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[bookmark: _Toc70413931]1. Executive Summary 
Currently, the best way to accurately calculate range is to use radar. Radar is an active range finding method to measure range by sending out radio waves and calculating the time it takes for the radio wave to come back. The problem with this is that with the right equipment, the object being measured knows that they are being tracked. Using passive range finding, the object doesn’t know it is being tracked. This can be useful for a number of things when it comes to war, where information can decide who comes out alive. Tracking a plane using passive range finding can the plane think it is not being tracked. This can change the pilot’s decision making on what to do next. If we used a missile and track the target using passive range finding instead of active, then the target would be unable to tell there is a missile coming towards them unless they detect a fast moving object in which case, the current counter measures used by planes would be ineffective in disposing the missile. 
 
In this project, we plan on using 2 visual cameras and 1 IR camera to create a passive range finder. The cameras take in information without sending anything out, making the system passive. The information is then processed, taking all the data from the camera system to output the most correct range estimation. The IR camera alone or the 2 visual cameras alone can each output their own range estimation, but we are combining both the camera setups to get the most accurate range possible. 
 
The visual cameras accomplish passive ranging by taking in both perspectives of the cameras. The pictures are taken at the same time and then processed to identify objects in the scenery. The processor then calculates the number of pixels the object is away in the horizontal direction from both pictures and does a calculation to determine the exact distance the objects are away from the object. This accuracy is limited by the number of pixels there are and the field of view. The less pixels and the wider the field of view, the less accurate the estimation is.

[bookmark: _Toc64795472][bookmark: _Toc68159136]The distance between the cameras can also affect the minimum range that an object must be from the camera system in order to produce accurate ranging data. A larger distance between the cameras would mean that there would be a further minimum distance that an object would have to be in order to range it. It is also important to ensure that the two cameras are vertically aligned with no rotational shift in either sensor. This is because the images are processed on a pixel level and the vertical rows of pixels must match up between the two images. Without this, the disparity cannot be accurately calculated.

[bookmark: _Toc70413932]2. Project Description	
This section will go over why we are developing a passive range finder and go over the objectives and goals for this project. We want to create a passive range finder. The project specifications will be discussed and the initial design diagram will be shown at the end of this section.

Passive ranging, or imaging, is a non-destructive way of studying a field/target by only collecting information given by scene. Active systems can be more accurate and controlled than passive systems, but they involve illuminating the scene first.  In the realm of defense, active ranging systems can pose risks and dangers to devices that utilize them. The use of a passive ranging device can allow targets to be sensed and monitored without alerting any nearby sensors. This is common when wanting to scan an aircraft covertly or detecting unexpected threats.  A common passive ranging technique is the use of stereo vision, similar to how the human eye functions. By using two cameras, a depth map can be constructed, and range can be estimated. By using computer vision algorithms, an object can be detected, and range tracked. Since visual cameras can see exactly as we do, object identification can be achieved using machine learning and computer vision. 

There is a limit to how much visual cameras can identify, especially under poor illumination or weather conditions. This can be overcome with the use of an infrared (IR) camera, which can detect heat/thermal radiations that are emitted from targets. In the long-wave infrared, these cameras can see in the dark and through tougher weather conditions than in visible. In addition, the maintenance needed for IR cameras is minimal. One disadvantage of the use of IR cameras is that the object being detected must be in motion. Furthermore, there is no reason that both visual and IR cameras should not be implemented in conjunction. IR cameras can also be used for identifying animals in the wilderness, automating inspections (food, automobiles, electronics, welding etc.), monitoring conditions (fires, waste, combustibles), and detecting gases.

The goal of this project is to create a device that can track and range a moving target, with the use of visible and infrared cameras. The goal is to determine range estimates passively, without using any emission, and to be able to track a target. The Air force Research Labs (AFRL) is sponsoring the project with some equipment and mentorship.  The main application of this project would be in defense systems. This device should be able to collect temperature vs time measurements, identify targets of interest, see through fog/rain, predict target movement and course, and possibly classify targets. The device will be built on an optical table but can be condensed into a housing if time permits. Considering the AFRL is loaning us the infrared camera, and we will be able to borrow equipment from a CREOL research lab, the project will be relatively low-cost. The results of the camera will be displayed on a touchscreen which will be our main interface. Being able to process and analyze the images from the camera will take a strong processing computer that will give estimates at a decent speed. The device should be easy to use at the press of a button. 

The algorithms used with the images should be able to process the input data and determine ranging data based on both the IR and stereo camera images. The stereo camera images would primarily utilize the depth that can be found by using the cameras in conjunction. The IR camera would primarily be able to determine data when an object is moving towards or away from the camera.

We will be using either an FPGA designed for graphical computing or a raspberry pi 4 or equivalent graphical computing machine. If we use the FPGA approach, then we would be able to get a more efficient hardware design going, though this would cost more. We would also need to design an FPGA board and the computer vision part. Connecting that up with the other parts of the system would be easy as long as the design is well thought out. With the raspberry pi 4 or equivalent graphical computing machine, we could get a cheap set up going, but we may have to adapt some connections to get the set up to work. There are also some background things happening as well as not being as efficient as going with an FPGA designed specifically for this purpose.
[bookmark: _Toc70413933][bookmark: _Toc68159137][bookmark: _Toc64795344][bookmark: _Toc64795474]2.1 Motivation and goals 
In the United States Air Force, they use radar to track everything that flies in the sky. A radar system sends out radio waves. When the waves hit something, it reflects into different directions, with the important ones being the ones that make it back to the radar’s receiver. With this, we can measure the time it takes for the wave to travel to the object and back and calculate the distance. This can also be used to calculate speed with 2 successive measurements.

The problem with radar is that it has to transmit a radio wave. This has the chance of getting caught by something with the right equipment, like an aircraft, and know someone is tracking them. This can give away the knowledge that there is an aircraft in the area, taking away the element of surprise. The same thing happens for radar tracking missiles. They know there is a missile on the way from there warning systems and can deploy countermeasures to confuse the missile to make it miss.

There is also the idea of designing aircraft to reduce the radar signature of the aircraft. This is done by building the aircraft in such a way that minimizes the amount of radio waves reflected back, whether that is by absorbing them or sending them in to another direction. This makes the radar either not detect the aircraft or makes it appear like something much smaller when the aircraft is in range. 

The idea for passive range finding is to find out how far away something is without letting the other side get any chance of knowing that we know where they are. With the way the military does this now, they have to send out a signal that bounces off of the object and comes back to the receiver. This doesn’t happen with a passive range finder because we never transmit anything, only take in the information. This means we do not have a way of alerting what we are tracking, making it much harder or impossible for someone to know that they are being tracked. For air to air or land to air missiles, passive ranging can be used to guide the missile to the target without the target knowing until the missile is within visual range at the earliest possible moment, unless their own radar picks up the fast moving object. 

By combining a long wave infrared camera with stereo visual cameras in our system, we try to overcome any disadvantages that come with using passive ranging devices. One major downside to passive ranging with strictly visual range cameras is that identifying objects in poor lighting conditions or at night can range from difficult to nearly impossible. This is where the IR camera can be used to compensate for these issues. The IR camera would also have its own downsides in that it would only be able to find ranging data of moving objects, as its main form of depth perception would be in calculating the movement of these objects over time.

At a basic level, the stereo visual camera implementation should be able to take imaging data from a well-lit static scene and to be able to make necessary calculations to determine ranging information about specified objects within the scene. Since both the stereo visual and IR systems would have to work in tandem, it might also be necessary to determine which system to rely on more exclusively based on the parameters of the given environment.

Camera System
The camera system will consist of the single long wave infrared camera and the two stereoscopic visual cameras. Each individual camera system will likely be tested on an optical table with alignment equipment and then later be moved to specialized housing created for the specific parts. The overall enclosure for the project will have to contain enough room for all of the parts with the cameras in an aligned position and uncovered enough to make fine-tuned optical adjustments

Software 	
The software for this project will primarily deal with image processing and calculating ranging data based on images provided by the camera system. Without an algorithm to process the image data, much of the system itself will not prove to be useful, which puts a large emphasis on the programming aspects of this project. 

The images from the two visual cameras would be used together to create a disparity map. This map would be able to approximate the depth of different objects in a scene in relation to each other based on the distance between the objects in the two images. The images from the IR camera on the other hand would have to be analyzed over time, as the single camera system would only be able to detect ranging data with moving objects.

Aside from the image processing aspect of the project, there would also be software involved in interfacing the system together and connecting it to the display. The display itself should also be able to show useful data and images from the cameras in order to better visualize the effectiveness of the system.

Power 
The power system will provide enough power to the system. The power required is not high, but the system will need consistent power from an outlet to stay powered. There will also be a battery to keep the system running for a little bit of time when not plugged into the wall.
[bookmark: _Toc70413934][bookmark: _Toc68159139]2.2 Engineering Specification 
Specifications must be established before designing a product in order to achieve the goals and performance that is needed. In table 1-2 a tradeoff between marketing and engineering requirements can be visualized with arrows corresponding to positive and negative correlations between the variables. There is a negative correlation between costs and engineering requirements because the more expensive the parts, the better performance we would be able to achieve, so there is always that tradeoff to consider. The passive ranger should be as compact as possible and be able to achieve an accuracy above 95% with a sensitivity of +/- 5%, cost less than $10k, produce an image quality of 15 fps at 480p, while using ~30 Watts to run.

	Legend

	+
	Positive Polarity

	-
	Negative Polarity

	↑
	Positive correlation

	↑↑
	Strong positive correlation

	↓
	Negative correlation

	↓↓
	Strong negative correlation


[bookmark: _Toc70371033][bookmark: _Toc70412369]Table 1. House of Quality legend
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[bookmark: _Toc70371034][bookmark: _Toc70412370]Table 2 A table displaying how the marketing and engineering requirements relate and trade off each other. This is called a house of quality.
Below is table 3 which clearly show the engineering requirements we have for this project. Some of these are not guaranteed in the final product, but it is what the goals are in a clear view. We want the range accuracy to be close to the true value, and we think within ±5% of true value is possible with the close ranges we are testing this at. We want the range estimation to update 10 times a second so then we can track speed and do object motion tracking. We want the estimated velocity of the object in motion to be within 5% of its true value. We want the system to detect an object within 2 seconds of the object coming into view.  We want the disparity image to update 15 times per second at a resolution of 853x480 pixels. We want the minimum field of view for the IR camera to be 90 degrees horizontal and 69 degrees vertical. This is so we don’t just look straight ahead with a narrow field of view, negating a lot of potential from the visual camera’s field of view. We also want the IR camera to have a resolution of at least 2.267  mrads so then the pixels in the IR camera are not too far apart, which would degrade our range accuracy.
	Range estimation accuracy
	±5% of true value

	Range estimation speed
	10 times/sec

	Background/Target differentiation
	2 s

	Time of arrival estimation (velocity)
	±5% of true value

	Disparity image
	15 FPS (480p<)

	Object motion tracking
	-

	Temperature sensitivity
	±5°C or ±5% of reading

	IR Field of View
	90°(H) × 69°(V)

	IR Resolution
	2.267 mrad


[bookmark: _Toc70412371][bookmark: _Toc70371035]Table 3. Engineering requirements and specifications for the ranger.
[bookmark: _Toc70413935][bookmark: _Toc68159140]2.3 Initial Diagrams 
On Figure 1 below, a block diagram outlining the project is shown, with colors based on the primary group member in charge of the given block. On Figure 2, a similar diagram is shown for the general software flow; this is unrelated to group member work distribution.
The camera system will include the visual cameras and the IR cameras. The primary function of the stereo visual cameras is to be able to detect ranging information of objects in a static environment. While the IR camera can only range moving targets, it would be able to detect objects even under poor lighting conditions. The visual cameras will be set up on either side of the IR camera in a way that the fields of view match up effectively. While the overall performance of the two systems is not contingent on how well they align with each other, the alignment of the two stereo cameras is an essential part of the stereo system.
The camera system will then send the information from the visual cameras and the IR camera to the Jetson Nano. The Jetson Nano will take that information and apply a preprocessing and compose the images for the object detection algorithm. The preprocessing system will include converting the stereo vision images to greyscale to reduce the computational complexity of running disparity mapping algorithms over them. Converting to greyscale effectively divides the number of intensity values that need to be parsed by 3. Since we do not need to take color into account while determining the range, this is a worthwhile optimization. The Object detection part of the algorithm will be used for the range finding algorithm. For the stereo visual cameras, ranging information will be found by creating a disparity map and using this to find distances of various objects within a scene with relation to each other. The stereo image streams will, on each frame, be parsed by the object identification algorithm which will yield key points within both images from which the disparity mapping algorithm will use to derive an approximate range of the object from the camera system. With the correct calculations and measurements, this measurement should be quite accurate.
In order to determine which object in the image to track, we will need to either implement and train a neural network to identify objects in an image, or we need to take a pre-existing model and adapt it to our own use case. It is likely that we will be unable to find a model to work with identifying objects in the IR camera stream since it is a pretty niche use case, so we will most likely need to implement our own object detection model for IR cameras. This model will likely take the form of a convolutional neural network. For our uses, it is unlikely that we will need to take this as far as object classification, simply identifying the object in the image will be sufficient. We need to be able to identify the object in the image that we want to range because otherwise the range finding algorithms will have no point of reference between image for disparity mapping, and the apparent surface algorithm will not be able to determine the region of the thermal image to parse.
The power supply will have a start/stop button. This is to start and stop the system when we want to. The power supply will power everything in the system. This includes the cameras, the raspberry pi and anything else that we may include in the system. We will get the power required from the wall. This will be converted to what voltages we need to power everything. The clock signal will be what tells the cameras to take picture and send it to the raspberry pi.
[image: ][image: ]
[bookmark: _Ref64807595][bookmark: _Toc64808908][bookmark: _Toc70354730][bookmark: _Toc70371036][bookmark: _Toc70412394]Figure 1. Overall system block diagram and work distribution
[image: ]
[bookmark: _Toc70354731][bookmark: _Toc70371037][bookmark: _Toc70412395]Figure 2. Software diagram: colors unrelated to work distribution.
[bookmark: _Toc64795347][bookmark: _Toc64795477]

[bookmark: _Toc70413936][bookmark: _Toc68159141]3. Research and Part Selection Comparison 
To begin the process of developing our system, we must first research which parts would be the most suitable for use within our designs. In order to determine the best fits, we would have to research a range of statistics and make decisions based on which products align best with the overall goal of our implementation. We would also have to decide on which parts of the system we would like to design or create ourselves rather than purchase as a part. Any part we create ourselves would have to be feasible to design within our budget and time constraints.
[bookmark: _Toc68159142][bookmark: _Toc70413937]3.1 Existing projects and products
In order to better set up a passive ranging system, it is useful to first look at existing technology and research using the key materials and tools we plan to use in our implementation. Looking at existing products can also provide insight into the standing market and applications for our technology. By analyzing what is already being used in the current day, we can better understand the limitations of our project along with what key elements we should be focusing on in the design. Looking at parts used in existing technology can also provide us with an approximate price range of how expensive the equipment in our system should be in order to yield comparable results.
[bookmark: _Toc68159143][bookmark: _Toc70413938]3.1.1 SIRIUS, a Long Range Infra-Red Search and track System
Sirius is a dual-band infrared search and track system (IR-IRST) that was developed and tested for ranging in an anti-air warfare (AAW) multisensory unit implemented on warships [1] . This device was created by Dutch and Canadian navies in an effort to expand the defensive capabilities, especially against sea skimming anti-ship missiles (including supersonic missiles). After the demise of the Berlin Wall, the NATO navies were no longer operating in open water and focused more on in coastal operations. The naval operations were now more for peace keeping and instead of war, and this called for ways to be detect more information. 

[image: ].
[bookmark: _Toc70354732][bookmark: _Toc70371038][bookmark: _Toc70412396]Figure 3. SIRIUS Permission pernding [2]
As shown in Figure 3, SIRIUS is a rotating system of two sensors, one that detects LWIR (8 um – 10 um) and another detecting MWIR (3 um – 5 um). The stabilized head rotates 360° at 60 rotations per minute, or 1 Hz. The altitude coverage is set to 3.8 degrees, using a telescope lens system limited by a 150 mm aperture (F#0.9), which focuses on detecting skimming missiles. This system was used by implementing several passive ranging methods in conjunction to get 3-D data of a target, which no other system had done before without an active transmission element [1]. With an extensive budget, SIRIUS uses the latest generation of IR sensors with time delay integration (TDI) and multiplexed readings. Additionally, it is cooled by a closed-cycle Stirling cooler 80K for optimal performance.
[bookmark: _Toc68159144][bookmark: _Toc70413939]3.1.2 FLIR Ranger™ MS-UC DefendIR
[image: product image]
[bookmark: _Toc70354733][bookmark: _Toc70371039][bookmark: _Toc70412397]Figure 4. FLIR DefendIR Permission pernding [3]
The FLIR DefendIR is an modern industry leading thermal imaging system that was design to perform in rigorous weather conditions [3] as seen in Figure 4. This system uses both an uncooled Vanadium Oxide Microbolometer detector and a CCD camera. The use of IR sensors enables the system to see through environmental disturbances like snow, fog, and rain. Its main application is perimeter surveillance for land or sea environments. With the inclusion of a visible camera, a superimposed image can be observed from the thermal and visible detection. In comparison to the SIRIUS system, DefendIR has elevation control from -80° to +80° and can see 360° azimuthally. The resolution lies at 640 x 480, which is common for IR sensor arrays, and has customizable optical zoom options. 
[bookmark: _Toc68159145][bookmark: _Toc70413940]3.1.3 Power and housing
The power required in this system is similar to that of a low power laptop. We also plan to enclose this system into a case we will build using SolidWorks and a 3D printer. We will include some holes to make sure temperature doesn’t get out of control inside the case. We may also need a fan to force air to move through the system. 

Laptops come in a lot of different shapes and sizes. Their power can vary from really low power usage, around 15 watts to high power, 100 watt or more power usage. The ones closest to our power is the low power laptops or slightly above that, where they tend to have at most 1 fan and some kind of heat dissipation, like a copper heat pipe to spread the heat around the system to give it more surface area. Over a long period of time, they can get hot to touch, but do have mechanisms to throttle down their performance to reduce the amount of heat they generate. The biggest difference is that we want to do a single program over and over again, whereas laptops have varying tasks that want to execute and finish as soon as possible. This will generate a constant amount of heat into our system compared to a laptop.
[bookmark: _Toc68159146][bookmark: _Toc70413941]3.2 Relevant Technology
Before looking into specific parts to select for this project, we must first understand what we need our parts to be able to do along with their limitations. It is useful to look into the various components needed in each part and its primary use in the overall system. By understanding the purpose of each component, we can create specifications for our system and make calculations based on the needs of each part. It is also important to research what kinds of specifications our system might need based on its specific applications, as some components may be more suitable for other designs or purposes.
[bookmark: _Toc68159147][bookmark: _Toc70413942]3.2.1 IR Camera
Infra-red cameras are much different than regular cameras because they operate in a different range of the electromagnetic spectrum than regular cameras. The portion of the electromagnetic spectrum detected by an IR system range from 0.9-14 μm, which is not visible to the human naked eye. The detected radiation by the detector is converted into an image of thermal distinctions across a scene. This type of imaging is called thermography. The architecture of an IR camera is like that of a digital video camera, where light is collected and focused by a lens onto a detector, following by electronics and software to make sense of the information and displaying the images and signals [4]. 

The detector used for IR cameras is a focal plane array (FPA) of pixel detectors (usually micrometers in size) that can take IR wavelengths. With the right software, computational methods, and calibration, temperatures can be determined for different parts of FPA based on intensity. The two types of FPA detector technologies are thermal detectors and quantum detectors. The cheaper and more widely available is the thermal detector, such as uncooled microbolometers. Microbolometers are made from metal or semiconductor materials that, when excited by IR radiation, will become hotter and change in electrical resistance. The range in resistance can be related to the temperature to create a visual image. Thermal detectors are less sensitive and slower than their counterpart. Quantum detectors are made from special materials that operate based on the electron’s change of state due to the incident light. Quantum detectors are costly and require a cooling system to work efficiently. For our purposes, a thermal detector will be more than sufficient. 

It is important to understand which part of the electromagnetic spectrum is desired for a given application, in order to select the right optics and detector materials. The optics used to transmit, reflect, and refract infrared light are not the same as that for visible light. The materials used for IR lenses and components are commonly either Silicon (Si) or germanium (Ge) and come with anti-reflective coatings just like in the visible. For operating in the medium wavelength IR (MWIR), silicon is often used, and germanium for long wavelength IR (LWIR). There is always going to be some atmospheric medium between the camera and the object of interest. As the object’s radiation travels to the camera, some will be absorbed, so it is useful to look at the transmission spectrum for common atmospheric scenarios like rain, fog, and gas. This is given in figure 5. below. The transmission spectrum shown in figure 5 illustrates that for wavelengths 7 um – 13 um, the transmission percentage is high and therefore we choose LWIR as the wavelength range for our camera. 

[image: ]
[bookmark: _Toc70354734][bookmark: _Toc70371040][bookmark: _Toc70412398]Figure 5.  IR transmissions through different atmospheric effects.[5]
Furthermore, another important factor will be the resolution of the camera. The resolution is based on how many individual detectors are on the FPA. The resolution can range from 160 x 120 to 1024 x 1024. While the highest resolutions are desired to obtain more detail and distinction in the images, the higher resolutions require a lot more computational power to analyze and compute ranges. Additionally, the higher the resolution the more expensive the camera is. 

Lastly, we consider the frame rate and field of view (FOV) of these cameras [6]. The frame rate, also called frames per second (FPS) is denoted in Hz (1/s) is the rate at which the camera continuously captures images. The FOV is important because it determines the area of the scene that can be seen depending on the distance away from the camera. As the distance increases, a larger area can be seen, however this depends on the FOV angle. Ideally the largest FOV is favorable to be able to see the largest area available. However, there is a tradeoff when having a large FOV and the resolution of the images because a one-pixel detector will have to measure a larger part of the scene, so there is a loss in detail. This is often denoted as the spatial resolution or instantaneous field of view (IFOV), which can be calculated by dividing the detector pitch (size) by the effective focal length (EFL) of the camera. The IFOV is the smallest feature in the FOV that can be detected by at a given range and is given in mrad. Figure 6 illustrates how the vertical and horizontal FOV produce the thermal image scene.
[image: ]
[bookmark: _Toc70354735][bookmark: _Toc70371041][bookmark: _Toc70412399]Figure 6. Diagram of vertical and horizontal FOV. Permission pernding [7].
[bookmark: _Toc68159148][bookmark: _Toc70413943]3.2.2 Visible Cameras
Human vision utilizes stereo disparity using the horizontal separation between the eyes. The retinal images received by each eye are processed together by the brain through a process termed stereopsis [8]. The degree of stereopsis helps to determine depth perception using the human brain. In order to simulate stereopsis, stereo cameras employ geometric triangulation by taking two different images with separate cameras [9]. These cameras are placed at a specified horizontal distance between each other and the disparity between objects in the two images is measured [10]. With the help of computer programs, the disparities between objects at different distances from the cameras can be converted into a visual depth map [10]. The basic principle behind creating these depth maps is that the disparity between objects should be larger for objects that are closer to the two cameras [10]. Visually, they can be represented in a grayscale form, where closer objects have a lighter color than those further away [10].

While these principles should work theoretically with any setting, certain objects or lighting conditions can make it more difficult to find correlations between objects in the two images. It is easier to distinguish objects when there is a higher degree of non-uniformity present in the images [8]. For these reasons, it is more difficult to employ stereo vision in outdoor settings or in scenes with a larger field of view. Results are typically more reliable when using specific structured lighting sources. This allows the objects in the scene to be recognized and correlated with each other more easily [8].

Depth perception using stereo vision can also be conducted using both passive and active methods. A passive system would rely solely on any light already present in the scene and would work well in sunlight or any other well-lit conditions [8]. While it does not perform as well as its active counterpart in low light scenes or with non-textured objects, it is a more cost-effective method, and works well for the purposes of our project [8]. The active version of this would use a structured light source between the two cameras and would be more useful for low lighting conditions [8]. However, in conditions where there is already a sufficient amount of light present or with objects that are far enough that the structured light source wouldn’t reach them, this version would work the same as a passive system [8]. Also, since our primary objective in this project is to be able to range without being detected, introducing an active light source would not be a favorable design.
[bookmark: _Toc68159149][bookmark: _Toc70413944]3.2.3 Micro-processor
There are many different sorts of microprocessors that are available on the market to be used for a project such as this range finder. To be able to perform the necessary processing algorithms on the images gathered from the stereo vision setup and the IR camera will require a relatively high degree of performance. Because of the high level of performance that will be expected of this microprocessor, less sophisticated chips such as Texas Instruments’ MSP series and Arduino chips will not be considered since they simply lack the ability to perform more complicated image processing algorithms. These microprocessors often come with boards that have several components, often including GPU’s, coprocessors, RAM, and SD card readers.

