Safety Helmet Group 3

Alejandro Velasco: Electrical Engineer Mariela Barragan: Electrical Engineer Daniel Ram: Computer Engineer Michael McCoy: Computer Engineer

Introduction

Safety Helmet

Motivation

- Data from the NHTSA shows that in 2017 per registered vehicle, the fatality rate for motorcyclists was 6 times the fatality rate for passenger car occupants.
- 5172 motorcyclists were killed in motor vehicle traffic crashes that same year.
- NHTSA estimates that current helmets are only 37% effective in preventing fatal injuries
- Smart helmets currently on market don't focus on safety and are very expensive.

Similar Projects

CrossHelmet X1

- Dual-monitor HUD system
- 360 degree vision in a glance
- Wide-angle rear camera
- LEDs mounted on side of helmet
- Mobile app

Quin Design: SpitFire-Rosso

- Crash detection and response system
- SOS beacon and response system
- Bluetooth 4.0, invisible integration
- Lithium Ion battery, 60+ hours standby
- Waterproof housing within the helmet

Jarvish X-AR

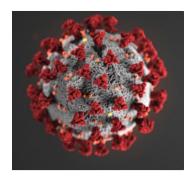
- Bluetooth connectivity
- Amazon Alexa
- 2K helmet camera
- AR projections
- Retractable HUD

Skully Fenix AR

- Heads up display
- Bluetooth connectivity
- Ultra wide angle rear camera
- Mobile app
- Company went bankrupt

Goals and Objectives

- Research, design, and build a state of the art safety helmet in a timely and efficient manner.
- Use a minimum amount of sensors to detect when objects come into close proximity and alert the driver via OLED display, sound, or led light when it occurs.
- Crash notification system using sensor in helmet which will communicate with mobile application via bluetooth.
- Thermal camera along with eye detection technology to detect when a person is falling asleep at the wheel.
- Have our design be user friendly and be able to be used worldwide.


Specifications

- Simple enough for the average person to operate. Set up time should be less than 30 seconds.
- Communicate with mobile device app via bluetooth 4.0
- Helmet equipped with a 128x64 pixel OLED LCD display.
- Two ultrasonic sensors, one located on each side of the helmet to cover dead spots of up to 3 meters.
- 3 Axis Gyroscope + Accelerometer sensor to detect if the rider has been involved in any kind of accident. When accident occurs MCU will notify mobile app and contact the phone I.C.E.
- Eye detection monitoring using a Pi NoIR camera powered by a Raspberry Pi.

Challenges

- Covid-19 pandemic.
- Limited budget.
- Equipment to perform testing on hardware.
- Shipping turnaround times.
- Only virtual meetings allowed in the beginning and when recently started meeting face to face adhering to social distancing requirements.
- PCB fulfillment and testing in a short period of time.

Hardware Selection-Proximity Detection

	HC-SR04	HRLV-Maxsonar- Ez	Sharp GP2Y0A21YK0F
Price	\$3.95	\$29.95	\$13.07
Size	43×20 ×15mm	22.1 ×19.9×15.5mm	29.5×13.0×13.5 mm
Manufacturer	Digi-Key	Digi-Key	Digi-Key
Operating Voltage	5 V	2.5 V - 5.5 V	4.5 V to 5.5 V
Min/Max Range	400 cm	645 cm	10 cm to 80 cm
Output Type	Echo	Analog Voltage	Analog Voltage
Current Consumption	15 mA	2.5 mA to 3.1 mA	30 mA

HC-SR04

Sharp GP2Y0A21YK0F

HRLV-Maxsonar-Ez

Hardware Selection-Motion Detection

	Gyro Sensor SN-ENC03R0	Tilt Sensor- AT407	MPU-6050 3 Axis Gyro
Price	\$18.80	\$1.95	\$9.95
Size	22.86 x 22.86 x 5.08 mm	29X5.2mm	21.2x 16.4mm x 3.3mm
Manufacturer	Digi-Key	Digi-Key	Digi-Key
Measurement Range +/-	300 °/s	30 °/s	250 500 1000 2000 °/s
Current Consumption	3.5 mA	<6 mA	3.6 mA
Operating Power	3 V~ 5.25 V	Up to 24 V	3 V - 5 V
Axis	Single	None	Three

