
Helicopter Collective Control for

Flight Simulators

David Green, Mark Green, Sven Hall,

Joseph Pergola

Dept. of Electrical Engineering and

Computer Science, University of Central

Florida, Orlando, Florida, 32816-2450

Abstract — The Helicopter Collective Control for Flight

Simulators is a consumer-directed product for use in casual

flight simulation software. Traditionally, most consumer
controls are intended primarily for airplanes rather than
helicopters, and therefore the availability of realistic and

affordable helicopter specific controls is quite limited. To
combat this, we have designed a collective control which is
designed to fill this market niche. Our collective control can

be powered via a battery or a wired connection, connects
wirelessly to a computer to operate flight simulation software,
and replicates the look and feel of existing helicopter

collectives to provide an enjoyable simulation experience.

Index Terms — Aerospace Simulation, Embedded
Software, Bluetooth, Calibration, Mechanical Systems.

I. INTRODUCTION

Consumer flight simulation products are widely available

for purchase and there exists a significant market for these

products in order to replicate the experience of flying for

the casual user. However, the vast majority of products

available today are oriented towards airplane simulation

rather than helicopter simulation. The primary example of

these products is the HOTAS, which stands for “Hands on

Throttle-and-Stick”, a class of flight simulation products

which consist of a joystick and throttle lever as well as an

assortment of generic buttons and switches to control a

variety of aircraft. While these controls are affordable and

widely available, they are generic and therefore do not

accurately represent the look and feel of the controls of any

specific aircraft. Also, while controls such as HOTAS

devices, joysticks, and pedal controls may translate well

between the two kinds of aircraft, helicopters have a unique

control known as a collective lever which does not have a

direct counterpart in an airplane. The collective lever is

responsible for adjusting the pitch angle of all the helicopter

blades simultaneously which therefore alters the amount of

lift produced by the blades. This is used to both ascend and

descend as well as adjust acceleration when flying forward,

back, or side to side. Also, a set of additional controls is

sometimes present on a collective head at the top of the

lever to manage other helicopter functions. Typically,

integrated onto the collective lever itself is also a throttle

control to adjust total engine revolutions per minute (RPM).

Our collective control intends to replicate the look, feel,

and function of those found in real helicopters while also

providing conveniences which make it easy to use for a

casual user. The collective control is designed as a portable

unit that can be powered via a battery as well as operate via

a wireless connection so that it can be moved easily or

integrated into a larger simulation environment. Also, our

collective control has a modular head system which allows

for different collective heads to be quickly swapped out in

order to accurately replicate different real-life helicopters.

Finally, our collective control aims to be affordable for the

casual user while still providing high accuracy via the

implementation of precision axis sensors to report the

operation of the lever and throttle to the connected

computer and flight simulation software.

II. SYSTEM OVERVIEW

From an electrical hardware perspective, the collective

control is divided into three major subsystems: power,

logic, and input/output subsystems. The power system is

responsible for voltage regulation, battery charging, and

power passthrough in order to facilitate both a wired and

battery power source. The logic subsystem is responsible

for processing input data, calibrating the axis sensors,

establishing a wireless connection with a remote device,

and forming and transmitting gamepad-style input data to

the remote device. The input/output subsystem is

responsible for collecting input data from the collective

head, lever axis, and throttle axis as well as providing a

means for the user to interact with and configure the device.

Fig. 1. Total electrical hardware system overview depicting the

interconnection of major components.

III. POWER SYSTEM

A. Battery and Charging

A 3.7V lithium-ion 18650 rechargeable battery was

chosen because of its modern features, such as long battery

lifetime and fast charging capabilities. 18650 lithium-ion

batteries are extremely common and allow for our device to

be portable and the battery to be easily replaced by the user.

Furthermore, 18650 batteries are available in a wide range

of capacities up to 4000 mAh which satisfies one of our

major project goals of a long runtime off battery power.

18650 batteries are low cost, low profile, rechargeable, and

widely available, making them an ideal choice for this

project.

The upkeep of our battery was equally important as its

performance, therefore, the MCP73831 was chosen as the

charging IC to safely manage the charging profile of the

battery. This IC features an input voltage range from 3.75V

to 6V, a programmable charging current range from 15mA

to 500mA, and safety monitoring capabilities like power-

down and thermal regulation. The IC is programmed via an

external resistor to charge the battery at a rate of 500mA, to

a safe voltage just below its maximum rating, at around

4.185V.