One of the most obvious choices to be used in this project is the Raspberry Pi. The Raspberry Pi possesses many traits that make it a favorable choice for this project. It has an enormous community dedicated to producing quality tools with great documentation to support building projects on the platform. The Raspberry Pi comes with many models, however there is one model that comes with an impressive 8 GB of RAM, allowing the chip to run relatively complex programs without much issue. Additionally, the chip allows us to install a conventional operating system (Linux), and display output to a display which will be very useful for developing a user interface for the range-finding system. The processor included on the Raspberry Pi is a 64-bit quad-core ARM Cortex-A72 processor with a 1.5 GHz clock rate. Since the microprocessor is multicore, this will allow us to take advantage of multi-threading to further improve the performance of the code [11]

Another relevant piece of microprocessor technology is the Nvidia Jetson Nano. This system includes a quad-core ARM Cortex-A57 CPU, 4 GB DDR4 RAM, and a 128-core Nvidia Maxwell GPU. This system delivers a staggering amount of power while maintaining an impressively small form-factor. The Jetson Nano, like the Raspberry Pi, fully supports Linux as an operating system. Since a GPU is included on the board, we would be able to run popular image processing libraries such as OpenCV with a great degree of performance. Relative to the Raspberry Pi, the development community for this system is much smaller, however the impressive power packed into this system provides great incentive for an engineer to choose to implement it into a computationally taxing system [12].
[bookmark: _Toc68159150][bookmark: _Toc70413945]3.2.4 Displays
While researching the best display for our uses, we had several key factors contribute to our final decision. We needed to ensure that the display had a port that is compatible with the Jetson Nano without any modification. Consequently, we narrowed our display decision down to one that receives input from either HDMI or DisplayPort connections. Additionally, we want to keep the form factor of our project down to a minimum, so we decided that the size of the display should reflect this design decision. We want to ensure that we will be able to build our own custom housing for the display as well, so it was important to us that the display panel that we chose comes with as minimal a housing as possible to minimize the amount of work that we need to do to strip it down to its bare components. We would like to build our own housing for the display so ideally there would be little to no included housing around the display. To ensure a good user-experience and minimal need for peripherals, we also decided that the display that we decide feature touch-screen input functionality. This will allow us to save on size by eliminating the need for a keyboard/mouse to interact with the GUI. Based on these design decisions, we decided on a display that fully meets our requirements.
[bookmark: _Toc68159151][bookmark: _Toc70413946]3.2.5 MicroSD Card
We will need to use a MicroSD card to be used with the Nvidia Jetson Nano to store the operating system and any additional source code files that will be used for this project. The storage size of the MicroSD card needs to enough that we can store an entire Linux operating system and the source files for the project. We believe that more storage space than expected is ideal since, should we choose to expand the project, we will have more than enough additional resources at our disposal. Based on these design decisions, we have chosen a MicroSD card that fully meets our needs.

3.2.5.1 SAMSUNG: EVO Select 128GB MicroSDXC

This MicroSD card features 128GB of storage, which is more than enough for our storage needs. The card boasts an impressive 100MB/s transfer rate, which ensures that our program can access the resources needed at a rate fast enough as to not incur any noticeable latency. The card will fit natively with the Jetson Nano board, and includes an adapter that will allow us to format the card and flash our operating system of choice onto the card with ease. In addition to the impressive technical characteristics, the card is water-proof, temperature-proof, x-ray proof, and magnetic-proof, which will improve the durability and stability of our final design [13].
[bookmark: _Toc68159152][bookmark: _Toc70413947]3.2.6 Operating System
The operating system that we choose for this project will be key part of producing an optimized final design. A resource-intensive operating system will slow down our microprocessor with too much overhead, so we ideally want an operating system that is as barebones as possible. With this in mind, it seems that a Linux distribution will be the most logical option for our needs. Many Linux distributions exist, some with more features and overhead than others, so it is important that we decide on one that will be best suited to our use case. 
[bookmark: _Toc68159153][bookmark: _Toc70413948]3.2.7 Power System
This section will talk about the power sub-system in our system and how we came to the conclusion to choose certain parts. This won’t go over common components like capacitors and resistors.

There are a lot of different power converter systems in many different systems. If any desired voltage level is not the same as main voltage supplied, there needs to be a power converter. For this system, we plan on making its power come from a wall outlet.  This means we need to convert 120 voltage in alternating current (120V AC) to something usable for our system. 

Some of the commonly used direct current (DC) voltages in systems include 12 volts, 5 volts, and 3.3 volts. 5 volts DC has gotten more used as the USB protocol has been increasing in popularity while using 5 volts DC. Over a long distance, higher voltages are more efficient than lower voltages. This means 12 volts is more efficient than 5 volts, but 120 volts AC is more efficient than 12 volts. So, we want to make the distance the 12 volts DC has to travel less than the 120 volts AC and the 5 volts DC even less than either of them.

For the power, we are going to be drawing power from the wall. This requires a buck converter to bring the voltage down to the levels acceptable by the cameras and the raspberry pi. The voltage level needed for the cameras is 12 volts while the voltage for the raspberry pi is 5 volts. With this, I will need to take a PWM buck converter from 120 volts AC to 12 volts DC and another buck converter from 12 volts DC to 5 volts DC. For power requirements, the cameras operate on at most 3 watts of power each. With a total of 3 cameras, this makes the total power required for the cameras 9 watts. The Nvidia Jetson Nano Developer Kit can take in at most 2 amps at 5 volts, bringing the total power up to 10 watts. There is also the touch screen, which is rated for .62 amps at 5 volts. This brings the total power required up to 22 watts. This is before efficiency of the converters is considered. There may also be some power spikes in the system, drawing more current than anticipated, so the power system should be able to handle 5 amps at 5 volts. Even if the system does draw more power, it shouldn’t destroy the entire system.

We will be adding in a lithium ion battery, but that part will not be talked about here because that part will be relatively easy to get as well as the only consideration will be reliability while looking at the batteries within the power requirements set. 12V lithium ion batteries are also common in laptops, so getting one for our system will be easily done.
[bookmark: _Toc68159154]3.2.7.1 AC-DC Conversion

AC-DC conversion can be done in multiple ways. The first thing to be decided will be to use a single-phase rectifier or a three-phase rectifier. A three-phase rectifier would be higher efficiency, but the power required to make the system work is low, so the highest possible efficiency isn’t necessary. A three-phase rectifier also requires three different inputs. The voltage drop between peaks is less in a three-phase rectifier is less, but the drop between peaks is not a big factor in what we are using. We do have a limitation on the size of the system, so a single-phase rectifier is the best option.

Looking at the different single-phase rectifiers, we can do a half wave or a full wave rectifier. The efficiency of the full wave rectifier is much higher than the half wave rectifier, but the half wave rectifier is simpler to build. A bridge full wave rectifier doesn’t take up much room while being as efficient as possible for a single-phase rectifier. Efficiency is more important for low heat generation to try to use as little space as possible by not using a heat sink, and the space savings for going with a half wave rectifier over a full wave rectifier is not enough to justify.

For a full wave rectifier, we can use either a bridge rectifier or a center tap rectifier. A bridge rectifier requires 4 diodes while a center tap rectifier requires only 2 diodes. A center tap rectifier requires a center tap transformer, whereas the bridge rectifier doesn’t. This means we need either 2 more diodes or 1 center tap transformer. Adding 2 more diodes would be easier and more economical than adding a center tap transformer. The transformer utilization factor of a bridge rectifier is higher than that of a center tapped full wave rectifier, making the efficiency higher on the bridge rectifier. Because of these reasons, we are going to be using a bridge rectifier.

To do the AC-DC conversion, we need a PWM controller. On One option is to use a flyback topology controller. Since this is a low power device, a flyback controller would make sense, but it would have a large ripple current. This can be fixed with an EMI filter, but that incurs extra cost and complexity. Another option is using forward topology controller. The forward topology design is for low power devices, but for higher power devices compared to the flyback topology. Since the max current expected is going to be less than 4 amps, a forward topology would be less efficient at the lower currents compared to a flyback topology controller. For this reason, we are going to be with a flyback topology controller.

Bringing down the amount of flyback controllers to 3, we get the LM5023, UCC28730-Q1, and UCC28631. Any of these will be close to the best controller to use in this system.

To get the LM5023 to work, it requires the most components out of all the options listed. It also has the lowest efficiency at the low end by about 10% compared to the next lowest efficiency at .5 amps. Because of this, this would be the worst option of these 3.

Comparing the UCC28730-Q1 to the UCC28631, the UCC28730-Q1 has better efficiency at currents higher than .7, but below that, the UCC28631 has better efficiency. We expect this system to be above .5 amps when in operation, so the advantage goes to the UCC28631. The UCC28631 also is a simpler power system, with 23 parts compared to 26 parts as well as a lower voltage peak to peak. Because there are more advantages with the UCC28631 compared to the UCC28730-Q, we are going with the UCC28631 flyback controller. There are other differences between these 2 controllers, but those differences are irrelevant. 



	
	UCC28730-Q1
	UCC28631
	LM5023

	Efficiency of Circuit at maximum power (3 amps) 
 
	83.4%
	87.2%
	86%

	Efficiency of Circuit at half power (1.5 amps)
 
	84.5%
	87.8%
	85%

	Efficiency of Circuit at .5 amps
 
	84.2%
	84.5%
	78%

	Current Range
(at 12 Volts)
 
	Up to 8.33 amps
	Up to 5 amps
	Up to 3.43 amps

	BOM count
 
	26
	23
	37

	Recommended Maximum Power
 

	100W
	60W
	41W

	Vout peak to peak at 12 volts and 3 amps output
 
	75.47 mV
	62.27 mV
	92.04 mV


[bookmark: _Toc70371042][bookmark: _Toc70412372]Table 4. Comparison between 120V to 12V AC-DC flyback controllers
The Table 4 shows the main differences between the parts compared for the power system. These are only the main parts considered as there are others that would work here as well. The efficiency is shown at 3 different points to show that the system is expected to fluctuate between different power needs based on what is seen from the cameras. The controller selected is highlighted in yellow in the table.
[bookmark: _Toc68159155]3.2.7.2 DC-DC Conversion
DC-DC conversion can be done in multiple ways. DC-DC conversions can be done either to go up in voltage or down in voltage. The only DC-DC conversion we are doing is from 12 volts down to 5 volts. One option is to use 2 resistors to get the voltage we want, but that would be really inefficient at 42% efficiency, generating a lot of heat. This would be the smallest option available. The other options would involve using a step-down controller or step-down regulator. This would take up more room but be far more efficient.
 
For the DC-DC conversion, we can use many different step-down controllers or step-down regulators. The main focus will be on using as small as a footprint as possible, where efficiency should be above 90% over the entire current range from 1 amp to 5 amps, which is the expected current output range.

Limiting this down to 3 regulators, we have the TPS56623x, the TPSM84624, and the TPS543620. The TPS56623x has different variants. They all meet the power requirements and the efficiency we want, but the efficiency of the TPS56623x is slightly better over the other regulators at low current draw. The lowest bill of materials count uses the TPSM84624, but the smallest footprint uses the TPS56623x. Because the TPS56623x has the most benefits going for it with the least amount of drawbacks, we are going to be using the TPS56623x regulator in the 12V to 5V DC-DC converter. 
 



	 
	TPS56623x
	TPSM84624
	TPS543620

	Efficiency of Circuit at maximum power (5 amps) 
 
	95.6%
	94.4%
	94.5%

	Efficiency of Circuit at half power (2.5 amps)
 
	96.3%
	94.3%
	95.4%

	Efficiency of Circuit at .5 amps
 
	94.8%
	83.3%
	89.3%

	Current Range
(at 5 Volts)
 
	Up to 6 amps
	Up to 6 amps
	Up to 6 amps

	BOM count
 
	15
	8
	17

	Recommended Maximum Power at 5 volts
 

	30W
	30W
	30W

	Vout peak to peak at 5 volts and 5 amps output
 
	8.71 mV
	11.9 mV
	8.32 mV

	Circuit Footprint
 
	130 mm2
	145 mm2
	237 mm2


[bookmark: _Toc70412373]Table 5. Comparison between 12V to 5V DC-DC controllers

Table 5 shows the differences between the 3 different voltage regulators compared. These are only the main parts considered as there are others that would work here as well. The efficiency is shown at 3 different points to show that the system is expected to fluctuate between different power needs based on what is seen from the cameras. The regulator selected is highlighted in yellow in the table.

For the DC-DC conversion, the best step-down regulator is going to be the TPS56623x. There are 4 different variants to this regulator. There is the TPS566231, the TPS566238, the TPS566231P, and the TPS566238P. The differences between them are in the feature set. 
 
The TPS566231 and the TPS566238 have an adjustable soft start time. The TPS566231P and the TPS566238P have the power good indicator. We have to go with one or the other. The better one for us is the power good for trouble shooting since we don’t need to adjust the soft startup time. 
 
The TPS566231 and the TPS566231P has advanced eco-mode control which is meant to save on power by increasing the light load efficiency. The TPS566238 and the TPS566238P have force continuous current mode. This is to have control over the switching frequency and the output voltage ripple, at the cost of less light load efficiency. For this system, we don’t need either of these, but the advanced eco-mode is a nice to have, so we will be going with the TPS566231P for the 12V to 5V DC-DC voltage regulator.

	Features
	TPS566231
	TPS566238
	TPS566231P
	TPS566238P

	Soft Startup Time
	Has it
·  
	Has it
· 
	Does not have it
· 
 
	Does not have it
·  

	Power Good Indicator
	Does not have it
· 
 
	Does not have it
· 
 
	Has it
·  
	Has it
· 

	Eco-mode
	Has it
· 
	Does not have it
· 
	Has it
· 
 
	Does not have it
· 
 

	Continuous Current Mode
	Does not have it
· 
 
	Has it
· 
	Does not have it
· 
 
	Has it
·  


[bookmark: _Toc70412374]Table 6. Comparing different versions of the TPS56623x voltage regulator
 
Table 6 shows the differences between the TPS566231, the TPS566238, the TPS566231P, and the TPS566238P. If the part has a feature supported, it has the text “has it” in the corresponding box as well as a check mark underneath. If the feature is not supported, then the corresponding box has the text “does not have it” with a cross. These differences don’t have much impact on performance and are minor features, but they may make a difference in the performance of the system.

[bookmark: _Toc68159156][bookmark: _Toc70413949]3.2.8 Clock
We want to use a master clock so that for troubleshooting, we can send an impulse signal through the system to get a single reading. We could use one of the cameras or the clock from the image processing unit, but then if we wanted to test the whole system and just want a single impulse, the easiest way would be to replace the clock signal with an impulse signal. 
 
For this, we just need a simple clock that can be converted down to 10 Hz to match the requirements of the camera. All of the cameras will be operating is slave mode. This will allow us to control the system using a function generator for testing. The pulse width needs to be at least 100 nanoseconds, for the Tau 2, or 5 MHz clock at 50% duty cycle. We want the clock to be as close to 30 Hz as seen by the Tau 2 as possible. The voltage peak needs to be 3.3 volts and the voltage minimum needs to be ground. The duty cycle doesn’t matter as long as the pulse width for that is at least 100 nanoseconds. The Tau 2 ignores all pulses inside of the 30 Hz window, so the clock will set the camera to operate somewhere less than 30 Hz no matter what the clock cycle is. They are the LTC6995-1,  LTC6995-2 or the LTC6991. 
 
The difference between the LTC6995-1 and the LTC6995-2 is that the 
LTC6995-1 reset input is an active high while the LTC6995-2 is an active low. That is it. The LTC6991 can have either an active high or active low. The input voltage range is the same as well as the supply current. All the clocks can have a pulse width modified by adding components to the circuit. All of the clocks can come in a DCB package or an S6 package.
 
We want an active high reset because the cameras active reset is a high active reset. We also want the polarity to be 0 when the reset pin is set. The differences are insignificant. The biggest decider will be availability at the time of purchasing the clock. Table 7 below shows there is no meaningful difference between the LTC6995-1 and the LTC6991.
 



	 
	LTC6991
	LTC6995-1
	LTC6995-2

	Reset 
 
	Active High or Active Low, depending on polarity pin
 
	Active High
	Active Low

	Input Voltage Range
 
	2.25V to 5.5V
	2.25V to 5.5V
	2.25V to 5.5V

	Maximum Supply Current
 
	170 microamps
	170 microamps
	170 microamps

	Pulse width modifiable
 
	Yes
	Yes
	Yes

	Package
 
	S6 or DCB
	S6 or DCB
	S6 or DCB


[bookmark: _Toc70371043][bookmark: _Toc70412375]Table 7. Clock Comparison
[bookmark: _Toc70413950]3.2.9 Programming Language
The programming language that we choose for this project will have significant influence on both the time to develop the software side of the project, and the level of optimization we can achieve in code. Since this project is going to run off of a microprocessor, it makes sense that the programming language that we choose is natively supported by the microprocessor platform we choose. Additionally, it is important that well-established libraries for image processing are already present in the language. Since these libraries are well-researched and heavily relied on in production environments, it will be of great benefit to be able to make use of these resources rather than try to build out our own implementations of commonly used algorithms. Finally, it is essential that the language that we choose is able to interface with any proprietary code for the infrared cameras and stereo cameras. We will need to research what languages are able to call functions and blocks of code from another language and interpret the outputs accordingly. 
[bookmark: _Toc70413951][bookmark: _Toc68159157]3.3 Strategic part selection	
A key part of designing our system is researching various existing parts that are available for use and which best fit the specifications we need for our applications. Some components might fit certain needs but not others, which would require us to do a comparison of multiple parts to see which would best fit our overall system. Each part would need to contribute to a balance between premade components and the overall system that we must design. By this logic, it is useful to purchase components that would be beyond the scope of this project to design ourselves but still necessary in order to implement our system.
[bookmark: _Toc68159158][bookmark: _Toc70413952]3.3.1 IR Camera
For the IR camera, we will be primarily looking at long wave infrared cameras developed by FLIR Systems. We will also be looking at parts to efficiently mount the camera to be able to align it more easily. For the purpose of designing a more accurate system, it is also useful to compare different IR lenses and look at off-axis parabolic mirrors and apertures. Figure 7 shows the FLIR A65 camera.
3.3.1.1 FLIR A65
[image: ]
[bookmark: _Toc70412400][bookmark: _Toc70354736][bookmark: _Toc70371044]Figure 7. FLIR A65 Camera. Permission pernding [14]
One choice given to us by the AFRL is the FLIR A65 IR temperature sensor [14]. This camera is stated to be for process control, condition monitoring, and quality assurance [site]. While that is the intended purpose of the camera it can be used for our applications because it meets desirable specifications. This camera has a focal plane array (FPA), uncooled VOX microbolometer, has incredible accuracy (±5% of reading). The field of view of this camera is dependent on the lens that comes already attached to it. The lens the AFRL have on their camera has a 25 mm focal length, which leads to a FOV of 45° × 37°. While FLIR offers the same camera with a different lens, it is not possible to replace the lens in this camera. The resolution is 640 x 512 with a 17-um detector pitch and frequency of 30 Hz. The resolution is excellent for our purposes, and the highest we would consider allowing for speedy image analysis. The spatial resolution, or IFOV, lies at 1.31 mrad which is important for distinguishing between objects in a scene. The spectral range (7.5-13 um) is desirable according to the IR transmission spectrum in the atmosphere. Despite the great quality of this camera, the inability to optically modify the magnification and FOV, led us try and obtain a different one that can be modifiable. Additionally, this camera is small but not very compact to be integrated into a multi-camera system, and the shock and atmospheric ratings for this camera are not desirable in non-ideal field situations. The electrical connection of the FLIR A65 camera is very simple and straight forward by using two CAT 5 Ethernet cables. One cable is connected to a wall power box that powers the camera, and the other is connected from the box to the computer to send information. Considering this camera is a standalone system, there is not much configuration that can be done to the electrical wiring. 
3.3.1.2 FLIR Tau 640
The FLIR Tau 640 camera is another choice proposed by the AFRL which has similar specifications to the A65 camera, while being more rugged, compact, and shutterless [15]. This camera can have interchangeable lenses which will in effect modify the field of view and range of detection. The figure 9 below offers a comparison between lenses and their corresponding HFOV and range for detection, recognition, and identification [16]. This camera is meant for demanding applications like handheld imagers and airborne devices, with a shock rating of 200g with 11 ms sawtooth, operation altitude of >40000 feet, and can resist vibrations of 4.3g in three axis for 8 hours each. The resolution and spectral band are the same as for the A65. The FPS can be either 30 Hz or 60 Hz depending on the settings but 30 is likely the one we will use. This camera is better suitable for our purposes because it can be modified and much easily mounted and integrated into a compact system.
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[bookmark: _Toc70364147][bookmark: _Toc70412401][bookmark: _Toc70354737][bookmark: _Toc70371045]Figure 8. FLIR Tau 640 and Primary I/O Connector Pinout, Hirose #DF12-50DS-0.5V(86) [15] [17]: FLIR Tau 640 and Primary I/O Connector Pinout, Hirose #DF12-50DS-0.5V(86). Permission pernding [15] [17]
Figure 8 shows the camera core and the 50 pin connector on the Tau 640. The back of the Tau 640 comes with an open electrical circuit ready to be integrated into a camera system or connected using a VPC module accessory kit or digital camera link module. The electrical connection to the Tau 640 core is via a single high-density 50-pin connector: Hirose #DF12-50DS-0.5V(86) [17]. The recommended mating connector is Hirose #DF12(5.0)-50DP-0.5V(86) for a mating stack height of 5 mm.

[image: ]
[bookmark: _Toc70364148][bookmark: _Toc70354738][bookmark: _Toc70371046][bookmark: _Toc70412402][bookmark: _Toc68159159]Figure 9. Lens comparison from FLIR Tau 1 manual, Permission pernding [18]
Figure 9 shows the lens comparison of ranges at which we can detect objects. The specifications of the two discussed IR cameras are given below for comparison. The size, wide field of view of 90 degrees, great shock rating, and low power consumption make it the best candidate for an integrated camera system. Table 8 compares the Tau 2 and FLIR A65 cameras. 


	Parameter
	FLIR A65 25 mm
	Tau 2 78.5 mm

	FOV

	25° × 20°
	90° x 69°

	iFOV

	0.68 mrad
	2.267 mrad

	Pixel pitch

	17 μm
	17 µm

	Frequency/framerate

	30 Hz
	30/60 Hz (NTSC)

	Temp. range

	-25°C to +135°C
	-25°C to +135°C

	Sensitivity

	±5°C (±9°F)
	< 30 mK (NETD)

	Shock rating
	25 g (IEC 60068-2-27)
	200g shock pulse w/ 11 msec sawtooth

	Size
	4.2" × 1.6" × 1.7" 
	1.75" x 1.75" x 1.18"

	Thermal imager
	Focal Plane Array (FPA), Uncooled VOX
microbolometer
	Uncooled VOX Microbolometer

	Connection

	Ethernet
	50-pin Hirose

	Input voltage

	10–30 VDC
	4.0 - 6.0 VDC


[bookmark: _Toc70371047][bookmark: _Toc70412376]Table 8. IR Camera comparison
[bookmark: _Toc70413953]3.3.2 Tau 2 electrical interface
To control the camera, configure, and obtain images, the Tau 640 head uses a 50 Hirose connector. Each pin would need to be individually connected following the Electrical Description Document (IDD). These pins would be connected to the 40 pin expansion header on the Jetson Nano, in which each pin is configurable. This process can be tedious and very easy to mess up. It is recommended that we use a module that connects to the 50 pin Hirose and gives already common power and control connections. These two are the VPC (video, power, communications) module and the Camera Link module.
3.3.2.1 Tau 640 VPC Module Accessory  
The VPC module shown in Figure 10 is an expansion board that can be used to connect and power the camera with an USB cable [18].. There is also an MCX output connected to that is used for analog video output. The USB connection is through a USB-A to USB-mini B cable. This module would be very beneficial for interfacing with the Jetson Nano.
[image: ]
[bookmark: _Toc70412403]Figure 10 VPC Module Accessory. Permission pending [18]. 
3.3.2.2 Tau 640 Camera Link Module Accessory  
The Camera Link is module is a similar expansion board to the VPC. The module includes LVDS digital video access provided by a Camera Link channel [manual 9Hz], USB-A to USB-mini B connection for power and data, and MCX coaxial to analog video. The output from the camera link channel can be set to either 8-bit or 14-bit (good for calibration) through the FLIR Camera Controller GUI. This module also offers spacers between the back face and the module. The minimal power consumption from the USB connector is 212 mA with 5VDC and a peak draw of 550 mA. The camera link is compatible with any frame grabbers and software on the market for ease of use. Figure 11 show interface parts and connections available in the camera link module.
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[bookmark: _Toc70412404]Figure 11 Camera Link Module Accessory. Permission pending [17]
To connect either the VPC module or the Camera Link module we are able to use either interface with the computer using an analog MCX (from camera) to BNC cable. For the computer to process the video feed, we need to convert the stream from analog to digital format. To do this we will use a USB video grabber that can take a composite BNC connection and turns it to USB for connecting onto the microprocessor. The analog video grabber of choice is shown in figure 10 which has an S-video, BNC, and RCA video input. This device also supports high quality video recording in NTSC 720x480 at 30fps or PAL 720x576 at 25fps [19]. This device is of choice for interfacing with the TAU 2 camera because it is easily integrated with the system because of its size and ease of use. The camera link interface could be implemented with more time to implement a camera link frame grabber circuit board. Figure 12 shows the Analog to Digital Video Grabber that we intend to use to convert the analog signal to a digital signal usable by our microprocessor unit.
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[bookmark: _Toc70364149][bookmark: _Toc70412405][bookmark: _Toc70354739][bookmark: _Toc70371050]Figure 12. Analog to Digital video grabber (BNC-USB). Permission pending [19]
[bookmark: _Toc70413954]3.3.3 IR Lens selection
The lens used for the IR detection will be chosen to achieve a wide FOV, while keeping a decent IFOV for object detection. The camera will initially come with a 7.5 mm focal length lens which results in a 90° x 69° FOV and an IFOV of 2.267 mrad. Considering this parameter is suitable for detection at 200 meters and recognition at ~50 meters, we will do testing and design with this lens and experiment with others if necessary. Given that we want to decrease the FOV in order to achieve a longer range of detection, a lens with higher focal length may be used to achieve object detection at 300 meters. The longer the focal length the longer the range we will be able to detect, recognize, and identify objects [20].