Tilt Sensor- AT407

Gyro Sensor SN-ENC03R0

Hardware Selection-Indicators

Display Selection-SSD13060.96 Inch OLED Module

- Voltage 3.3V-5V
- Resolution: 128 x 64 pixels
- Uses the I2C interference
- Better quality, resolution, and picture compare to an LCD

Led Lights

- Will be used to alert motorcyclist about hazards in blind spots
- Used for debugging microcontroller on PCB

Hardware Selection-Speaker

- Generic 3.5mm earbuds will be used as speaker
- The MCP4725 12-bit DAC will be used to transmit the digital signal from MCU to analog
- The LM386 Audio Amplifier will be used to increase sound from headphones

3.5mm earbuds

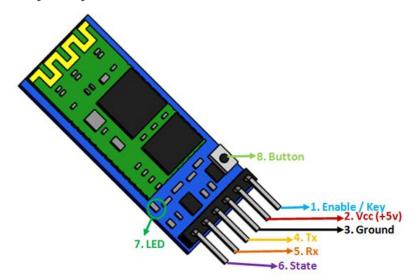
• Cost: \$5.00

Power Rating:1W

Cable Length: 3ft

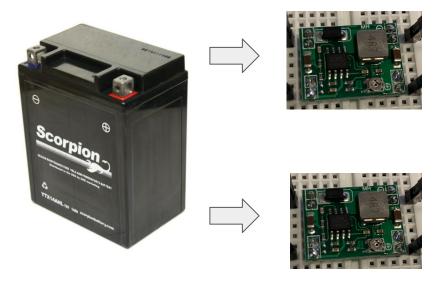
MCP4725 12-bit DAC

- I2C interference
- Voltage: 3-5V
- Cost: \$8.00 from Amazon

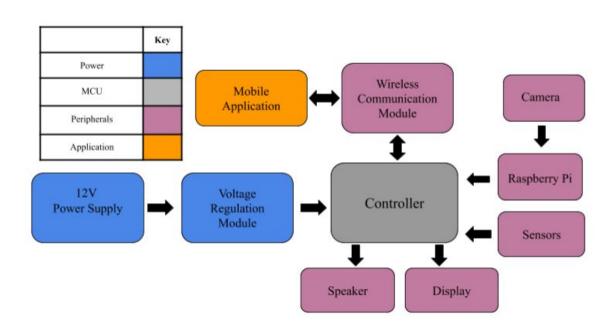

LM386 Audio Amplifier

- Voltage: 5V
- Amplification: gain 20
- Cost: 5PCS for \$8.00 from Amazon

Hardware Selection - Wireless transmission


HC-05 Bluetooth Module

- Serial communication makes an easy way to interface with MCU.
- Bluetooth 4.0
- 2.45 GHz frequency band.
- Transfer rate of data 1 Mbps
- Maximum range 10 meters.



Power Supply

- The Safety helmet will be utilizing the motorcycles 12V battery as the power source.
- Two adjustable voltage regulator modules set at 5V and 3.3V will be controlling power to our PCB and components.

Block diagram

Microcontroller

Microcontroller choices:

	STM32F102CB	ATSAMC20G17A	MSP430FR6989
Power Consumption	540mW	460mW	8mW
Memory Size	128KB	256KB	128KB
Cost	\$4.70	\$1.84	\$8.60
Clock Frequency	48MHz	48MHz	16MHz
I/O Pins	51	84	100
Number of Timers	6	8	5
ADC Resolution	12-bit	16-bit	12-bit
Operating Voltage	2.0 to 3.6V	2.7 to 5.5V	1.8 to 3.6V
Number of Interrupts	16	16	16

Microcontroller Software

- Register level programming.
- Software interrupt for distance sensors, nearby vehicle detection.
- Software interrupt for sleep detection (from Raspberry Pi).
- Display important information on OLED inside the helmet.
- Communicate with mobile device via Bluetooth.
- Play sound via DAC and amplifier.

Microcontroller Peripherals

- 32KHz crystal oscillator for accurate timing procedures.
- Two LEDs for debugging and errors.
- JTAG programmer.
- Power switch and push buttons to interface with the settings.