B. Voltage Regulation

The overall electronic system has two voltage

requirements of 3.3V and 5V, each of which are unique to

specific components. Therefore, the TPS63020 Buck-Boost

DC-DC Converter was selected because it offers the ability

to take a range of input voltages and step it up or down to

our system’s needs. By selecting the TPS32020 we were

able to reduce circuit design time and cost by reusing the

same regulator for both the 3.3V and 5V line. The converter

can handle input and output voltage ranges from 1.8V to

5.5V, and 1.2V to 5.5V, respectively, and up to 4A of

output current, which is more than enough for our device’s

parameters. The output voltage is determined using an

external resistor divider which provides feedback that

indicates the desired output voltage to the regulator. Also,

due to the TPS63020’s nature as a DC-DC converter, it

boasts extremely high efficiency of up to 90%. This is

achieved through the implementation of a power-save

mode which dynamically lowers the switching frequency of

the regulator during low load current conditions in order to

maintain consistently high efficiency.

C. USB-C Power

Our device is equipped to accept a wired power source

via a USB-C connection. USB-C was chosen for its

advanced technology providing reversible connectivity and

support for USB Power Delivery to supply ample current to

our device. Due to the USB-C’s capabilities, we were able

to program it to provide our system with up to 3A so that

enough current was allocated to charge the battery and

power the entire system simultaneously. Another important

factor in selecting USB-C as our wired power method was

its ubiquity; most modern devices now utilize USB-C and

therefore it is commonly available and utilized by

consumers.

D. Power Passthrough

Efforts were made towards improving battery

management and user-experience, which led us to equip our

system with power-passthrough capability. As our device is

designed to be operated via either a wired power source or

through battery power, the system needs to be able to

recognize which power source is currently in use. This is

due to the fact that the wired power source must

simultaneously power the system while also charging the

battery, whereas during battery operation the battery must

solely provide power to the device. Power passthrough is

achieved through the use of a P-Channel MOSFET and a

Schottky diode. The P-Channel MOSFET detects the

presence of a wired power source in order to cut off the

battery from powering the device while the Schottky diode

prevents current flow back into the USB power source.

Fig. 2. Circuit diagram of TPS63020 DC-DC converter

implementation.

Fig. 3. Power passthrough circuit diagram, illustrating P-

Channel MOSFET and Schottky diode used to switch between

wired and battery power.

IV. LOGIC SYSTEM

The two primary components of the logic system are the

microcontroller and Bluetooth module. The microcontroller

collects and interprets input data from the collective control

and forms commands which are sent to the Bluetooth

module. The Bluetooth module then connects wirelessly to

a host device and appears as a Human Interface Device

(HID) which allows the remote device to interpret the

Bluetooth data as peripheral inputs. These inputs are then

bound to actions within the flight simulation software so

that physical inputs on the collective unit are reflected in

the virtual environment.

A. Microcontroller

We elected to utilize the ATmega2560 microcontroller in

our project for a number of reasons. The ATmega2560 has

a total of 86 general purpose I/O lines which is crucial to

our project due to the input-oriented nature of a helicopter

collective. Also, the ATmega2560 operates at 16 MHz

which provides an ample processing speed to interpret and

report data to the remote device with seemingly no delay.

The presence of 4KB of EEPROM also means that the

collective has the ability to persistently store calibration

data through power cycles which reduces the burden of the

user to calibrate the device with every use. The

ATmega2560 is also available on the Arduino Mega

development board which means that software design and

testing was able to occur much earlier in the design process

without the need for a completed PCB. The ATmega2560

is programmed directly on our PCB via an exposed ISP

header which connects to an external AVR programmer.

B. Bluetooth Module

The BM70 Bluetooth module was selected in order to

facilitate wireless communication between the collective

and the remote device running the flight simulation

software. The BM70 is a self-contained, pre-shielded

module which can be integrated directly into our PCB

design. Also, the BM70 supports Bluetooth Low Energy

and is Bluetooth 5 qualified which means that we are using

modern Bluetooth standards and technologies which are

less power-demanding than classic Bluetooth. The BM70

has a range of up to 50m which is more than satisfactory for

our purposes and provides access to the full Bluetooth Low

Energy software stack, which is necessary to implement

HID over GATT and appear as a gamepad to the remote

device. The BM70 communicates with the ATmega2560

over UART and is configured directly on the PCB via

header pins which connect to an external USB to UART

converter and a computer.

