# Divide and Conquer 1.0 Helicopter Collective Control for Flight Simulators

January 29, 2021

## Group 20

Mark Green – Computer Engineering David Green – Computer Engineering Sven Hall – Computer Engineering Joseph Pergola – Electrical Engineering

#### 2.0 Project Narrative Description

Among the world of flight simulators, there exists a desire for affordable and realistic controller options in order to better simulate the experience of flying a plane or helicopter in a virtual environment. While a plethora of options exist for consumer plane flight simulator controls that range from simple and affordable to complex and expensive, there is a marked lack of affordable yet realistic options available for helicopter controls aimed at flight simulators. This may be in part due to the rather niche experience required to operate a helicopter in a flight simulator and the relatively more complex control scheme of a typical helicopter when compared to average plane controls. The most common kind of controller available for flight simulators to the average consumer are HOTAS ("hands on throttle-and-stick") style devices which implement a throttle lever, flight control stick, and an array of buttons, simulating generic airplane controls that can be applied to many types of airplanes in various flight simulators. These kinds of HOTAS controllers can be acquired at varying price points with varying capabilities easily. However, as mentioned earlier, this is not the case for helicopter flight controls which are unique enough in their functionality that acquiring helicopter flight controls for use in a simulator can be prohibitively expensive and difficult. It is for this reason that the goal of this project is to develop a relatively low cost, portable, accurate, and modular controller to specifically implement the functionality of a helicopter collective lever for use in a flight sim.

A helicopter collective lever, known more simply as a collective, is the controller that is primarily responsible for adjusting the pitch angle of all blades on the main helicopter rotor at the same time, or collectively. This essentially enables the control of the amount of lift experienced by every blade on the main rotor at the same time, controlling vertical ascent or descent. This is used in conjunction with, but is not to be confused with, a control called a cyclic control that tips the entire rotor into a direction in order to tilt the helicopter forward and back or left and right, resulting in horizontal movement. The collective also usually implements a throttle control and a varying number of buttons or other inputs on the collective head (the top portion of the collective). The main goal of this project is to create a controller to implement the functionality of a generic helicopter collective (the collective lever control and throttle control) as well as specific functionality in the form of modular collective heads that can be swapped out to better represent different helicopter designs in a flight simulator. It is also a primary objective that this functionality be implemented in such a manner that the final result is not prohibitively costly, as this is the primary barrier of entry when attempting to obtain similar commercial products. The relatively low cost and modular capabilities that we aim to achieve are the aspects of this project which make it stand out from other available options in the commercial market for flight simulator controls.

### **3.0 Requirement Specifications**

| No. | Requirement                              | Specification                     |
|-----|------------------------------------------|-----------------------------------|
| 1   | Cost                                     | < \$500                           |
| 2   | Weight                                   | < 20 lbs.                         |
| 3   | Line of Sight Wireless Connection Range  | ≥ 15 ft                           |
| 4   | Idle Runtime (Wireless)                  | > 6 hours                         |
| 5   | Collective Base Size                     | < 1 cu. ft                        |
| 6   | Minimum Measurable Change of Lever Angle | < 1°                              |
| 7   | Angular Variance at Idle                 | $\pm 5\%$ of total angular travel |
| 8   | Number of Unique Collective Heads        | ≥2                                |

#### 4.0 Block Diagram



| Block                      | Status   |  |
|----------------------------|----------|--|
| Power System               | Research |  |
| Voltage Regulator          | Research |  |
| Mechanical Human Interface | Research |  |
| Sensors                    | Research |  |
| Logic Controller           | Research |  |
| Data Transfer              | Research |  |
| Sensor Interpretation      | Research |  |
| Wireless Control Unit      | Research |  |
| Computer Integration       | Research |  |

#### 5.0 Estimated Budget and Financing

| Component                                                      | Estimated Cost (\$) |  |  |  |
|----------------------------------------------------------------|---------------------|--|--|--|
| Input Devices and Sensors                                      |                     |  |  |  |
| Collective Shaft Angle Sensor                                  | 25-75               |  |  |  |
| Throttle Twist Sensor                                          | 5-50                |  |  |  |
| Switches, Joysticks, Buttons                                   | 10-20               |  |  |  |
| Mechanical                                                     |                     |  |  |  |
| 3D Printing Filament                                           | 10-40               |  |  |  |
| COTS Hardware                                                  | 50-75               |  |  |  |
| Electronics                                                    |                     |  |  |  |
| Batteries                                                      | 25-50               |  |  |  |
| Circuit Components (Resistors,<br>Capacitors, Inductors, etc.) | 10-25               |  |  |  |
| Logic Controllers                                              | 5-25                |  |  |  |
| Wireless Communication Module                                  | 5-15                |  |  |  |
| PCB Manufacturing                                              | 5-30                |  |  |  |
| Total Estimated Cost Range                                     | 150-405             |  |  |  |

This project will be self-financed by the members of our group.

#### 6.0 Project Milestones

#### Semester 1

| Milestone                                 | Deadline   |
|-------------------------------------------|------------|
| Divide and Conquer 1.0                    | 01/29/2021 |
| Divide and Conquer Advisor Review Meeting | 02/03/2021 |
| Divide and Conquer 2.0                    | 02/12/2021 |
| Research Input/Sensor Devices             | 02/15/2021 |
| Research Logic Controller Options         | 02/19/2021 |
| Research Wireless Communication Standard  | 02/22/2021 |
| Research Power Design Options             | 02/26/2021 |
| Initial Circuit Design                    | 03/15/2021 |
| Software Design/Programming               | 03/26/2021 |
| Initial Mechanical Design                 | 04/09/2021 |
| Initial Prototyping                       | 04/16/2021 |
| PCB Design                                | 04/26/2021 |

#### Semester 2

| Milestone                             | Deadline  |
|---------------------------------------|-----------|
| Finish Prototyping                    | May 2021  |
| Completed Mechanical Design           | June 2021 |
| PCBs Manufactured                     | June 2021 |
| Mechanical and Electrical Integration | July 2021 |

| Product Assembly | July 2021   |
|------------------|-------------|
| Function Testing | July 2021   |
| Final Product    | August 2021 |