adjust acceleration when flying forward, 

back, or side to side. Also, a set of additional controls is 

sometimes present on a collective head at the top of the 

lever to manage other helicopter functions. Typically, 

integrated onto the collective lever itself is also a throttle 

control to adjust total engine revolutions per minute (RPM). 

Our collective control intends to replicate the look, feel, 

and function of those found in real helicopters while also 

providing conveniences which make it easy to use for a 

casual user. The collective control is designed as a portable 

unit that can be powered via a battery as well as operate via 

a wireless connection so that it can be moved easily or 

integrated into a larger simulation environment. Also, our 

collective control has a modular head system which allows 

for different collective heads to be quickly swapped out in 

order to accurately replicate different real-life helicopters. 

Finally, our collective control aims to be affordable for the 

casual user while still providing high accuracy via the 

implementation of precision axis sensors to report the 

operation of the lever and throttle to the connected 

computer and flight simulation software. 

II. SYSTEM OVERVIEW 

From an electrical hardware perspective, the collective 

control is divided into three major subsystems: power, 

logic, and input/output subsystems. The power system is 

responsible for voltage regulation, battery charging, and 

power passthrough in order to facilitate both a wired and 

battery power source. The logic subsystem is responsible 

for processing input data, calibrating the axis sensors, 

establishing a wireless connection with a remote device, 

and forming and transmitting gamepad-style input data to 

the remote device. The input/output subsystem is 

responsible for collecting input data from the collective 

head, lever axis, and throttle axis as well as providing a 

means for the user to interact with and configure the device. 

 

Fig. 1. Total electrical hardware system overview depicting the 

interconnection of major components. 



III. POWER SYSTEM 

A. Battery and Charging 

A 3.7V lithium-ion 18650 rechargeable battery was 

chosen because of its modern features, such as long battery 

lifetime and fast charging capabilities. 18650 lithium-ion 

batteries are extremely common and allow for our device to 

be portable and the battery to be easily replaced by the user. 

Furthermore, 18650 batteries are available in a wide range 

of capacities up to 4000 mAh which satisfies one of our 

major project goals of a long runtime off battery power. 

18650 batteries are low cost, low profile, rechargeable, and 

widely available, making them an ideal choice for this 

project. 

The upkeep of our battery was equally important as its 

performance, therefore, the MCP73831 was chosen as the 

charging IC to safely manage the charging profile of the 

battery. This IC features an input voltage range from 3.75V 

to 6V, a programmable charging current range from 15mA 

to 500mA, and safety monitoring capabilities like power-

down and thermal regulation. The IC is programmed via an 

external resistor to charge the battery at a rate of 500mA, to 

a safe voltage just below its maximum rating, at around 

4.185V. 

B. Voltage Regulation 

The overall electronic system has two voltage 

requirements of 3.3V and 5V, each of which are unique to 

specific components. Therefore, the TPS63020 Buck-Boost 

DC-DC Converter was selected because it offers the ability 

to take a range of input voltages and step it up or down to 

our system’s needs. By selecting the TPS32020 we were 

able to reduce circuit design time and cost by reusing the 

same regulator for both the 3.3V and 5V line. The converter 

can handle input and output voltage ranges from 1.8V to 

5.5V, and 1.2V to 5.5V, respectively, and up to 4A of 

output current, which is more than enough for our device’s 

parameters. The output voltage is determined using an 

external resistor divider which provides feedback that 

indicates the desired output voltage to the regulator. Also, 

due to the TPS63020’s nature as a DC-DC converter, it 

boasts extremely high efficiency of up to 90%. This is 

achieved through the implementation of a power-save 

mode which dynamically lowers the switching frequency of 

the regulator during low load current conditions in order to 

maintain consistently high efficiency. 