V. INPUT/OUTPUT SYSTEM

A. Collective Head

In order to accurately replicate a variety of helicopters, a

modular collective head system was designed which allows

for different heads to be quickly swapped in and out. This

means that rather than requiring an entirely different

collective unit to simulate a different helicopter, only the

small collective head piece need be switched. This is

achieved via a 17-pin female Molex connector which is

present in the end of the collective lever itself, which allows

a corresponding male connector to be embedded in each

collective head. Each collective head can therefore vary in

physical shape, size, and number of inputs but still connect

to the same lever. Within this connector is also a signal line

which is interpreted by the microcontroller to determine

which head is attached. This is achieved via the

microcontroller utilizing its analog-to-digital converter to

read the voltage level present on the signal line and

therefore determine which head is present. Inside of each

head, a resistor of varying value simply needs to be soldered

in place to provide a different voltage for each head. Once

the microcontroller determines which head is present, it can

then interpret the inputs from the 17-pin connector correctly

and report them to the flight simulation software. The input

from the 17 pin Molex connector embedded in the top of

the lever is then connected to the PCB via an 18 pin Molex

Connector in the base unit.

B. Axis Sensors

The two most essential inputs present on the unit are the

throttle axis sensor and lever axis sensor. These need to

measure the angular position of both the collective lever

and twist throttle and report these back to the

microcontroller. As a collective control is at its most basic

a lever and a throttle, the accuracy, durability, and feel of

these sensors are essential in creating a satisfactory final

product. Thus, for this purpose, we opted to use

EMS22A50-B28-LS6 absolute encoders. The fact that

these are absolute encoders is crucial; a traditional rotary

encoder simply indicates which direction it is spinning and

how many positions it has spun since startup, without any

knowledge of its current angular position. However, for our

purposes, the sensor must be able to consistently report its

angular position regardless of power cycling. The

EMS22A50 achieves this by measuring the magnetic field

within the device to determine its position, which provides

for smooth operation and increases the life of the encoder.

Furthermore, the EMS22A50 has a resolution of 1024

pulses per revolution and has a nominal accuracy of 0.7

degrees or better, which provides the necessary accuracy

for our project’s requirements. The EMS22A50 encoders

connect to our PCB via two 6-pin Molex connectors.

C. Base Unit Controls

While the collective head inputs and the axis sensors are

the inputs which are transmitted to the flight simulator,

some controls are necessary in order to configure the

collective unit itself. For this purpose, a power switch, 3

buttons, and an LCD1602 module were designed to be

integrated into the base of the device. The 3 buttons are

used to select different functions such as calibrating the

absolute encoders, viewing the battery voltage, or pairing

with a remote device. The information of what function is

currently being performed is presented on the LCD1602 for

the user to read. The LCD1602 module was chosen due to

its low cost, ease of use, and the small amount of

information required to be presented on the device at any

given time. The base unit controls connect to the PCB via a

24 pin Molex connector. Also, directly mounted on the PCB

but exposed out of the back of the unit is a potentiometer to

adjust the contrast of the LCD display.

VI. PRINTED CIRCUIT BOARD

We decided early on in the design process that we wanted

as many electronics as possible to be contained on the PCB

itself rather than utilizing breakout boards or off-the-shelf

development boards. We designed our PCB in Fusion 360

Electronics and decided to order our PCBs through

JLCPCB. JLCPCB was selected due to their extremely

quick turnaround time as well as their ability to assemble

all of the surface mount components on the board.

However, as JLCPCB only assembles components

available in their in-house inventory, this also presented a

unique challenge of designing the collective based on what

parts were made available by JLCPCB. Furthermore, our

PCB design was limited in size due to the physical

constraints of the base unit, which further complicated the

PCB design process. All through hole components were

hand soldered by our team members after receiving the

boards.

VII. SOFTWARE DESIGN

The software design for the collective control unit

involves creating software on the ATmega2560

microcontroller that seamlessly integrates all of the

hardware components involved into a functioning and

cohesive final product. The software is thus broken down

into three high-level logical sections: user interface, sensor

input processing, and Bluetooth communication. Each of

these sections of have unique design considerations which

will be henceforth explored.

A. User Interface

In order to maintain simplicity of use for the end user

while still allowing for complex functionality, a menu

system was designed for the user interface which the end

user can interact with via buttons on the collective base.

