

1

2019
Group 11
Eric Velez
Lance Adler
Ryan Burns
Parke Novak

Micro Manufacturing Beverage System

Senior Design 2 Documentation

2

Table of Contents

1.0 Executive Summary.. 1

2.0 Project Description ... 2

2.1 Motivation and Goals .. 2

2.2 Objectives .. 2

2.4 Hardware Diagram .. 3

2.5 Software Diagram .. 4

3.0 Research and Background Information ... 5

3.1 Similar Projects and Products ... 5

3.1.1 Drink Wizard .. 5

3.1.2 Under the Sun Drink Mixer .. 6

3.1.3 Smartender .. 6

3.1.4 KnightTime .. 7

3.1.5 Active Noise Cancelation Device ... 7

3.1.6 Conclusion .. 8

3.2 Stretch Goal ... 8

3.3 Components .. 9

3.3.1 Barrel Jack .. 9

3.3.2 Wall adapter power supply.. 9

3.3.3 Regulator ... 10

3.3.4 Capacitors ... 11

3.3.5 Touchscreen Lcd .. 11

3.3.6 UTFT Library ... 12

3.3.7 UrTouch Library.. 13

3.3.8 Real Time clock .. 14

3.4 Microcontroller .. 14

3.4.1 ATMEGA32U4 ... 15

3.4.2 Cortex-A53 .. 16

3.4.3 Msp430 ... 16

3.4.4 SAM3X8E Arm Cortex M3 .. 17

3.5 State Machine .. 17

3.6 FSM Library.. 18

bookmark://_Toc6826099/#_Toc6826099
bookmark://_Toc6826100/#_Toc6826100
bookmark://_Toc6826101/#_Toc6826101
bookmark://_Toc6826102/#_Toc6826102
bookmark://_Toc6826103/#_Toc6826103
bookmark://_Toc6826104/#_Toc6826104
bookmark://_Toc6826105/#_Toc6826105
bookmark://_Toc6826106/#_Toc6826106
bookmark://_Toc6826107/#_Toc6826107
bookmark://_Toc6826108/#_Toc6826108
bookmark://_Toc6826109/#_Toc6826109
bookmark://_Toc6826110/#_Toc6826110
bookmark://_Toc6826111/#_Toc6826111
bookmark://_Toc6826112/#_Toc6826112
bookmark://_Toc6826113/#_Toc6826113
bookmark://_Toc6826114/#_Toc6826114
bookmark://_Toc6826115/#_Toc6826115
bookmark://_Toc6826116/#_Toc6826116
bookmark://_Toc6826117/#_Toc6826117
bookmark://_Toc6826118/#_Toc6826118
bookmark://_Toc6826119/#_Toc6826119
bookmark://_Toc6826120/#_Toc6826120
bookmark://_Toc6826121/#_Toc6826121
bookmark://_Toc6826122/#_Toc6826122
bookmark://_Toc6826123/#_Toc6826123
bookmark://_Toc6826124/#_Toc6826124
bookmark://_Toc6826125/#_Toc6826125
bookmark://_Toc6826126/#_Toc6826126
bookmark://_Toc6826127/#_Toc6826127
bookmark://_Toc6826128/#_Toc6826128
bookmark://_Toc6826129/#_Toc6826129

3

3.7 Multithreading vs RTOS ... 18

3.8 Arduino Scheduler .. 19

3.9.1 CMSIS RTOS ... 19

3.9.1 Keil RTOS .. 20

3.9.1 FreeRTOS .. 20

3.10 Data Log ... 22

3.11 USB Port ... 22

3.11 Temperature Sensor ... 23

3.12 Fluid Control System Hardware .. 24

3.12.1 Types of valves ... 25

3.12.1.1 Solenoid Valve ... 25

3.12.1.2 Pneumatic Diaphragm Valve .. 25

3.12.1.3 Ball Valve .. 26

3.12.2 Types of motors ... 26

3.12.2.1 DC .. 26

3.12.2.2 Stepper ... 27

3.12.2.3 Servo ... 27

3.12.3 Choosing a Servo Motor .. 28

3.12.4 Types of Linear Actuators ... 29

3.12.5 Load Cell ... 30

3.13 Power Requirements .. 31

3.13.1 12 V Power Supply ... 32

3.13.2 5 V Supply ... 32

3.13.3 1.8 V Supply .. 33

3.12.6 Servo Control .. 35

3.12.6.1 Level Shifter ... 36

3.14 Other Fluid System Components .. 37

3.14.1 Kegs ... 37

3.14.2 Compressed Gas .. 37

3.14.3 Tubing .. 38

3.14.4 Housing ... 38

4.0 Standards .. 40

4.1 Health Standards ... 40

bookmark://_Toc6826130/#_Toc6826130
bookmark://_Toc6826131/#_Toc6826131
bookmark://_Toc6826132/#_Toc6826132
bookmark://_Toc6826133/#_Toc6826133
bookmark://_Toc6826134/#_Toc6826134
bookmark://_Toc6826135/#_Toc6826135
bookmark://_Toc6826136/#_Toc6826136
bookmark://_Toc6826137/#_Toc6826137
bookmark://_Toc6826138/#_Toc6826138
bookmark://_Toc6826139/#_Toc6826139
bookmark://_Toc6826140/#_Toc6826140
bookmark://_Toc6826141/#_Toc6826141
bookmark://_Toc6826142/#_Toc6826142
bookmark://_Toc6826143/#_Toc6826143
bookmark://_Toc6826144/#_Toc6826144
bookmark://_Toc6826145/#_Toc6826145
bookmark://_Toc6826146/#_Toc6826146
bookmark://_Toc6826147/#_Toc6826147
bookmark://_Toc6826148/#_Toc6826148
bookmark://_Toc6826149/#_Toc6826149
bookmark://_Toc6826150/#_Toc6826150
bookmark://_Toc6826151/#_Toc6826151
bookmark://_Toc6826152/#_Toc6826152
bookmark://_Toc6826153/#_Toc6826153
bookmark://_Toc6826154/#_Toc6826154
bookmark://_Toc6826155/#_Toc6826155
bookmark://_Toc6826156/#_Toc6826156
bookmark://_Toc6826157/#_Toc6826157
bookmark://_Toc6826158/#_Toc6826158
bookmark://_Toc6826159/#_Toc6826159
bookmark://_Toc6826160/#_Toc6826160
bookmark://_Toc6826161/#_Toc6826161
bookmark://_Toc6826162/#_Toc6826162