C. USB-C Power 

Our device is equipped to accept a wired power source 

via a USB-C connection. USB-C was chosen for its 

advanced technology providing reversible connectivity and 

support for USB Power Delivery to supply ample current to 

our device. Due to the USB-C’s capabilities, we were able 

to program it to provide our system with up to 3A so that 

enough current was allocated to charge the battery and 

power the entire system simultaneously. Another important 

factor in selecting USB-C as our wired power method was 

its ubiquity; most modern devices now utilize USB-C and 

therefore it is commonly available and utilized by 

consumers. 

D. Power Passthrough 

Efforts were made towards improving battery 

management and user-experience, which led us to equip our 

system with power-passthrough capability. As our device is 

designed to be operated via either a wired power source or 

through battery power, the system needs to be able to 

recognize which power source is currently in use. This is 

due to the fact that the wired power source must 

simultaneously power the system while also charging the 

battery, whereas during battery operation the battery must 

solely provide power to the device. Power passthrough is 

achieved through the use of a P-Channel MOSFET and a 

Schottky diode. The P-Channel MOSFET detects the 

presence of a wired power source in order to cut off the 

battery from powering the device while the Schottky diode 

prevents current flow back into the USB power source. 

 

Fig. 2. Circuit diagram of TPS63020 DC-DC converter 

implementation. 

Fig. 3. Power passthrough circuit diagram, illustrating P-

Channel MOSFET and Schottky diode used to switch between 

wired and battery power. 



IV. LOGIC SYSTEM 

The two primary components of the logic system are the 

microcontroller and Bluetooth module. The microcontroller 

collects and interprets input data from the collective control 

and forms commands which are sent to the Bluetooth 

module. The Bluetooth module then connects wirelessly to 

a host device and appears as a Human Interface Device 

(HID) which allows the remote device to interpret the 

Bluetooth data as peripheral inputs. These inputs are then 

bound to actions within the flight simulation software so 

that physical inputs on the collective unit are reflected in 

the virtual environment. 

A. Microcontroller 

We elected to utilize the ATmega2560 microcontroller in 

our project for a number of reasons. The ATmega2560 has 

a total of 86 general purpose I/O lines which is crucial to 

our project due to the input-oriented nature of a helicopter 

collective. Also, the ATmega2560 operates at 16 MHz 

which provides an ample processing speed to interpret and 

report data to the remote device with seemingly no delay. 

The presence of 4KB of EEPROM also means that the 

collective has the ability to persistently store calibration 

data through power cycles which reduces the burden of the 

user to calibrate the device with every use. The 

ATmega2560 is also available on the Arduino Mega 

development board which means that software design and 

testing was able to occur much earlier in the design process 

without the need for a completed PCB. The ATmega2560 

is programmed directly on our PCB via an exposed ISP 

header which connects to an external AVR programmer. 

B. Bluetooth Module 

The BM70 Bluetooth module was selected in order to 

facilitate wireless communication between the collective 

and the remote device running the flight simulation 

software. The BM70 is a self-contained, pre-shielded 

module which can be integrated directly into our PCB 

design. Also, the BM70 supports Bluetooth Low Energy 

and is Bluetooth 5 qualified which means that we are using 

modern Bluetooth standards and technologies which are 

less power-demanding than classic Bluetooth. The BM70 

has a range of up to 50m which is more than satisfactory for 

our purposes and provides access to the full Bluetooth Low 

Energy software stack, which is necessary to implement 

HID over GATT and appear as a gamepad to the remote 

device. The BM70 communicates with the ATmega2560 

over UART and is configured directly on the PCB via 

header pins which connect to an external USB to UART 

converter and a computer. 