Below is figure 13, a comparison for the FLIR Tau parameters for each configuration and resolution. The field of view achievable by the camera for each configuration, focal length, and F# is compared. The higher focal length lenses are used for long range narrow field of view applications, while the short length lenses are used for close range wide view. In this case we are using the 7.5 mm focal length lens and if this needs to be changed in the future, it can be easily changed but camera must be recalibrated.
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[bookmark: _Toc70364150][bookmark: _Toc70412406][bookmark: _Toc70354740][bookmark: _Toc70371051]Figure 13. A comparison between f-number, lens, and their relation with configuration resolution and effective pixel pitch. Permission pending [20]
[bookmark: _Toc68159160][bookmark: _Toc70413955]3.3.4 Off-axis parabolic mirror and aperture
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[bookmark: _Toc70364151][bookmark: _Toc70412407][bookmark: _Toc70354741][bookmark: _Toc70371052]Figure 14. MPD239-P01. Permission pending [21]

An off-axis parabolic mirror (OAP) will be used to design a system that simulates a closing object for camera testing and calibration (figure 14). The OAP is able to focus collimated light onto its focal point or collimated light that is diverging from its focal point.  This mirror needs to have an area that entirely illuminates the IR camera detector array. Considering the IR camera array is 29mm (1.14 in), OAPs with at least larger diameter were compared from different vendors. The IR coating on the mirror is also important to ensure the best transmission for the camera spectral range is reflected. Common metallic coatings aluminum, gold and silver, and their reflectance spectrum is given in figure 15. Protected silver (450 nm – 20 um) has a longer wavelength reflectance range than the protected gold (800 nm – 20 um). Considering a larger range will be good to first align the mirror using visible light, a protected silver coating Ø2" 90° OAP from Thorlabs with a 2” parent focal length (PFL) and 3” rear focal length (RFL) (Item #: MPD239-P01) [21]. Additionally, the collimated light from the OAP will be incident onto a variable aperture which needs to have a maximum diameter of at least 2” and a minimum diameter of one tenth of the IFOV of the camera. This parameter will also be dependent on the chosen lens.
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[bookmark: _Toc70364152][bookmark: _Toc70412408][bookmark: _Toc70354742][bookmark: _Toc70371053]Figure 15. Off-Axis parabolic mirror metalic coatings unpolarized light. Permission pending [22]
The following table 9 compares the different options given for then 2” diamater off-axis parabolic mirrors.
	Item #
	Diametera
	RFLa
	PFLa
	Thicknessa
	RWE
	Mounting Featuresb

	MPD229-P01
	2" (50.8 mm)
	2'' (50.8 mm)
	1'' (25.4 mm)
	2.47" (62.8 mm)
	<λ/2 at 633 nm
	Three 8-32 Taps
on Bottom

	MPD239-P01
	
	3" (76.2 mm)
	1.5" (38.1 mm)
	
	
	

	MPD249-P01
	
	4" (101.6 mm)
	2" (50.8 mm)
	
	<λ/4 at 633 nm
	

	MPD269-P01
	
	6" (152.4 mm)
	3" (76.2 mm)
	
	
	


[bookmark: _Toc70412377]Table 9 Off-axis parabolic mirror comparison. Permission pending [22]



[bookmark: _Toc70413956]3.3.5 Variable pinhole component
We will be using a pinhole behind a black body source in order to test the ranging capabilities of the IR camera and software (figure 16). For this to simulate a point source far away from the camera, the minimum hole size needs to be 1/10 of the iFOV. Considering the iFOV of the Tau 640 is (𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑝𝑖𝑡𝑐ℎ) / (𝐸𝐹L) = (17𝑢𝑚) / (7.5 𝑚𝑚) = 2.267 𝑚𝑟𝑎𝑑. After much searching for sellers, the only pinhole wheel found was the Thorlabs 16-Position Pinhole Wheel  Ø25 µm to Ø2 mm (PHWM16) [23].
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[bookmark: _Toc70364153][bookmark: _Toc70412409][bookmark: _Toc70354743][bookmark: _Toc70371055]Figure 16.  Thorlabs 16-Position Pinhole Wheel (PHWM16) Permission pending [23]
[bookmark: _Toc68159161][bookmark: _Toc70413957]3.3.6 Visible Range Stereoscopic Cameras
For our visual range cameras, we will be utilizing MIPI port cameras that are compatible with the NVIDIA Jetson Nano. While we could have used premade stereoscopic cameras, we decided against this to have more control over the spacing between the cameras and the overall field of view. In order to achieve this, we will purchase two separate cameras and link them together as a system with our software implementation.

In order to ensure that our cameras were compatible with the NVIDIA Jetson nano, we looked at several companies that produced cameras that fit these specifications. Of these companies, Arducam appears to have the most options with regards to our needs. Our desire to have cameras in the visible light range also limited our choices as many Arducam cameras contain infrared range sensors with infrared compatible lenses. Since we already have a much higher quality long wave infrared camera included in the system, it made more sense to have the stereoscopic cameras in the visual range, as they would be able to detect information that the infrared camera might not pick up on as easily.

We also chose to opt for smaller sized cameras in order to more easily build an overall housing for the camera systems. However, it may prove to be difficult to perform some of the testing for these cameras since they do not appear to have built in screw holes that are typical for optical equipment. We will likely either have to find or create specific holders to ensure the cameras are vertically aligned and a set horizontal distance apart while testing.
3.3.6.1 Arducam MINI High Quality Camera with M12 mount lens, 12.3MP 1/2.3 Inch IMX477 HQ Camera Module for Jetson Nano，Xavier NX
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[bookmark: _Toc70364154][bookmark: _Toc70412410][bookmark: _Toc70354744][bookmark: _Toc70371056]Figure 17. Arducam MINI 12.3MP IMX477 Camera Permission pending [24]
Figure 17 depicts the Arducam MINI 12.3MP IMX477 Camera. This camera serves the purposes of our project well though it does not have many additional key factors that make it more desirable than the others [24]. The sensor for this camera utilizes a 24 mm x 25 mm IMX477 camera board along with a low distortion M12 mount lens [24]. Similar to other 12MP cameras, it has a maximum resolution of 4056 x 3040 pixels [24]. The frame rate and resolution also vary based on the target platform, with 1920×1080 at 60 fps or 4032×3040 at 30 fps [24]. The built-in lens has a focal length of 3.9 millimeters and a field of view of 75 degrees. 
3.3.6.2 Arducam IMX219 Wide Angle Camera Module for NVIDIA Jetson Nano, Raspberry Pi Compute Module 4, 3+, 3
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[bookmark: _Toc70364155][bookmark: _Toc70412411][bookmark: _Toc70354745][bookmark: _Toc70371057]Figure 18. Arducam IMX219 Camera Permission pending [25]

The Arducam IMX219 Wide Angle Camera is shown in Figure 18 and has the largest field of view at 175 degrees [25]. The focal length of the built in lens is 2.5 millimeters [25]. The sensor used by the camera is a 1/4” 8 Megapixel IMX219 sensor, giving the camera a maximum resolution of 3280 x 2464 [25]. The frame rate can also vary based on the sensor, with 21 fps at 8MP, 60 fps at 1080P, and 180 fps 720P [25].
3.3.6.3 Arducam 12MP IMX477 Motorized Focus High Quality Camera for Jetson Nano/Xavier NX
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[bookmark: _Toc70364156][bookmark: _Toc70412412][bookmark: _Toc70354746][bookmark: _Toc70371058]Figure 19. Arducam 12MP IMX477 Camera Permission pending [26]

One of the key features of the Arducam 12MP IMX477 as shown in Figure 19 is its motorized focus capabilities [26]. This allows the camera to change its level of zoom using the computer itself without any additional hardware or software that we would have to create and implement. Since it is a 12MP camera, the maximum resolution would be around 4056 x 3040 pixels [26]. It also has a rolling shutter type with 1.55 µm x 1.55 µm sized pixels [26]. The built-in lens has a focal length of 3.9 millimeters and a field of view of 75 degrees [26].

All cameras have an M12 mount and all have apertures with F number of 2.8. The cameras were also all specifically chosen to have sensitivities in the visible light range. While all are good fits for the purposes of this project, it is important to compare more specific details to narrow down which is the best choice. While the Arducam IMX219 Wide Angle Camera Module can be favorable for certain purposes due to its large field of view, this might not fit best for the purposes of matching the image with the one seen by the IR camera. For this reason, the wide angle camera can be ruled out. The Arducam 12MP IMX477 Motorized Focus High Quality Camera was also a favorable choice but was ruled out due to cost reasons along with the increased variability it might introduce to the project in terms of variables to keep track of. The Arducam MINI High-Quality Camera IMX477 HQ Camera Module was ultimately chosen as the best fit due to its relative simplicity in design and efficiency as a camera module.

The following is a table of comparison for the different visual cameras. The camera of choice was the Arducam MINI High-Quality Camera IMX477 HQ Camera Module.


	
	Arducam MINI High-Quality Camera IMX477 HQ Camera Module 
	Arducam 12MP IMX477 Motorized Focus High Quality Camera 
	Arducam IMX219 Wide Angle Camera Module 

	Sensor
	IMX477
	IMX477
	Sony IMX219

	Optical Format
	1/2.3″ (diagonal 7.857mm)
	1/2.3”
	1/4 inch

	Resolution
	4056(H) x 3040(V) 12.3MP
	4056 x 3040 pixels, 12.3MP
	8MP

	Pixel Size
	1.55um x 1.55um
	1.55 µm x 1.55 µm
	

	Interface
	2-lane MIPI CSI-2
	2-lane MIPI
	MIPI CSI-2 2-lane/4-lane

	Frame Rate
	1920×1080 @ 60fps 4032×3040 @ 30fps
	1920×1080 @ 60fps 4032×3040 @ 30fps
	30fps@8MP, 60fps@1080p, 180fps@720p

	Format
	1/2.3 inch
	1/2.3”
	-

	Focal Length
	3.9mm
	3.9mm
	2.5mm

	Aperture
	F2.8
	F2.8
	2.8

	Field of View
	75° (H)
	75° (H)
	175(D) x 155(H) x 115(V)

	MOD
	0.1m
	0.3m
	-


[bookmark: _Toc70412378]Table 10 Visible camera comparison.
[bookmark: _Toc70413958]3.3.7 - Microprocessor Board

To accommodate our needs for this project, we need to select a microprocessor that can read input from multiple vision sources via MIPI connectors, read input from the IR camera’s analog input, and process these image streams efficiently with minimal latency. To accomplish this, the processor that we select ideally should have some degree of specialized hardware to handle the processing of images. This specialized hardware would ideally be in the form of a graphics processing unit (GPU) or a FPGA system. The processor on this board must have decent enough technical specifications that it can process the number of instructions per second that we need to keep up with processing the image streams we will be providing. Ideally, the microprocessor will be a multi-core unit which will allow us to take advantage of multi-threading to write algorithms that process the images from the camera streams in parallel.

The three microprocessors that we decided to investigate included the Raspberry Pi 4 8 GB, the Nvidia Jetson Nano, and the Google Coral G950 development board. Each of these systems comes with unique advantages that we had to consider when deciding on a final microprocessor for this project. While each product has solid, well defined use cases, we ultimately had to narrow down our selection to one microprocessor to power the logic behind our range finder. We had to analyze the strengths, weaknesses, and use cases for each of these microprocessors to find the one best suited to our implementation needs.
3.3.7.1 - Nvidia Jetson Nano
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[bookmark: _Toc70412413]Figure 20 NVidia Jetson Nano. Permission pending [12]

The Nvidia Jetson Nano is Nvidia’s entry into the microprocessor development market as shown in Figure 20. This system comes strapped with several unique, powerful elements that make it a strong potential choice for this project. The system comes with the JetPack SDK and is compatible with Nvidia’s AI platform for training and deploying AI software, according to Nvidia. This will aid development by giving us a powerful interface through which we can power our machine learning and image processing algorithms. A unique advantage that this board has over the Raspberry Pi is that it includes an on-board GPU which will help to offload some of the processing from the CPU. Should be take advantage of the on-board GPU, we expect to see far superior performance over just using the CPU to handle computations. Since some of the libraries that we intend to use for this purpose already feature GPU support such as OpenCV, we expect that this feature will be a substantial performance increase for our use-case.

The Jetson nano features quad-core ARM A57 processor at a stock 1.43 GHz clock rate. It includes a 128-core Maxwell GPU, which will we consider to be a key feature in determining this board’s use to us. The board comes with 4 GB of 64-bit LPDDR4 RAM with a 25.6 GB/S read speed. Should we opt for the B01 model of this board, we will have access to two MIPI lanes, which will simplify the process of setting up stereo vision. The board has an on-board 4K video encoder/decoder to take the encode/decode load off of the CPU. Additionally, the board sports GPIO pins, and HDMI/DP display connectors, which will all be vital tools for us to take advantage of in our project. 

The Jetson Nano has a few small drawbacks when compared with the other boards we are considering for our microprocessor board. When compared with the other two boards we are considering, the Jetson Nano has the smallest amount of RAM. While the Raspberry Pi and the Google Coral both have 8 GB of RAM to work with, the Jetson Nano only has 4 GB. We do not feel this is a massive drawback, however there could be optimization issues where we will have a memory-demanding algorithm running, and it will have to keep accessing data from the slower SSD, where this may not be necessary with 8 GB of RAM. Another drawback to the Jetson Nano is that it does not have the large community that is present with the Raspberry Pi. Since Raspberry Pi’s have a very large market presence, there is a lot of support and troubleshooting advice readily available for the platform online. Should we run into issues with the Jetson Nano, it is possible that we could be the first team to encounter such problems, and we will need to devise a solution independently. This could result in longer development times [12].
3.3.7.2 - Raspberry Pi
[image: ]
[bookmark: _Toc70412414]Figure 21 Raspberry Pi 8GB. Permission pending [11]

The Raspberry Pi 4 is a very powerful, small-scale yet fully functional computer that can readily run Linux distributions, as shown in Figure 21. For the sake of this project, we would run a very barebones distribution of Linux on the system to minimize the system resources needed for the overhead of running the operating system. One major advantage to the Raspberry Pi 4 is that it can run OpenCV, one of the most common and powerful image processing libraries available. Being able to run complex code using a library like OpenCV allows us to reduce the time needed to develop the range-finding algorithm by giving us access to utilities that we would have to otherwise build ourselves. Furthermore, since the Raspberry Pi 4 features a quad-core processor, we will be able to take advantage of multi-threading to further improve the performance of our algorithms. The existence of a large community behind the Raspberry Pi is a strong advantage towards the system as it gives us a large knowledge base to interact with when diagnosing problems that we encounter. Independent developers have produced a large number of utilities, tools, and peripherals to aid with development on the platform, making it a favorable choice. 

A glaring disadvantage to the Raspberry Pi is the lack of a powerful on-board graphics processing unit (GPU). When working with machine-learning algorithms, complex computations are often delegated to the GPU, where resources may be focused solely on handling the computations without having to worry about the overhead of running the operating system. Additionally, the developers behind platforms such as TensorFlow and PyTorch have optimized their code to take advantage of GPU architecture to improve the speed of processing. Since there will be only a relatively small amount of machine-learning involved in this project, there is not much worry about this disadvantage, although we expect that there will be a small performance hit nonetheless [11].
3.3.7.3 - Google Coral
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[bookmark: _Toc70412415]Figure 22. Google Coral. Permission pending [27]

Google Coral is the final part that we are considering for the microprocessor, as shown in Figure 22. Google Coral is a single-board system designed for “machine learning and inferencing in a small form factor”, according to Google. The Google Coral dev board that we were considering for this project includes TensorFlow Lite, which we can use to develop object recognition models for use in our project. Furthermore, the board is compatible with any Linux operating system. Which gives us the flexibility to choose the tool that we feel fits the job best. 

The Coral dev board comes with a rather impressive set of technical specifications that make it a competitive choice for the microprocessor component of our project. The microprocessor on board is a quad-core Cortex-A53, which features a 64-bit instruction set architecture. The board includes an integrated CC7000 Lite GPU, which, while less powerful than the Jetson Nano’s Maxwell 128-core GPU. The board’s key feature over the other two boards considered for this component is Google’s Edge TPU coprocessor for machine learning acceleration. We feel that this feature, while definitely powerful, will not see much use in this project since our algorithms are going to lean more towards image processing than building machine learning models. The Coral currently only supports 1 GB of LPDDR4 RAM. Another interesting feature of the board is that it sports a Wi-Fi adapter, which makes it possible to off-load some processing to a server for more difficult loads.

The Google Coral has several disadvantages that stand out from the other boards under consideration. The Google Coral only supports 1 GB of RAM, which is incredibly low. If the algorithms that we implement for vision processing end up being memory-intensive, then It’s possible that there simply will not be enough RAM on the system to process the image streams at an acceptable level within our required efficiency levels. Additionally, the community support for the Google Coral seems to be the lowest out of our three options for a microprocessor board, so we will have to devote a large amount of development time to troubleshooting any issues that we come across in this project [27].
3.3.7.4 - Part Selection – Nvidia Jetson Nano

We decided that the Nvidia Jetson Nano would be the best choice for the microprocessor on our board. Several factors influenced our decision. The inclusion of an on-board GPU on the board is a massive bonus in terms of processing power for our specific use case. OpenCV, the library that we intend to utilize for our image processing needs (implemented in C++) includes native support for GPU’s, making this an easy choice. Furthermore, should we need to include any machine learning models, we will be able to offload some of the demand to the GPU. Ultimately, the board is compatible with all of the parts that we have chosen for this project, tailored specifically to our use-case, and has great technical specifications that meet our technical requirements. The following table includes key metrics that we took into consideration when deciding on which product to use for this component of the project shown in Table 11:


	
	Nvidia Jetson Nano B01 4GB
	Raspberry Pi 8GB
	Google Coral Dev Board 1GB

	Central Processing Unit (CPU)
	ARM A57
	Cortex-A72 (ARM v8)
	Cortex-A53, Cortex-M4F


	CPU clock rate
	1.43 GHz
	1.5 GHz
	1.3 GHz


	CPU cores
	4
	4
	4

	Coprocessor
	-
	-
	Google Edge TPU Coprocessor

	Graphics Processing Unit (GPU)
	128-core NVIDIA Maxwell GPU
	-
	Integrated GC7000 Lite Graphics

	Network connectivity
	Gigabit Ethernet Port
	Gigabit Ethernet Port, 802.11ac wireless, Bluetooth 5.0
	Wi-Fi, Gigabit Ethernet Port

	Storage
	MicroSD
	MicroSD
	MicroSD, 8GB eMMC

	RAM
	4 GB 64-bit LPDDR4
	8 GB 64-bit LPDDR4-3200 SDRAM
	1GB 64-bit LPDDR4

	MIPI Lanes
	2x MIPI CSI-2 DPHY Lanes
	1x MIPI CSI camera port, 1x MIPI DSI display port
	1x MIPI-DSI display (4-lane), 1x MIPI-CSI2 camera (4-lane)

	USB Ports
	USB 3.0, USB 2.0, Micro-B
	2x USB 3.0 ports, 2x USB 2.0 ports
	Type-C OTG, Type-C power, Type-A 3.0 host, Micro-B serial console

	Display Ports
	HDMI, DisplayPort
	2x micro-HDMI ports
	HDMI 2.0a


[bookmark: _Toc70412379]Table 11 Microprocessor Comparison
[bookmark: _Toc70413959]3.3.8 Programming Language
The programming language that we decide upon for this project will have a large influence on the overall success of this project. The language that we decide to settle on must possess many key features that will make it suitable for our uses. The language needs to be natively supported by the microprocessor that we have decided to use for this project – the Nvidia Jetson Nano. Additionally, the language needs to have support for at least one image processing library such as OpenCV. It would also be beneficial for the language to have support for machine learning libraries such as TensorFlow, so that we will be able to train an image processing neural network to identify objects in our camera streams. 

Another key trait that the language needs to possess is the ability to interface with other languages should one of our hardware components have an application programming interface (API) that is not supported by the given language we choose. FLIR cameras have a good amount of proprietary source code written in MATLAB that we will not be able to make use of should the language that we select not integrate with MATLAB. We have decided to take the following languages into consideration for our programming language of choice: C, C++, Python, and Rust.
[bookmark: _Toc70413960]3.3.8.1 - C
The C programming language is a procedural language that is heavily used in embedded systems programming. The language is a typed language that grants the user the ability to dynamically allocate memory, create data structures, and comes with a well fleshed out standard library. Since the language was originally developed to write the UNIX operating system, from which Linux was derived, C will be natively supported by the Jetson Nano, as it runs on a modified flavor of Ubuntu. The C programming language is considered a medium-level programming language. Consequently, it serves as a great option when working with hardware where there are limited resources such as embedded systems, while still providing higher level functionality. 

Another great benefit for C is that there exist API’s for many of the widely used image processing libraries. This is due to the industry prevalence of C as a programming language. While these libraries may not be written in C, the developers behind the platforms developed API’s that allow programmers to execute C code that wraps the source code below in a “black box” fashion. Additionally, since C is a medium-level language, it has support for highly customizable multi-threading, giving the programmer a high degree of control over the generation of threads, their actions, and the results.

While C has many great benefits, C also comes with many drawbacks that we need to take into consideration for this part of the project. C as a whole does not support the object-oriented programming paradigm. This drawback could greatly hinder our ability to write the project as it will make it difficult to compartmentalize the data within the project. Rather than being able to create self-contained objects with methods that act on the objects, we will need to develop data structures, and functions that operate on those structures without features such as constructors, inheritance, and polymorphism. Furthermore, the development time to produce a functional piece of C code is considerably higher when compared with more accessible, modern languages such as Python [28].
[bookmark: _Toc70413961]3.3.8.2 - C++
C++ is a strongly typed medium-level programming language that is an extension of the C programming language. It has been built to be upwardly compatible with C, meaning that any code written in C will be able to be compiled with the C++ compiler and executed. This is beneficial as often in embedded programming, certain libraries for interacting with a given microcontroller will be written in C, yet will still be accessible to a developer looking to take advantage of the powerful features present in C++. One of the key distinctions between C and C++ is that C++ offers support for programming paradigms that are not present in C, including object-oriented programming. 

One of the remarkable benefits behind C++ is that the code generated is extremely quick. Since C++ is a compiled language, the final executable file is a binary that does not need to be run through an interpreter or off a virtual machine. While this is mostly beneficial for our use case, this can inhibit the portability of the code. Furthermore, since C++ is so widely used in areas where performance is paramount, many of the libraries that are associated with robot vision are written in C++. This distinction ensures that any code that we write in C++ will be compatible with almost all libraries that we choose to use for this project. 

Despite many of the benefits of using C++, there are several drawbacks that we need to take into consideration when determining the language for this project. The development time behind producing a piece of code in C++ is significantly larger than in other languages such as Python and Java, as it is not a high level programming language. This development time is a substantial factor to take into account as we realistically only have a few months to produce a working piece of software. Furthermore, as a C++ program grows in size, it can become very complex and hard to track down bugs to their source [29]
[bookmark: _Toc70413962]3.3.8.3 - Python
Python is an high-level interpreted scripting language. The language is very robust, dynamically typed, and is used widely in the field of software engineering. Since python is an interpreted language, there is no compilation necessary when building programs in Python. Consequently, development of programs in Python tends to be very fast between the lack of need to compile code, and the simplicity of its syntax. Since Python is dynamically typed and bound, the programmer is able to focus on the actual flow of the program rather than the small details of assigning types and working with the difficulties that arise from static typing. 