Eye Detection Module

- Leveraging computer vision to help user's stay awake while on the road
- Subsystem will trigger the microcontroller to commence a waking procedure

Raspberry Pi 4

- Relatively inexpensive high performance single board computer.
- Raspbian OS includes many of the tools needed to rapidly develop for computer vision applications

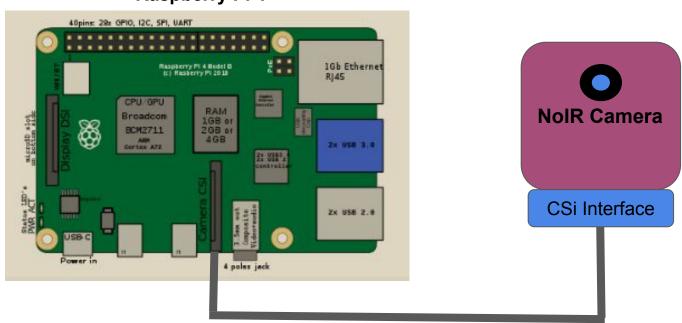
General Specifications

Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz

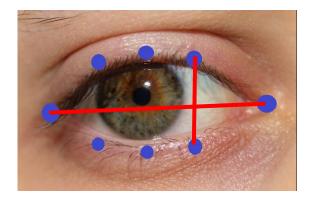
2GB RAM

2-lane MIPI CSI camera port

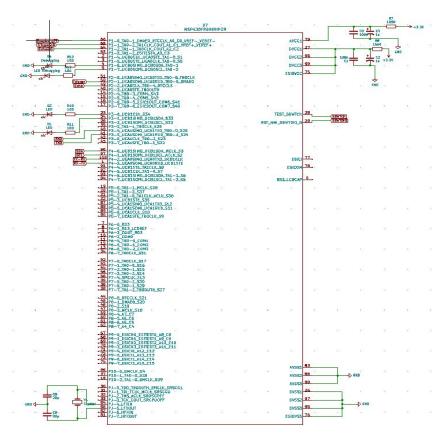
5V DC via USB-C connector (minimum 3A*)


NoIR Camera

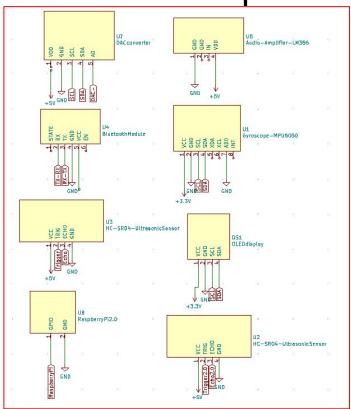
- Regular camera without Infrared filter
- 8-megapixel sensor
- Seamless integration with the Raspberry Pi through CSi
- Relatively small footprint (25mm x 23mm x 9mm)

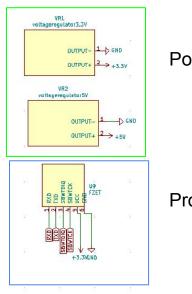

Interface

Raspberry Pi 4

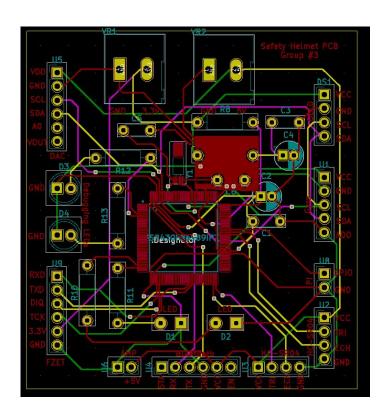


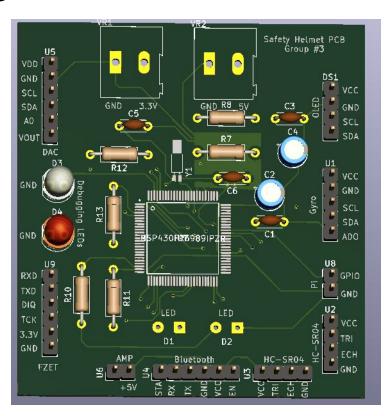
Eye Detection Algorithm


- Dlib (Open-source machine learning / image processing library)
- Using Dlib facial landmark detector to extract the inner segments of the eyelids.
- Perform aspect ratio calculation on points


Schematic-MCU

Schematic - Peripherals and Components

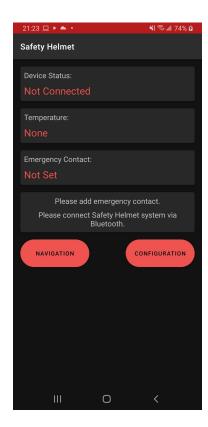

Peripherals


Power

Programing

PCB

PCB-3D Design


Mobile Application

The chosen mobile platform is Android.