V. INPUT/OUTPUT SYSTEM 

A. Collective Head 

In order to accurately replicate a variety of helicopters, a 

modular collective head system was designed which allows 

for different heads to be quickly swapped in and out. This 

means that rather than requiring an entirely different 

collective unit to simulate a different helicopter, only the 

small collective head piece need be switched. This is 

achieved via a 17-pin female Molex connector which is 

present in the end of the collective lever itself, which allows 

a corresponding male connector to be embedded in each 

collective head. Each collective head can therefore vary in 

physical shape, size, and number of inputs but still connect 

to the same lever. Within this connector is also a signal line 

which is interpreted by the microcontroller to determine 

which head is attached. This is achieved via the 

microcontroller utilizing its analog-to-digital converter to 

read the voltage level present on the signal line and 

therefore determine which head is present. Inside of each 

head, a resistor of varying value simply needs to be soldered 

in place to provide a different voltage for each head. Once 

the microcontroller determines which head is present, it can 

then interpret the inputs from the 17-pin connector correctly 

and report them to the flight simulation software. The input 

from the 17 pin Molex connector embedded in the top of 

the lever is then connected to the PCB via an 18 pin Molex 

Connector in the base unit. 

B. Axis Sensors 

The two most essential inputs present on the unit are the 

throttle axis sensor and lever axis sensor. These need to 

measure the angular position of both the collective lever 

and twist throttle and report these back to the 

microcontroller. As a collective control is at its most basic 

a lever and a throttle, the accuracy, durability, and feel of 

these sensors are essential in creating a satisfactory final 

product. Thus, for this purpose, we opted to use 

EMS22A50-B28-LS6 absolute encoders. The fact that 

these are absolute encoders is crucial; a traditional rotary 

encoder simply indicates which direction it is spinning and 

how many positions it has spun since startup, without any 

knowledge of its current angular position. However, for our 

purposes, the sensor must be able to consistently report its 

angular position regardless of power cycling. The 

EMS22A50 achieves this by measuring the magnetic field 

within the device to determine its position, which provides 

for smooth operation and increases the life of the encoder. 

Furthermore, the EMS22A50 has a resolution of 1024 

pulses per revolution and has a nominal accuracy of 0.7 

degrees or better, which provides the necessary accuracy 



for our project’s requirements. The EMS22A50 encoders 

connect to our PCB via two 6-pin Molex connectors. 

C. Base Unit Controls 

While the collective head inputs and the axis sensors are 

the inputs which are transmitted to the flight simulator, 

some controls are necessary in order to configure the 

collective unit itself. For this purpose, a power switch, 3 

buttons, and an LCD1602 module were designed to be 

integrated into the base of the device. The 3 buttons are 

used to select different functions such as calibrating the 

absolute encoders, viewing the battery voltage, or pairing 

with a remote device. The information of what function is 

currently being performed is presented on the LCD1602 for 

the user to read. The LCD1602 module was chosen due to 

its low cost, ease of use, and the small amount of 

information required to be presented on the device at any 

given time. The base unit controls connect to the PCB via a 

24 pin Molex connector. Also, directly mounted on the PCB 

but exposed out of the back of the unit is a potentiometer to 

adjust the contrast of the LCD display. 

VI. PRINTED CIRCUIT BOARD 

We decided early on in the design process that we wanted 

as many electronics as possible to be contained on the PCB 

itself rather than utilizing breakout boards or off-the-shelf 

development boards. We designed our PCB in Fusion 360 

Electronics and decided to order our PCBs through 

JLCPCB. JLCPCB was selected due to their extremely 

quick turnaround time as well as their ability to assemble 

all of the surface mount components on the board. 

However, as JLCPCB only assembles components 

available in their in-house inventory, this also presented a 

unique challenge of designing the collective based on what 

parts were made available by JLCPCB. Furthermore, our 

PCB design was limited in size due to the physical 

constraints of the base unit, which further complicated the 

PCB design process. All through hole components were 

hand soldered by our team members after receiving the 

boards. 

VII. SOFTWARE DESIGN 

The software design for the collective control unit 

involves creating software on the ATmega2560 

microcontroller that seamlessly integrates all of the 

hardware components involved into a functioning and 

cohesive final product. The software is thus broken down 

into three high-level logical sections: user interface, sensor 

input processing, and Bluetooth communication. Each of 

these sections of have unique design considerations which 

will be henceforth explored. 