One of the advantage of Python is that it is able to integrate other programming languages into the program’s code. There are a number of Python utilities that a programmer is able to take advantage of to call, for example C/C++ code directly. One of such libraries is pybind11, which will allow you to create Python bindings, allowing the programmer to call C++ functions like an ordinary Python function. Additionally, many of the robot vision and machine learning libraries written in C++ feature Python wrappers that allow the programmer to enjoy the simplicity of writing code in Python while simultaneously gaining the performance benefit of executing C++ code.

There are several drawbacks to Python that we need to consider when choosing it for the programming language of this project. The most glaring disadvantage to Python is the language’s performance relative to the other programming languages under consideration. Since Python is an interpreted language, it will need to be interpreted every time the program is executed. On the other hand, the other languages under consideration are compiled languages, so there is no pre-processing step that needs to take place each time we wish to execute the program [30].
[bookmark: _Toc70413963]3.3.8.4 - Rust
Rust is a relatively new language that has been seeing some interesting uses in systems software. At a glance, Rust is similar to C++ and C with respect to its syntax, however Rust boasts many features that help to distinguish it from other languages. The language has a type and ownership system that ensures both memory and thread safety which is a favorable trait when building programs for the microprocessor. The language compiles to machine code, so there is no runtime associated with the language, resulting in speeds comparable to C++. Additionally, the language comes packed with a robust “crate” manager similar to JavaScript's “npm” named “cargo”. 

Rust supports object-oriented programming in that the programmer is able to create traits that act as interfaces where the programmer can define functions that need to be implemented for the type. Structs akin to C/C++ allow the programmer to group their data, and implement methods for the structs. The methods tie directly to the struct and allow for the use of the “self” keyword to access members of the struct, and “Self” to refer to the type of the struct. This support for object-oriented programming paired with the guaranteed thread and memory safety make it a solid choice. 

While Rust is promising language for this project, there are several caveats that we need to take into consideration. Since the language is relatively new, there is less tooling available for the language relative to the other languages under consideration. Several community-built bindings for popular libraries such as OpenCV exist for Rust, however they’re often not maintained by the official developers of the corresponding libraries, and as a result are often less stable options to use, with no guarantee that they will work entirely as intended. Additionally, programming in Rust takes a rather long time since there is often a good degree of fighting with the ownership system, strictly enforced types, and working with generics [31].
[bookmark: _Toc70413964]3.3.8.5 - Part Selection – Python
Ultimately, we have decided that Python will be the programming language that we will make use of as our main language for this project. Since the language is so widely used, there is a wealth of tooling available to the language that will aid in our ability to quickly develop clean software for our project. The library’s compatibility with OpenCV and TensorFlow, as well as other vision libraries, make it a strong choice for our use case. Since many libraries are written in C++ with a Python wrapper, we will get the performance of C++ with the simplicity of Python when we utilize them for our project. Additionally, Python is able to interface directly with MATLAB, which will be vital for working with the FLIR camera. One consideration that we will have to take into account is that we should attempt to limit the computational complexity of any code that we write in Python as much as possible since Python’s performance is going to be the weak point of using this language for the project.

Table 12 illustrates the factors that we took into consideration when selecting the main programming language for this project. As illustrated by the table, we can see that Python has a large selection of libraries available to work with for the purpose of computer vision and machine learning. The safety, portability, standard library support, and availability of programming paradigms make it a great choice for this project. 


	
	C
	C++
	Python
	Rust

	Programming Paradigms
	Imperative
	Imperative, Object Oriented
	Imperative,
Object Oriented
	Imperative,
Object Oriented

	Compilation Process
	Compiled
	Compiled
	Interpreted
	Compiled

	Programming Language Level
	Medium-Level
	Medium-Level
	High-Level
	Medium-Level

	Available Libraries
	Libccv, TensorFlow,OpenCV
	OpenCV,
TensorFlow,
PyTorch C++ API
	OpenCV,
TensorFlow,
PyTorch,
SimpleCV,
Matplotlib,
Keras
	OpenCV bindings, TensorFlow bindings, Rust bindings for the C++ Pytorch API 

	Type System
	Strong Statically Typed
	Strong
Statically
Typed
	Weak
Dynamically
Typed
	Strong
Statically
Typed

	Safety Design
	Unsafe
	Unsafe
	Safe
	Safe

	Portability
	Highly portable
	Highly Portable
	Highly Portable
	Highly Portable

	Standard Library Utilities
	Large Standard Library
	Large Standard Library
	Large Standard Library
	Large Standard Library


[bookmark: _Toc70412380][bookmark: _Toc70371061]Table 12 Programing language comparison
[bookmark: _Toc70413965]3.3.9 - Display
For this project, the display is an essential component as it is going to be the way through which the user will interact with the GUI. To keep the form factor of the final deliverable to a minimum, we will be using a touch-screen interface to eliminate the need for cumbersome peripherals such as a mouse or keyboard when interacting with the GUI. From our research into potential parts for this selection, we decided upon two touch displays: the Elecrow 7 Inch Capacitive Touchscreen HDMI Monitor, and the Raspberry Pi 7” Touch Screen Display. 
3.3.9.1 Elecrow 7 Inch Capacitive Touchscreen HDMI Monitor

This monitor adequately meets all of our design constraints around the display selection. This display features a small form-factor 7 inch display size which is ideal for our needs. The monitor’s resolution is 1024x600 pixels, which is enough to clearly display the images we will be processing to the user. The biggest draw to this panel is the incorporation of capacitive touch controls to allow us to eliminate the need for a secondary peripheral to interact with the system. The display interfaces with the Jetson Nano through the use of an HDMI connection to power the display and a USB connection to handle the touch controls [32].

3.3.9.2 Raspberry Pi 7” Touch Screen Display

Although we are not opting to use a Raspberry Pi, their display appears to have all the characteristics that we need for this project. The display is a 7-inch 800x480 panel, which is slightly worse than the Elecrow display. Additionally, the form factor for this panel is not quite as compact. One advantage for this monitor appears to be that it includes a more barebones approach to connectivity. The touch controls are handled via GPIO pins, and a DSI ribbon cable. While this display appears to be a good option for this project, issues including the connections, form factor, and low resolution make this a less than optimal choice for our final design [33].

3.3.9.3 - Part Selection – Elecrow 7-inch Capacitive Touchscreen HDMI Monitor

Ultimately, we decided that we will opt for the Elecrow 7-inch capacitive touchscreen HDMI monitor for our final design. We feel that the display sports all the features that we need to build a functional final product. The minimal, thin design allows us to build out our own housing, and the native support for the connectors that we need makes it an optimal choice for our project. The inclusion of touch controls will allow us to keep the form factor of our project down, and the resolution of the monitor is enough for our needs. Table 13 illustrates the parts that we took into consideration when preparing our final choice for this part:

	
	Raspberry Pi 7” Touch Screen Display
	Elecrow 7” Capacitive Touchscreen HDMI Monitor

	Display Size
	7 inches
	7 inches

	Resolution
	800 x 480
	1024 x 600

	Connections
	GPIO or USB power connection. Adapter board for signal conversion and touch input
	HDMI interface for display, USB interface for touch controls

	Touch Sensitivity
	Capacitive, with up to 10 finger touches detected simultaneously
	Capacitive, up to 5 finger touches simultaneously


[bookmark: _Toc70371062][bookmark: _Toc70412381]Table 13. Display comparison.
[bookmark: _Toc70413966]3.3.10 Blackbody Source

A blackbody source was borrowed from the Electro-Optical and InfraRed Systems group at CREOL to use for calibration and testing of our cameras, seen in figure 18. This blackbody has many features and known to have uniform emission. The blackbody uses a TC-720 thermoelectric temperature controller to set the temperature [34]. The blackbody is comprised of a black metal sheet in the front with fans and heating elements in the back. The thermoelectric controller has a temperature range of -60 °C to +199 °C with a temperature stability of ±0.01 °C [ref:tetech]. The controller adjusts the output power to the DC heater or thermoelectric device (TE) via pulse-width modulation (PWM). This blackbody has been previously tested thoroughly for accuracy and stability, so it is a trustworthy reference for calibration purposes. In the future, if this blackbody is not available, one can be constructed with a metal sheet heated evenly and a thermocouple for temperature measurement. Figure 23 shows the black body source to be used.

 [image: ]
[bookmark: _Toc70364157][bookmark: _Toc70412416][bookmark: _Toc70354747][bookmark: _Toc70371063]Figure 23. Black Body source. [34]
[bookmark: _Toc68159162][bookmark: _Toc70413967]3.4 Possible design architectures and diagrams
In order to ensure that our system is able to work together cohesively, we must design possible ways in which our system will interface together from both a hardware and software perspective. From a hardware perspective, this includes creating a housing for our parts and ensuring the alignment of our cameras with exact known distances between them along with a design to power the entire system. In terms of software, this includes designing programs to interface our microprocessor with our cameras and display in order to ensure that our overall system can process data and display it successfully.
[bookmark: _Toc68159163][bookmark: _Toc70413968]3.4.1 Overall Schematic
The Jetson Nano is the main part everything is built around as seen in figure 19. The cameras take in the surrounding area and converts it into something the Jetson Nano can use. The Jetson Nano then takes in information sent from the cameras and detects where the objects are in the environment. It then computes the ranges of those objects. The power is gotten from a wall plug and is converted to what the system needs. Figure 24 shows the overall hardware layout for this project, particularly the connections with the Jetson Nano, and the proposed housing and layout.

[image: ]
[bookmark: _Toc70364158][bookmark: _Toc70354748][bookmark: _Toc70371064][bookmark: _Toc70412417]Figure 24. Overall Hardware layout.
[bookmark: _Toc70413969][bookmark: _Toc68159164]3.5 Part selection summary	
A summary of the chosen parts is given below in table with specific part numbers and distributors. These parts are preliminary and may be edited in the future depending on factor not yet anticipated. 

For the 120V to 12V AC-DC converter, the circuit is going to be built around the UCC28631 flyback controller. The 12V to 5V DC-DC converter will be built around the TPS566231P Step-Down Voltage Regulator. All of the other parts in those voltage converters will be selected based on the value of the components needed and availability as the differences are less important. The clock we will use will be the LTC6995-1. This will get a 10 Hz signal going to the cameras.

The camera of choice is the FLIR Tau 640 because it offers the customizability and compactness that the FLIR A65 does not. With the FLIR Tau we can look for lenses from third party companies (not FLIR) to meet the needs of the costumer or application. Additionally, this camera is much smaller and easier to integrate into a housing with other cameras and has similar specifications as its counterpart.

To interface with the IR camera, we chose the analog video connection to the VPC module. While the camera link interface would be providing with higher quality video and bandwidth, creating a standalone interface with the Jetson Nano PCIe 1x4 2nd Gen connection would be a time-consuming process. By going with the analog video option, we get an easy to use interface that fits easily inside a housing.

The microprocessor of choice for this project is the Nvidia Jetson Nano. It has the best set of technical specifications for our particular use case. The system supports Linux, which allows us to use many commonly used Linux utilities to interact with the other hardware components in the device. The system includes a Maxwell 128-core GPU, which will be vital for processing images efficiently since we will be able to delegate some of the processing load to the GPU. Additionally, the system features the 4 GB of RAM and a quad-core 1.43 GHz processor (overclockable to 2 GHz), which gives us more than enough system resources to power our algorithms and interact with the cameras efficiently.

The programming language we decided on for this project is going to be Python. Python is a robust interpreted scripting language with a massive userbase. The language is easily readable by the programmer, and quick to write, making it a powerful choice for our group. The language comes with a wide array of readily available libraries that we will be able to take advantage of for our project. TensorFlow, OpenCV, PyTorch, and many other great libraries are available for us to implement into our project should we decide to use them. In many cases, the library’s API is actually simply a wrapper around C++ code, which provides the programmer with the ease of use of Python, while delivering the performance of C++. Additionally, since MATLAB provides two-way integration with Python and many IR cameras make use of MATLAB to process images, we will be able to natively integrate the IR camera’s MATLAB code into our overarching codebase.

Table 14 shows the components necessary to complete this project and the respective selected part that we plan on using. This may change based on testing or availability. 



	Component
	Selected

	IR Camera
	FLIR TAU 640 

	IR Camera Lens

	FLIR 7.5 mm lens

	Variable pinhole
	Thorlabs Pinhole Wheel (PHW16)

	Off-Axis Parabola
	Thorlabs Ø2" 90° OAP (MPD239-P01).

	Visible Cameras
	2X Arducam MINI 12.3MP IMX477

	Visible Camera lens/lenses
	2X

	Blackbody
	TC-720 thermoelectric temperature controller

	Analog-Digital interface
	BNC-USB


	Processor
	Nvidia Jetson Nano B01

	Display
	Elecrow 7-inch capacitive touchscreen HDMI monitor

	120V to 12V AC-DC converter part
	UCC28631 flyback controller

	12V to 5V DC-DC converter part
	TPS566231P Step-Down Voltage Regulator

	Clock
	LTC6995-1

	Housing Material
	PLA

	Programming Language
	Python

	Operating System
	Ubuntu


[bookmark: _Toc70371065][bookmark: _Toc70412382]Table 14. Part selection summary
[bookmark: _Toc68159165]

[bookmark: _Toc70413970]4. Design Constraints and Standards 
[bookmark: _Toc68159166]It is important to take into account any constraints and standards relating to our project in order to make sure it conforms to any set restrictions and to understand the regulations on any preexisting parts we are using. Understanding the constraints and standards of a system can aid in developing more concrete applications for the system. The awareness of standards can increase the validity of the design, as it establishes certain operations and functions of the design.
[bookmark: _Toc70413971]4.1 Standards 
Various electrical and optical standards were researched and taken into account in relation to the parts we are using for our system. This includes information about materials that are products are made from along with restrictions on what applications they should and should not be used for.
[bookmark: _Toc68159167][bookmark: _Toc70413972]4.1.1 IPC-2220 (IPC-2221)
The standards IPC-2220 are about the printed circuit board design. This would deal with all the printed boards related to power. The system will follow the IPC-2220 Generic Standards on Printed Board Design.
[bookmark: _Toc68159168][bookmark: _Toc70413973]4.1.2 UL 1642
We also plan on using a lithium ion battery in the system. This battery will follow the UL 1642 Standard for Safety of Lithium Batteries.
[bookmark: _Toc68159169][bookmark: _Toc70413974]4.1.3 FLIR Tau 640 
The product has use restrictions defined by Sony Semiconductor Solutions Tau2 is compliant with the following directives and regulations [35]:

· Directive 2002/95/EC, “Restriction of the use of certain Hazardous Substances in electrical and electronic equipment (RoHS)”.
· Directive 2002/96/ EC, “Waste Electrical and Electronic Equipment (WEEE)”.
· Regulation (EC) 1907/2006, “Registration, Evaluation, Authorization and Restriction of Chemicals (REACH)”.    

By being RoHS compliant, this product does not contain any of the following materials: Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls, and Polybrominated diphenyl ether [36]. Additionally, none of its parts contain chemicals that are classified as a substance of very high concern (SVHC) which are indicative of toxic or hazardous nature. When the back over is connected and the proper cables and line termination is provided, the Tau 640 has is compliant with IEC 61000-6-3 (Class B) in regard to radiated electromagnetic emissions and EMC levels. Without the back cover, the radiated electromagnetic emissions are withing Class A limits [37].

[bookmark: _Toc70413975]4.1.4 Arducam MINI 12.3MP IMX477 Camera

The product has use restrictions defined by Sony Semiconductor Solutions Corporation (SSS). The product is also outlined to not be used for any applications which would pose life or injury threatening risks. SSS also disclaims that they do not assume any liability for damages arising from misuse of the product or for use in any applications outside of the intended ones. SSS also states that the failure of a certain percentage of their products is inevitable and that the individual using them should take into account component redundancy and anti-conflagration features in the design of the overall system.

[bookmark: _Toc70413976]4.1.5 Nvidia Jetson Nano

The Nvidia Jetson Nano is compliant with many different standards systems that ensure that the product is universally compatible with as many computer systems, peripherals, and communications networks as possible. These regulations are compliant with the Federal Communications Commission (FCC). It complies with part 15 of the FCC rules, meaning that the device must receive all interference incoming, whether or not it interferes with the intended operation of the device. Additionally, the device must not produce any harmful interference [12]
[bookmark: _Toc68159170][bookmark: _Toc70413977]4.2 Realistic design constraints
In order to understand the constraints of any real world applications of our system, it is important to analyze different types of constraints in relation to various components. This includes economic/time constraints, environmental/social/political constraints, ethical/health/safety constraints, and manufacturability/sustainability constraints. It is important to evaluate the design constraints in these categories of various key components, including the IR camera, stereo visual cameras, microprocessor, and power system.
[bookmark: _Toc68159171][bookmark: _Toc70413978]4.2.1 Economic and time constraints
The economic constraints on the computer system components are an important part of the system should one want to minimize costs associated with the project. Microprocessors can reach very high prices. At a certain point, the improved performance is not worth the additional cost. We need to ensure that our project reaches our operational expectations, at which point we should venture to keep our costs past that point to a minimum. The cost of a microprocessor board can amount to several hundred dollars, so it’s important to choose the board that has all the key components that we need for this project and as little extra as possible. Since we are doing a project that ultimately amounts to an image processing system, we should focus our economic resources towards a graphics processing unit to allow us to delegate tasks to the GPU for faster processing. A realistic constraint that we can meet with regards to the computer system is to keep the cost under $200. This sum will include the cost of the microprocessor, microSD card for storage and housing the operating system, and any associated peripherals such as displays. 

The time constraints associated with building the computer system will be important to take into account. Developing code can be a highly time-consuming process. It is often difficult to nail down a solution to a given problem in code, let alone producing an optimal, resource-efficient solution that will be viable to run on a system as limited as the one we will be using for this project. Consequently, it is important that we seek to use as many available resources as possible to keep ourselves within our time constraints. As we chose to opt for the Nvidia Jetson Nano as our microprocessor board for this project, we have access to their SDK which will greatly aid with our development time of the software component. We expect that we will be able to complete the computer system for this project within 3 months with proper pacing, development strategies, and iterative development. 

The economic constraints on the power related components are not as high compared to other parts of the system. From a cost perspective, the cost of the components and assembly would have an impact on the total cost but will not be an issue to get the money for. The clock for the system would be insignificant in cost and availability in comparison to the power system.

The time constraints for the power related components is mainly an issue of shipping time. This will limit what parts we can get, but it should not impact the ability to make a complete system with the parts we can get. There is also the time to assemble the system, which we need the power components to use for the rest of the system to make sure the system works.

One main financial concern about this system is the cost of infrared thermal imagers. Unlike visible cameras, the manufacturing or IR sensors can be expensive, especially for rarer materials. In our case, the FLIR A65 camera costs ~$9k and the Tau 640 costs ~$6k which is beyond the budget for this project. Thankfully, the AFRL has provided us with the cameras which is a vital part of this design. Additionally, the use of IR imaging has some time constraints in terms of getting the overall system to work properly and efficiently. To begin any software testing for ranging, the camera must first be run through a series of calibration and error tests to ensure the microbolometer is working accurately. This needs to be done with a black body radiation source that can provide a trusted temperature reading for the cameras to use as a reference and offset calculations can be done. Additionally, we are attempting to align the IR camera with the stereo vision cameras, so there is going to be a lot of time spent in spatial aligning the FOV of each apparatus to achieve a superimposed image as a result of the image processing. Considering we are only working on the actual design for one semester, there are limits to how much we can actually achieve in the image processing side of things because each analysis method takes time to develop and acquire consistent results.
[bookmark: _Toc68159172][bookmark: _Toc70413979]4.2.2 Environmental, Social, and Political
The environmental concerns associated with this system are limited to the power usage of the board. We should be seeking to optimize our power consumption to reduce our environmental impact. This may be accomplished by implementing various power-saving features such as making use of sleep-mode and choosing a low-power-consumption board. Additionally, ensuring as many parts of the project are recyclable as possible will reduce the amount of waste produced should this project be produced on a larger scale. 

The design itself of this passive ranging system should not pose any environmental, social, or political concerns, though the connotations of its usage might. Our system is being designed specifically for applications suggested by the Air Force Research Labs, meaning our design could be implemented by the military [38]. This on its own could introduce political restrictions to our design, as we might not be able to publicize specific details related to it. Most importantly, there are political and social concerns when building a surveillance device. There is a lot of discontent towards our nation becoming a surveillance state due to covert information collection by national agencies like the NSA, FBI, and CIA on its own citizens but also on other nations. Systems like ours are intended for covert information collection and surveillance for these purposes. In the wake of exposure of national agencies collecting mass information on its citizens by a previous CIA member [39] the USA Freedom Act enacted in 2015 limited the processes of national security agencies [40]. 

With the implementation of our actual design, we would want to create a passive ranging system that could identify objects covertly with the least amount of possible risk in terms of being detected. The use of a passive system rather than an active one could help reduce the invasiveness of the overall system, which could reduce environmental and social concerns.
[bookmark: _Toc70413980]4.2.3 Ethical, Health, and Safety
There are a good number of ethical concerns that come with this project. Since this project is a rangefinder, some of the use cases behind a range finder may be ethically suspect. Should this design see military use, there will be many applications where the design will be used to aid the ending of human lives. This is definitely not an ethical situation to take lightly and is one of the most inhuman aspects of our reality. One of the key ethical points on this topic is whether the manufacturers of the products used by the military are ethically accountable to for the actions of those that put the products to use. In this case, since the project that we are developing is a general-purpose device built simply to range any object, it is our understanding that there are no ethically suspect actions being performed on our part. The specific application of the rangefinder is entirely up to the end-user, therefore the ethical blame for any negative, morally suspect outcomes rest solely on the end-user.
 
There are a few health considerations that one needs to take into account around this project. Since there are electrical components involved in this project, one should see to reduce the risk of injury by electrical shock. There should be clear indications that the device is in an “on” state, such as an LED indicator. Furthermore, as many electrical components as possible should be secured within a housing to eliminate the risk of an end-user physically touching a connection. Thorough research on any radiation that may be produced by the device should be performed to ensure that the device is safe to use. The power system should be completely inaccessible while powered on, with clear safety warnings to deter any user from going near any of the components. Additionally, there should be a ground, which would come from the 120 V AC electrical socket’s ground. 
 
Another factor to consider is the COVID-19 global pandemic that has impacted our everyday lives since UCF closed on March 16th, 2020. Almost a year later, the world is still at a state of health crisis, and there are precautions and limitations as to what can be done as a group. The lab where the system is being currently tested only allows 2 people to be inside at the same time, while maintaining 6 feet of space in between. This will limit use in time and but will inhibit working together at times. The U.S is currently bracing for a possible fourth wave in COVID-19 infections due to the spread of new variants being discovered, so it is our responsibility to limit the chances of spread among ourselves and on campus. As vaccinations roll out for younger age groups, it may be possible for all group members to gain immunization from the virus, however this does not prevent possible transmission. Taking all the safety precautions and only communicating among ourselves through online meeting services has limited the cohesiveness of group discussion that is important when working with a group of people for the first time. 
[bookmark: _Toc70413981]4.2.4 Manufacturability and Sustainability
Our design should be quick to manufacture, and any parts that we must fabricate should have a clear process that can be quickly reproduced on a large scale. We should produce PCB design schematics, system diagrams, and other artifacts that we can send to a large manufacturer to rapidly produce each required segment of our project. 
 
From a sustainability perspective, it is important that we source multiple manufacturers for each of the components of our project. Through this practice, we can minimize the risk that we will ever be without a source for a key component. We should choose components from large, reputable sources that have low risk of being phased out of production. While the project is in production, we should constantly be looking for replacements and alternatives for each component such that when a better alternative becomes available, we can quickly pivot to a different technology. We should keep in mind the long-term availability of each component and seek out alternatives when it becomes clear that a manufacturer is phasing the product out of the market. 
 
Some components that might be more difficult to manufacture would be specific parts or housings for our cameras. Since camera systems must have highly exact alignment parameters, we would have to be very precise in the creation of any tools used to test or implement them. The inclusion of our IR camera also makes the system somewhat difficult to reproduce in an inexpensive fashion, as the cost of the camera alone would amount to more than most of the other components combined. However, if one were to use a cheaper camera, they could likely reproduce similar results with some degree of reduced accuracy. There are plenty of distributors that can sell these standalone cameras for system integration, such as FLIR with their higher end models, but cheaper options are available at the cost of accuracy, resolution, and consistency. Cheaper cameras could be used to implement this system in a shorter-range scale, such small perimeter surveillance or condition monitoring. 




