ALEXA AUTOMATED PET FEEDER FINAL PRESENTATION

GROUP 18

C

MEMBERS:

CAMERON NERO, ELECTRICAL ENGINEER JACOB PAUL, ELECTRICAL ENGINEER CARLOS LAIRET, COMPUTER ENGINEER LIAM TSOI, COMPUTER ENGINEER

Introduction

- Create an Alexa-Enabled Pet Feeder
- Allow user to feed pet through Amazon Alexa
- See if the Pet has eaten their food through Alexa.

Goals and Objectives

- To provide pet owners with a quick, easy, and hassle-free way to feed their pets
 Eliminates the need to scoop and measure food for every meal
 Touch free design doesn't leave the owner's hands smelling like pet food
- To allow owners to care for their pets while away from home
 Provide piece of mind to owners who get stuck at a long day of work
 A safer, more regulated alternative to building "food mountain" when leaving for multiple days
- To keep a pet on a routine feeding schedule with regulated food amounts
 - Many pets struggle from over feeding
 - Aakes following veterinarian feeding advice easy

Specifications

X

DESIGN OVERVIEW

- Prefabricated housing with integrated pressure plate, battery and sensors
- Food reservoir fill port with lid
- Rotor driven food dispenser
- Wireless, battery operated, and rechargeable
- Fully enclosed: pet tamper resistant

Design Overview (Continued)

 \bigcirc

mirror_mod = modifier_ob mirror object to mirro irror_mod.mirror_object peration = "MIRROR_X": irror_mod.use_X = True irror_mod.use_Y = False operation = "MIRROR_Y" irror_mod.use_X = False operation = "MIRROR_Z" irror_mod.use_Y = True irror_mod.use_X = False operation = "MIRROR_Z" irror_mod.use_X = False irror_mod.use_Y = False irror_mod.use_Z = True

 \mathcal{O}

0

6

 \bigcirc

 \bigcirc

 \bigcirc

O

Q

 \bigcirc

Q

election at the end -add _ob.select= 1 er_ob.select=1 ntext.scene.objects.activ "Selected" + str(modifie irror_ob.select = 0 bpy.context.selected_ob ata.objects[one.name].selected_ob

pint("please select exactle

OPERATOR CLASSES -----

x mirror to the selecte ject.mirror_mirror_x" ror X"

SOFTWARE INTEGRATION

ICSP- IN-CIRCUIT SERIAL PROGRAMMING

- Eliminate dip sockets from PCB
- On board programming

Programmer (Arduino Uno)	Target Board (ATmega328)	
SCK (Pin 13)	Pin 19	
MISO (Pin 12)	Pin 18	
MOSI (Pin 11)	Pin 17	
SS (Pin 10)	Reset	
GND	GND	
+5V	+5V	

ALEXA INTEGRATION

• As discussed earlier, the NodeMCU will be the broker between Amazon Alexa and the Pet Feeder.

NODEMCU CODE BLOCK DIAGRAM

ATMEGA SOFTWARE BLOCK DIAGRAM

- The microcontroller will be on standby
- Once there is a request then there will be different switch cases

ATMEGA: CASE 1

ATMEGA: CASE 2

ATMEGA: CASE 3

ATMEGA: DEFAULT CASE

HARDWARE INTEGRATION

Microcontroller Selection

- ATMEGA328P
- Will act as the brain of the project
- Will control all the sensors along with communicating with NodeMCU for Alexa Commands

Feature	Specification		
Operating Voltage	5V		
Memory	32KB		
Processing Speed	16MHz		
GPIO Pins	23		

Ultrasonic Sensor Selection

- HC-SR04
- Will act as a food reservoir sensor
- Will alert the user when food level is low and needs to be refilled

Feature	Specification		
Operating Voltage	5V		
Current Consumption	15mA		
Min Range	2cm		
Max Range	400cm		
Cost	\$3.95		

Weight Sensor Selection

- Load Cell (wheat-stone bridge)
- A platform will be mounted on the load cell
- When the bowl reaches the user defined weight, the motor will stop spinning, thus not dispensing any more food

Feature	Specification		
Operating Voltage	5V		
Current Consumption	~2mA		
Weight Range	0-5kg		
Cost	\$12.99 (includes amplifier)		

Amp hours Ah = Q = It Q = 4A * 2mins * 14cycles Q = (112 A*mins)/60minsQ = Ah = 1.867Ah

Battery and Charger

- 12V, 5Ah AGM/SLA battery
- Battery is spill proof, resistant to gas leaks, and shock resistant
- 12V, 750mA automatic battery charger
- Falls within the 20% battery charging rule
- Can be left plugged in, will not over charge the battery

Motor Selection

- Nema 17 Motor
- Will be attached to auger and listen to commands from the microcontroller/NodeMCU.
- The motor will be able to be turned on via Alexa command and stop once a set weight is reached.