4

4.1.1 NSF/ANSI 61 ... 40

4.1.2 FCC .. 40

5.0 Design .. 47

5.1 Implementation .. 47

5.2 Design Motivation ... 47

5.3 Presentation... 48

6.0 Project Software Design Details ... 49

6.1 Threading and Multitasking ... 49

6.1.1 Conclusion .. 50

6.2 Memory Requirements ... 50

6.2.1 Arduino .. 50

6.2.2 SD Card.. 50

6.2.3 USB .. 51

6.2.4 Conclusion on Storage .. 51

6.3 Logging .. 52

6.4 Sensor Reading Time Configuration .. 53

6.5 Read-Write Collision ... 53

6.6 Logging Format ... 54

6.7 Remote Login .. 55

6.8 Conclusion on Remote Login .. 56

6.9 Local Login .. 56

6.10 Security .. 56

6.11 Network Login Security .. 57

6.12 Code Structure .. 57

6.13.1 UTFT ... 57

6.13.2 Initialize UTFT ... 58

6.13.2 Using UTFT ... 58

6.13.3 URTouch .. 59

6.13.4 URTouch Calibration.. 58

6.13.4 URTouch Initialization ... 60

6.13.4 URTouch Precision .. 61

6.13.5 URTouch Usage .. 61

6.13.6 Screen State .. 61

bookmark://_Toc6826163/#_Toc6826163
bookmark://_Toc6826164/#_Toc6826164
bookmark://_Toc6826165/#_Toc6826165
bookmark://_Toc6826166/#_Toc6826166
bookmark://_Toc6826167/#_Toc6826167
bookmark://_Toc6826168/#_Toc6826168
bookmark://_Toc6826169/#_Toc6826169
bookmark://_Toc6826170/#_Toc6826170
bookmark://_Toc6826171/#_Toc6826171
bookmark://_Toc6826172/#_Toc6826172
bookmark://_Toc6826173/#_Toc6826173
bookmark://_Toc6826174/#_Toc6826174
bookmark://_Toc6826175/#_Toc6826175
bookmark://_Toc6826176/#_Toc6826176
bookmark://_Toc6826177/#_Toc6826177
bookmark://_Toc6826178/#_Toc6826178
bookmark://_Toc6826179/#_Toc6826179
bookmark://_Toc6826180/#_Toc6826180
bookmark://_Toc6826181/#_Toc6826181
bookmark://_Toc6826182/#_Toc6826182
bookmark://_Toc6826183/#_Toc6826183
bookmark://_Toc6826184/#_Toc6826184
bookmark://_Toc6826185/#_Toc6826185
bookmark://_Toc6826186/#_Toc6826186
bookmark://_Toc6826187/#_Toc6826187
bookmark://_Toc6826188/#_Toc6826188
bookmark://_Toc6826189/#_Toc6826189
bookmark://_Toc6826190/#_Toc6826190
bookmark://_Toc6826191/#_Toc6826191
bookmark://_Toc6826192/#_Toc6826192
bookmark://_Toc6826193/#_Toc6826193
bookmark://_Toc6826194/#_Toc6826194
bookmark://_Toc6826195/#_Toc6826195