This menu system is implemented as a state machine. This

allows for the user to switch between various states of

functionality, for example between Bluetooth setup and a

state in which the user can calibrate the encoders for the

collective lever and throttle. Information regarding the

current state is presented to the user via the LCD present on

the collective base. The primary benefit of this form of user

interface, besides simplicity, is the strict

compartmentalization from a software perspective. This

division into various menu states allows for each form of

functionality to be designed and programmed nearly

completely separately from one another and take control

over any hardware component as necessary whilst

performing its function.

B. Input Processing

The most crucial software consideration for the

helicopter collective control is the input processing logic

used to take in and process data from the various forms of

sensor input. For the purposes of this portion of software,

sensor input refers to the two major forms of sensor input

used in the collective control: angular input from the

encoders on the collective lever/throttle and button-based

input from the collective head. Each of these two major

forms of sensor input have unique software requirements in

order to properly take in and process them as data that can

be transmitted as gamepad input to a host device.

C. Encoder Input

The EMS22A50 encoders used in the collective lever and

throttle to detect angular position require special software

design in order to function. One of the considerations

regarding the encoders is the process for taking in encoder

input. This is because, as opposed to something like a

button that sets a pin high or low, the encoders do not Fig. 4. 3D Rendering of completed PCB Design.

passively provide an input that can be read by software.

Instead, a specific technique is required to both receive and

process data from the encoders. This technique involves

manual manipulation of pins on the encoders utilizing

specific timing provided by the manufacturer in order to

receive data from the encoder. The process begins by

signaling an encoder to begin the process of sending data,

and then managing a clock signal by toggling a pin on the

encoder such that data from the encoder is sent back, bit-

by-bit, to the microcontroller for processing. These bits of

data are then manipulated via binary operations to construct

an end value in binary representing an integer in the range

of 0-1023 that corresponds to a specific angular position of

the encoder.

 The other form of software design regarding the

encoders is the algorithm required to bridge the gap

between the physical limitations of encoder movement and

the full range of axis-based input that is sent to the

simulator. This gap exists because the absolute encoders

report 1024 values across their full range of motion, which

directly corresponds to the 1024 values of axis-based input

sent to the simulator, but the physical movement of the

encoders via the collective lever or throttle would result in

only a small portion of these values ever being seen by the

host device. This is handled through a calibration process

that is implemented in software. This calibration process

allows the user to set a lower and upper bound for each of

the encoders using their physical controls. These bounds are

then put through an algorithm which determines the

proportion of this limited range to the overall range of 1024

values that the encoder can produce. After this proportion

has been calculated, an array containing 1024 values has its

contents inside of the limited range modified via an

algorithm that expands values in the limited range to

represent values in the full range. For example, if the

difference between the upper and lower bound of an

encoders physical movement encompasses only half of the

actual range of the encoder, any movement from one value

to the next that is reported by the encoder will be treated as

though it was a change of twice the magnitude. This array

is then utilized essentially as a lookup table in which the

encoder value read in corresponds to an index in the array

containing the modified value that should be reported to the

host device. This allows for quick translation between raw

encoder input in a small range of values to modified input

in the full range to be sent to as gamepad input to a host

device.

D. Collective Head Input

The collective heads created for use as part of the

helicopter collective control unit consist of a few types of

physical inputs, however all types of inputs present on the

collective head must be treated as purely button-based input

for the purpose of emulating gamepad input. In order to

achieve this, some amount of software design is required.

The first, and most important, is the logic to treat toggle

switches as buttons, logic that is necessary for two reasons:

lack of a signal for certain states of the switch as well as

issues when binding physical controls to controls in the

simulator. The first of these issues stems from the “off”

state of toggle switches not producing a signal that can be

read by the microcontroller directly. This issue, in isolation,

could simply fixed in software by a conditional statement

which checks if any of the other states of the switch are on,

and if they are not, consider the switch to be in the “off”

state. However, this alone is not sufficient, as it would result

in certain forms of input constantly outputting some signal

to be sent to the simulator. This would mean that when

trying to bind a switch on the collective head to a control in

a simulation environment, the simulator would not be able

to determine which control is currently active. In order to

remedy this, software is implemented such that the current

and previous state of controls that may have this issue (such

as toggle switches) are recorded upon change of the state of

the control. This allows for a check to make sure that input

is only sent to the simulator if the switches have actually

changed state, effectively turning a constantly active switch

into a button-like input.

E. Bluetooth Communication

Communication between the BM70 and ATmega2560

microcontroller requires a very specific software

implementation. As opposed to some Bluetooth modules

which are communicated with simply using ASCII or other

well-known standards, the BM70 platform utilizes a very

specific command format. Some commands are static and

are simply defined as byte arrays in the software to be sent.