[bookmark: _Toc68159175]

[bookmark: _Toc70413982]5. Design
In order to ensure that our system will be robust and reliable, it is important to define exact dimensions and come up with an overall schematic for what our system will look like. This includes physical distances for the cameras and component values for our power system. Since software is typically more easily modifiable with variables, we would not have to come up with more exact dimensions for this until the testing phase. However, we would still have a good idea of what our software should be able to do in terms of processing image data and interfacing the entire system together.
[bookmark: _Toc70413983][bookmark: _Toc68159176]5.1 Hardware				
Our project’s hardware design components will include the power system and clock that will be used in the overall integration of our system. It is necessary to make precise calculations and determine components necessary to power the cameras, display, and microprocessor, as these are the primary units necessary for the core design of the system. The power system will include a battery along with a design to allow power intake from a wall outlet. The clock will be included to facilitate troubleshooting and testing, primarily with the software.
[bookmark: _Toc68159177][bookmark: _Toc70413984]5.1.1 Power Design
The power system is made of components meant to power the device. The device is meant to be used in a stationary manor, where we have a wall outlet supplying the power to the device. For this, we need to convert the 120V AC current into something we can use for the machine. To make this device, we am going to be using WEBENCH Power Designer to design a circuit that converts the wall power outlet to something we can use for this machine.

WEBENCH is a tool created by Texas Instruments used to create a variety of different power supplies [41]. It can be used to create a circuit to convert from AC-DC or DC-DC converters and allows for a quick comparison between different circuits. The legal use of this can be interpreted from the Texas instruments terms of service [42].
 
There are other components that the power system gets built around, but the specifics on those components are not as important as the step down converter or flyback controller, which were selected based criteria mentions in section 3 part 2.7. The other components are selected based on availability, price and deviation in values rather than the performance of the parts. 
 
We will make it able to run off of a 12V lithium ion battery, making it mobile like a laptop at the cost of extra space necessary and more standards to follow to make sure the battery does not become dangerous. As long as the battery doesn’t overheat from drawing too much power fast or dissipating too much power, there should not be any issues.

	quantity
	part
	Voltage
	Max current
	Max power

	1
	NVIDIA Jetson Nano
	5
	2
	10

	1
	7 Inch Touchscreen HDMI Monitor
	5
	.62
	3.1

	2
	Visual cameras
	5
	.6
	3

	1
	IR camera
	5
	.6
	3


[bookmark: _Toc70412383]Table 15 Power System Design

Table 15 shows all the parts of the system that needs power. The total max power needed for the circuit is about 22 watts at 5V, as mentioned in more detail under section 3 part 2.7. This means the current has to get up to at least 4.4 amps. Because we want a little bit of head room, we are going to be using a baseline of 5 amps when creating the circuit. To get to this voltage, we are using a DC-DC converter circuit from 12V DC to 5V DC because that is more efficient, takes up less space and is less complex compared to a 120V AC to 5V DC converter circuit.
5.1.1.1  12V-5V DC-DC converter 
There will also be a 12 volt DC to 5 volt DC buck converter using a step down converter. This is used for the Nvidia Jetson Nano Developer Kit along with all of the cameras. For this we are going to be using TPS566231P step down converter.

Using WEBENCH, we created a circuit using the TPS566231PRQFR step down voltage regulator to convert from 12V to 5V. The circuit below was the result. The circuit below was taken from WEBENCH. 

[image: ]
[bookmark: _Toc70364159][bookmark: _Toc70354749][bookmark: _Toc70371066][bookmark: _Toc70412418]Figure 25. Schematic (12V to 5V DC-DC)
This circuit in Figure 25 is the 120V to 12V AC-DC converter. The efficiency of this circuit turned out to be relatively high, being at about 95% above 2 amps, going down to as low as 91.644% at half an amp, assuming the voltage from the first power supplying circuit dropped by 10%. This means the 12V DC circuit would need to provide 27 watts of power to the device, rounding up. The graph below shows the efficiency of the circuit using different voltage inputs at currents between .5 amps and 5 amps. The voltages are the expected voltage along with plus and minus 5 percent of the expected voltage.
 
[image: ]
[bookmark: _Toc70364160][bookmark: _Toc70354750][bookmark: _Toc70371067][bookmark: _Toc70412419]Figure 26. 12V to 5V DC-DC efficiency

The figure above, Figure 26 shows the efficiency curve of the 12V to 5V DC-DC converter. The efficiency starts around 94.7% at .5 amps and goes up to the maximum efficiency of 96.3% between 2.5 and 3 amps. It then drops down to 95.5% at 5 amps.  The reason efficiency is important in this system is because of heat generation. Less efficiency in the system means more heat generated. Since we plan to enclose the system, we want to make sure the components don’t get too hot.


	Name
	Value
	Category
	Description

	Vout
	5 V
	System Information
	Operational Output Voltage

	Cin IRMS
	2.49 A
	Capacitor
	Input capacitor RMS ripple current

	Cout IRMS
	667.16 mA
	Capacitor
	Output capacitor RMS ripple current

	Coutx IRMS
	1.22 mA
	Capacitor
	Output capacitor_x RMS ripple current

	Efficiency
	95.80%
	System Information
	Steady state efficiency

	Frequency
	594.27 kHz
	System Information
	Switching frequency

	IC Tj
	63.28 °C
	IC
	IC junction temperature

	IC Pd
	756.29 mW
	IC
	IC power dissipation

	Pout
	25 W
	System Information
	Total output power

	Iin Avg
	2.07 A
	IC
	Average input current

	IC Ipk
	6.16 A
	IC
	Peak switch current in IC

	Mode
	CCM
	System Information
	Conduction Mode

	Vout p-p
	9.01 mV
	System Information
	Peak-to-peak output ripple voltage

	Vin p-p
	380.49 mV
	System Information
	Peak-to-peak input voltage

	Foot Print
	130 mm²
	System Information
	Total Foot Print Area of BOM components

	Vout Actual
	5 V
	System Information
	Vout Actual calculated based on selected voltage divider resistors

	Vout Tolerance
	3.30%
	System Information
	Vout Tolerance based on IC Tolerance (no load) and voltage divider resistors if applicable

	Total BOM
	$2.63 
	System Information
	Total BOM Cost

	Total Pd
	1.11 W
	Power
	Total Power Dissipation

	BOM Count
	15
	System Information
	Total Design BOM count 


[bookmark: _Toc70371068][bookmark: _Toc70412384]Table 16. Operating values 12V to 5V DC-DC power

Table 16 shows the operating values for the 12V to 5V DC-DC power circuit. This shows me how the circuit functions. These values were calculated by WEBENCH. If there are any discrepancies between these values and the real values tested, then I know something is wrong with the system. 
5.1.1.2 20V to 5V AC-DC converter 
The 120 volt AC at 60 Hz to 12 volt DC buck converter would need to use a PWM controller. This controller would need to output the total power of the system because we are going to use it to get the 5 volts DC. For this we are going to be using the UCC28631 flyback controller.
 
Going backwards because we need to supply the 5V power using the 12V converter, we need to do is convert the power from the wall outlet to 12V DC. For this circuit, we need at least 27 watts of power for the 12 volts to 5 volts power along with the power used at the 12 volts, we are going to make the output max at 3 amps, giving us a little bit of headroom. One of the reasons we are using 12 volts is in an enclosed environment, we may need some cooling, we have fans that can provide airflow run on 12 volt power at less than 5 watts.
 
Using WEBENCH from Texas Instruments, I entered the part number along with the current required to power everything. The circuit below was the result. This circuit in figure 22 is the 120V to 12V AC-DC converter. The circuit takes up a lot more room and is less efficient compared to the 12V to 5V DC-DC circuit, which is expected. The efficiency of this circuit is much lower than the 12V to 5V DC-DC converter, but this is expected because we have more components as well as a much bigger jump from 120 volts to 12 volts. Figure 27 below shows the circuit produced by Webench:

[image: ]
[bookmark: _Toc70364161][bookmark: _Toc70354751][bookmark: _Toc70371069][bookmark: _Toc70412420]Figure 27. Schematic (120V to 12V AC-DC) 
The figure below, Figure 28, shows the efficiency curve of the 120V to 12V AC-DC converter. The efficiency starts around 83% at .4 amps and goes up to the maximum efficiency of 87.8% at 1.5 amps. It then drops down to 87.2% at 3 amps.  With these 2 power converters, we have a power system that can supply power to all of the components that need it.
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[bookmark: _Toc70364162][bookmark: _Toc70354752][bookmark: _Toc70371070][bookmark: _Toc70412421]Figure 28. 120V to 12V AC-DC Converter Efficiency
Table 17 shows the operating values for the 120V to 12V AC-DC power circuit. This shows me how the circuit functions. These values were calculated by WEBENCH. If there are any discrepancies between these values and the real values tested, then I know something is wrong with the system.  


















	Name
	Value
	Category
	Description

	Avg Bridge Diode Pd
	461.11 mW
	Diode
	Average Power Dissipation in the Bridge Diode over the AC Line Period

	Iin rms
	343.81 mA
	System Information
	RMS Input Current

	Efficiency
	87.30%
	System Information
	Steady state efficiency

	Frequency
	60 kHz
	System Information
	Switching frequency

	Vout
	12 V
	System Information
	Operational Output Voltage

	Iocc
	5.61 A
	System Information
	Constant Current Limit

	T1 Iprim pk
	1.45 A
	Transformer
	Transformer Primary Peak Current

	T1 Is1 pk
	12.45 A
	Transformer
	Transformer Secondary1 Peak Current

	T1 Iprim RMS
	591.98 mA
	Transformer
	Transformer Primary RMS Current

	T1 Is1 RMS
	4.99 A
	Transformer
	Transformer Secondary1 RMS Current

	IC Tj
	39.25 °C
	IC
	IC junction temperature

	M1 TjOP
	45.09 °C
	Mosfet
	M1 MOSFET junction temperature

	FootPrint
	(enter in later)
	System Information
	Total Foot Print Area of BOM components

	Vin_RMS
	120 V
	System Information
	Vin operating point

	Iout
	3:00 AMPS
	System Information
	Iout operating point

	T1 Pd
	1.07 W
	Power
	Estimated Losses in Transformer

	Total BOM
	(enter in later)
	System Information
	Total BOM Cost

	Total Pd
	5.26 W
	Power
	Total Power Dissipation

	BOM Count
	23
	System Information
	Total Design BOM count 


[bookmark: _Toc70412385]Table 17 Operating values 120V to 12V AC-DC power

Figure 29 below shows the power converters in series with each other and what they are connected to. The 120V AC wall outlet input is sent to the first power converter with the expected maximum current of 3 amps. The 12V DC is then sent to the fan, which would require at most 3 watts. Then, up to 2.5 amps at 12 volts is sent to the second converter. This is then converted to 5V with the expected maximum of 5 amps. This power is then sent to the Jetson Nano, the IR camera, and the visual cameras. Any leftover power will be sent to the battery, assuming the battery is not fully charged. Otherwise, the battery will not be doing anything.


[image: ]
[bookmark: _Toc70364163][bookmark: _Toc70354753][bookmark: _Toc70371071][bookmark: _Toc70412422]Figure 29. Power Flow Design
[bookmark: _Toc68159178][bookmark: _Toc70413985]5.1.2 Clock
The clock input is made to make troubleshooting easier in case where we can test out our code using a single impulse. The clock has 6 pins. There is V+, which is the positive voltage, DIV, which is a divider to ground to set Ndiv, SET, which is connected to V+ through a resistor, RST, which will be connected to ground, GND, which is ground and OUT, which is the output. The clock will be in a circuit to make the clock output 10 Hz. The 2 main parts of this circuit to get to 10 Hz is the set resistor and Ndiv, a programable number. The equation below shows the equation to get the wanted output. 

 [image: ]
Equation for Frequency of Clock
 
We want tout to be 100 milliseconds. The recommended Ndiv value for this would be 8. Solving for RSET, that value is 610.35 kOhms. To get Ndiv to 8 would be to use 2 resistors with a value of 976 kOhms and 102 kOhms.

To get the pulse width down to a usable level for the cameras, we need to add in RPW and CPW. These two connect the reset and the output together to create a pulse. The duration of the pulse is in the equation below. We are using 2.935V for VRST. 
 
[image: ]
Equation for Pulse Width
 
Tpulse can be anything lower than 30 milliseconds but has to be greater than 100 nanoseconds so the cameras can pick up the clock signal. Because of this wide range, we can use a lot of different values. We are going to be using a longer pulse duration at 10 milliseconds to ensure all the cameras get that there is a pulse happening, so Rpw will be 10 kOhms and Cpw will be 1 microfarad. C1 will be .1 microfarad, recommended by the datasheet, which is meant to take out any alternating part of V+ that could possibly happen.

The clock will have to be converted to 3.3 volts to be usable by the cameras. This means we have to convert the 5 volts clock signal into 3.3 volts. This can be easily done with 2 resistors. One will be 10 kOhms connected in serries and the other will be 20 kOhms connected to ground in parallel with the clock input, making the voltage 3.3 volts. The output pins are where we will connect the clock to the cameras. 

Figure 30 shows the clock circuit and how it is set up. Table 18 after that shows the values used to get the values we want.
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[bookmark: _Toc70364164][bookmark: _Toc70354754][bookmark: _Toc70371072][bookmark: _Toc70412423]Figure 30. Clock Circuit







	R1
	976 kOhms

	R2
	102 kOhms

	RSET
	610.35 kOhms

	C1
	.1 microFarad

	RPW
	10 kOhms

	CPW
	1 microFarad

	R3
	1 kOhms

	R4
	2 kOhms


[bookmark: _Toc70371073][bookmark: _Toc70412386]Table 18. Values for Clock Circuit
[bookmark: _Toc68159179][bookmark: _Toc70413986]5.2 Camera Design
Our camera system will be aligned in a way that positions the IR camera in between the two stereo visual cameras. This allows both systems to have similar fields of view. In our design, we first must consider the alignment and calibration of the cameras, as calibrating our system is part of our design and we must make sure this step is accurate before moving on to ranging applications.
[bookmark: _Toc68159180][bookmark: _Toc70413987]5.2.1 Stereo vision alignment and positioning

For our system, we will be positioning both stereo visual cameras in a forward position. To calculate the distance between the cameras, the following equation is used:  [43]. In this case, the distance between the cameras is B, the distance to the object is D, and the view angle is  [43]. The X values represent disparity values in pixels [43]. According to the calculations, both cameras should be approximately 13.1 cm apart to be able to determine depth from 0.56 m away or further and should be vertically aligned to both be the same distance from the ground.

[image: ]
[bookmark: _Toc70364165][bookmark: _Toc70354755][bookmark: _Toc70371074][bookmark: _Toc70412424]Figure 31. Forward Facing Cameras
By pointing both cameras forward as shown in Figure 31, we only must account for the x-axis displacement between the two when calibrating the cameras or making calculations. We also considered rotating the cameras either inwards or outwards to better match the field of view of the IR camera. This method is shown in Figure 32 and would require some additional calculations as we would also have to consider the angle of rotation of the two cameras. The two figures show possible configurations with which two stereo cameras can be placed to perform the disparity mapping algorithm.
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[bookmark: _Toc70364166][bookmark: _Toc70354756][bookmark: _Toc70371075][bookmark: _Toc70412425]Figure 32. Rotated Cameras
From an image processing standpoint, positioning the cameras without any rotation would mean that only pixels in the same vertical row between the images produced by the two cameras would have to be analyzed [44]. This simplifies part of the algorithm, as the range of pixels searched through to identify matching objects in the two images would only be those in the same vertical row [45]. Once a matching pixel is found between the two images, all that is needed to calculate depth is the distance between the two pixels [45].

Calibration between stereo cameras is usually done by taking pictures of a chessboard at various angles, since the squares of a chessboard are all a specified size and set distance apart [45]. By analyzing scenes with varying positions of the chessboard, the algorithm is able to get a better idea of what objects in a scene might look like based on the set up and distance between the two cameras. Taking these images can also help to ensure the two cameras are aligned vertically, as any kind of depth ranging algorithm would not work as well with any kind of misalignment. Since the physical image processing would compare the objects in each image pixel by pixel, it is important to ensure that the pixels on the vertical scale align numerically by their coordinates in the image itself.

An uncalibrated stereo camera system could produce various forms of distortion. This could include barrel or pincushion distortion [44]. In the case of barrel distortion, the edges of the image would appear to be pushed outwards while in pincushion distortion, the edges would appear to be pushed inwards [44]. Figure 33 provides a visual of each of these effects.

[image: ]
[bookmark: _Toc70364167][bookmark: _Toc70354757][bookmark: _Toc70412426]Figure 33. Pincushion and Barrel Distortion. [44]

The OpenCV library itself provides an image with a chessboard of set dimensions, which makes it easier to calibrate the cameras, as much of the size information regarding the image is known beforehand [44]. It is also generally recommended to take at least 20 photos of the chessboard with the stereo cameras in their set positions in order to get a good overall ranging estimate [44]. Each image should also depict the board at a different distance and at varying angles in order to account for different orientations of various objects along with getting a more thorough calibration [44]. The chessboard should also be completely flat, as any bending could introduce possible distortion when trying to analyze images from a software perspective [44]. Figure 34 is an image of OpenCV’s standard checkerboard pattern. This checkerboard pattern has 9 squares horizontally and 6 squares vertically. The number of squares can be adjusted when making the IR compatible checkerboard so that it is more visible at longer ranges and they can both be implemented together.

[image: ]
[bookmark: _Toc70364168][bookmark: _Toc70354758][bookmark: _Toc70371076][bookmark: _Toc70412427]Figure 34. OpenCV Library Checkerboard Pattern.

Since a decent amount of the calibration process is determined through programming, it is also useful to know how the program will analyze the images. For the purpose of setting up the images in relation to the program, they should all be in the same directory and named with the same prefix [44]. In order to use them effectively in conjunction with the OpenCV library, all the images should be saved in either a JPEG (Joint Photographic Experts Group) or PNG (Portable Network Graphics) format [44]. A number of parameters related to the checkerboard pattern in the images should also be saved, including the edge size of one original checkerboard square along with the width and height of the checkerboard in squares [44]. If the default checkerboard provided by the OpenCV library is to be used, this would have a width of 9 squares and a height of 6 [44].

In Python, the chessboard should be represented as a matrix variable [44]. It should be initialized with coordinates to multiply with the measurements of square size [44]. This will be the map for what the chess board should look like. The width and height of the board should be recorded to keep track of the number of intersection points between the corners of squares [44]. This is easier to keep track of using edge detection filters. There should also be a separate matrix that keeps track of corners of the chessboard from the images taken of the physical board.

Once we have the basic parameters and variables set up, we will be able to iterate through each image and process it. In Python, we would be able to use the imread function to get the image and then the cvtColor function to convert the image from RGB to grayscale [44]. This simplifies some of the image processing as there are no longer 3 color channels to analyze separately [44]. The openCV library also contains a findChessboardCorners function, which greatly simplifies the calibration process [44]. This function must also have the correct parameters, as it will try to look for the number of corners that are defined in the program. To check for the correct corners, it is possible to use the drawChessboardCorners function to confirm that they are showing up at the correct locations [44]. If they do not match well, the best course of action would be to use new images with more visibility or better contrast. Without accurate corners, the calibration process would most likely be affected [45].

The final step is to use the calibrateCamera function to read the parameters found in the previous steps [44]. This will take in the map and all of the detected points and process them to be returned or written to a file [44]. The use of these Python functions facilitates the process of the overall calibration of the camera. It is possible to also design these functions from scratch by researching how they themselves were designed and how similar algorithms work.
 
[bookmark: _Toc70413988]5.2.2 IR camera alignment and positioning
The checkerboard design discussed above is integral to the geometric calibration of the IR camera, as well as the 3 cameras together. The same calibration file is constructed using several checkerboard pattern images at different angles. However the checkerboard pattern cannot be simply printed onto a white page. There must be enough contrast between the squares to have the same spatial calibration image in both the visible and IR. To do this we need to discuss emissivity and materials that may help us get a good contrast in emissivity. Emissivity as mentioned previously is the how well an object can emit infrared/thermal radiation and is an indication of object temperature and has a value from 0 to 1 (blackbody has 1). Common materials that have low emissivity values are pure and unoxidized bare metals []. Due to their low emissivity, bare materials like aluminum. The majority of non-metals have an emissivity >0.9 which tells us that almost all of the radiation coming from the object is emitted by the object. One really good material to increase the emissivity is electrical tape which can have an emissivity of 0.95. One electrical tape that has been measured and tested by FLIR is Scotch™ Brand 88 black vinyl electrical tape with a measured emissivity of 0.96 for wavelengths from 3-5 um and 8-12 um wavelengths[]. Other considerations are flat paints and thick to be considered opaque but this is a permanent solution and requires two coats. Alternatively for a less permanent painting job for larger surfaces, white-out correction paint can be used (emissivity 0.95-0.96 in LWIR) and then removed by washing or scraping. For this we will be using electrical masking take to cup perfect squares for the checkerboard pattern on top of a shiny aluminum metal surface. Table 19 below is a table of materials that can be considered for high emissivity.

	Temporary

	Permanent

	Dye penetrant developer

	Liquid Tape 1/16”

	Stick-on paper dots

	Plasti-dip 1/32”

	White out (long wave)
	Flat non-metallic paint


	Masking tape
	Scotch 70 silicone rubber


	Scotch 33 black vinyl electrical tape
	Bulldog #8 rubber (self-adheres)


	Candle soot (small targets)
	W.H. Brady Labels (stick-on)


	Contact paper
	Friction tape (self-adheres)


	Kapton tape (polyimide film with silicone adhesive)
	Porcelain touchup enamel


[bookmark: _Toc70412387]Table 19 Coating materials to achieve high emissivity from an object [reprinted from FLIR] [46]
To make sure the we get the right contrast from these materials, the metal aluminum surface must be hot. The hot surface will not emit as much in the aluminum but will emit a lot from the electrical tape. To heat it up we can use an incandescent lamp indoor or go outside and have the sun hitting the checkerboard pattern as show in the sample checkerboard (figure 35) made by the Robotics Institute in Carnegie Mellon University [47]

The alignment of the IR camera in relation the stereo cameras will be crucial in establishing a common grid between the cameras. When referencing a coordinate point in the IR FOV, we want the stereo cameras to have a common coordinate to reference and analyze. This is integral for superimposing the visual and IR images to create a thermally highlighted visible image of the scene to show the user a field that is much easily recognized in RGB. The implementation of this multi-camera alignment will be demonstrated in the integration section 7. In this image the checkerboard is really big and can be set to far distances with the sun hitting at it.
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[bookmark: _Toc70364169][bookmark: _Toc70354759][bookmark: _Toc70371078][bookmark: _Toc70412428]Figure 35 Sample Checkerboard pattern outside. [47].
[bookmark: _Toc68159181][bookmark: _Toc70413989]5.2.3 IR Ranging test leg
To develop the software and calibrate the ranging calculations related a testing system will be designed that can test any IR camera. An object far away will give off radiation as a point source and as it travels in space the light waves become planar as they reach the camera. This physical situation is simulated on the tabletop by having a black body, with a determined temperature followed by a pinhole wheel (Figure 36). The pinhole wheel will create a point source from the radiation emitted by the BB with increasing sizes from Ø25 µm to Ø2 mm in in 5 µm increments. This point source is set the focal length of the 90 deg off-axis parabolic mirrors so that the light is collimated towards the camera. The camera will detect an uniform signal with a certain area. Using the apartment surface algorithm explained in the software section, a range estimation will be done and compared with the theoretical range calculated from the aperture size. These tests will be seen in the system testing section. If the ranging is operating with reliable accuracy, then a physically moving object will be tested. The design parameters and ranging theory will be discussed in the software section 5.3.#.
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[bookmark: _Toc70364170][bookmark: _Toc70354760][bookmark: _Toc70371079][bookmark: _Toc70412429]Figure 36. Closing object simulation for ranging test.

To align the OAP, a visible light source such as a standard HeNe laser can be used as seen in Figure 37. The light would be incident onto an iris that will disperse the light and onto the OAP which will collimate the light towards a mirror. The mirror will then reflect the light back onto the OAP and focus it onto the iris. To find the optical position for this iris with respect to the OAP, we will observe the laser spot that is reflected from the mirror and onto the back of the iris in order to achieve the smallest and most uniform spot we can. This position should be close to the real focal length of the OAP so that is a good starting point when position the iris. Once aligned, the visible source can be replaced with the black body source and the iris can be considered a point source at the optimal focal point of the off-axis parabolic mirror.
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[bookmark: _Toc70364171][bookmark: _Toc70354761][bookmark: _Toc70371080][bookmark: _Toc70412430]Figure 37. OAP alignment for range testing.
[bookmark: _Toc70413990][bookmark: _Toc68159183]5.3 Software					
Our software design will consist of three main components. This includes the image processing for the stereo visual cameras and IR camera outputs separately along with the overall integration of the system. The overall interface will connect the cameras and display to the NVIDIA Jetson Nano, which will be the primary component used for the software integration. Our visual camera system will create a disparity map using the two images generated from each camera and produce range information based on the distances between objects in the images. Our IR camera will utilize thermal imaging and certain physical equations that can be used to calculate emissivity and radiation. These measurements can then be used to determine range calculations.
[bookmark: _Toc68159184][bookmark: _Toc70413991]5.3.1 Flowchart
The flowchart below, in Figure 38, shows our expectations for how the software component of our system will operate. When the software is initialized, it will check all the ports to which the cameras are expected to be inserted. Upon successful identification of all the cameras, the GUI will be initialized and connect to the display. Once the cameras have been identified and GUI initialized, the software will begin to poll the three cameras for their image streams. Upon receiving each set of images, the software will make use of multithreading to process each set of images in parallel. Should we implement multiple algorithms for processing the IR image streams, we will also utilize multithreading to process each algorithm in parallel, which should see a dramatic improvement to the performance of  the system.
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[bookmark: _Toc70364172][bookmark: _Toc70354762][bookmark: _Toc70371081][bookmark: _Toc70412431]Figure 38. Software Flowchart
Once the camera streams have been delegated to their respective threads, the program will need to run an object recognition algorithm to determine the primary object in the scene. This is the object for which the system will extract the ranging measurements. Upon identifying the location of the object in the IR camera stream, we expect that we will be able to pass the location of the object from the IR camera stream’s image to the stereo camera stream image. We will accomplish this by downscaling the image resolution of the stereo vision cameras to match the IR camera, and determining the position of the object in the IR camera via parsing the heat intensity at each pixel to identify a key point. We will parse through the two stereo vision camera images around this point to identify the key points in both images that correspond to the object. Finally, we will run the disparity mapping algorithm on the stereo cameras to determine the distance of the object, and apparent surface algorithms on the IR camera image.