5

6.14 User Interface Pathing .. 69

6.14.0 UI Buttons ... 69

6.14.1 Login .. 70

6.14.2 Main/Start Page .. 71

6.14.3 Logs Page ... 71

6.14.4 Settings Page .. 72

6.14.6 Brew Preset Page ... 73

6.14.7 Brew New Options Page .. 73

6.15 Front/Back-End Memory Read/Write .. 74

6.15.1 Login .. 75

6.15.2 Activity Log Page ... 76

6.15.6 Brew Preset Page ... 77

6.16.0 MERN Stack .. 77

6.16.1.0 MongoDB .. 77

6.16.1.1 MongoDB Local Storage .. 78

6.16.1.2 MongoDB Remote Storage .. 79

6.16.1.3 Mongoose ... 79

6.16.1.4 Conclusion ... 81

6.16.2.0 Express ... 82

6.16.2.1 API ... 82

6.16.2.2 Routing ... 82

6.16.3.0 React ... 83

6.16.3.1 Components... 84

6.16.3.2 App.js .. 85

6.16.3.3 render() ... 85

6.16.3.4 React state ... 86

6.16.3.5 React Redux ... 86

6.16.3.6 onComponentDidMount() ... 87

6.17.0 Axios .. 88

6.17.1 Node.js ... 88

6.18 Tentative Schematic Design .. 88

6.18.1 Microcontroller ... 89

6.18.2 12v to 5v Converter .. 90

bookmark://_Toc6826196/#_Toc6826196
bookmark://_Toc6826197/#_Toc6826197
bookmark://_Toc6826198/#_Toc6826198
bookmark://_Toc6826199/#_Toc6826199
bookmark://_Toc6826200/#_Toc6826200
bookmark://_Toc6826201/#_Toc6826201
bookmark://_Toc6826202/#_Toc6826202
bookmark://_Toc6826203/#_Toc6826203
bookmark://_Toc6826204/#_Toc6826204
bookmark://_Toc6826205/#_Toc6826205
bookmark://_Toc6826206/#_Toc6826206
bookmark://_Toc6826207/#_Toc6826207
bookmark://_Toc6826208/#_Toc6826208
bookmark://_Toc6826209/#_Toc6826209
bookmark://_Toc6826210/#_Toc6826210
bookmark://_Toc6826211/#_Toc6826211
bookmark://_Toc6826212/#_Toc6826212
bookmark://_Toc6826213/#_Toc6826213
bookmark://_Toc6826214/#_Toc6826214
bookmark://_Toc6826215/#_Toc6826215
bookmark://_Toc6826216/#_Toc6826216
bookmark://_Toc6826217/#_Toc6826217
bookmark://_Toc6826218/#_Toc6826218
bookmark://_Toc6826219/#_Toc6826219
bookmark://_Toc6826220/#_Toc6826220
bookmark://_Toc6826221/#_Toc6826221
bookmark://_Toc6826222/#_Toc6826222
bookmark://_Toc6826223/#_Toc6826223
bookmark://_Toc6826224/#_Toc6826224
bookmark://_Toc6826225/#_Toc6826225
bookmark://_Toc6826226/#_Toc6826226
bookmark://_Toc6826227/#_Toc6826227
bookmark://_Toc6826228/#_Toc6826228

6

6.18.3 5v to 1.8v Converter ... 90

6.18.4 16 Channel Servo Driver .. 91

6.18.5 Load Cell Amplifier ... 91

6.18.6 Touchscreen ... 92

6.18.7 Thermometer... 93

6.19.0 Software Final Design .. 93

7.0 Testing ... 94

7.1 Hardware Testing .. 94

8.0 Administrative Content .. 111

8.1 Milestone Discussion ... 111

8.1.1 Senior Design 1 Milestone Discussion ... 111

8.1.2 Senior Design 2 Milestone Discussion ... 113

8.2 Budget .. 116

8.3 Work Division .. 117

8.4 Copyright ... 118

9.1 Appendix A: Works Cited .. 119

bookmark://_Toc6826229/#_Toc6826229
bookmark://_Toc6826230/#_Toc6826230
bookmark://_Toc6826231/#_Toc6826231
bookmark://_Toc6826232/#_Toc6826232
bookmark://_Toc6826233/#_Toc6826233
bookmark://_Toc6826234/#_Toc6826234
bookmark://_Toc6826235/#_Toc6826235
bookmark://_Toc6826236/#_Toc6826236
bookmark://_Toc6826237/#_Toc6826237
bookmark://_Toc6826238/#_Toc6826238
bookmark://_Toc6826239/#_Toc6826239
bookmark://_Toc6826240/#_Toc6826240
bookmark://_Toc6826241/#_Toc6826241
bookmark://_Toc6826242/#_Toc6826242
bookmark://_Toc6826243/#_Toc6826243
bookmark://_Toc6826244/#_Toc6826244

7

List of Figures

Figure 1: Basic Hardware Design Diagram...3
Figure 2: Basic Software design Diagram...4
Figure 3: Raspberry Pi 7” Touchscreen (with components)...................................11
Figure 4: PVC Ball Valve...25
Figure 5: Servo Motor..27
Figure 6: High-Speed Linear Actuator...28
Figure 7: Half-Bridge Wheatstone Bridge...30
Figure 8: 5V Power Supply Schematic..32
Figure 9: 1.8V Power Supply Schematic...33
Figure 10: 1.8V Power Supply PCB Layout...33
Figure 11: Servo Control Board – Servo Pinout...34
Figure 12: Servo Control Board...35
Figure 13: Level Shifter Schematic..36
Figure 14: SPI Master-Slave Connections...41
Figure 15: I2C Start/Stop protocol...42
Figure 16: I2C Data Transfer...42
Figure 17: 1-Wire Schematic...44
Figure 18: Lapped Lead Placement...45
Figure 19: Threading Explanation..48
Figure 20: SD Card Example Module...50
Figure 21: Page Flowchart for User Interface...65
Figure 22: Button Colors Used for UI..66
Figure 23: Login Used for UI..66
Figure 24: UI Design for Main Page...67
Figure 25: UI Design for Brew Page..68
Figure 26: UI Design for Brew Preset..69
Figure 27: Front-End and Back-End Relation for User Interface............................71
Figure 28: React Overview..79
Figure 29: Redux Data Flow..83
Figure 30: Tentative Schematic…………………………………………………………...84
Figure 31: Load Cell Wiring..86
Figure 32: RA8875 Driver Board Connection..93
Figure 33: Display Testing..94
Figure 34: Servo Testing Setup..95
Figure 35: Level Shifter Connections..96
Figure 36: Servo/Ball-Valve Connection..97
Figure 37: Load Cell Testing Setup..98
Figure 38: Load Cell/HX711 Connection..100
Figure 39: Load Cell Data Output and Clock...101
Figure 40: Level Shifter Connections..102

8

List of Tables

Table 1: Bluetooth Components………………………..9
Table 2: Regulators………………………………………………………………………….10
Table 3: Voltage Regulators…………………………………………………………….....10
Table 4: Touchscreens……………………………………………………………………...11
Table 5: Real Time Clocks………………………………………………………………....13
Table 6: FreeRTOS Items…………………………………………………………………..20
Table 7: Supported Microcontrollers…………………………………………………….21
Table 8: USB Ports……………………………………………………………………….....22
Table 9: PTC Thermistor……………………………………………………………………23
Table 10: NTC Thermistor………………………………………………………………….23
Table 11: Servo Comparison………………………………………………………………27
Table 12: Linear Actuator Comparison…………………………………………………..29
Table 13: 12V Power Supply Comparison……………………………………………….31
Table 14: I2C Modes…………………………………………………………………………42
Table 15: C Versus KB………………………………………………………………………64
Table 16: Wire Colors…………………………………………..…………………………...90
Table 17: SPI Pins………………………………………………………………..………….91
Table 18: Senior Design 1 Project Milestones….……………………………………..112
Table 19: Senior Design 2 Project Milestones………………………………………...112
Table 20: Part Cost Breakdown…………………………………………………………117

1

1.0 Executive Summary

This project is to design a beverage manufacturing system catered for micro
operations. With the small-batch beverage manufacturing space expanding
rapidly, demand for automation in the space is growing. This system may be split
into two parts for simplicity - beverage dispensing and business tracking. All
aspects of the system are routed to the MCU, which will display parameters via a
touchscreen interface.