Dynamic gamepad input, however, must be generated

according to a specific format in order to send them to the

BM70 for wireless transmission. From a software

perspective, this encompasses two functions: one to

concatenate values read in from the collective lever,

throttle, and head into command parameters and one to

calculate a checksum that is required for the BM70 to

accept and acknowledge the command being sent.

On a somewhat higher level, the Bluetooth process of

pairing a device must be handled very specifically in order

to ensure proper connection before sending of data. In order

to achieve this, Bluetooth pairing functionality is

implemented as a state in the overall menu-based state

machine. Whilst in this state, the software is designed to

send a pairing command to the BM70, wait for a response,

parse the response, and then either begin sending data or

prompt the user for some action if pairing fails. This

implementation is essentially a loop which waits for some

response from the BM70 in order to maintain expected

states in software.

VIII. MECHANICAL DESIGN

When initially considering the mechanical design

elements and constraints that would be required for this

project the main factors examined were our goals of

producing a highly-realistic appearance, an end product

with high mechanical accuracy that maintains acceptable

tolerances, and a final design that could be predictably

manufactured. In an effort to assist in covering all three of

these goals, a decision to use 3D printing for all custom

components was made. This decision, coupled with

reference images and measurements, allowed us to

accurately create nearly identical outside geometry when

compared to the real-world collectives we based our

designs on. The use of CAD programs allowed for both the

basic design of each component as well as the ability to see

the entire end product, which aided greatly in the creation

of our physical assembly steps and procedures. The

mechanical design has been broken up into the four main

functional aspects of the end product: the collective head

assembly, the twist throttle assembly, the collective lever

assembly, and the base of the unit.

A. Head Assembly

The collective head assembly is fundamentally broken

down into the categories of common and unique design

components based on the collective head being emulated.

The unique components are different between the Bell 206

and UH-1 “Huey” as they must approximate the physical

form of their respective head as well as allow for the

implementation of the appropriate number of human inputs.

These unique components are the shell of the head, the face

plate, the set of human interface components, and the

outside geometry of the bottom captive nut.

The common components shared by both heads includes

the bottom neck geometry and the inside geometry of the

captive nut. These two shared aspects of the collective

heads facilitate the ability to swap heads on the collective

lever arm. While the common physical connection between

the lever and head is facilitated by the neck, lever end cap,

and captive nut, the common electrical connection to the

head controls is facilitated by a common 17-pin circular

Molex connector.

B. Throttle Assembly

The main objective of the throttle assembly is to translate

the rotational motion of the physical twist throttle to a

rotation on the throttle encoder. The collective twist throttle

assembly consists of the external throttle control, throttle

limit bearings, throttle limit collar, a mounted plate that

revolves centrally inside the lever arm, a brass connecting

rod, an encoder coupler, and the encoder itself. The external

control is connected to the lever arm via two bearings,

which are both captive along the lever via a bottom collar

and the lever end cap, thus limiting the throttle’s movement

Fig. 5. Complete mechanical design of collective control,

shown with UH-1 Huey head attached.

Fig. 6. Two swappable heads which can be attached to the

collective lever. Left: UH-1 Huey Right: Bell 206.

Fig. 7. Quick-detach mechanism cutaway illustrating screw-on

captive nut and threaded end cap.

about the length of the lever arm. The lever end cap and

bottom collar also physically interface with the two

bearings inserted inside the throttle in order to limit the

rotational movement of the throttle to 140 degrees. The

bottom of the brass connecting rod is held centrally inside

the lever arm via a bottom end cap that holds both the

connecting rod, encoder coupler, and encoder. The top of

the connecting rod is connected to a plate extended from the

outside throttle via a coupler and hex pairing that mates

with a hexagonal shaped hole inside the plate arm.

C. Collective Lever Assembly

The collective control assembly is primarily centered

around the ability for the lever arm’s movement around a

central axis to be translated to a rotation of the collective

encoder. The additional feature of being able to adjust the

amount of resistance felt by the user was also implemented.

The physical interface between the collective lever arm

and the collective encoder occurs at the base of the lever

arm via a custom designed collar, bearing, and partial gear

combination. This custom piece statically mounts to the

collective lever arm and allows it to rotate around a central

bolt. The gear segment facilitates the translation of the

rotation on the lever arm to the encoder, which has a mating

gear permanently affixed to it. The gear segment and the

driven gear on the encoder maintain a 3:1 gear ratio, which

was chosen as a method for increasing the number of usable

steps on the driven encoder, thus increasing the overall

accuracy of the collective lever control.