Once the images have been parsed and ranges determined, the camera streams will be passed to the GUI to be displayed to the user. The GUI will be displayed to the user on the 7-inch touch-screen panel. We will allow the user to interface with the display via the touch-screen panel. The two stereo camera image streams will be displayed to the user, as well as the IR camera stream with the object being tracked clearly outlined on all streams. On each frame, the program will return to the start of the flow chart and begin the process of parsing the images again. 
[bookmark: _Toc68159185][bookmark: _Toc70413992]5.3.2 Interface
[image: ]
[bookmark: _Toc70364173][bookmark: _Toc70354763][bookmark: _Toc70371082][bookmark: _Toc70412432]Figure 39. Possible interface layout
Figure 39 displays a visual for the possible GUI layout. For this project’s interface, we want to be able to clearly display all the relevant camera streams to the user. We would like to be able to draw a box around the object being tracked, to allow the user to clearly see what the system identifies as the primary object in the scene. We will provide buttons for the user to be able to enable and disable each ranging source for the project. We would also like to include buttons to select which IR ranging algorithm to use to calculate the distance displayed to the user. Furthermore, we could include an option to run all algorithms in parallel, which will hurt performance, but give multiple measures of distance. We would also like to incorporate some controls for the IR camera that are included on the official FLIR Tau 2 camera’s GUI should that be a possible task.
[bookmark: _Toc70413993]5.3.3 Stereo Visual Camera Implementation
At a conceptual level, the images received from the stereoscopic cameras should be able to come together to create a disparity map. This means that the two separate images will be compared and the distances between objects in this comparison will create a map of objects with varying colors or intensities, with each one indicated at being a closer or further distance from the camera [10]. 

Computation of Disparity Map
As explained earlier in the paper, stereo cameras simulate many depth perception principles similar to those used by human eyes, including disparity [8]. Many parameters can affect any depth related data in a stereo vision system, including the field of view of the cameras and the distance between them [9].
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[bookmark: _Toc70364174][bookmark: _Toc70354764][bookmark: _Toc70371083][bookmark: _Toc70412433]Figure 40. Stereo Camera setup with labeled distances
Figure 40 depicts the typical parameters and basic setup involved in a stereo visual system. The primary value considered in the estimation of depth is the calculation of the distance Z [43]. Both cameras are also assumed to have the same focal length f. By using two cameras with identical parameters, this simplifies necessary calculations. Two planes labeled pleft and pright depict intersections between the image plane and lines directed from the camera centers to the object. Two similar triangles can be seen in the diagram. One contains the camera centers along with the object and the other contains the image plane intersections described above along with the object [9]. Basic geometric principles can be employed in computing the distance Z from this point [9].

Since the two triangles shown in the diagram are similar, the ratios of base to height in both should be equivalent. Therefore,  [43]. We can assume that  [43]. The setup of the diagram implies that the origin is at the center, making  a positive value and  negative. By taking into account the following assumptions and rearranging the equation, we end with an equation to estimate the distance Z as    [43]. 

Depth and disparity have an inverse relationship, where the distance Z increases as the disparity  decreases [43]. For the purposes of finding the disparity map, we will employ a technique called block matching, which is a method of finding pixels that correspond between specified objects in the two images [43].

For the block matching technique, the key parameters we would need include the overall height and width of the image along with a block size and search block size [48]. The block size represents a small patch within the image containing pixels to be compared to the other camera’s image [48]. The reason we use a block rather than a single pixel is to rule out error due to noise or lighting conditions [48]. However, if this block were to be placed at the exact dimensions on the second image, it would likely not outline the same object. This is why it is necessary to also define a search block size, which is a range within where the desired area should appear on the second image [48]. Since stereoscopic cameras are typically only displaced in one dimension, the search block size should be a wider horizontal area [48].

To correctly match the blocks between the images, the block on the second image will be shifted across the search block one pixel at a time [48]. At each point, a similarity score will be calculated between the shifted block on the second image and the original block on the first [48]. After going through the entire search block, the block with the highest similarity score should be found and the center pixel at that block should be returned [48]. The original center pixel from the block on the left image should be recorded as  and the one found on the block with the highest similarity on the right image should be recorded as  [43]. These two values will be used to calculate   as the disparity [43]. This process will be repeated on each pixel and will eventually come together as values to construct a full disparity map [10].

The similarity metric itself can be defined in various ways. One intuitive method to find a quantitative similarity value is to take the difference in pixel intensities in a given block [10]. Since we would be going through regions one pixel at a time, it would be acceptable to take intensity differences one at a time and sum all of the absolute values of differences in a full block [10]. The lowest sum would imply the highest degree of similarity [10].

We would also have to keep track of the index of the block being processed as it traverses through the search block [10]. Since the lowest difference value would have to be returned, the index of the block with the lowest value would have to be saved and updated with any new higher similarity block [10]. Since only the most similar block is needed, saving any additional data related to the pixel intensity differences would be inefficient [10].

The main parameter that would need to be saved from these calculations is the disparity itself for each center pixel [10]. Since the cameras would be spaced some set distance apart, there should be extra image data on either side that would not be able to be ranged since it would only appear on one camera [9]. This would have to be taken into account when setting up ranges for the block traversals through the image [43]. The left edge of the left camera’s image along with the right edge of the right camera’s image would have to have a specific cutoff based on what the cameras can see with relation to each other's images. 

After ensuring that only valid parts of the image are being ranged, it would be possible to create the disparity map [10]. This map would originally be set up as a matrix of disparity values found from taking the differences between center pixels of similar blocks [10]. In order to ensure that they are set on a specified scale, the left image could be taken as the original to base the disparity matrix off of and the right image could primarily be used just to calculate the disparity values [10].

This disparity map could be visualized by assigning various color intensities to an output image that would correlate with the values of the disparities within the disparity matrix [10]. If set up monochromatically, this would show the map in a way that closer images would appear lighter and further ones would appear darker [10]. It should also be able to distinguish different objects at various distances, as each depth should have a different disparity associated with it [10].
[bookmark: _Toc70413994]5.3.4 Thermal Imaging
To create a thermal image with the IR detector, the mathematics of thermal radiation and emissivity needs to be explored [4]. We consider that an object emits radiation but also absorbs and reflects from radiation in its atmospheric surroundings. This is explained by the Total Radiation Law which says that  or more conveniently . The term  is the absorption,  is the transmission, and  is the transmission. A perfect black body is given by a transmission and reflection of zero, where all of the incident radiation on the object is absorbed. The mathematic representation of the radiative properties of the perfect black body are given by Planck’s Law and illustrated in the figure 36 below, where the spectral radiant emittance is a function of temperature and wavelength. For a given temperature of the black body there is a maximum at a specific wavelength radiated which is given by , where T is the absolute temperature. The total radiation emitted by the black body is calculated by , where is Stefan-Boltzmann's constant (5.67 × 10–8 ). The radiation that is incident on the IR sensor is composed of three separate sources: emission of the object, reflected atmospheric emission, and atmospheric emission. The emission from the object is given by , where  is the emissivity from the object, and  is the emitted energy from the an object and the emissivity of the object is given by . The reflected emission is given by  and the atmospheric emission is . By adding these three terms we arrive at the total radiation received by the camera given by:
 .
To calculated the correct target temperature, the code must take as input the object emissivity, atmospheric attenuation, and the surrounding temperatures. These can be assumed or determined from available tables [4]. Figure 41 below serves as a visual representation of Planck’s law.
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[bookmark: _Toc70364175][bookmark: _Toc70354765][bookmark: _Toc70371084][bookmark: _Toc70412434]Figure 41. Visual representation of Planck's Law. Permission pending [4]
The following curve (Figure 42) is needed to relate camera counts to radiance being emitted by an object. In this case we use a blackbody source to which has an uniform emissions cross the surface so that an accurate conversion can be made from radiance to temperature. Each temperature on the blackbody will give off a different radiance intensity that is detected on the camera as counts of intensity. The radiance is calculated from Plank’s function and plotted. A line of best fit is conceived to determine the slope equation which has an scalar and an offset for a given pixel count. This process will be carried out for any IR camera that we use to establish good working order.
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[bookmark: _Toc70412435][bookmark: _Toc70364176][bookmark: _Toc70354766][bookmark: _Toc70371085]Figure 42. LIR radiance vs counts curve for calibration with line of best fit. Permission pending [4]

[bookmark: _Toc70413995]5.3.5 IR Ranging
For the IR ranging estimations, there will be two different methodologies utilized depending on the size of the source on the image. First we consider an object that is so far away that the camera only detects it as a point source and then for a closer object that is extended across many pixels. 
5.3.5.1 Point source approximation for range finding
A point source is determined as a source that effectively only encompasses one pixel on the IR focal plane array. A point source is subject the inverse square law which says that irradiance (H) decreases as (1/R), with R being the distance away from the point source. The radiant intensity  , is defined as flux per unit solid angle. To describe a point source we will use intensity. The irradiance (w/cm^2) is the flux per unit area at a surface/detector, given by a point source, is given by , with A being the area. The equation for irradiance tells us that .
To be considered a point source, R needs to be larger than 5X the source diameter, or . This scenario is properly show in figure 38. If we assume the source and detector are on the optical axis, the power detected from a faraway “point” source is . The point source radiant intensity is given by  and the detected irradiance at the detector is . From this equation we also arrive at the equation for detected power . These equations are idealistic and for real sensors, not all the power will be imaged onto a single detector, due to the point spread function and optics transmission. Figure 43 below illustrates focusing on a point source via a lens.
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[bookmark: _Toc70364177][bookmark: _Toc70354767][bookmark: _Toc70371086][bookmark: _Toc70412436]Figure 43. Point Source diagram
The point source approximation is used for the range estimation by using the inverse square law. If we can convert the detector counts in the camera to radiance emitted by the object, then we can calculate the range . This method only works if the object is very far away. As the object comes closer and the signal occupies an extended amount of pixels, different methods must be considered.
5.3.5.1 Extended source approximation for range finding
For an extended target that spans across multiple pixels, then >. In this case we also assume that the radiance from the source to sensor and detector plane is along the optical axis as pictured below in Figure 44.
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[bookmark: _Toc70364178][bookmark: _Toc70354768][bookmark: _Toc70371087][bookmark: _Toc70412437]Figure 44. Extended source approximation
The radiance is termed as the flux per unit protected area per unit solid angle . The power collected by the aperture is given by P= . The irradiance measured at the detector is then given by . 

Several methods may be employed in this case as described by [].. We will go more in depth into these methods to decides what is best for us. The methods that are under consideration are Atmospheric propagation models (APMs) and apparent surface (AS). The outputs of our camera system to the Jetson Nano are images from both the IR camera and visual cameras, along with estimates of elevation and bearing parameters based on camera position.

5.3.5.1.1 Atmospheric propagation models (APMs)
When meteorological data is available and object alztitude, a range estimate can be obtained when it is first detected. Optical distortions appear with IR frequencies when observing a scene along the horizon, along with atmospheric absorption  [2] [49] [50]. These models will require meteorological information for efficiency. Some of these models are IRTool, ARTEAM, MODTRAN, and IRBLEM, IRTool. The MODTRAN algorithm guesses the atmospheric optical properties of the scene, and IRBLEM is an IR boundary layers effect model which is an upgraded MODTRAN. IRtool estimates refraction effects, and ARTEAM utilizes ray-tracing algorithms for electro-optics. The IRBLEM algorithm provides an estimation of range when the object first appears, by calculating the effective propagation transmission. For this model the object intensity is estimated using equation [49]. These models will require meteorological information for efficiency. Some of these models are IRTool, ARTEAM, MODTRAN, and IRBLEM, IRTool. The MODTRAN algorithm guesses the atmospheric optical properties of the scene, and IRBLEM is an IR boundary layers effect model which is an upgraded MODTRAN. IR tool estimates refraction effects, and ARTEAM utilizes ray-tracing algorithms for electro-optics. The IRBLEM algorithm provides an estimation of range when the object first appears, by calculating the effective propagation transmission. For this model the object intensity is estimated using equation 
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Where I denotes the target intensity, I_(peak target) is the peak intensity, I_background, is the average background intensity, δΩ is the solid angle of the target in the FOV, σ_background is standard deviation of the ambient sky, and finally NEI_LWband is the noise equivalent irradiance of the camera. An object emits IR radiation omnidirectionally based on equation I=W τ/R^2 , where R is the distance to target, W is its radiant intensity, and τ is the transmission to that distance.
5.3.5.1.2 Apparent surface model
The apparent surface model is a promising technique for estimating range based on the effective size of the object on the image. As the object comes closer to the camera it will appear larger on the image and require it to be extended across pixels . A change in distance estimate must be obtained. First the object will take only one pixel which will be chosen for observation based on a threshold calculated from nearby area. If we assume that the target moving directly towards the camera, the relation from the number of pixels (A) and distance (R) is given by , where c is a relation constant. A sample image of a scene taken from the LWIR camera in the IRST is given in Figure 45 where an object is seen at a far distance in the sky. [2]
[image: ]
[bookmark: _Toc70364179][bookmark: _Toc70354769][bookmark: _Toc70371088][bookmark: _Toc70412438]Figure 45. Sample IR image of scene of the horizon with a flying target [2]

Since the object is moving towards the camera, an expression for the change in surface (dA) and change in distance (dR) is given by . From this expression we can arrive at an expression for calculating range:

Where a change in distance and surface is required. This process is limited by the need to know the change in distance with would need to be estimated based on reference measurements.
5.3.5.1.3Time motion analysis
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[bookmark: _Toc70364180][bookmark: _Toc70354770][bookmark: _Toc70371089][bookmark: _Toc70412439]Figure 46. Advantages and disadvantages of different ranging methods. Permission pending [2]
The methods are summarized above (Figure 46) in terms of advantages and disadvantages, and range equation
[bookmark: _Toc70413996]5.3.6 Reading Inputs
When reading inputs from the cameras, the OpenCV library makes it very easy to initialize the connections to the inputs and then read the outputs. OpenCV allows one to retrieve data from all camera streams on a given network for an ipcam, or locally connected cameras using a simple function call. After importing the cv2 library to a given python script, we will be able to read input from each camera using the “VideoCapture()” function. The “VideoCapture” function takes in an optional variable in which the user can specify which camera they want to bind the return value to. For example, if I wanted to capture the input coming from the MIPI1 camera slot on the Jetson Nano, I can simply call “cv2.VideoCapture(0)” to establish a connection to the MIPI1 camera slot. 

After establishing a connection to all the relevant cameras for the project, we can move to a runtime loop that will continue to poll each camera and retrieve a frame of input. This loop will only execute each time that the relevant algorithms have reached their conclusions. Consequently, it is possible that the software will not parse and display the images at the same rate as they are captured by the cameras. That is, it is possible that we may experience some loss due to dropped frames. On each iteration of the runtime loop, we will call the “.read()” function on the object associated with each camera. For example, if I bind the variable “camera_1 = cv2.VideoCapture(0)”, I can then retrieve a frame from the camera by invoking “ret, frame = camera_1.read()”. The “ret” variable will be a Boolean value that will determine whether the function call returned meaningful output. The “frame” object will hold the image from the camera in BGR format.

When working with the IR camera, it is possible that this approach may not work, and we will have to produce our own code to pull images from the IR camera. The FLIR company has produced a large SDK that will contain any code that we have need to retrieve an image from the FLIR camera. However, this code may not be in Python, so it is possible that we will need to incorporate the code into Python through some means. The code is written in MATLAB and C++, which thankfully means that it will be relatively simple to incorporate into our Python codebase thanks to the two-way integration capabilities of MATLAB and Python, and the existence of many sophisticated libraries that allow one to directly call C++ functions from within Python as though they were native Python functions.  We will need to perform tests on this subject to ensure that there is no significant loss of performance and image quality when taking this approach.
[bookmark: _Toc70413997]5.3.7 Producing Outputs
The outputs produced by this program are going to be in the form of the ranges calculated by the algorithms that will be running on each set of imagers to be processed from the cameras. Additionally, there is going to be the GUI to take into consideration as that is going to effectively be an output of the software side of the program. In the GUI, we are expecting to display the three camera streams that we will be parsing for the project: the IR camera and the stereo cameras. Additionally, we are going to be displaying the ranges for each range finding method (stereo and IR) as calculated by the respective algorithm on the GUI. 

Within Python, many libraries exist within the language’s ecosystem that we can take advantage of to build a GUI.  After examining some Python libraries that may be suitable for use on this project, our team settled on Kivy as the framework of choice. Kivy is multi-platform, open source, and produces clean, visually appealing GUI’s, especially when used for simple GUI’s as we are expecting to write for this project. When we are packaging the outputs for each display together, we will create an object to house all the relevant variables that are associated with the output. For example, we will produce a “StereoVisionOutput” class that will contain both camera streams, the range produced on an iteration of the algorithms, and any additional metadata that we can use to post to the GUI. Likewise for the IR output, we can write a “IRCameraOutput” variable to hold all the data associated with the IR camera. This design paradigm will help us to encapsulate our data where it is most relevant, and keep the software in a clean, readable, maintainable state as the size of our codebase grows.

Another interesting possibility for an output that we considered for this project is to produce time-series data that can be exported to an external computer. After generating time-series data that plots the range relative to time, we can run a recurrent neural network to create approximations for the distance of the object at a given point in the future. In doing this, for military applications, we could effectively create a system that can be used to approximate the future range of an aircraft, automobile, or naval vessel with some degree of accuracy. The transmission of the time series data could be accomplished wirelessly via Bluetooth or through the use of a wired ethernet connection. This integration would be useful in the case of working with this project in a larger overall system, in which the range finding system would just be one component. 
[bookmark: _Toc70413998]5.3.8 Program Control Flow
When writing the software for this project, it is vital to take into account the overall flow of the software. Without proper planning and considerations being made for the way in which the software will proceed through its sequence of execution, we will not be able to properly route our input data through the set of algorithms that are needed to produce our outputs. We need to be careful to ensure that the correct inputs reach the correct blocks of business logic, while ensuring that we handle any exceptions or unexpected inputs that may occur. We need to take care to ensure that any branching logic correctly routes the right data types to their destinations. To do accomplish all of this, we will be mapping out the control flow of the software.

As the program initializes, we will need to handle several tasks. We will need to initialize the camera streams and verify that the Jetson Nano receives frames of output from the cameras as input. Upon confirmation that the frames have been received, which verifies that the cameras are operational, we will pass into the runtime loop for the software. On each iteration of the runtime loop, we will poll each of the cameras for a frame of input. When we receive this input frame, we will then process these frames prior to handing them off to the range finding algorithms. Some preprocessing steps that may need to be applied include changing the format of the stereo camera images to greyscale to reduce the computational complexity of the disparity mapping algorithm. Additionally, it is likely that we will downscale the  captured images to also reduce the number of pixels that will need to be parsed by each algorithm, improving the performance of the software and incurring as little loss of quality as possible.

We will need to make use of asynchronous programming to handle running each of the algorithms for image processing. Since we are going to be processing two images simultaneously, we will need to take advantage of multithreading to ensure optimal operation of the software. Rather than waiting on one process to finish then initiating another, we will make use of the multiple cores on the Jetson Nano to run the jobs in parallel. On each iteration of the runtime loop, after getting the camera inputs, we will then spin up a set of threads, one to take in the stereo camera inputs, and the other to take in the IR camera inputs. Each of these threads will then run an instance of their respective algorithms. After dispatching the threads, we will then await the completion of each thread. This ensure that the program remains synchronized at the end of processing, while still handling the calculations asynchronously.

After the spun-up threads reach their completion and return their values, we will then pass these values into output classes that hold all the values associated with the source of the output. The IR camera will have an IR camera output class that will contain the frame, and all data associated with the frame including the calculated range, error, etc. The stereo camera will have its own set of data as well. When the program initializes, we will also be initializing the GUI of the program to output to the digital display. The GUI will be expecting inputs to start trickling in from the logic in charge of processing the images, and begin to display the frames from the output classes, as well as all associated data to the GUI at this point. Upon verification that the data has passed to the GUI without any issue, we will proceed to the next iteration of the runtime loop until the user selects a “stop” option from the GUI.
[bookmark: _Toc70413999]5.3.9 Exception Handling
While the software is running, at certain points it is possible that the Python code may raise an exception when the code is executing. For the purposes of debugging and handling unexpected behavior, it is vital that we implement a satisfactory degree of exception handling to ensure that any unexpected behavior is properly dealt with in a non-destructive manner. As we construct the code for this project, we will need to take two actions. First, we will need to write custom exceptions that describe any unsatisfactory behavior so that we can quickly troubleshoot and debug any issues that come up during operation. Second, during the execution of critical segments of code, we need to  make use of “try: except” blocks to catch exceptions. When we catch an exception, we need to be sure to process it according to the type of exception that was raised. For example, should we encounter an exception stating that we missed a frame of input or the frame is corrupted, we will need to nullify the processing of the other running algorithms and drop the frame, before proceeding to the next frame of input.

If possible, it would be helpful for us to be able to log exceptions as they occur to help with the troubleshooting of a crash scenario. With a good logging system, we will be able to search for the exact problem that occurred considering we did our due diligence setting up the exception handling system. Thankfully, python has a logging module built into the language, allowing us to quickly setup logs and dispatch them. One of the features of the logging module is that we will be able to directly specify the significance of any event that occurs in the code at runtime. For example, should a camera fail to get any input, we can log a  “CRITICAL” event with the associated exception that triggered the log. The log levels that we are able to display are “DEBUG”, “INFO”, “WARNING”, “ERROR”, and “CRITICAL”, which will allow any team member associated with debugging and troubleshooting issues to quickly identify the type of problem and rectify the problem.
[bookmark: _Toc68159186]

[bookmark: _Toc70414000]6. Overall Integration 
This section will be a summary of how the final system works followed by a more in depth dive into how each subsystem works. It will include a diagram and picture of how everything will be integrated into the system.
[bookmark: _Toc68159187][bookmark: _Toc70414001]6.1 Integrated Schematics
The Cameras take in the surrounding area within their field of view. This then gets converted to a digit image in the cameras. The data from the IR camera gets sent through a USB cable to the Jetson Nano. The data from the visual cameras is sent through the MIPI cables to the Jetson Nano. The Jetson Nano takes in the information from the cameras and calculates the distances of the objects in the field of view. The calculations for the distances may be different from the IR camera and the visual cameras. The Jetson Nano will handle this depending on what it decides is the most correct solution. This then outputs the ranges and the stereo vision showing up on the display. 
 
The power comes from the wall. This power then gets converted to 12 volts in direct current. This voltage is used to power the fan that will provide some cooling inside our housing. We then convert this to 5 volts. The 5 volts direct current will be used to power the visual cameras, the IR camera, the display and the Jetson Nano.

Figure 47 shows the process we intend to use for the analog to digital conversion of the Tau 2’s analog video output. Figure 48 below shows the general setup of the system. It shows the power system, the camera system, and the Jetson Nano and how the all interact with each other. The black data arrows show the flow of data. The green power arrows shows the flow of power, along with the maximum expected current beside the arrow. The color of the boxes denotes what is being used as an input, output, or computer. 
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[bookmark: _Toc70364181][bookmark: _Toc70354771][bookmark: _Toc70371090][bookmark: _Toc70412440]Figure 47. Schematic for analog to digital conversion.
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[bookmark: _Toc70364182][bookmark: _Toc70354772][bookmark: _Toc70371091][bookmark: _Toc70412441]Figure 48. Hardware Integrated schematic 

[bookmark: _Toc70414002]6.2 Overall Schematics
The following part will talk about the setup for the final system. This is not the final solution as of senior design 1.
 
