
“Spicer” Automated Spice
Dispenser

Adrian Garcia, Jacob Wood, Marcos Barros, and
Nicholas Campbell

Dept. of Electrical Engineering and Computer
Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — A specialized Smart Spice Dispenser and
Bluetooth communications device, the Spicer is a computer
and electrical engineering project. Spicer is a solution to the
problem of messy spice racks, and the difficulty of measuring
precise quantities with a typical spice container for home use.
It can select spices, and dispense them one teaspoon at a time
for appropriate and precise measurements. It uses an
Android OS Mobile Application as well as a Machine
Learning-based gesture interface, to control its functionality
and for ease of use. These features are implemented using an
ESP32 for the Bluetooth communication with the Android
App, a Raspberry Pi to process images, and a TI MSP-430
for control of rotation and dispensing, connected to both
devices. This allows Spicer to be used to make a variety of
recipes in different, convenient ways.

Index Terms — Mobile applications, Food technology,
Food industry,Microcontrollers, Bluetooth, and Mechanical
systems.

I. INTRODUCTION

Created to solve the problem of messy spice racks, the
“Spicer” smart-spice dispenser allowed for a nicely
organized, automated spice rack that can be used to
accurately dispense teaspoons of various spices, designed
as part of a computer engineering and electrical
engineering project. Spicer is implemented on a Texas
Instruments MSP-430FR6989 Microcontroller, an
Espressif ESP32, a Raspberry Pi, and a custom designed
3D Printed chassis, all of which can reliably communicate
with one another to allow for successful implementation
of all features, among which there are Bluetooth controls,
a Machine Learning Model for hand gesture detection, and
a custom dispenser which measures spices. Spices are
measured in one teaspoon increments and are dispensed as
such, allowing for precise dispensing. Further, another
benefit of Spicer is the ability to control it through
multiple interfaces while allowing for use of the entire
feature-set. It is possible to select the spice and dispense a
desired amount using either Hand Gestures, in-app Voice
Recognition, or the mobile application’s UI.

II. SYSTEM COMPONENTS

Spicer can be split into multiple components, which will
be introduced here. Below, a system components diagram
can be seen.

Fig 1. General Hardware Flowchart

A. MSP-430 Microcontroller

The TI MSP-430 is used as the central hub for all device
operations. Indeed, although there are many devices
within Spicer that contain a CPU, the MSP-430’s CPU
acts as a communications hub. It receives commands from
the ESP32 and Raspberry Pi through an I2C bus, and
indeed it executes them after receiving them by sending
other commands to the motors and to the dispenser
mechanism. Additionally, the MSP-430 sends feedback of
its instructions to the ESP32 and from there to the mobile
application to keep all components in sync.

B. ESP32 Bluetooth Microcontroller

The Espressif ESP32 SoC Microcontroller acts as a
middleman interface between our mobile application and
Spicer’s hardware controls. It is what the app actually
connects to when using it, and it is what pre-processes
commands before sending them via I2C to the MSP-430.
It also is the one responsible for keeping the act in sync
with various other command sources, such as the Hand
Gesture interface.

C. Machine Learning Model & Raspberry Pi

The Hand Gesture recognition system works using a
TensorFlow Lite model that was trained using images of
predefined hand gestures which were manually labeled.
This model is run on a Raspberry Pi with an attached
Google Edge Tensor Processing Unit Accelerator, which
allows for high frame rates and efficient gesture
recognition. The Raspberry Pi then sends commands
determined from the Hand Gestures to the MSP-430, in
parallel with the ESP32. To prevent the potential
simultaneous use of the I2C Bus, there is a hardware
semaphore built in between the Raspberry Pi and the
ESP32, which ensures if one tries to send a command
while the line is in use, it will not be send to avoid a crash.
Instead, it will be delayed until the line is once again
available. This is a very rare occurrence, and in practice it
will most likely never occur, but the functionality is there
to avoid such potential conflicts.

D. Dispenser System

The Dispenser for the selected spice works using a
servo motor which is attached to a paddle. This paddle
hooks into the selected spice container and pulls it
forward, revealing a small hole which allows for one
teaspoon of spice to fall at a time. This process can be
repeated to allow for multiple teaspoons to be dispensed,
or even multiple tablespoons.