This system will dispense liquid into cans or bottles proportionately. Each beverage
is composed of two parts - the concentrate (which contains all functional
ingredients) and water. The system will accurately and reliably dispense the
correct water to concentrate ratio, creating a finished product. The system will
dispense the liquids via solenoid valves controlled by the MCU. Precision is
ensured via sensors underneath the cans. These sensors will ensure that the
containers are filled to the specified weight. If the weight is outside of the tolerance
margin, the unit is rejected.

The system will track various parameters of business operations. The MCU will
automatically track batch logs and production logs. Batch logs will include date,
quantity, and other details of concentrate production. Production logs will include
number of units produced, number of rejected units, and other details. The system
will also track critical temperatures using an array of temperature sensors. The
temperatures are displayed on the touchscreen.

The project is intended for implementation in a small scale beverage
manufacturing facility. Typically sensors and various other components would be
spread out throughout the facility. In order to display this to the senior design panel,
the project is compacted onto a small mobile unit.

2

2.0 Project Description

In this section why this project is doing done, some goals and the exact technical
objectives are going to be answered.

2.1 Motivation and Goals

The main motivation of this project comes from need of having a machine that will
mix the water and concentrate to create energy drinks to be sold to customers in
Orlando/Destin area in the warehouse for SoFlo energy but without spending a
large amount of money on an industrial mixing machine.

There are three things that are going to be presented to the judges as features and
they are as follows:

• Temperature sensor accuracy (± 2%)

• Weight sensor accuracy (± 7%)

• Ability to use the touchscreen with relatively low latency

The goal is to successfully implement these 3 features into this project as a team.

2.2 Objectives

The main objective of this project is to eventually use it in the Flo Beverages
warehouse to create energy drinks. To be able to do this, the three main features
need to be focused on.

• To achieve high accuracy with the temperature sensor

• To achieve high accuracy with the weight sensor

• To achieve low latency with the touchscreen

2.3 Project Requirements and Specifications

• Mobile unit to mount project for display.
o Must be able to hold 100 lbs of weight
o Approximately 3’ x 3’ x 5’
o Constructed out of metal and wood
o Will contain compartment for keg storage
o Filling station are mounted on top
o Mobile unit are outfitted with wheels to allow ease of movement

• Interface for measurement display and control inputs
o Touch screen display

3

o MCU capable of handling multiple tasks at once
o Temperature sensing

• Filling station
o Station must be able to move up and down

▪ Must utilize linear actuator
o Must dispense three drinks at once

▪ Will utilize 6 MCU controlled valves
o Include sensors in base to weigh each drink

▪ 3 sensors total
o Valves will draw from pressurized kegs
o Kegs are pressurized using a 5 lb CO2 tank

2.4 Hardware Diagram

Figure 1: Basic Hardware Design Diagram

4

2.5 Software Diagram

Figure 2: Basic Software Design Diagram

5

3.0 Research and Background Information

The major components need to be researched and this means to compare all
possible reasonable options for that component. Price and other factors must be
considered for each component. Other projects are going to be researched to see
what they did to solve certain problems.

3.1 Similar Projects and Products

The following section contains projects that are similar to this project.

3.1.1 Drink Wizard

DrinkWizard was a previous UCF senior design project done in 2015. DrinkWizard
project uses a smartphone that connects through Bluetooth to the vending
subsystem to be able to mix drinks together. The idea of DrinkWizard is to be able
to provide drinks to people even when your busy making food on the barbeque.
DrinkWizard and this project are similar in the fact that they both mix drinks but
there are two big difference between the two. The first one is the fact that the input
for this project is mainly the touchscreen lcd and the main input for DrinkWizard is
the application on the smartphone. Using a smartphone is a stretch goal for this
project and would be very cool to implement since it’ll make the mixing machine
be able to be controlled remotely. The second difference is the fact that
DrinkWizard is used in a much more casual setting, while this project is to be used
in a more in industrial type setting (warehouse of an energy drink company).

The microcontroller chosen to be used for the Drink Wizard project was the
MSP430G2553. The MSP430 is a good choice for DrinkWizard project since those
students will already have experience working with a MSP430 from previous
classes like embedded systems making it a bit easier for them to program the
microcontroller. The msp430 requires a supply voltage ranging from 1.8v and 3.6v
which is relatively low for a microcontroller. When the Msp430 is in active mode it
draws 165uA which is also low for a microcontrollers. The DrinkWizard has the
microcontroller asleep until an order is sent to the microcontroller for a drink order
which will then wakeup up the microcontroller. The msp430 when in standby uses
very small amount of power; it only draws 0.1uA of current. The time to wake up
from standby mode to active mode is 5uS. This makes the Msp430 a good fit for
Drinkwizard.

6

3.1.2 Under the Sun Drink Mixer

Under the Sun is another UCF senior design project that was done in 2013. This
project is very similar to the DrinkWizard but the biggest difference is that the power
comes from an array of solar cells. Getting the project powered by the sun makes
the project more mobile since now it can be taken outside but the biggest downside
of this is that if its overcast, cloudy, ect.. where the sun is obstructed the Under
The Sun Drink Mixer can’t function. Implementing solar cells into this project would
be cool to do because of the added mobility, but is very unlikely to happen due to
time constraints.