A. User Interface 

In order to maintain simplicity of use for the end user 

while still allowing for complex functionality, a menu 

system was designed for the user interface which the end 

user can interact with via buttons on the collective base. 

This menu system is implemented as a state machine. This 

allows for the user to switch between various states of 

functionality, for example between Bluetooth setup and a 

state in which the user can calibrate the encoders for the 

collective lever and throttle. Information regarding the 

current state is presented to the user via the LCD present on 

the collective base. The primary benefit of this form of user 

interface, besides simplicity, is the strict 

compartmentalization from a software perspective. This 

division into various menu states allows for each form of 

functionality to be designed and programmed nearly 

completely separately from one another and take control 

over any hardware component as necessary whilst 

performing its function. 

B. Input Processing 

The most crucial software consideration for the 

helicopter collective control is the input processing logic 

used to take in and process data from the various forms of 

sensor input. For the purposes of this portion of software, 

sensor input refers to the two major forms of sensor input 

used in the collective control: angular input from the 

encoders on the collective lever/throttle and button-based 

input from the collective head. Each of these two major 

forms of sensor input have unique software requirements in 

order to properly take in and process them as data that can 

be transmitted as gamepad input to a host device. 

C. Encoder Input 

The EMS22A50 encoders used in the collective lever and 

throttle to detect angular position require special software 

design in order to function. One of the considerations 

regarding the encoders is the process for taking in encoder 

input. This is because, as opposed to something like a 

button that sets a pin high or low, the encoders do not Fig. 4. 3D Rendering of completed PCB Design. 



passively provide an input that can be read by software. 

Instead, a specific technique is required to both receive and 

process data from the encoders. This technique involves 

manual manipulation of pins on the encoders utilizing 

specific timing provided by the manufacturer in order to 

receive data from the encoder. The process begins by 

signaling an encoder to begin the process of sending data, 

and then managing a clock signal by toggling a pin on the 

encoder such that data from the encoder is sent back, bit-

by-bit, to the microcontroller for processing. These bits of 

data are then manipulated via binary operations to construct 

an end value in binary representing an integer in the range 

of 0-1023 that corresponds to a specific angular position of 

the encoder. 

 The other form of software design regarding the 

encoders is the algorithm required to bridge the gap 

between the physical limitations of encoder movement and 

the full range of axis-based input that is sent to the 

simulator. This gap exists because the absolute encoders 

report 1024 values across their full range of motion, which 

directly corresponds to the 1024 values of axis-based input 

sent to the simulator, but the physical movement of the 

encoders via the collective lever or throttle would result in 

only a small portion of these values ever being seen by the 

host device. This is handled through a calibration process 

that is implemented in software. This calibration process 

allows the user to set a lower and upper bound for each of 

the encoders using their physical controls. These bounds are 

then put through an algorithm which determines the 

proportion of this limited range to the overall range of 1024 

values that the encoder can produce. After this proportion 

has been calculated, an array containing 1024 values has its 

contents inside of the limited range modified via an 

algorithm that expands values in the limited range to 

represent values in the full range. For example, if the 

difference between the upper and lower bound of an 

encoders physical movement encompasses only half of the 

actual range of the encoder, any movement from one value 

to the next that is reported by the encoder will be treated as 

though it was a change of twice the magnitude. This array 

is then utilized essentially as a lookup table in which the 

encoder value read in corresponds to an index in the array 

containing the modified value that should be reported to the 

host device. This allows for quick translation between raw 

encoder input in a small range of values to modified input 

in the full range to be sent to as gamepad input to a host 

device. 

D. Collective Head Input 

The collective heads created for use as part of the 

helicopter collective control unit consist of a few types of 

physical inputs, however all types of inputs present on the 

collective head must be treated as purely button-based input 

for the purpose of emulating gamepad input. In order to 

achieve this, some amount of software design is required. 