We have to fit in the Jetson Nano, the 3 cameras in a way we can use, and the power to supply to the cameras and the Jetson Nano. The dimensions of the visual cameras are 36 millimeters by 36 millimeters board size with a lens size of (x) millimeters. The dimensions of the IR camera is 44.5 millimeters by 44.5 millimeters board size with the lens size of 30 millimeters. The size of the Jetson Nano is 70 millimeters by 45 millimeters board size with the height going up to 35 millimeters.
 
The Jetson Nano has a heat sink where the air flows in the long direction of the card. This means the fan has to blow air in the long direction of the Jetson Nano. The air should also hit the camera setup and exhaust the air after dissipating heat from the cameras. 
 
The IR camera can get hot in certain circumstances, which can cause the system to give miss-calculations based on the information sent to the Jetson Nano. This is going to be enclosed as well, so there may be some heat buildup in a system where heat can affect the cameras ability to capture the surrounding area accurately. This is why we will be including at least one fan into this system. We may include more fans if the system is getting too hot that it affects the other parts of the system. We also want to keep the system compact, so the fan size should be comparable to the size of the other parts of the system. This leads us to use either a standard 40 millimeter fan or standard 60 millimeter fan. There also needs to be an exhaust where the air can exit. This will be near the camera setup so the air will naturally flow from the fan through the Jetson Nano’s heat sink to the camera setup.
 
We plan on making the housing using a combination of 3D printing where we want complex shapes and other materials, like sheet metal when we can get away with flat parts and simple cuts. There is a drastic difference in the material characteristics in 3D plastics and sheet metal, but the sheet metal is mainly used so we don’t have to 3D print the entire case. 

With the requirements in mind listed above, we came up with the following system. The setup for the system is shown in the following 3 figures. 
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[bookmark: _Toc70364183][bookmark: _Toc70354773][bookmark: _Toc70371092][bookmark: _Toc70412442]Figure 49. Top View of the Overall Schematic
Figure 49 shows the top view. The camera setup is in the front with the Jetson Nano is off to the side near the center and the Fan is in the rear right behind the Jetson Nano. The power components are not set in size and is flexible, so the size is not mentioned, but has to be able to reach the outside to get power from the wall.
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[bookmark: _Toc70364184][bookmark: _Toc70354774][bookmark: _Toc70412443]Figure 50. Front View of the Overall Schematic

Figure 50 shows the camera setup in the front of the camera. It shows the distances between the cameras. The larger the distance between the cameras, the greater the accuracy. The baseline distance between the two stereo cameras also affects the minimum distance that an object must be from the camera system in order to produce ranging information. In this case, there is a minimum range in which the object will not fully appear or appear at all in both images, making the disparity map difficult to impossible to produce. According to calculations shown above, With a baseline distance of 13.13 cm, the minimum range that an object must be from the camera would be 0.56 m.
 
This overall setup also makes it easier to overlay the image from the IR camera with the disparity map from the two stereo cameras. With its position directly in between the two visual cameras, the field of view of the IR camera intersects in a way that allows most of the overlapping images of the visual cameras to be seen in conjunction. Since the edges of the visual camera images that do not overlap with each other are not useful in the construction of the disparity map, the image produced by the IR camera should be able to fully overlay with the combined visual disparity map.
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[bookmark: _Toc70364185][bookmark: _Toc70354775][bookmark: _Toc70371093][bookmark: _Toc70412444]Figure 51. Side view of Overall Schematic
Figure 51 shows the side view to confirm that the height of the system is kept in check. We plan to have the Jetson Nano on standoff screws to improve cooling and to make sure the bottom of the board is not in contact with the bottom of the case.
 
To make sure the cameras don’t move around in the casing, we are either going to screw them into the frame or create a cradle for the camera. Screwing them into the frame would be a simple procedure to do, with just 4 screws for 1 camera. These screw holes would be in line with the holes on the board. The board would be inside the system with the lens going through pre-cut holes in the front. Since there is less points of contact for this approach, there is less opportunity for the cameras to move around when moving the whole system around, improving reliability. If we want to adjust the camera’s location in the system, we would have to remake the entire front panel.
 
A cradle would allow us to move the cameras easier in the frame and readjust them if we need to by replacing the small linear piece they would be screwed into rather than the whole front panel. A cradle would also make the final product look more polished without having screws poking out the front. The biggest problem with this approach is that there are more points of contact, so there are more chances of the cameras moving around, reducing reliability in the results when we move the system.
 
For this system, we are going with simply screwing them in place because For this system, we are going with simply screwing them in place in order to reduce any risk of potential errors from misalignment. Any horizontal displacement of a camera would require a full redone calibration and new calculations based on the new distance between the cameras. While having an adjustable system would give us more freedom in terms of what we are able to range, it would also introduce an abundance of new variables to keep track of. The amount of risk involved with accidentally changing these variables most likely outweighs the benefits of having a more flexible system.

[bookmark: _Toc70414003]6.3 - Software Integration
This project is going to require considerable integration between the software and the hardware components. One of the key pieces of software that we’ve needed to ensure is in place for each of our hardware components is the existence of a driver that is compatible with Ubuntu to be used on the Jetson Nano. A driver is a piece of software that serves an interface between a hardware peripheral and the operating system. The device communicates with the driver directly, which in turns passes the input to the operating system before it can finally be accessed by the software that intends to use the peripheral. It is not always the case that drivers exist for all platforms, so it has been essential that we looked into driver compatibility with the Jetson Nano when choosing all of our hardware. The following diagram (Figure 52) llustrates the path through which data travels from the device to our software program:
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[bookmark: _Toc70364186][bookmark: _Toc70354776][bookmark: _Toc70371094][bookmark: _Toc70412445]Figure 52. The relationship between device drivers and peripherals on the Jetson Nano
In the case where there are not a set of drivers available for the Jetson Nano, we may have to write our own to allow the device to operate with the Jetson Nano. However, this does not seem to be a case that we are likely to encounter when implementing the design outlined in this paper. All of the components that we have chosen for this project are natively supported by the Jetson Nano, and consequently will have compatibility with the drivers already available on the platform.

Once we have ensured that input makes it from the peripheral onto the operating system, we need to interface the output from the peripheral with the software. In the case of the cameras, when the driver establishes a connection, a folder gets created in the directory: /dev/video*, where video* is video0, video1, etc., based on the order in which the cameras are connected. When our software wants to connect with these cameras, it will cycle through these cameras to access the buffer to which each frame that the camera captures is written. The software will continuously access this buffer on each iteration of the algorithm, keeping a steady stream of frames flowing into the algorithm.

One of the interesting problems that will be encountered in integrating the software with the overall system is in the FLIR Tau 2 camera. The software development kit associated with the Tau 2 is locked behind a heavy $999.00 paywall, which is quite far out of budget for this project. Furthermore, the GUI that provides controls for the Tau 2 camera is only available for Windows machines, which will make it difficult to incorporate controls for us to use directly from the Jetson Nano (figure 53) [51]. Thankfully, it seems as though one can programmatically interact with the Tau 2 to perform both of these sets of functionality. I will discuss two possible approaches that we can take to properly integrate the control of the Tau 2 with our design. The following is an image of the GUI provided for the FLIR Tau 2 Camera: 
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[bookmark: _Toc70364187][bookmark: _Toc70354777][bookmark: _Toc70412446]Figure 53. Camera GUI provided by FLIR. Permission pending [51]

The first approach to incorporating this GUI is to run the GUI off of an emulation layer. This emulation layer needs to emulate the Windows 7 environment such that the GUI software thinks that it is running on a Windows 7 machine. Since the Jetson Nano is powered by a custom Ubuntu Linux distribution, we are not going to be able to natively run this GUI software. The primary issue we encounter in this process is the differences in instruction set. The Jetson runs on the ARM instruction set, while windows is an x86-based operating system. Consequently, the most popular solution for this emulation is a piece of software called Qemu. This software allows you to emulate with whatever target instruction set you’d prefer. The downside of this approach is the significant performance loss of the emulator needing to translate all instructions. We would need to block all computations in our program associated with range finding while the user adjusts camera settings to allow enough system resources to handle the emulation.

The second approach we could take is to attempt to rebuild some of the features of the GUI within our own software’s runtime GUI. The camera is controlled via a micro-USB port that serves as the control channel, separate from the video display channel. We would need to write our own set of code that interfaces with this channel to adjust the parameters within the camera associated with each setting. This could be accomplished by writing an API that interfaces with the camera’s hardware, giving us access to the necessary endpoints within our software suite. If possible, this approach would be preferable, although it would come at a significant cost in the form of development and troubleshooting time and would not simply work out of the box as FLIR’s GUI would. 


[bookmark: _Toc68159188]

[bookmark: _Toc70414004]7. System Testing	
Throughout the process of setting up our system, it is important to test individual components and to continue to test them as they are integrated together with other components. This includes aligning and calibrating the cameras along with testing components for our power system. For our software design, this would include debugging our system for both the interfacing and image processing aspects.
[bookmark: _Toc70414005][bookmark: _Toc68159189]7.1 Hardware testing 
Power System Testing
The power system is an important part to any product that requires electricity. We need to ensure that this works properly in order for the system to get the power it needs. Below is a table summarizing what needs to be tested and what the outcome should be. The paragraphs after that go into more details about how we are going to test the system.


	 
	Description
	Procedure
	Result

	1
	Ensure AC-DC conversion is done properly and converts 120VRMS AC to 12V DC
 
	The input will be a 120VRMS AC and the output voltage will be measured 
	The output should be within 5% of the expected value (11.4V to 12.6V) with an efficiency of at least 85% at maximum load.
 

	2
	Ensure DC-DC conversion is done properly and converts 12V DC to 5V DC
 
	The input will be a 12V DC and the output voltage will be measured
	The output should be within 5% of the expected value (4.75V to 5.25V) with an efficiency of at least 94% at maximum load.
 

	3
	Ensure the entire system AC-DC conversion is done properly and converts 120VRMS AC to 5V DC when put in series
 
	The input will be a 120VRMS AC and the output voltages will be measured. The output voltages will be the output of the 120VRMS AC to 12V DC AC-DC converter and the output of the 12V DC to 5V DC DC_DC converter.
	The output should be within 5% of the expected value (4.75V to 5.25V and 11.4V to 12.6V) with an efficiency of at least 79% at maximum load.

	4
	Ensure all components get the power they need
 
	Power on all the devices and measure the maximum power draw from each component. There will be three different times of operations: power on, idle and continuously running the code.
	All components should be able to power on and be continuously on until the power system is turned off or something else in the system shuts down the entire system


[bookmark: _Toc70412388]Table 20 Process for testing the Power System
To start testing the power system, we are going to be testing the 120V to 12V AC-DC converter first. To test this, we are going to input a 120 volts RMS AC current into the input and measure the output over a load resistor. As a note, the resistor should be able to handle 36 watts of power. We will be measuring the input voltage and current along with the output voltage and current. The output voltage should be 12 volts with a maximum variation of five percent, though the expected variation is less than that. The input current times the input voltage should equal the expected efficiency times the output current times the output voltage, as shown in the equation below. Vin and Iin are in RMS. The expected efficiency can be seen in the graph under section 5 part 1 under figure 23. There may be some variance, but the efficiency should be at least 85% under maximum load. Below (Figure 54) is the 120V to 12V AC-DC converter circuit tested in LTspice.
 
 Vin*Iin=Vout*Iout*η
Equation for both Converter Testing

[image: ]
[bookmark: _Toc70364188][bookmark: _Toc70354778][bookmark: _Toc70371096][bookmark: _Toc70412447]Figure 54. 120V to 12V AC-DC Converter
 
The next thing would be to test the 12V to 5V DC-DC converter. To test this, we are going to input a 12V DC current and measure the output using a load resistor. This load resistor should be able to handle 25 watts. We will be measuring the input voltage and current along with the output voltage and current. The output voltage should be 5 volts with a maximum variation of five percent, though the expected variation is less than that. The input current times the input voltage should equal the expected efficiency times the output current times the output voltage, as shown in the equation above. The expected efficiency can be seen in the graph under section 5 part 1 under figure 21. There may be some variance, but the efficiency should be at least 94% under maximum load. Below (Figure 55) is the 12V to 5V DC-DC converter circuit tested in LTspice.
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[bookmark: _Toc70364189][bookmark: _Toc70354779][bookmark: _Toc70371097][bookmark: _Toc70412448]Figure 55. 12V to 5V DC-DC Converter Circuit
..
The last thing to do would be to make sure the that there is a 5V output when the 120V to 12V AC-DC converter and the 12V to 5V DC-DC converter are put in series. In this circuit, there will be 3 different voltages that we want to measure. These voltages are 120V AC RMS, 12V DC, and 5V DC. The main two to test would be the 12V DC and the 5V DC to make sure there is no unexpected drop in voltage. The circuit below (Figure 56) shows how this is going to happen.
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[bookmark: _Toc70364190][bookmark: _Toc70354780][bookmark: _Toc70371098][bookmark: _Toc70412449]Figure 56. 12V DC and 5V DC
[bookmark: _Toc68159190][bookmark: _Toc70414006]7.1.1 IR Camera calibrations
To radiometrically calibrate an IR camera we need to obtain images from a blackbody as a point source or extended across the FOV. The radiometric calibration as done by placing the camera directly in front of the black body as seen in figure 52. The camera is placed close to the blackbody so that the camera is not exposed to any of the outside emissions in the room. This position needs to be as close as possible to the pupil position. The blackbody is set to 15C ,20C, 30C, 40C, and 50C in order to plot a curve relating radiance (W/sr-cm^2) to captured counts. To account for temporal noise 100 frames were collected using the MATLAB Image Acquisition toolbox taken every 100 ms. These images where then averaged into one image for the different temperatures. Figure 57 shows the IR callibration setup with the black body. The temporal noise correction can be appreciated in Figure 58a-b, where (a) has noticeably more noise than the averaged image (b).
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[bookmark: _Toc70364191][bookmark: _Toc70354781][bookmark: _Toc70371099][bookmark: _Toc70412450]Figure 57. IR Calibration set up.
As can be observed from the calibration images, there seems to be circular ring in increasing size from the center of each image. These rings are due to diffraction being caused by the lens when the camera is close to the blackbody.
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[bookmark: _Toc70364192][bookmark: _Toc70354782][bookmark: _Toc70371100][bookmark: _Toc70412451]Figure 58a-b. Calibration image before (a) and after (b) temporal noise correction.
Considering the black body is supposed to have a uniform radiance for each temperature, the middle values where averaged and plotted against the integrated in-band radiance given by each temperature. The emitted radiance from the blackbody was calculated using plank’s equation in a MATLAB code that takes a starting and ending wavelength being analyzed, blackbody temperature, emissivity (1 for BB), and outputs the plank function (Radiance vs. wavelength) as seen in Figure 31. From this calculation, the integrated in-band radiance was calculated. 

Some first order statistics where done of the 100 frames for every temperature to study the performance of the camera. As can be seen from table #. From the mean count values the radiance vs counts curved was created. It can be appreciated that the standard deviation, being an indicator of temporal noise, decreases as the temperature increases on the blackbody, at least until 50C where it goes back up. This increase in standard deviation is due to the camera saturating. As can be seen from the images, around the edges we see a sharp increase in brightness, and this is why the maximum values for every temperature are much higher than recorded. This effect is due to the blackbody being at closes range to pupil plane. Table 21 shows the parameters used for each of the frames at each temperature.

	Temp
	Radiance
	Mean Count
	StdDev
	Min
	Max
	Mode

	15C
	42.19073
	86.512
	42.593
	12
	241
	45

	20C
	45.96885
	88.178
	38.732
	21
	233
	59

	30C
	54.14291
	95.638
	30.451
	37
	217
	67

	40C
	63.15578
	100.812
	27.506
	46
	208
	77

	50C
	73.02161
	98.115
	33.341
	33
	221
	70


[bookmark: _Toc70412389]Table 21 Statistics parameters of frames at each temperature
The averaged images are given below in Figure 59 a-d for the FLIR A65 camera taken and analyzed in-house. It can be observed that from 15C to 40C the images become increasingly brighter, or more intense, but for 50C the radiance become a bit less intense.
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[bookmark: _Toc70364193][bookmark: _Toc70354783][bookmark: _Toc70371102][bookmark: _Toc70412452]Figure 59. Averaged calibration images at temperatures 15C (a), 20C (b), 30 (c), 40 C (d), 50 C.
This can also be observed in the plot of captured counts vs radiance (W/sr-cm^2) in Figure 60 , where there is some falloff as the end for the radiance given by 50C. This seems to indicate a saturation in the camera after 40C which is a concern considering the camera is supposed to have temperature range of -25°C to +100°C. The company was contact regarding this trouble with the camera; however, the TAU 640 imager should be shipped to us by the AFRL to do these tests again. 


[bookmark: _Toc70364194][bookmark: _Toc70354784][bookmark: _Toc70371103][bookmark: _Toc70412453]Figure 60. Count versus Radiance curve with linear fit equation.
7.1.1.1 Lens distortions of Tau 640 with 7.5 mm lens.
The TAU camera could not be radiometrically tested during the scope of this documentation but will be once it is shipped in for implementation. Some images were taken by Darrel Card at the AFRL in Eglin FL in their testing range. A 4 ft x 5 ft panel was observed at 200 ft away from the camera outdoors and can be seen in figure 61a-b.The left image (a) is the raw image taken at 200 meters and the right image (b) a digitally zoomed version with the panel marked with a square. In the perimeter closest to the camera a barrel distortion can be observed due to the wide 7.5 mm lens. This effect is due to the FOV of the lens being wider than the FPA causing a “squeeze” [52] [53]. Distortion is estimated by a ratio of determined by the actual distance (AD) and the predicated distance (PD) of the image given by 


This value can be positive or negative and is not necessarily linear and can be affected by wavelength. The distortion can also be rectilinear or curvilinear based on how the image is stretched or curved. Curvilinear lenses like the fishye don’t stretch the image but in fact curve straight lines, while rectilinear lenses stretch scenes to appear straight towards the ends of the plane[52].
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Figure 61 Tau 640 with 7.5mm Lens for 4ft high x 5ft wide panel at 200 meters.(a)

The distortion observed by the 7.5 mm lens is apparent in figure 62 and figure 63,  where an image was taken of a garage door that has horizonatal straight ridges at a 3 ft distance away. In this image, there is a positive barrel distortion that curves straight lines outwards.This is a prime example of why the spatial calibration is essential in rectifying the image acquired as they come in. This effect can be different depending on the lens being used. In the left image we can appreciate how geometric correction can help obtain a correct image by predicting how the lens affects a well know geomnetric pattern.(a)
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[bookmark: _Toc70412455]Figure 62(left) and Figure 63(right). Actual distance versus predicted distance calibrator (left), and TAU 640 with 7.5mm lens for rolling garage door at ~3 ft distance (right). Permission pending
[bookmark: _Toc70414007]7.1.2 Stereo Camera calibrations
For the purposes of calibration, we were able to take images from each camera at the same time and save them as separate files. Our calibration code requires two separate folders containing images from each camera. Each image in one folder must correspond in a specific order to images in the other folder. This is because the code will iterate through the images in each folder as one dimensional arrays and follow the order that they are set up in. This can be achieved by naming the images numerically so that they will follow the same corresponding order in each folder. If an image from one camera were to be calibrated from an image taken at a different time from the other camera, this would ruin the calibration process, as the image disparity would not align correctly. We should also be able to correctly identify the folder full of images from the right camera versus the left camera, as the algorithm to calculate the disparity must know which image represents which side of the overall scene. Figure 64 and Figure 65 are examples of images we were able to take from each camera to calibrate the system.

[image: ]
[bookmark: _Toc70364195][bookmark: _Toc70354785][bookmark: _Toc70371104][bookmark: _Toc70412456]Figure 64. Image from Left Camera
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[bookmark: _Toc70364196][bookmark: _Toc70354786][bookmark: _Toc70371105][bookmark: _Toc70412457]Figure 65. Image from Right Camera
After running our calibration code, we can also run code to create a visualized disparity map. The disparity map can be initially saved as values as the differences between pixels. This matrix of difference values can then be converted to intensity values in order to construct an image. This overall process is detailed more in the software section. The accuracy of the map will also help depict how successful the calibration process was. If the disparity map is unable to visualize the depths of objects effectively, the calibration process might need to be redone.

The cameras are able to interface with the nano through their MIPI port connectors. In order to display any images from the cameras or perform calibration or testing with them, we must use some kind of software implementation. For our system, we are choosing to use Python to do most of our initial testing and calibration. Since we are using Ubuntu on our Jetson Nano, we can create Python scripts and run them using the terminal. As discussed in the section above, we were able to create a script to take images from both cameras at the same time and save them in separate folders labeled ‘LEFT’ and ‘RIGHT’. This is useful for implementing our calibration code, as it requires saved images.

We were also able to create a script to display the streams of both cameras in different windows. This visualization will be useful to depict on our display, as we will be able to visually see the original scene that the cameras are viewing before viewing the disparity map. The visuals we will see from the disparity map and IR camera may be difficult to conceptualize, as they will be a representation of data that is different from what we perceive. The stream from the visual cameras will be the most useful when trying to see the scene from the cameras’ perspective in a way we can understand.
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[bookmark: _Toc70364197][bookmark: _Toc70354787][bookmark: _Toc70371106][bookmark: _Toc70412458]Figure 66. Stereo Cameras connected to Jetson Nano

Figure 66 depicts our integration setup used for testing and calibration purposes. The power adapter we initially used to power the nano had a 5V 1A rating, but needed to be 5V 2A. This caused the nano to shut down sometimes when trying to run programs that required additional processing power. When creating our overall system, we must take into account the capabilities of the microprocessor and ensure that any external issues will not interfere with running our system smoothly. Another cosideration is that that MIPI cables are short can easily come undone if there is sudden movements, so moving this system before we have an adequate housing or holder is limting. Additionally, the current camera holders are not meant for this operation and cannot hold the camera well in place.
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[bookmark: _Toc70364198][bookmark: _Toc70354788][bookmark: _Toc70371107][bookmark: _Toc70412459]Figure 67. Camera in mount

Our cameras are also temporarily placed in mounts as shown in Figure 67 that can be adjusted in order to fine tune any alignment for the calibration. The heights of the two mounts were aligned using a level. This setup is useful for testing and for ensuring that our system is able to work as desired, but the mounts are not exact enough to use in our final system. Since we plan to 3D print a housing, we will be able to ensure that our parameters are exact from the schematic we create in SolidWorks.

We are also using the standard 9x6 checkerboard pattern commonly used by the OpenCV library. This will allow us to be able to use a wider range of preexisting code to test our system, as this is the most commonly used pattern for stereo camera calibrations. To take calibration images, we must simply take images of the checkerboard at different distances and angles in order to ensure the system is able to identify the disparity between squares in different conditions.

[bookmark: _Toc70414008]7.2 Software testing		
Our testing for our software design will focus on ensuring that the image processing algorithms for our cameras will work correctly and that our system is able to interface together without any errors. We will likely test our algorithms step by step in order to ensure that each part is working as expected. This will aid in the debugging process, as it will be easier to pinpoint any errors in our program.
[bookmark: _Toc70414009]7.2.1 Unit Testing
When writing software, it is common practice to develop a suite of unit tests that we can make use of to ensure that the code we write is operating as expected. Thankfully, Python has a very fleshed out library called “unittest” that has a large number of useful functions, definitions, assertions, and mocking capabilities that will greatly enhance our ability to test the validity of our code. To accomplish the task of making satisfactory unit tests, we will need to build a test suite for this project that covers many possible image scenarios, parses the correct object, and successfully computes the distance of the object from the cameras. Furthermore, we will need to develop unit tests that cover any utility functions that we create, testing for any edge cases that would be rarely encountered in normal operation to ensure that the code will handle any case that it comes across.

Throughout this project, we will be taking advantage of test driven development. In essence, through test driven development, we will first write the tests that we expect our code to be able to pass. Then, with the tests written as a guiding hand, we will be able to write our code to meet the expectations that we set forth with the unit tests. Thanks to the Python testing library, it will be a simple matter of invoking “unittest” entry point into the test suite, then the suite will run all the tests for the software. The “unittest” library will also provide meaningful outputs discussing the number of tests that passed, the amount of time it took for the tests to run, and the pass/fail status of all the tests that were executed by the library.

When writing tests for the stereo cameras, we need to ensure that we test each step of processing independently, to ensure that the entire system works as intended. To begin, we should test that the Nvidia Jetson Nano is receiving input from the stereo cameras. A quick way to test that the camera is active is to simply call the cv2.VideoCapture() function on all the video channels that we will have connected to the Jetson nano. In the case of the two MIPI cameras, we should expect to find two video streams. We can then assert that the video capture objects in Python are not null, or that there is not an exception raised when we attempt to call process the camera streams. This will give us a good measure of whether or not the cameras are being detected by the Jetson Nano.