The microcontroller chosen to be used in the Under the Sun Drink Mixer was the
Am3359 Arm Cortex A8. The Arm Cortex A8 is a fast microcontroller; it has a base
clock speed of 720Mhz and can go all the way to 1Ghz. An operating system can
be put onto the microcontroller such as Linux, Android, and Windows making it a
very flexible microcontroller. It has a L1 and L2 cache instead of flash memory and
also has a graphics accelerator making it very capable to be used with the LCD
display chosen to be used in the Under The Sun Drink Mixer project.

3.1.3 Smartender

The Smartender is a portable self-contained bartender system that creates mixed
drinks just like any drink that would get at a bar but is controlled by a touchscreen.
The Smartender is very similar to this project since a touchscreen is being used,
but the biggest difference is that the touchscreen is relatively large and that the
user interface is very polished.

For this project a touchscreen of that size is not needed since this project won’t be
doing as many things as the Smartender does. To make the user interface for this
project very polished similar to that of the Smartender is a stretch goal. The main
goal of course is to make the user interface function well and work with all the
hardware. The Smartender also implements a bar unlocked/locked feature where
the bar can only be unlocked by someone who knows the password (the owner or
an employee) or by someone who has a card that is programmed to unlocked the
Smartender. This would be a cool idea to implement in this project but since it’s
mainly going to be only one person using it having it locked to only person is
useless in this situation.

7

3.1.4 KnightTime

KnightTime is a sleep management system that provides data to the user
conveniently as possible. It monitors pulse, movements, and temperature by using
sensors that the user wears while asleep. One of the goals for KnightTime by the
Ucf students is to have their senior design project to have a modular design. A
modular design is one that can be broken down into separate pieces and this
makes it so that the senior design project is easier to debug/troubleshoot and also
makes it so it is scalable in the future (add more features).

Another important idea that was implemented in KnightTime is the system state
machine. A state machine in general is a device where it can be in a set number
of stable conditions based on the previous condition and the present inputs. When
looking at the main state diagram for the user interface for KnightTime, it has a log
in, settings, graphics, ect… which are all things that are hopefully going to be in
the user interface for this project.

The state machine helps by grouping code to all function to do a certain task in a
specific state in the state machine (i.e. settings, configure settings, ect…) by
having the code organized in this manner it helps with the overall
modularity/scalability of the project.

3.1.5 Active Noise Cancelation Device

The Active Noise Cancelation Device was a project done by a senior design group
at UCF and their project is a headset that can cancel low frequency ambient noise.
A big thing in the project that they considered was the price of the headset when it
is finally complete to the consumer. Their logic is that it must be relatively cheap
since it should be used as an alternative for other noise cancelling type of
headphones.

The Active Noise Cancelation Device project used a real time operating system
(RTOS) in its implementation. With a RTOS multitasking can be implemented into
the project. Multitasking is of course being able to do multiple tasks at once, but
the way it works in a RTOS is that multiple tasks are available to be executed but
only one is processed at a time and the order in which those tasks are processed
is determined by the scheduler.

There are 4 RTOSs that were considered for their project:

• CMSIS-RTOS

8

• FreeRTOS

• Keli RTX

CMSIS-RTOS is a RTOS that is made for ARM Cortex-M processors. FreeRTOS
is a RTOS that has a scheduler that allows for multithreading, priority and deadline.
The size of the RTOS is small and is compatible with many different
microcontrollers. The Keli RTX supports ARM and Cortex-M series
microcontrollers.

RTOS has some interesting advantages and should be in consideration for this
project.

3.1.6 Conclusion

There are many similar mixing project but all of them bring different ideas to the
table. The most interesting idea out of all of them comes from the DrinkWizard.
The idea of using a smartphone and connecting to the mixing machine with
bluetooth is very powerful and makes using the mixer much easier/convenient and
is a stretch goal for this project.

The idea of making a senior design project more modular (like KnightTime) should
be attempted to be implemented in this project to make it easier for the team to
debug/troubleshoot and also to make it a bit easier to add other features in the
future (stretch goals). Having a state machine for the user interface worked well
for KnightTime and should be something that should be considered for this senior
design project. If a state machine isn’t implemented a RTOS should be considered.
It has many advantages (multithreading, priority, deadline ect…) and may be a
better choice than a state machine.

This project is being used in a more industrial setting but inspiration/ideas can be
found by looking at mixing machines in a more casual setting.

3.2 Stretch Goal

The stretch goal for this project is to be able to use a smartphone to control the
mixing machine. To be able to achieve this goal this project with the touchscreen
needs to already be functional and there is enough time in the semester for this
stretch goal to be worked on.

The program that is implemented on the touchscreen display will need to be ported
to the android development environment to be used with an android smartphone.
For this app to be able to communicate with the project it can be done in two ways;
bluetooth or wifi. The advantage of using wifi is that the project can be controlled

9

within any distance as long as the smartphone with the ported app, and the project
in the warehouse are both connected to wifi.

The smartphone with the ported app can connect to the project with bluetooth as
well but the biggest drawback is if the user walks outside of the range of the
bluetooth module, the smartphone will disconnect meaning controlling the project
from a distance is impossible. Another difference to consider is the price of the two
modules. The prices can be seen in the following table.

Component Price

BLUETOOTH-SERIAL-HC-06 $9.94

ESP32-WROOM-32U $4.00

Table 1: Bluetooth Components

Since the wi-fi module is more desired in this stretch goal (no constraints on how
close/far you can be to the project) and isn’t that much more expensive that the
bluetooth module, the wi-fi module is used.

3.3 Components

The following section contains components considered and used for this project.

3.3.1 Barrel Jack

To provide power for everything in this project a DC barrel jack is going to be used.
This is on the board (pcb) and is connected to al the components that need power;
valves, relays, mcu, touchscreen lcd. The jack is 5.5mm in size with a 2.1mm
center pole diameter.

Another option would be is to use this board on the pcb. This board takes a 6-12v
input voltage and then it can either output a regulated 5v or 3.3v. The outputs can
be changed from 5 and 3.3 with a simple switch on the board. Also there is an on
and off switch that is very useful to completely cutoff all the power to the pcb and
all its components.