E. Time-to-Flight Sensor

There is a Time-To-Flight Light Sensor controlling the
rotation of the device, and being connected to the ESP32.
This sensor looks out for the completed rotation of a
single container, and then this triggers a subroutine in the
ESP32 to send a special stop command to the MSP-430,
which allows for exact rotations, ensuring the containers
are always aligned with the dispenser mechanism.

F. Rotational Mechanism

There is a special adapter and gear system for a motor to
turn a central axel attached to the spice containers, which
allows for spice selection. This rotational mechanism has
3 states, turning clockwise, turning counterclockwise, and
stopping. When turning in either direction, it will continue

turning until it receives a stopping signal, which is
triggered only by the aforementioned Time-To-Flight
Light Sensor.

G. Mobile App

Finally, there is a custom mobile application which
allows the device to be controlled from a mobile device
that runs the Android Operating System. This application
allows for touch and voice recognition interfaces to all of
the other device components and thus allows for control of
the entire feature-set.

III. SYSTEM CONCEPT

As a cohesive system, Spicer works by using the
MSP-430 as a central control hub, to which all instructions
are relayed and through which all instruction are executed.
Everything else acts as a “peripheral”, which provides data
to the MSP-430. However, in practice, the configuration of
the MSP-430 is of the peripheral, with the Raspberry Pi
and ESP32 acting as I2C masters while the MSP-430 is a
slave. This configuration allows for multiple devices to
send data simultaneously, without compromising on the
MSP-430’s low power features, and allowing for the
hardware to be stacked above the MSP-430 without
causing potential thermal issues.

Fig 2. General System Flowchart

IV. HARDWARE DETAILS

The hardware of the device consists of the
aforementioned microcontrollers, the Raspberry Pi, a
camera, motor and gear system, and a custom dispenser
system.

The chassis of the device was designed specially for this
project, and was manufactured using a 3D printer. The
chassis for the most part remains static, with an upper
adapter for the containers which turns around an axel.

A. Dispenser Mechanism

The chassis contains a special section attached to where
the camera is located. This special section is a specialized
railing with a spring which can be pulled by a small
Futaba S3004 Servo Motor in the upper section of the
chassis. This servo is tied to a paddle which is aligned
with the container, and upon being pulled by the servo’s
rotation, the paddle hits a second paddle on the container,
and this moves the container into a funnel. The container
itself has a hole aligned with a smaller, teaspoon-sized
container, which contains the paddle. This smaller
secondary container, is what is pulled into the funnel,
which allows for the teaspoon of spice to be dispensed.
Upon being dispensed, the servo pushes the secondary
container back, and a spring on the railing aids in this
process. When the secondary container is realigned with
the main container, the secondary container is re-filled
once again. This allows for dispensing to be performed
quickly, effectively, and accurately.

B. Turning Mechanism

There is a custom adapter for a Machifit 25GA370 DC
6V motor to be held. This adapter uses a pair of gears to
turn an axel. Attached to the motor, is an L298N motor
driver, which receives an input from the microcontrollers,
which determines the motor turning direction.
Additionally, a pair of encoders attached to the motor
allow for the determination of the current location of the
motor. This, coupled with the Time to Flight sensor,
allows for the precise turning of the containers so that they
are always aligned with the dispenser. The layout of the
containers includes a cross shaped support, which the time
to flight sensor is aligned with. When one of the four
supports off the cross block the sensor, the encoder is
triggered, which moves the container by a small offset of
approximately 10 degrees.

Fig 3. Rendering of the Spice Container Support

This is due to the fact that, otherwise, the containers
would turn at different rates depending on direction, due
to the rising edge vs falling edge readings of the time to
flight sensor. This method allows us to use a the opposite
edges while allowing for the container to remain aligned
with the dispenser, eliminating the possibility of
misalignment due to the direction.

C. L298N Motor Driver

The L298N motor driver is a 15-lead Multiwatt full-
bridge that is designed for high voltage and high current
use. While we didn’t need the high voltage use of the
L298N, we do need around 1 amp to run our rotating
motor and dispensing motor. The L298N is rated for a max
of 4 amps, which easily meets our requirement for needing
1 amp to run the two motors. The extra 3 amps gap adds
for some realistic leeway in our design through different
tolerances and if we max out the motors that the L298N is
driving. Plus, the minimum voltage supply for the L298N
is 4.8 volts (maximum voltage supply is 46 volts), which
means we can run the 6-volt motors using this driver.