It will be important to unit test the object classification algorithm that we are running on some sample images such that we can verify that the camera is detecting the appropriate number of objects on screen at a given time. To accomplish this task, we will need to develop a data set that we can run through the unit test suite paired with a set of expected outputs for the program. We will be able to assert that the number of objects in the image matches the output of the object classification function / system. Should we be making use of any utility functions to aid with the processing of the objects, we should also develop unit tests to ensure that the code works as intended.

When we are computing the disparity map to determine the range of an object based on a stereo image collection, there are several approaches we can take to develop a good set of unit tests. We should be making use of images that we captured through the use of our own stereo cameras. This way, we can ensure that the software works properly on the hardware for which we intend to deploy it to. Additionally, by parsing images directly from the selected cameras, we are able to determine the validity of our metadata about the cameras, namely their distance apart and the angle at which the cameras will be positioned. We will determine the range of the object through the disparity mapping algorithm, then assert that the range of the object must be within an expected range of the actual distance measurement. In doing this, we can ensure that changes to the ranging code still produce accurate measurements as we make adjustments to the algorithm.

The process for writing unit tests for the ranging algorithm behind the IR camera is going to be very similar to that of unit testing the software behind the stereo cameras. We are going to need to capture a set of images of various objects using the IR camera. Furthermore, we are going to need to make use of these images to ensure that the object classification algorithm that we choose to run will be able to accurately determine the position of the object, and the number of objects present in each image. After running through unit tests ensuring that the software can detect each image, we will need to pass the images to the range finding algorithms to determine that the correct algorithm is applied to the image, and that the range computed by the algorithm is within an acceptable range. Using assert functions we will be able to enforce these expectations.

Finally, it is important that we write unit tests that ensure that the program flow works as intended. Any if, else, or switch statements that we write should have associated unit tests that make sure that each input to the program will result in the right sequence of code being executed. This is important as it eliminates the risk of uncaught control flow bugs being introduced into our project as the size of our codebase grows. With a sophisticated, well rounded test suite, we as a group can be certain that any code that we right will meet our expectations and perform as intended as long as it passes any associated tests. 

The following is a small example of the route we are choosing to take with our unit tests. The program will feature a function that simply adds the numbers in a list. In the class “TestSuite”, we are inheriting the superclass “unittest.TestCase”. Each function that we make within this class will be considered an independent unit test within which we can assert expected outputs from whatever function we choose. In our case, the function would be “test_add_numbers”. Within this function, we will invoke the “add_numbers” function with a test list of [1,2,3,4,5]. Finally, at the end of this test function we will assert that the output of the “add_numbers” function matches the expected value of 15. Upon successful execution of the test, we will be receive a success message, allowing us to know that the test cases have passed.

Should more tests be included in a given test class, we will see multiple test results shown in the command line interface. In the case of our final project, rather than passing a list of values into the function, we will be passing image file paths that the program will use to pull in the corresponding image files. We can then assert whatever conditions we desire to check in the assert statement found at the end of the each unit test. While we are writing the code for our project, it is important that we ensure that all the tests that we write pass as this will guarantee that our code is working as intended without any breaking bugs making it into our final deliverable.

[bookmark: _Toc70414010]7.2.2 Integration Testing
After writing up a set of unit tests for the software side of the project, we need to conduct integration tests to ensure that the code that we have written integrates with all the parts of the project successfully. Integration tests should test the connections between each of the components that are going to be touched by our codebase, and ensure that the behavior between the component and the code is as expected. We can accomplish this by breaking down the overall schematic diagram into its individual parts, and then testing each part’s interaction with the code individually. After testing each individual part, we can then move to testing each unit of the overall system. For example, we can test the reading of input from the stereo cameras, the input from the IR camera, and the power provided from the power system as independent integration tests.

When building an integration testing strategy for this project, we need to look at the individual parts of the project that interact with the code. We are going to have two visible light spectrum cameras that need to be reading images to the Jetson Nano. Additionally, we are going to have the IR camera sending images to the Jetson Nano. The power system is going to be supplying power to the Jetson Nano, and the display is going to be outputting the final calculations to the user in the form of a GUI. Each of these individual integrations need to be tested, and then their connections end-to-end need to be tested to ensure that input makes it from the cameras all the way through to the GUI for the user. The integration tests will be run from a separate system connected to the Jetson Nano via SSH, ensuring that as much of the Jetson Nano’s processing power is focused on the task of handling the logic associated with processing images, not the business logic of the integration tests.

To perform integration tests of the stereo cameras, we will need to connect the stereo cameras to the Jetson Nano. After the cameras have been connected to the Jetson Nano, we will call into our integration testing suite. The integration testing suite will first attempt to instantiate a connection to the cameras. If either camera does not successfully respond to the request from the Jetson, we will fail the test. Upon successfully instantiating a connection to both cameras, the test suite will attempt to take an image from each camera. These images will be passed back to the host integration testing machine via SCP. The test suite will check to ensure that the size of the images is not 0, indicating that the system took a successful pair of images.

To perform integration tests on the IR camera, a similar test will be performed. The remote machine will pass a test script to the Jetson Nano, which will attempt to initialize a connection to the IR Camera and poll the camera to take a picture. We will then ensure that the size of the image is not 0 bytes, as was the case with the stereo camera tests. These tests will allow us to be sure that this set of cameras is functional.

Next, we will need to perform integration tests on the power system. The tests for this system will be to simply pull the power supplied values from the Linux system that runs on the Jetson Nano. We can parse out the power supplied to the Nano from our electrical power system and assert that the power supplied is well within the range of acceptable values for the Jetson Nano: 5V / 2-2.5 A. After concluding our tests on the other parts of the system, the final round of integration tests that we will need to run will be associated with the GUI. We will need to test that each input makes it all the way to the GUI output as expected when all the parts are integrated together. This final round of testing will give us a big-picture overview of the cohesiveness of the whole system.
[bookmark: _Toc68159192][bookmark: _Toc70414011]7.2.3 Object classification
Before running a stereo vision algorithm with the cameras, it would be useful to test and train the algorithm with premade data sets. Some standard datasets used in stereo computer vision include the Middlebury and SceneFlow datasets [48]. The Middlebury dataset was one of the first efforts to create a dataset for stereo imaging, and contains various indoor scenes [48]. The SceneFlow dataset is much more extensive and is commonly used for pretraining neural networks for stereo vision purposes [48].

The following diagrams show the basic architecture of the PSMNet approach for stereo matching [48]. This algorithm uses feature extraction techniques as shown in Figure 68 to extract matching features between the right and left images. In the first convolutional neural network, the algorithm runs the images through 4 convolutional layers with various filters used to calculate output data.
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[bookmark: _Toc70364199][bookmark: _Toc70354789][bookmark: _Toc70371108][bookmark: _Toc70412460]Figure 68. Convolutional Neural Network Architecture of the PSMNet. Permission pending [48]
Features found on different scales can also be combined using Spatial Pyramid Pooling as shown in Figure 69, which improves image classification and allows the algorithm to avoid repeatedly computing convolutional features [48]. The SPP module in this case includes 4 branches and also employs bilinear interpolation to resample the images [48]. This is typically done by taking the weighted average of attributes of the four surrounding pixels of a pixel and repeating this for each pixel in the image. Bilinear interpolation can be useful to scale images in cases where pixel matching cannot be accomplished. In these cases, some intensity values must be calculated. Since bilinear interpolation uses 4 neighboring pixels, it is a useful method to calculate color intensities.

The features from the left image are then concatenated with images from the right image which are horizontally shifted by the value of the disparity in pixels [48]. The disparities would range from 0 to the maximum disparity found, and the results should be combined into a 4D layered array [48].
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[bookmark: _Toc70364200][bookmark: _Toc70354790][bookmark: _Toc70371109][bookmark: _Toc70412461]Figure 69. Spatial Pyramid Pooling Module of the PSMNet.Permission pending [48]
After this, the data should go through defined 3D convolution encoder-decoder architecture as shown in Figure 70 in order to improve and refine the cost volume, which is the overall array pixel and disparity data . The final layer is able to produce a feature map using a 3D convolution [48]
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[bookmark: _Toc70364201][bookmark: _Toc70354791][bookmark: _Toc70371110][bookmark: _Toc70412462]Figure 70. 3D Convolution Encoder-Decoder Architecture. Permission pending [48]
[bookmark: _Toc68159194]

[bookmark: _Toc70414012]8. Administration
In this section, we will primarily outline the budget of the overall project with a breakdown by component and provide an overview of the timeline of the project. This will also include descriptions of which sections will be researched and designed during each time frame along with which group member oversees that section.
[bookmark: _Toc70414013][bookmark: _Toc68159195]8.1 Budget and Financing 
For the power system, the total cost of parts is approximately $65. This includes the AC-DC converter, the DC-DC converter, the 12V battery, and all the cables required to make the system work.

The camera system costs a total of $7121.17. This includes the cost of the IR camera, the stereo camera set, Off-Axis Parabola, and the Variable pinhole, plus some other parts required setting up the cameras. Fortunately for us the IR camera was provided by AFRL and they allowed us to use two of them for testing. The visible cameras are relatively cheap so we went with ones that were very compact but also had great specifications, even if not using to their full potential. 

To calibrate the camera system to make it precise, we need a variable pinhole, an off-axis parabola, and black body source. These items are important to make sure the camera system itself is precise. Without a precise camera setup, we can’t get an accurate reading within a certain value. The overall cost for this system is. Additionally for spatial calibration we need to use a checkerboard patterns made from aluminum metal surface and a black electrical tape. The aluminum will be obtained for free as scrap from the machine shop or a construction relative and the black tape will be purchased at the store but very cheap in comparison to paint coatings. Multiple opto-mechanical components were also necessary to align and mount the cameras, testing components, and targets. The optomechanical components were borrowed from the lab of the RANDOM group at CREOL with the permission of Dr. Dogariu. 

Below, in Table 22, an outline of the estimated budget for the entire project is given, with some part loaned by the AFRL. There may be more unexpected costs that come up later and will update the table when those unexpected costs come up.





	Item Number
	Item Type
	Model
	Price

	1
	IR Camera
	FLIR Tau w/ 7.5 mm lens
	$6000

	2
	Variable pinhole
	Thorlabs Pinhole Wheel (PHW16)
	$496.70

	3
	Off-Axis Parabola
	Thorlabs Ø2" 90° OAP (MPD239-P01).
	$375.50

	4
	Stereo Camera Set
	[bookmark: _2dxr446sjzhr]2X 
	$128.98

	5
	Microprocessor
	Nvidia Jetson Nano Microprocessor B01 Model
	$119.99

	6
	Touch Display
	[bookmark: _7iidyfc8tuft]Elecom 7” Display
	$73.00

	7
	Jumper cables and breadboard
	-
	$20.00

	8
	120V to 12V AC-DC converter circuit
	
	$10.00

	9
	12V to 5V DC-DC converter circuit
	
	$5.00

	10
	12V battery
	-
	$10.00

	11
	Misc Electrical Components (resistors, capacitors, etc.)
	-
	$20.00

	12
	Checkerboard Material
	Aluminum Metal
	Free scrap

	13
	Checkerboard coating
	Scotch™ Brand 88 black vinyl electrical tape
	$5.00

	14
	Blackbody Source
	 TC-720 thermoelectric temperature controller
	$1000.00

	15
	Mechanical-Optical components
	 -
	 -

	Total
	-
	-
	$8264.17


[bookmark: _Toc70371111][bookmark: _Toc70412390]Table 22 Budget and financing

[bookmark: _Toc68159196][bookmark: _Toc70414014]8.2 Milestones
Below in table 23-25, the milestones/deliverables are outlined in order of due date and responsibilities/status is indicated.

John is meant to handle all of the electrical parts of the system. That includes the power required to get the electrical components working and all the connectors to go with the system. Taylor is the main person to work on the computer vision algorithm. This means he is in charge of what image processor to use and how to get the algorithm in the image processor to work. Ilina is working on selecting the visual cameras and helping out with the computer vision and image processing. Pedro is working on selecting the IR camera and how to setup the cameras.

Table 23 shows all of our initial milestones and their status, and Table 24 shows our deliverables for each phase of Senior Design 1. Table 26 illustrates how our group separated our tasks for completion in Senior Design 1. As a group we hoped to get some part testing done this semester while still juggle the documentation requirement. This milestone was met to some regard by being able to test the visual cameras and one of the IR cameras in the lab. Next semester, the milestones will be based building the device and getting it to work. 

	Senior Design 1

	Number
	Task
	Start
	End
	Status
	Responsible

	1
	Ideas
	x
	x
	Completed
	Group 3

	2
	Project Selection
	x
	x
	Completed
	Group 3

	3
	Role Assignment
	x
	x
	Completed
	Group 3


[bookmark: _Toc70412391]Table 23 . Initial Milestones
 
	Project Report

	Number
	Task
	Start
	End
	Status
	Responsible

	4
	Divide and Conquer 1.0
	1/22/21
	1/29/21
	Completed
	Group 3

	5
	Divide and Conquer 2.0
	1/29/21
	2/12/21
	Completed
	Group 3

	6
	60 Page Draft
	2/12/21
	4/2/21
	Completed
 
	Group 3

	7
	100 Page Draft
	4/2/21
	4/16/21
	Completed
	Group 3

	8
	Final Document
	4/16/21
	4/27/21
	Completed
	Group 3


[bookmark: _Toc70412392]Table 24 Deliverables

 
 



	Documentation and Design Investigation (preliminary)

	Number
	Task
	Start
	End
	Status
	Responsible

	9
	IR Camera
	2/15
	2/19
	Completed
 
	Pedro A.

	10
	Visual Camera 
	2/15
	2/19
	Completed
 
	Ilina S.

	11
	Research common power conversion methods
	2/15
	2/19
	Completed
 
	John H.

	12
	Computer vision library/algorithm
	2/15
	2/19
	Completed
 
	Taylor W.

	13
	Calibration process
	2/22
	2/26
	Completed
 
	Pedro A.

	14
	Research 120V to 12V AC-DC converter parts
	2/22
	2/26
	Completed
 
	John H.

	15
	Image Processing
	2/22
	2/26
	Completed
 
	Ilina S.

	16
	Raspberry Pi
	2/22
	2/26
	Completed
 
	Taylor W.

	17
	Research 12V to 5V DC-DC converter parts
	3/1
	3/6
	Completed
	John H.

	18
	Build 120V to 12V  AC-DC converter and 12V to 5V DC-DC converter
	3/8
	3/12
	Completed
 
 
	John H.
 

	19
	Writing
	3/15
	4/27
	Completed
 
	Group 3


[bookmark: _Toc70412393]Table 25 Seperation of duties


[bookmark: _Toc70414015]9. Conclusion		
This project was fueled by a need for passive ranging devices. Most range finding systems that are widely used in the field of robot vision accomplish their task in an active manner. Laser rangefinders are very common, for example. The problem with active rangefinders is that they are detectable by the subject being ranged. This has obvious consequences in military applications, where for tactical reasons one my wish to have their range finding and tracking systems be as undetectable as possible. To circumvent these issues, we have developed a passive range finding system that incorporates two of the dominant approaches to finding the range of an object using passive camera systems.

The two approaches that we took to finding range through passive means were stereo vision through disparity mapping, and IR camera range finding. The system that we designed will make use of both range finding approaches in which both methods cross reference the measurement of the other system to ensure that there is consistency across both methods. These two cameras systems feed into a central processing system. We chose the Nvidia Jetson Nano as this central processor. The system reads the two stereo cameras through MIPI camera ports, and the IR camera through USB 3.0 (after being converted from RCA to USB).

The Jetson Nano serves as the computational center of the project on which all the code associated with extracting the range from each set of frames will take place. The algorithm that we use for the stereo range calculation is accomplished through disparity mapping, in which a set of key points are extracted from each image and their disparity relative to the distance between the cameras allows the algorithm to relatively accurately extract the range from the set of frames. The system is powered by a separate power system designed to supply power to all the components associated with the project.

We took into account many constraints, requirements, and standards when building our final design for this project. Some of the constraints that we encountered, from a hardware perspective, were that all of the peripheral components that we selected had to be compatible with the Jetson Nano. If a given peripheral was not compatible with the Jetson Nano, there had to exist a way to convert the signal from the peripheral to a signal that was covered by one of the standardized receiving ports on the Jetson Nano. Consequently, this project benefited from the use of standards in the form of standardized input and output protocols and image formats. 

Ultimately, this project recruited the knowledge and expertise of three engineering disciplines: electrical, computer, and optical. Each engineer supplied their perspectives and insight from their respective discipline. Through collaboration, we exchanged ideas on the best approach to tackle each obstacle that we encountered, and built our final design based on the group consensus that arose from these exchanges. We hope that our work is a beneficial contribution to the area of passive range finding and provides a system that could be incorporated into a larger project where the discrete tracking and ranging of an object would be advantageous. 





Works Cited
1.	Knepper, R. Sirius: a long-range infrared search and track system. in Infrared Technology and Applications XXIII. 1997. International Society for Optics and Photonics.
2.	De Visser, M., et al., Passive ranging using an infrared search and track sensor. Optical Engineering, 2006. 45(2): p. 026402.
3.	FLIR Ranger MS-UC DefendIR. 2019; Available from: https://flir.netx.net/file/asset/12607/original/attachment.
4.	FLIR. The Ultimate Infrared Handbook for R&D Professionals. Available from: https://vault.flir.com/file/asset/18320/original?token=8df9f33c-ebf4-43ce-897e-4fdeb4672a18.
5.	Infrared window. Available from: https://en.wikipedia.org/wiki/Infrared_window#/media/File:Atmosfaerisk_spredning.png.
6.	Thermography Terms Explained: FOV, IFOV, IFOVmeasurement. 2010; Available from: http://thermal-imaging-blog.com/index.php/2010/03/10/thermography-terms-explained-fov-ifov-ifovmeasurement-on-your-infrared-camera/#.YIdffpBKiUk.
7.	Riou, O., J. Durastanti, and V. Tortel, Evaluation of error in temperature starting from the Slit Response function and calibration curve of a thermal focal plane array camera. 2006.
8.	What is a stereo vision camera? 2018; Available from: https://www.e-consystems.com/blog/camera/what-is-a-stereo-vision-camera/.
9.	Eric Carmi, J.V., Geometrical Calculations with Stereo Vision. 2015, California State University: Sacramento.
10.	Anantharam, P. Disparity Map Computation in Python and C++. 2020; Available from: https://pramod-atre.medium.com/disparity-map-computation-in-python-and-c-c8113c63d701.
11.	Raspberry Pi 4 Model B specifications. Raspberry Pi.
12.	Jetson Nano Developer Kit. NVIDIA Developer, 2019.
13.	EVO Select microSDXC Memory Card 128GB. Samsung Electronics America.
14.	FLIR A65 Model: FLIR A65, FOV 25 (30 Hz, ver. 2016). Available from: https://www.flir.com/products/a65/?model=75025-0101.
15.	Longwave Infrared Thermal Camera Core Tau™ 2 Model: Tau 640, 7.5 mm f/1.2, 90°.
16.	Tau Camera User’s Manual. Available from: http://www.ads-tec.co.jp/wordpress/wp-content/uploads/2012/09/Tau_320_Users_GuideRev120.pdf.
17.	Tau Electrical IDD. Available from: https://flir.netx.net/file/asset/12409/original/attachment.
18.	Tau 640 Slow Video Camera. Available from: http://www.ads-tec.co.jp/wordpress/wp-content/uploads/2012/09/Tau-640-User-Manual-.pdf.
19.	Composite BNC RCA Video Audio To USB DVR Adapter MPEG Editor Recorder. Available from: http://www.allaboutadapters.com/dm430bnc.html.
20.	FLIR TAU-2 Datasheet. Available from: https://flir.netx.net/file/asset/5631/original/attachment.
21.	MPD239-P01 - Ø2" 90° Off-Axis Parabolic Mirror, Prot. Silver, RFL = 3" Available from: https://www.thorlabs.com/thorproduct.cfm?partnumber=MPD239-P01.
22.	Off-Axis Parabolic Mirrors, Protected Silver Coating (450 nm - 20 µm). Available from: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=7004.
23.	PHWM16 - 16-Position Pinhole Wheel, Ø25 µm to Ø2 mm, Mounted Available from: https://www.thorlabs.com/thorproduct.cfm?partnumber=PHWM16.
24.	Arducam MINI High Quality Camera with M12 mount lens, 12.3MP 1/2.3 Inch IMX477 HQ Camera Module for Jetson Nano.
25.	Arducam IMX219 Wide Angle Camera Module for NVIDIA Jetson Nano.
26.	Arducam 12MP IMX477 Motorized Focus High Quality Camera for Jetson Nano.
27.	Get started with the Dev Board. Coral.
28.	C Programming Language, in GeeksforGeeks.
29.	Introduction to C++ Programming Language, in GeeksforGeeks. 2019.
30.	The Python Tutorial — Python 3.9.4 documentation. The Python Tutorial.
31.	Klabnick, S. and C. Nichols, The Rust Programming Language.
32.	Elecrow RC070 7 inch 1024*600 HDMI LCD Display with Touch Screen.
33.	Official Raspberry Pi 7" Touchscreen Display. The Pi Hut.
34.	TC-720. Available from: https://tetech.com/product/tc-720/.
35.	Are Boson, Tau2 rated for compliance with any safety standards?  ; Available from: https://www.flir.com/support-center/oem/are-boson-tau2-rated-for-compliance-with-any-safety-standards/.
36.	Are any toxic chemicals, hazardous materials and-or ozone depleting substances (ODS) used in Tau2 or Boson cameras?  ; Available from: https://www.flir.com/support-center/oem/are-any-toxic-chemicals-hazardous-materials-and-or-ozone-depleting-substances-ods-used-in-tau2-or-boson-cameras/.
37.	Are Tau and Tau2 electromagnetic compatibility (EMC) compliant? Are Tau, Tau2 rated for compliance with and FCC standard (or equivalent) for electromagnetic emissions?  ; Available from: https://www.flir.com/support-center/oem/are-tau-and-tau2-electromagnetic-compatibility-emc-compliant-are-tau-tau2-rated-for-compliance-with-and-fcc-standard-or-equivalent-for-electromagnetic-emissions/.
38.	Wiesław Klembowski, A.K., Waldemar Wizner Passive Radars as Sources of Information for Air Defence Systems. 2010, Military Academy of Technology: Warszawa, Poland.
39.	Edward Snowden. Available from: https://en.wikipedia.org/wiki/Edward_Snowden.
40.	USA Freedom Act.
41.	WEBENCH Power Designer. Available from: https://webench.ti.com/power-designer/.
42.	Texas Instruments Terms of Service.
43.	Raden Arief Setyawan, R.S., Mochammad Agus Choiron, Panca Mudji Rahardjo, Implementation of Stereo Vision Semi-Global Block Matching Methods for Distance Measurement. Indonesian Journal of Electrical Engineering and Computer Science, 2018. 12: p. 585-591.
44.	Eser, A.Y. OpenCV Camera Calibration. 2020; Available from: https://aliyasineser.medium.com/opencv-camera-calibration-e9a48bdd1844.
45.	Eser, A.Y., The Depth I: Stereo Calibration and Rectification. 2020.
46.	Use Low-Cost Materials to Increase Target Emissivity. Available from: https://www.flir.com/discover/rd-science/use-low-cost-materials-to-increase-target-emissivity/.
47.	Ruixuan Liu, H.Z., Sebastian Scherer Multiple Methods of Geometric Calibration ofThermal Camera and A Method of Extracting Thermal Calibration Feature Points.
48.	Mallick, S. Depth Estimation using Stereo matching. 2020; Available from: https://learnopencv.com/depth-estimation-using-stereo-matching/.
49.	Kunz, G., et al. Effects of atmospheric refraction and turbulence on long-range IR imaging in the marine surface layer: comparisons between experiment and simulation. in Atmospheric Optical Modeling, Measurement, and Simulation. 2005. International Society for Optics and Photonics.
50.	de Jong, A.N., et al. TG16 point target detection experiment POLLEX, Livorno 2001. in Infrared Technology and Applications XXVIII. 2003. International Society for Optics and Photonics.
51.	Camera Controller GUI for Tau 2 and Quark	 Available from: https://flir.box.com/s/lunkkp0l6ixqxwpx3p3opb5sjz5i4m75.
52.	Mansurov, N. What is lens distortion? 2020.
53.	Distortion. Available from: https://www.edmundoptics.com/knowledge-center/application-notes/imaging/distortion/.









Appendix

The following email was forwarded to many of the companies for our figures. The respective source for every picture is cited at the end of each caption, so that is the source we contact. Some of the companies we are not sure if the content is copyrighted but we went ahead and sent them an email anyways. We have not heard back from most. 

Email draft:
Subject line:
Content:
Hello and sorry to bother you!
I am an undergraduate student at the University of Central Florida and am currently taking a Senior Design course. My team members and I for my Senior Design group were wondering if we would be able to receive permission to use the following photos in our report for our project. We will of course, properly cite all of the details related to the images, but we wanted to get permission before using them because they are copyrighted.
Thank you for your time!

Companies of contact:

FLIR Commericial Systems
Arducam
NVIDIA
Raspberry
Google

Counts vs Radiance
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