In order to facilitate the adjustment of resistance felt by

the user, a shaft collar with a variable friction screw was

used. This shaft collar is placed inside the collar and bearing

combination at the base of the lever arm and tightens

around the centrally placed shoulder bolt. In this

configuration, the user is presented with a single hex bolt

from the front of the unit that allows them to granularly set

the felt resistance when moving the lever arm.

D. Base Unit Assembly

The base of the total collective assembly acts primarily

to store necessary hardware and offer mounting options to

the user. The sides of the base unit are constructed from

aluminum plates in order to supply a solid mounting surface

for the bolts that are connecting the two plates together and

the central axis that the collective control rotates about. The

base of the plates includes brackets that enable the end-user

to mount the final product as they see fit with pre-drilled

mounting holes. The base unit houses the PCB and all

required wiring to connect the encoders and base unit

controls, including the LCD, power switch, and buttons that

exist on the top of the base unit itself. Finally, the back plate

of the base unit exposes a dial to allow the user to change

the LCD contrast as well as the USB-C interface from the

PCB for charging.

Fig.8. Overview of throttle subassembly and connecting rod.

Above: Throttle encoder mount and coupler Below: Throttle shaft

plate and hex coupler.

Fig. 9. Overview of collective lever subassembly illustrating 3

to 1 encoder gear ratio and friction adjustment mechanism.

IX. THE ENGINEERS

Sven Hall is a 22-year-old Senior currently majoring in

Computer Engineering at the University of Central Florida.

He has prior industry experience in mechanical design and

software development. He previously interned at L3Harris

and has accepted a Software Engineering position at

L3Harris immediately following graduation. Sven’s

primary responsibility was mechanical design and

secondary responsibility was software design.

David Green is a 22-year-old Senior

currently majoring in Computer

Engineering at the University of Central

Florida. His post-graduation plans

involve looking for a job in the software

engineering and development industry.

His interests include .NET and desktop application

development. He is expected to graduate Cum Laude in

Summer 2021. David’s responsibilities in this project

include Bluetooth configuration, PCB Design, and

mechanical design.

Mark Green is a 22-year-old Senior

currently majoring Computer

Engineering at the University of Central

Florida. His post-graduation plans are

undecided, but he is currently exploring

options in the software development

and defense industries. Mark’s primary focus was on

embedded software for this project.

Joseph Pergola is a 23-year-old

Senior currently majoring in

Electrical Engineering with a focus

in Power Systems at the University

of Central Florida. He has accepted a

position at Cuhaci and Peterson

doing electrical design. Joseph’s focus was on the Power

System and PCB Design of this project.

REFERENCES

[1] Microchip, "ATmega640/V-1280/V-1281/V-

2560/V-2561/V Datasheet," May 2020. [Online].

Available:

https://ww1.microchip.com/downloads/en/Device

Doc/ATmega640-1280-1281-2560-2561-

Datasheet-DS40002211A.pdf.

[2] Microchip Technology, "BM70/71 Data Sheet," 25

October 2017. [Online]. Available:

http://ww1.microchip.com/downloads/en/DeviceDo

c/BM70-71-Bluetooth-Low-Energy-BLE-Module-

Data-Sheet-DS60001372H.pdf.

[3] Bourns, Inc., "EMS22A - Non-Contacting Absolute

Encoder," 17 May 2018. [Online]. Available:

https://www.bourns.com/docs/product-

datasheets/EMS22A.pdf.

[4] Federal Aviation Administration, Helicopter Flying

Handbook, Oklahoma City: United States

Department of Transportation, Federal Aviation

Administration, Airman Testing Branch, 2019.

[5] Microchip Technology, "MCP73831/2 Miniature

Single-Cell, Fully Integrated Li-Ion, Li-Polymer

Charge Management Controllers Datasheet," 28

Feburary 2020. [Online]. Available:

https://ww1.microchip.com/downloads/en/Device

Doc/MCP73831-Family-Data-Sheet-

DS20001984H.pdf.

[6] J. Smoot, "Rotary Encoder Options: Absolute or

Incremental?," 20 November 2018. [Online].

Available:

https://www.digikey.com/en/articles/rotary-

encoder-options-absolute-or-incremental.

Fig. 10. Overview of base unit subassembly illustrating user

control top panel, rear contrast control, and bottom mounting feet.