D. Gear Reduction Motor

The Machifit 25GA370 DC 6V micro gear reduction
motor that operates at speeds between 9rpms to 12rpms.
Since, the L298N motor driver allows for us to rotate the
spice rack clockwise and counterclockwise, the maximum
time for a spice to be in position to be dispensed is 3.33
seconds. While giving an output of 8.3 kg.cm amounts of
torque, the Machifit will only consume a maximum of 3
Watts (0.5 amps).

E. Bluetooth Communication

 Bluetooth is a standard for short range, low power, and
low-cost wireless communication that uses radio
technology (McDermott-Wells). With this knowledge
Bluetooth is the solution to this problem. To avoid using
too much power for the solar charging this is a great way
to solve the problem of rationing the power we have too
harshly. This also give the user the power to use the phone
app to communicate with the spice holder. Since most
modern-day phones give the ability to communicate with
Bluetooth it makes this an easy implementation. For a
wide variety of reasons Bluetooth is the best way to
communicate with two devices from short range, this
influenced the project to use this technology.

Fig 4. General Bluetooth Flowchart

The Bluetooth communication is performed using the
Bluetooth Serial library provided by Arduino, which gave
us the ability to set a host name for the mobile device to
pair to. Additionally, the communication with the mobile
app is bidirectional, when a command is sent, there is an
expectation to receive a preset Bluetooth response to
determine if the command was successfully received and
executed. This is critical to the asynchronous behavior. If
this was not implemented, then the app could send
multiple requests at the same time and there would need to
be a queue implemented for requests to be processed.
Moreover, even with a queue structure there is a delay
between when a message can be received, to avoid
attempting to discover what that delay could be, since it is
variable, only one process is implemented at a time.

The pairing and unpairing was tracked in hardware by
flags, these flags are only accessible via callbacks. There is
a looping function that checks the callback if it includes
the pair or disconnected flag. After checking if an event
was triggered, the pairing light would continue to blink or
stay solid if it is not paired or paired, respectively. This
pairing light would normally be attached to the chassis, to
allow for quick and easy visual confirmation that the
device and the mobile app are communicating correctly.
However, due to manufacturing constraints due to the

ongoing COVID-19 pandemic, the light is not currently on
the chassis. Regardless, the functionality is present.

V. SOFTWARE DETAILS

The software of the device is composed of various
components, ranging from the MSP-430 and ESP32’s
hardware control software, to the Android OS mobile
application.

A. Mobile Application

The application will open and start on the main page.
The first UI element on the main page will show the
Bluetooth connection status with the turn table and have a
button to establish a connection to the turn table if it is not
already connected to the phone. Since the phone app is
considered a client it must be set up as such. We set up the
UUID which identifies the phone. For our implementation,
we require the user to pair with the spice dispenser
beforehand. Upon completion of this pairing the phone
app will look for the name of the spice dispenser
automatically. The client class creates a socket based on
the id. This gives a way to communicate with the spice
dispenser. If the spice dispenser is properly connected the
user will be notified at the top of the App that this has
been completed. After an action has been requested of the
spice sensor, the handler changes the state to listening,
which as discussed is an asynchronous behavior which
because it is dependent on the response of the Bluetooth.
There is no way to track how long a blocking behavior has
to been done.

Fig 5. Main UI of Mobile Application

Phone Bluetooth

Lights

Pour Spice

Spice Locations

To help with this, whilst in the listening state all buttons
are disabled. Upon message retrieval it is displayed to the
user on the app. This also releases the user from the lock
of one an action currently being implemented. Finally,
Google Voice was implemented in this Bluetooth app.
This integration allowed the user to request any spice they
wanted and the quantity. This considered if the user
wanted tablespoons or teaspoons, one tablespoon is three
teaspoons. This function also considered getting multiple
spices and spice requests. This was done by creating a
queue of things to do and sending a request after each of
the processes was complete.

B. MSP-430 Software

The MSP-430 software consists of a single script that
initializes all its pins, and it triggers a process of resetting
the servo to an acceptable state. Upon completion of this
process, the MSP-430 enters a state of listening, where it
will only trigger a function upon receiving an interrupt
from either master device, the Raspberry Pi, or the ESP32.
These commands are saved to a buffer, and are executed in
order of arrival. The only exception to this is a “stop”
command, which is executed immediately on arrival
regardless of the buffer state. This is because “stop”
commands only arrive once an instruction is completed,
thus requiring that they be performed as soon as possible.
Otherwise, an instruction will never be flagged as
completed, and deleted from the buffer.