3.3.2 Wall adapter power supply

The barrel jack that is going to be on the pcb, is providing power to everything in
this project. The power is going to be split, high voltage (12v or so) from the wall
adapter power supply is going to supply power to the replay which therefore is
going to power the valves, the 12v will then be regulated to a lower voltage (5v or
so) and this will power the microcontroller, sensors, and touchscreen.

10

To provide power into the barrel jack a wall adapter power supply is going to be
used to which will convert AC to dc and regulate the voltage and current so that it
is useable for this project.

There are multiple options for power supplies and they are as follows:

 Regulated Voltage Regulated

Amperage
Cost

XINKAITE 12V 2A $8.98

Sparkfun 9V 650MA $5.95

Table 2: Regulators

Since the valves picked for this project require 5V to work, the XINKAITE power
supply is used. These power supplies have power cables built into them so they
don’t need to be bought separately thus saving money.

3.3.3 Regulator

The 12v from the power supply needs to be stepped down to 5v and 3.3v. Linear
regulators could work but they created too much heat so buck converters are a
better option.

A 12v to 5v buck converter looks like the following:

Vin 8V-28V

Vout 5V

I out 6A

A 12v to 3.3v buck converter looks like the following:

11

Vin 4V-17V

Vout 3.3V

I out 0.1A

3.3.4 Capacitors

Adafruit recommends using a 10uF electrolytic capacitors on both the input and
output of the regulator to help filter excess noise. This is implemented in this
project.

3.3.5 Touchscreen Lcd

The touchscreen lcd for this project takes all the inputs from the user and performs
a corresponding action.

There are multiple options for a touchscreen display that could be used in this
project. Those options are displayed in the following table.

Touchscreen Display Screen Size Cost Resolution

Raspberry Pi 7’’ $74 800x480

Adafruit 3.2’’ $29.95 240x320

Adafruit 4.3’’ $62.44 ?

Table 4: Touchscreens

12

Figure 3: Raspberry Pi 7” Touchscreen (with components)

Image Courtesy of RaspberryPi.org

The Adafruit 3.2’’ touchscreen supports both resistive and capacitive touch. The
way this touchscreen is able to support both type of touches is because of the 4
resistive touch screen pads are glued on top of the capacitive touch. The resistive
touch can be used by using the resistive touch pins on the touchscreen. Capacitive
touch is the more desirable type of touch out of the two since it’s the most accurate
(modern phones use this type of touch method). The capacitive touch can be used
by using the capacitive touch pins on the touchscreen.

The other two touchscreen displays only use capacitive touch but the biggest
difference aside from that is the cost, and resolution. Since this project is actually
going to be used in a warehouse it is important to make the touchscreen as
practical as possible. A touchscreen that isn’t too big would be harder to use since
there be more scrolling involved to get to tasks, so a larger touchscreen would be
more desirable. With that being said a raspberry pi touchscreen areused for this
project.

3.3.6 UTFT Library

13

One of the microcontrollers being considered for this project is the SAM3X8E Arm
Cortex M3. It is found on the arduino due and because it was used in the duo, it is
compatible with the Utft library.

This library will make it possible to have a functioning graphical user interface that
the user can use this project with. The following functions are important to point
out:

• smallFont/BigFont/SevenSegNumFont

• print(st, x, y [, deg])

• setColor(r,g,b)

• fillRect(x1, y1, x2, y2)

The three fonts that are provided already in this library all look good and more fonts
can actually be found by going to the resources section in the website that this
library is found on. If none of the extra UTFT fonts are satisfactory the font maker
on the website can be used.

The print function has 4 arguments in which only the first three are required. The
st argument is the string that is going to be printed on the screen. The x argument
is the x-coordinate of the left corner of the first character. The y argument is the y-
coordinate of the upper left corner of the first character. The last optional argument,
deg, rotates the text from 0-359 degrees and rotates the text by the upper left
corner.

The setColor function has 3 arguments. The r argument is the red component of
an rgb value (0-255). The g argument is the green component of the rgb value (0-
255). The b argument is the value component of an rgb value (0-255). This function
is used to set the color for all of the draw, fill and print commands.

The fillRect function has 4 arguments. The x1 and y1 arguments are the respective
x and y coordinates of the start corner. The x2 and y2 arguments are the respective
x and y coordinates of the end corner. This function can be used with the set color
function to create a colored book anywhere on the lcd screen that the user can
interact with.

3.3.7 UrTouch Library

The UrTouch Library is an arduino library that is meant to be used in conjunction
with the UTFT library. This makes it so that the screen can be interacted with by
the user and actually function. The following functions are important to point out:

• dataAvailable()

• read()

• getX()

• getY()

14

These four functions work very closely with each other. The dataAvailable function
is used to check and see if new data from the touch screen is waiting. The read
function reads waiting data from the touchscreen. If the dataAvailable function is
true then the getX and getY functions can be used. The getX function will get the
x-coordinate from the last position touched on the touchscreen and the getY
function will get the y-coordinate.

3.3.8 Real Time clock

Since a log of temperature and weight readings from the respective sensors are
going to be created, having a real time clock to see when a reading was made
(time and date) is going to make the data log more practical/useful.

There are multiple options for a Real Time Clock for this project and they are
displayed in the following table.

Real Time Clock Price

BU9873F-GTE2 $0.97

RV-3149-C3 32.768kHz OPTION B TA
QC

$2.53

Table 5: Real Time Clocks

The first option is very cheap and as able to keep time and date and is connected
to a cpu via I^2C. It has automatic leap year recognition (up to year 2099) and also
can be adjusted by ±30 seconds. The second option is very similar to the first
option but the biggest difference is that it’s made to be easily integrated with a
development board. Even though a development board isn’t being used for the
final project (only for testing and debugging) since a microcontroller that is used in
an Arduino is being used, it makes implementing the second real time clock much
easier for this project. It’s also important to note the second option is able to still
keep time and date even if the whole project is off since it’s powered with a small
3v button cell battery.