The first, and most important, is the logic to treat toggle 

switches as buttons, logic that is necessary for two reasons: 

lack of a signal for certain states of the switch as well as 

issues when binding physical controls to controls in the 

simulator. The first of these issues stems from the “off” 

state of toggle switches not producing a signal that can be 

read by the microcontroller directly. This issue, in isolation, 

could simply fixed in software by a conditional statement 

which checks if any of the other states of the switch are on, 

and if they are not, consider the switch to be in the “off” 

state. However, this alone is not sufficient, as it would result 

in certain forms of input constantly outputting some signal 

to be sent to the simulator. This would mean that when 

trying to bind a switch on the collective head to a control in 

a simulation environment, the simulator would not be able 

to determine which control is currently active. In order to 

remedy this, software is implemented such that the current 

and previous state of controls that may have this issue (such 

as toggle switches) are recorded upon change of the state of 

the control. This allows for a check to make sure that input 

is only sent to the simulator if the switches have actually 

changed state, effectively turning a constantly active switch 

into a button-like input. 

E. Bluetooth Communication 

Communication between the BM70 and ATmega2560 

microcontroller requires a very specific software 

implementation. As opposed to some Bluetooth modules 

which are communicated with simply using ASCII or other 

well-known standards, the BM70 platform utilizes a very 

specific command format. Some commands are static and 

are simply defined as byte arrays in the software to be sent. 

Dynamic gamepad input, however, must be generated 

according to a specific format in order to send them to the 

BM70 for wireless transmission. From a software 

perspective, this encompasses two functions: one to 

concatenate values read in from the collective lever, 

throttle, and head into command parameters and one to 

calculate a checksum that is required for the BM70 to 

accept and acknowledge the command being sent. 

On a somewhat higher level, the Bluetooth process of 

pairing a device must be handled very specifically in order 

to ensure proper connection before sending of data. In order 

to achieve this, Bluetooth pairing functionality is 

implemented as a state in the overall menu-based state 

machine. Whilst in this state, the software is designed to 

send a pairing command to the BM70, wait for a response, 

parse the response, and then either begin sending data or 

prompt the user for some action if pairing fails. This 



implementation is essentially a loop which waits for some 

response from the BM70 in order to maintain expected 

states in software. 

VIII. MECHANICAL DESIGN 

 

When initially considering the mechanical design 

elements and constraints that would be required for this 

project the main factors examined were our goals of 

producing a highly-realistic appearance, an end product 

with high mechanical accuracy that maintains acceptable 

tolerances, and a final design that could be predictably 

manufactured. In an effort to assist in covering all three of 

these goals, a decision to use 3D printing for all custom 

components was made. This decision, coupled with 

reference images and measurements, allowed us to 

accurately create nearly identical outside geometry when 

compared to the real-world collectives we based our 

designs on. The use of CAD programs allowed for both the 

basic design of each component as well as the ability to see 

the entire end product, which aided greatly in the creation 

of our physical assembly steps and procedures. The 

mechanical design has been broken up into the four main 

functional aspects of the end product: the collective head 

assembly, the twist throttle assembly, the collective lever 

assembly, and the base of the unit. 

 

A. Head Assembly 

The collective head assembly is fundamentally broken 

down into the categories of common and unique design 

components based on the collective head being emulated. 

The unique components are different between the Bell 206  

and UH-1 “Huey” as they must approximate the physical 

form of their respective head as well as allow for the 

implementation of the appropriate number of human inputs. 

These unique components are the shell of the head, the face 

plate, the set of human interface components, and the 

outside geometry of the bottom captive nut. 

 

The common components shared by both heads includes 

the bottom neck geometry and the inside geometry of the 

captive nut. These two shared aspects of the collective 

heads facilitate the ability to swap heads on the collective 

lever arm. While the common physical connection between 

the lever and head is facilitated by the neck, lever end cap, 

and captive nut, the common electrical connection to the 

head controls is facilitated by a common 17-pin circular 

Molex connector. 