While the “stop” command might be simple to imagine
as a simple cancellation of the current command, it is not
the case. Due to the falling/rising edge problem discussed
prior with the Time to Flight sensor, a stop command
actually triggers a subroutine which performs a precise
constant movement to cause a stop on the center of the
selected container’s cross section.

Additionally, aside from the “future instruction” buffer,
there is a separate “past instructions” buffer, which is used
for syncing purposes. In order to account for separate,
instruction sources, the past instruction buffer logs all
instructions received, and sends them, periodically and
upon request, to the ESP32 to update the App state with.
After being received by the ESP32, this buffer is cleared.

C. ESP32 Software

The ESP32 has an initialization process reliant on the
MSP-430 being ready. Once it is, the ESP32 will
command it to turn until a preset, marked container is in a
preselected location. When this container arrives in place,
the ESP32 will clear the MSP-430s instruction buffer of
the turning commands, and will be ready for use. The
microcontroller then acts as a Bluetooth listener, receiving
commands from the mobile application, and sending them
to the MSP-430. Additionally, roughly every 100
milliseconds, it polls for, and clears, the MSP-430’s past
instruction buffer. The ESP32 also is responsible for
sending the “stop” command to the MSP-430 in any
instruction case, since it has the Time To Flight sensor
connected to its I2C bus. This is because, to lower power
consumption, the MSP-430 is configured as a slave I2C
device, and thus, the MSP-430 could not have the sensor
in its buffer. The ESP32 was decided to be the best option
under those circumstances.

D. Hardware Semaphore

It should be noted that the Raspberry Pi and ESP32
share the I2C bus to the MSP-430, which means a
“collision” might occur, wherein they both send a
command simultaneously. This would cause a breakdown
in communication, since the message and the
corresponding ACK would no longer arrive in the correct
order. To prevent this, a hardware semaphore was
implemented. Aside from the I2C bus, the ESP32 and
Raspberry Pi maintain a direct connection to one another,
and, while a communication is open to the MSP-430, the
other will be blocked from sending commands forward to
the TI microcontroller. When either device finishes its
communication, the semaphore is set to allow new
communication to occur, thus allowing the other device to
send its command forward.

E. Raspberry Pi & Machine Learning Model

The Raspberry Pi relies upon a Tensorflow Lite model
trained with a video feed of hand gestures performed on
multiple angles, broken into frames. This model was then
recompiled to use a Google Coral Edge TPU accelerator,
for an increased frame-rate and thus faster response times,
and was sent to the Raspberry Pi. The Pi is also connected
to a camera, which it reads video feed from, processing
frame by frame. The frame is then compared against the

model using the TPU, and if a match is found, the
appropriate command is sent via I2C, if available.
Additionally, to prevent too many commands to be sent
from a single match over multiple frames, after a
command is successfully sent and received, the Pi is
prohibited from sending further commands after a span of
3 seconds has passed. Additionally, due to the camera
placement, some preprocessing was necessary, such as the
requirement to invert the image, as the camera had to be
placed upside down to allow for the wiring to be in a safe
spot.

TensorFlow Lite was selected over the alternative,
YOLO, due to its compatibility with the small sized Edge
TPU. YOLO produced similar accuracy and performance
on the Raspberry Pi itself, but the increment in
performance once TensorFlow Lite was compiled for the
TPU was drastic, of nearly 200%.

Fig 6. Comparison of Different ML Model Frame Rate
in Hz.

VI. ADDITIONAL FEATURES

Spicer was built during the COVID-19 pandemic using
3D printing for the manufacturing process, and using
manual processes for assembly. Because of these
restrictions, several planned features, although designed
and with working parts, could not be placed in the final
prototype proper. These are listed here.

A. Rechargeable Battery

 Designing this spice rack system, we needed a battery
that could output 3.5A at 6V to make sure that our entire
system will be self-sufficient. A 6-volt 12Ah battery will
give us the 6-volt supply with an output current of 3.5A
nominally without putting real stress on the battery. More
stress on the battery will cause it to need more charging,
which can cause a problem due to the size of the planned
PV Panel.