3.4 Microcontroller

The hardest thing to pick for this project is the microcontroller and a lot of things
need to be considered when picking one that is the best fit for this project.

 ATMEGA32U4 Cortex-A53 MSP430G2553 SAM3X8E Arm

Cortex M3

Price $4.09 $134.62 $2.46 $9.97

15

Supply
Voltage
(Min)

2.7V 0.9V 1.8V 1.62V

Suuply
Voltage
(Max)

5.V 1.025V 3.6V 1.95V

Current
Draw

1.2mA 50uA 165uA 700uA

I/O Pins 26 6 24 103

Clock
Speed
(Max)

16MHz 1600MHz 16MHz 84Mhz

Data Bus
Width

8 Bit 64 Bit 16 Bit 32 Bit

Flash
Memory

Yes No Yes Yes

Flash
Memory
Size

32 Kb N/A 16 Kb 512 Kb

L1 Cache No Yes No No

L1 Cache
Size

N/A 32 Kb N/A N/A

L2 Cache No Yes No No

L2 Cache
Size

N/A 1 Mb N/A N/A

SRAM Yes No Yes No

SRAM Size 1 Kb N/A 512 B N/A

3.4.1 ATMEGA32U4

The Atmega is a popular microcontroller found in many Arduino development
boards such as the Arduino Uno, Arduino Leonardo ect… This particular atmega
microcontroller is found in the Arduino Leonardo and what makes it different from
the other arduino boards is the fact that it has a built in USB communication so a
secondary processor isn’t needed.

A lot of the Atmega microcontrollers are also used in Arduino development boards
and therefore an Arduino bootloader can be used. Since the microcontroller is
being bought separately and is not actually part of a development board a
bootloader won’t be installed onto the microcontroller already. A raspberry pi
development board (the Arduino ide can be used with the raspberry pi) is being
used to debug the project before the actual implementation with the pcb, if an
Arduino bootloader is used with the microcontroller it’ll make it easier to port the
code written on the development board to be used with the final project.

There are two ways that the Arduino bootloader can be implemented with the
Atmega microcontroller. The first way is using an Arduino board with an AVR

16

programmer and the second way is using a breadboard and an AVR programming
adapter, but that way is much more complicated/time consuming so the Arduino
bootloader is going to be installed the first way.

On the Arduino ISP the ATMega chip is placed, and then the ArdinoIsp is
connected on top of an Arduino development board and then that board is
connected to a computer through usb where the bootloader then can be uploaded
to the microcontroller.

Since the Atmgega can use the arduino bootloader this means it can use the
arduino scheduler multithreading library. The Atmega has a decent clock speed on
at 16 Mhz, good flash memory at 32 Kb and a decent supply voltage range at 2.7v
and 5v.

3.4.2 Cortex-A53

The Cortex-A53 is the microcontroller found in the raspberry pi 3 mode b+. This
microcontroller is crazy powerful and is capable of a lot and can be thought of more
of a mini cpu. An operating system can be installed such as Raspbian which is a
variation of the Linux operating system. Using an operating system with a
microcontroller is very useful in being able to do more complicated things such as
running multiple processes or functions at the same time, schedule parallel tasks,
file system management ect... This project is not going to be at that level of
complexity so having an operating system would be overkill for this project. This
microcontroller is very capable and there is a big price increase compared to the
others that warrants that level of capability. As nice as this microcontroller is, it is
out of the budget for this senior design project.

3.4.3 Msp430

The Msp430 is a microcontroller that everybody in this senior design group is
familiar with because of taking embedded systems. This would make programming
the microcontroller a bit easier due to the prior experience. The Msp430 is a very
low power microcontroller. The min supply voltage is 1.8v (lowest out of all the
microcontrollers in consideration for this project) and the max is 3.6v. When the
msp430 is in standby mode it only draws 0.1uA of current and is able to switch to
active mode from standby mode within 5uS.

This makes the msp430 a great option for this project due to the low power usage
and also the familiarity on how to program/use the msp430.

17

3.4.4 SAM3X8E Arm Cortex M3

The SAM3X8E Arm Cortex M3 microcontroller is found in the Arduino Due. Since
it is used in an arduino, this means it can use an arduino bootloader and therefore
be used with the arduino ide. The arduino ide will make programming the
microcontroller significantly easier to program. Also since for this senior design
project multithreading is something that is going to be attempted, the arduino
scheduler multithreading library can be used.

This microcontroller can have a USB port that allows for serial communication
(CDC) over USB. It also makes it so the microcontroller can emulate a USB mouse
or keyboard is attached. Another feature of this microcontroller is that it can act as
a USB host for connected peripherals such as mice, keyboards, smartphones,
ect…

This microcontroller is very powerful and affordable. This will make it be able to
communicate with the relay, sensors and touchscreen all at once and be able to
do it with very low delay since the microcontroller has a relatively high clock speed.
If either the msp430 or atmega microcontroller were to be used instead, the project
would still be able to function but there would be some kind of noticeable delay,
making this microcontroller a much better choice.

With all things considered, the SAM3X8E Arm Cortex M3 microcontroller areused
for this senior design project.

This microcontroller is programmed with the Atmel Ice through Atmel Studio, and
requires a jtag port to communicate with the microcontroller.

3.5 State Machine

Implementation of state machines in modern day electronics is very common,
specifically finite state machines. For this project a state machine would increase
the modularity of the code since now the code is grouped up into the different
states that are in the state machine. This increases the scalability of the project
and will make it a lot easier to implement another into the code in the future.

A state machine is a device that can have a set of stable conditions and depends
on its previous condition and present value of inputs to determine its state.