Feature	Specification		
Operating Voltage	12V		
Current	1.5A		
Step Angle	1.8 degrees		
Cost	~\$10		

Motor Driver Selection

- A4988 Stepper Motor Driver
- Purpose is for adjustable current limiting.
- Over-current and over-temperature protection.

Feature	Specification		
Logic Input Voltage	3.3V or 5V		
Load Supply Voltage	8-35∨		
Max Output Current	2A		
Cost	~\$2		

MAIN PCB SCHEMATIC

- Supporting parts (i.e 16MHz crystal).
- Pin headers for all peripherals.
- Three status LEDs that give the user feedback if needed.
- Reset button also included for debugging purposes.

G

MAIN PCB LAYOUT

- Board Size: 75mm x 56mm
- 2-layer, 1 oz copper design
- BOM Total: 21

Power Distribution Block Diagram

DC/DC BUCK CONVERTER

- LM2576HV
- Switching Regulator
- Input voltage range of 4V-60V
- Capable of driving 3A load with good load regulation
- Efficiency of >77%
- Low number of components required

DC/DC CONVERTER SCHEMATIC

DC/DC BOARD LAYOUT

- Board Size: 55mm x 37mm
- 2-layer, 1 oz copper design
- BOM Total: 7

STRETCH GOALS

- Computer Vision with Jetson Nano
- If time and budget allows, computer vision will be added to the project.

TESTING PLANS/RESULTS

0

0

Q

PROTYPING TESTING PLANS

SPECIFICATION #1 – ON DEMAND FEEDING

- Specification states that the pet feeder shall start dispensing food with 20 seconds after acknowledging the command from Alexa.
- As seen in the photo, it took approximately 12.9 seconds for the motor to begin turning/dispensing after telling Alexa to feed the pet.
- This specification was passed successfully.

SPECIFICATION #2 – RESERVOIR CAPACITY

- Reservoir Capacity specification states, that it must be able to hold
 3 days worth of food, or 5 cups.
- As seen in the image to the left, it is only halfway full when 5 cups of food was added into the bowl.
- The pet feeder could hold approximately 10-11 cups of food when completely filled.
- Therefore, this specification was all passed successfully.

SPECIFICATION #3 – WEIGHT SENSOR STATUS

- The weight sensor status specification says that the pet feeder shall stop dispensing once a weight greater than or equal to the threshold weight.
- For testing purposes, we set a maximum weight of 80g.
- Once the motor began to turn, we placed an 80g weight on the load cell and we saw the motor stop instantly.
- The weight sensor status specification was passed successfully.

SPECIFICATION #4 – RESERVOIR SENSOR STATUS

- Reservoir Sensor specification states. "Pet Feeder shall alert the user, via Alexa, that the reservoir is low once the sensor sees a distance greater than 15cm."
- For testing purposes, we placed the ultrasonic sensor face up to emulate the sensor seeing a distance greater than 15cm.
- After this, we then asked Alexa to dispense food and it gave us an error stating, "Food Reservoir is low, please refill to dispense food."
- Therefore, the Reservoir Sensor Status specification was passed successfully.

ADMINISTRATIVE CONTENT

 \frown

0

Q

0

Budget

ltem	Cost
Weight sensing module	\$12.99
NVIDIA Jetson Nano 2GB	\$63.13
Arduino Uno R3 x 2	\$37.87
DC/DC PCB	\$39.11
Proto PCB #1	\$45.11
Miscellaneous Matrials	\$30
Auger	\$10
Jumper Wires	\$6.00
BJTs & Resistor Kit	\$21.00
Battery	\$15.60
Battery Charger	\$17.98
Motor	\$19.69
Motor Drivers (5)	\$8.00
Ultrasonic Sensors (2)	\$9
Node MCU (2)	\$8
Chip puller	\$3.34
PVC Pipe	\$4
Housing mats (wood, glue, screws, finish	TBD
Total	\$350.82

Progress

Work Distribution

	Cameron Nero	Jacob Paul	Liam Tsoi	Carlos Lairet
Alexa Integration			Secondary	Primary
MCU Integration			Primary	Secondary
PCB Design	Primary	Secondary		
Power Design	Secondary	Primary		
Hardware Integration	Primary	Primary		
Computer Vision(Stretch)			Primary	Primary

Challenges

- Low Budget, since it is funded by the group.
- Mechanical Design.
- Time
- Parts/Tools Availability

QUESTIONS?

Ó

 \mathcal{Q}