B. PV Panel

The biggest factor when finding the right PV panel
would be the time it takes for it to recharge the battery.
While the spice rack would only be used during certain
times of the day like dinner, lunch, or even breakfast and
for maybe 30 minutes maximum, the PV panels won’t
have to be too large to recharge the battery to full capacity.
By selecting an 18-volt 4.2-watt PV panel, the time to
fully charge a 6V 12Ah battery would be roughly 34 hours
(see equation below from “Estimating Solar Charge Time
for Batteries” [4]), but that is to recharge the battery
completely when it is drained. But like stated before the
battery will never be completely drained since the user
will only have the battery running for only 30 minutes at a
time.

Eqn 1: Charging Time for a Solar Panel

C. TPS62147 DC/DC Switching Regulator

 The TPS62147 DC/DC Switching Regulator will be
used to drop the battery voltage from 6V (VBAT) to 3.3V
(VOUT) and maintain a maximum output current of 2
amps, which will to run both the MSP430 and the ESP32.
Like previous components, the converter will need
capacitors to dissipate the noise that is caused by the
switching of the component. Then the resistors will need
to have a value so that the DC drop will give an output of
3.3V. When making R1 equal to 560 KΩ and R2 equal to
180 KΩ, we will be able to get our 3.3V output (it is
actually equivalent to 3.29V)[1].

T i m e t o F u l l y C h a r g e =
2* (B a t t e r y Ca p a c i t y (Wa t t h o u r s)

P V Pa n el Po w e r (Wa t t s)

Fig 7. DC/DC Switching Regulator

D. LM317 Solar Panel Linear Regulator

In order to connect our 18-volt, 4.2-watt panel to our 6-
volt battery we will need to add a circuit to drop the
voltage down from the panel to the battery, but keep the
amount current and power the same. So, by adding a
LM317T voltage regulator to step down the voltage from
18-volts to 6-volts we will need to use the circuit below.
The circuit shows how the resistors will set the output
voltage to be equal to 6 volts and the capacitor is used to
keep the noise coming from the solar panel low [2]. Then
the transistor is to modulate the current that will be going
to the battery from the battery so that the solar panel will
not jeopardize the integrity of the battery.

Fig 8. LM317 Solar Panel Linear Regulator

E. Online Recipe Search

 The mobile application also has the ability to retrieve
information from recipes from the Internet, which would
let the user potentially request spices in the exact amount
that is required for a recipe they may be interested in
cooking. The online recipe search feature uses a separate
activity. This activity would retrieve recipe information
based on the user’s search query, process this information
retrieved from the Internet, and send any request the user

may make to the main activity, which handles
communication with the spice dispenser.

F. Edamam API

 Edamam is a company which provides software
developers with different application programming
interfaces (APIs) to easily retrieve nutritional and recipe
information from different websites in one place. This is
done by sending an HTTPS request to the Edamam API
with a string that contains a search URL with certain
parameters that specify what the API should retrieve. The
API then returns a JSON object (a universal data format
created to allow for more convenient data interchange [5])
with certain key-value pairs, as specified by the Edamam
API documentation [6]. There are different levels of
access to the features of the API, with the free level
restricting some of the parameters that the API returns to
our application. However, none of those affect the
functionality we intend to have for this project.

Fig 9. API Structure

The JSON object we retrieve as a result of sending an
HTTPS request to the Edamam API is illustrated in Figure
1. The result comes in form of a Hits JSON object. We
extract the Hit array from this Hits object. Each Hit object
contains information for each individual recipe retrieved
by the API. Each Hit object has a Recipe object which
contains, among other information, the recipe title, recipe
URL, recipe image and an array of Ingredient objects. We
use the recipe title, URL and image URL to populate UI
elements in the recipe search activity. The Ingredient
object contains Food object, which has the name of each
ingredient which contains the name of the ingredient, a
Measure object which contains the name of unit the
quantity of the ingredient is measured in. The measure
amount of the ingredient is also used. After processing the

returned JSON, the UI is populated with data, and, based
on the currently available spices on Spicer, appropriate
selecting and dispensing commands will be sent to the
Main Activity, which controls communication with Spicer.