- Programmed using android studio.
- Application main purpose is to send emergency message when needed.
- Extra features such as outside temperature from MCU sensors.
- User need to set up emergency contact ahead of time.
- Additional features under considerations: Navigation, Music through

Bluetooth.

User-Interface

21:23 🖪 🕨 📤 🔹		🥞 🗟 11 74% 🖻
Configuration		
Temperature (units	F 🌑
Bluetooth Not Connected		OFF
Set emergenc	y contact	SELECT
First name		EDIT
Last name		2511
Phone number		SAVE
Message		
	0	<

Communication Interface

- Bluetooth will be used to interface the mobile application with the microcontroller on board the helmet

Connection Steps:

- User initiates a bluetooth connection through a switch on the configuration activity
- Bluetooth capabilities are enabled
- Discovery for bluetooth devices starts
- Once Smart Helmet bluetooth module MAC address is found:
 - Mobile application pairs to the Smart Helmet
 - Connection information is stored for automatic pairing

Milestones

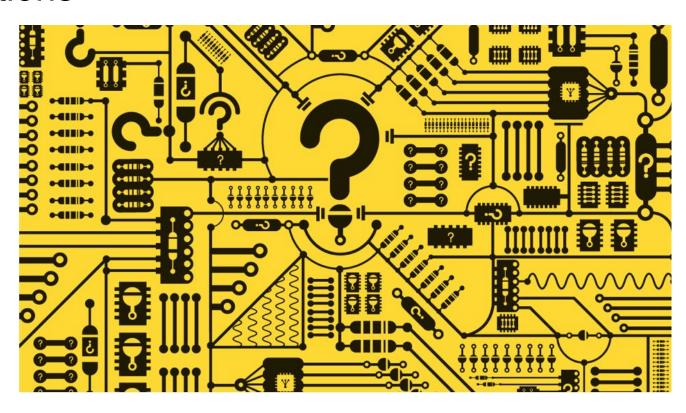
End of Senior Design 1

Senior Design 2

ystem Design		
Procure system components	Team	100%
Power supply design	Mariela/Alex	100%
PCB Design	Mariela/Alex	90%
Create electrical schematics	Mariela/Alex	100%
Design communication between sensors and MCU	Daniel	100%
Design Mobile App features and capabilites	Michael/Daniel	88%
Design Mobile App UI	Daniel	80%
Component Testing	Team	100%
Eye Detection algorithm research	Michael	100%

ystem Integration and Development		
Develop and integrate power system	Mariela/Alex	60%
Finalize and order PCB	Mariela/Alex	90%
Interface mobile application with MCU	Michael	75%
Interface sensors and display with MCU	Daniel	75%
ntegrate image processing module + software	Michael	50%
Interface image processing module with MCU	Michael	20%
Grow enclosure for subsystems	Team	0%
Integrate subsystems onto helmet	Team	0%
ntegration testing	Team	0%
Final presentation	Team	0%

Budget


Expense Breakdown

Parts	Quantity	Cost
MPU-6050 3 Axis Gyro	1	\$13.65
HC-SR04 Ultrasonic Range Finder	2	\$7.90
SSD1306 0.96 inch I2C OLED display	2	\$8.00
Generic 3.5mm earbuds	1	\$7.50
Motorcycle Full Face Helmet HJM A110 Matt Black	1	\$50.00
Raspberry Pi 4 (2GB)	1	\$41.80
MSP430FR6989	1	\$4.47
Raspberry Pi NoIR Camera Module V2 - 8MP	1	\$27.48
Total	10	\$160.80

Overall Expense Breakdown

Category	Estimated	Actual
Parts	\$240.00	\$160.80
Misc. Components	\$60.00	\$0.00
Software	\$40.00	\$0.00
Total	\$300.00	\$160.80

Questions