 

B. Throttle Assembly 

The main objective of the throttle assembly is to translate 

the rotational motion of the physical twist throttle to a 

rotation on the throttle encoder. The collective twist throttle 

assembly consists of the external throttle control, throttle 

limit bearings, throttle limit collar, a mounted plate that 

revolves centrally inside the lever arm, a brass connecting 

rod, an encoder coupler, and the encoder itself. The external 

control is connected to the lever arm via two bearings, 

which are both captive along the lever via a bottom collar 

and the lever end cap, thus limiting the throttle’s movement 

Fig. 5. Complete mechanical design of collective control, 

shown with UH-1 Huey head attached. 

Fig. 6. Two swappable heads which can be attached to the 

collective lever. Left: UH-1 Huey Right: Bell 206. 

Fig. 7. Quick-detach mechanism cutaway illustrating screw-on 

captive nut and threaded end cap. 



about the length of the lever arm. The lever end cap and 

bottom collar also physically interface with the two 

bearings inserted inside the throttle in order to limit the 

rotational movement of the throttle to 140 degrees. The 

bottom of the brass connecting rod is held centrally inside 

the lever arm via a bottom end cap that holds both the 

connecting rod, encoder coupler, and encoder. The top of 

the connecting rod is connected to a plate extended from the 

outside throttle via a coupler and hex pairing that mates 

with a hexagonal shaped hole inside the plate arm. 

 

C. Collective Lever Assembly 

The collective control assembly is primarily centered 

around the ability for the lever arm’s movement around a 

central axis to be translated to a rotation of the collective 

encoder. The additional feature of being able to adjust the 

amount of resistance felt by the user was also implemented. 

The physical interface between the collective lever arm 

and the collective encoder occurs at the base of the lever 

arm via a custom designed collar, bearing, and partial gear 

combination. This custom piece statically mounts to the 

collective lever arm and allows it to rotate around a central 

bolt. The gear segment facilitates the translation of the 

rotation on the lever arm to the encoder, which has a mating 

gear permanently affixed to it. The gear segment and the 

driven gear on the encoder maintain a 3:1 gear ratio, which 

was chosen as a method for increasing the number of usable 

steps on the driven encoder, thus increasing the overall 

accuracy of the collective lever control. 

In order to facilitate the adjustment of resistance felt by 

the user, a shaft collar with a variable friction screw was 

used. This shaft collar is placed inside the collar and bearing 

combination at the base of the lever arm and tightens 

around the centrally placed shoulder bolt. In this 

configuration, the user is presented with a single hex bolt 

from the front of the unit that allows them to granularly set 

the felt resistance when moving the lever arm. 

 

D. Base Unit Assembly 

The base of the total collective assembly acts primarily 

to store necessary hardware and offer mounting options to 

the user. The sides of the base unit are constructed from 

aluminum plates in order to supply a solid mounting surface 

for the bolts that are connecting the two plates together and 

the central axis that the collective control rotates about. The 

base of the plates includes brackets that enable the end-user 

to mount the final product as they see fit with pre-drilled 

mounting holes. The base unit houses the PCB and all 

required wiring to connect the encoders and base unit 

controls, including the LCD, power switch, and buttons that 

exist on the top of the base unit itself. Finally, the back plate 

of the base unit exposes a dial to allow the user to change 

the LCD contrast as well as the USB-C interface from the 

PCB for charging. 

Fig.8. Overview of throttle subassembly and connecting rod. 

Above: Throttle encoder mount and coupler Below: Throttle shaft 

plate and hex coupler. 

Fig. 9. Overview of collective lever subassembly illustrating 3 

to 1 encoder gear ratio and friction adjustment mechanism. 
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Fig. 10. Overview of base unit subassembly illustrating user 

control top panel, rear contrast control, and bottom mounting feet. 