G. Printed Circuit Board

A printed circuit board was designed and manufactured
for use with Spicer, which would integrate all the
processing and microcontrollers into a single board.
However, due to the COVID-19 pandemic, it was
impossible to solder the components to this board, as no
equipment to do so was available, and the businesses
dedicated to this were not currently open and available for
use by the public. Because of this, Spicer currently works
wi th our pro to type c i rcui t composed of the
microcontrollers with a specialized soldered adapter for
ease of use. This circuit, and the PCB would have the
same functionality, the difference being of course the
reduced risk of failure with a PCB, as there would be less
wiring, and the improved form factor of Spicer, as there
would be more space available in the internal area of the
device that could allow for bigger containers to be used.

VII. CONCLUSION

Spicer is a convenient and easy to use way to access
spices while cooking. Its available interfaces will allow
even the busiest of Chefs to enjoy its rich features, and,
were we in more normal circumstances, outside of the
ongoing pandemic, then the device would be even better.
Spicer has a bright future, with potential growth and
incremental improvements in the long term.

VIII. THE ENGINEERS

Adrian Garcia is a 21 year old
Computer Engineering student who
is currently looking for work in the
Software development industry. He
wants to focus his career in the
development of software over
hardware, while using his hardware
s tud ies for op t imiza t ion of
software, rather than development
of new hardware.

Nicholas Campbell a 24-year old
computer engineering student that
loves seeing computers interact
with the outside world. He hopes to
have a software engineering career
that is filled with robotics. He has
accepted a software engineering
position at MRSL Real-Time
Systems.

Jacob Wood is a 22-year old
graduating Electrical Engineering
student who is taking a job with
Lockheed Martin in Orlando Fl, as an
Associate Electrical Engineer that will
specialize in product support for
military systems.

Marcos Antonio Barros is currently a
senior at the University of Central
Florida and will receive a Bachelor of
Science in Computer Engineering in
August of 2020. As of writing of this
paper, he has accepted a job offer at

Capco as an Associate. He plans to eventually continuing
his studies by returning to the University of Central
Florida to obtain a Master after obtaining practical work
experience in software engineering.

IX. REFERENCES
[1] Texas Instrument, “TPS62147, TPS62148 High Accuracy 3-V to

17-V 2-A Step-Down Converter With DCS-Control™.”
ht tps : / /www.t i .com/genera l /docs /suppproduct info . t sp?
distId=10&gotoUrl=http%3A%2F%2Fwww.ti.com%2Flit%2Fgpn
%2Ftps62147

[2] “LM317 3-Terminal Adjustable Regulator.” Texas Instrument,
www.ti.com/lit/ds/slvs044x/slvs044x.pdf.

[3] STMicroelectronic,“DUAL FULL-BRIDGE DRIVER.” www.st.com/
content/ccc/resource/technical/document/datasheet/82/cc/3f/39/0a/
29/4d/f0/CD00000240.pdf/files/CD00000240.pdf/jcr:content/
translations/en.CD00000240.pdf.

[4] Voltaic, “Estimating Solar Charge Time for Batteries.”
https://blog.voltaicsystems.com/estimating-battery-charge-time-
f r o m - s o l a r /
#:~:text=%20How%20to%20Estimate%20Solar%20Charge%20Ti
me%20,The%20solar%20charge%20times%20above%20assume...
%20More%20

[5] https://www.json.org/json-en.html

[6] https://developer.edamam.com/edamam-docs-recipe-api

	“Spicer” Automated Spice Dispenser
	Dept. of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida, 32816-2450
	Abstract — A specialized Smart Spice Dispenser and Bluetooth communications device, the Spicer is a computer and electrical engineering project. Spicer is a solution to the problem of messy spice racks, and the difficulty of measuring precise quantities with a typical spice container for home use. It can select spices, and dispense them one teaspoon at a time for appropriate and precise measurements. It uses an Android OS Mobile Application as well as a Machine Learning-based gesture interface, to control its functionality and for ease of use. These features are implemented using an ESP32 for the Bluetooth communication with the Android App, a Raspberry Pi to process images, and a TI MSP-430 for control of rotation and dispensing, connected to both devices. This allows Spicer to be used to make a variety of recipes in different, convenient ways.
	Index Terms — Mobile applications, Food technology, Food industry,Microcontrollers, Bluetooth, and Mechanical systems.
	I. Introduction
	II. System components
	III. System concept
	IV. Hardware details
	V. software details
	VI. Additional Features
	VII. Conclusion
	VIII. The engineers
	IX. References