There are two popular types of finite state machines that can be considered for this
project:

18

• Mealy Machine

• Moore Machine

A moore machine has its output values determine only by its current state. So for
example there could be a system that dispenses cookies. The system will dispense
cookies only after the purchase button is pressed (this is something that would
never be found in the real world since the cookie could be obtained without
inserting money).

A mealy machine has its output values determine both by its current state and the
current inputs. So for example there could be a system that dispenses cookies and
the system will only dispense cookies after the purchase button is pressed and
money is inserted (this is a much more realistic to what happens in the real world).

3.6 FSM Library

The FSM library is a library for the arduino that makes a state machine relatively
easy to be implemented in the arduino ide environment. The FSM acts as a
manager that organizes a set of states and the transition between the states. The
transition can occur because some conditions are met in the state either internally
or externally and this transition can either occur right away or during the next cycle.

A finite state machine can be created with the following function:

FiniteStateMachine(State& current) or FSM(State & Current)

All the states that are going to be used within the finite machine must be initialized
to a variable and can be done with the following function:

State(enterFunction, updateFunction, exitFunction)

To be able to transition between states the following function can be used:

void transitionTo(State& next)

These three basic functions that are the backbone to make the finite state machine
work in the arduino ide environment.

3.7 Multithreading vs RTOS

For this project a microntroller with only a single core is going to be used. Since it
only has one core it will only be able to process one task a time. To make the

19

program more efficient there are two different approaches that can be taken. The
first is to have the program have a real time operating system (rtos) and the other
is to have the program use multithreading.

For the multithreaded approach there can be a thread for all things related to the
sensors another for the user interface, another for valves ect… In the thread all the
programming related to that thing are in there. This will help to help organize the
code a bit and also help to make the whole program more efficient since the
program is rapidly switching between tasks. This is far more efficient than having
one large loop where a lot of time is wasted where the decompiler is going through
the same lines of code over and over again in the loop. Fortunately the
microcontroller chosen to be used in this project is compatible with an arduino
bootloader, and since the arduino ide can be used with it, the arduino scheduler
library can be used to implement the multithreaded approach.

For the rtos approach it’s similar to multithreading but the biggest difference is that
there are priorities associated to the different tasks. This has the same effect of
being able to switch between tasks fast therefore being faster than having a large
loop.

3.8 Arduino Scheduler

The Arduino Scheduler is a library that allows SAM and SAMD architectures to run
multiple functions at the same time. This makes it so that tasks can occur at the
same time without interrupting each other.

The library consists of only two functions:

• startLoop()

• yield()

The startloop adds a function to the scheduler that will run concurrently with the
loop function. The yield passes control to other tasks when called to in the code.
This should be used on function that will take a decent amount of time to complete.

With this library it will make it relatively easy to have multiple functions occur at the
same time on the microcontroller. It is possible to take input from the user on the
lcd to tell which valve to open but at the same time also log what is happening into
a data log that can be viewed later by the user.

3.9.1 CMSIS RTOS

20

CMSIS RTOS is a RTOS that is designed for Cortex-M processor devices so for
the microcontroller that was chosen for this project it would be compatible with this
RTOS. The CMSIS RTOS has the following features:

• Thread management

• ISR (Interrupt Service Routines)

• Mutexes and Semaphores

• OsDelay

• osWait

Threads can be defined and created within CMSIS making it relatively easy to
control all threads used in the kernel. An Interrupt Service Routine is a process in
which an active process is interrupted to then complete the task of the interrupt.
Mutex and Semaphore and both types of data types that are common in operating
systems. A Mutex makes a resource to only be able to available to one thread,
whereas a Semaphore can be accessed by multiple.

The osDelay function takes a thread created by the user into a waiting state for an
amount of time set by the user. The other function osWait waits for a certain event
to happen for something to happen to a certain thread.

3.9.1 Keil RTOS

This RTOS has multiple version that each support different hardware. They are as
follows:

• MDK-Arm Middleware

• RTX Real-Time Operating System

• RTX51 Tiny

• ARTX-166 Advanced RTOS

• RTX166 Tiny

Both the MDK-Arm Middleware and RTX Real-Time Operating System are both
compatible with the Cortex-M processor chosen for this project.

Unlike CMSIS RTOS to have all the features available to the developer, a license
needs to be bought.

3.9.1 FreeRTOS

FreeRTOS is a type of RTOS design specifically meant to be run on
microcontrollers but not limited to. FreeRTOS provides real time scheduling

21

functionality, inter-task communication and synchronization. For this project is
would be a good idea to have the user interface have a low priority and then all the
sensor measurements a high priority.

FreeRTOS is very small and only requires 5 to 10Kbytes of ROM space.

Item Bytes

Scheduler 236

Queue 76 Bytes + queue storage

Task 64

Table 6: FreeRTOS Items

Some of the supported microcontroller companies/families are as follows:

Company Family

Altera Cyclone Vsoc, Nios II

Armv8-m Arm Cortex M33

Atmel Arm Cortex M7, SAM3 (ARM Cortex M-3), Sam4 ARM
Cortex M-4, …

Cadence Tensilica Xtensa

Cortus APS3

Cypress PsoC 5 ARM Cortex-M3

Freescale Kinetis ARM Cortex-M4

Infineon TriCore, XMC4000 (ARM Cortex-M4F)

Fujitsu (Now Spansion) FM3 ARM Cortex-M3, 32bit

Luminary Micro/ TI All Luminary Micro ARM Cortex-M3 and ARM Cortex-
M4

Microchip PIC32MX, PIC32MZ, PIC32MZ EF, PIC24, PIC24EP,
dsPIC

Microsemi MiFive (RISC-V), SmartFusion, SmartFusion2

NEC (now Renesas) V850 (32bit), 78K0R (16bit)

NXP VEGAboard (RISC-V), LPC1500 (ARM Cortex-M3),
LPC1700 (ARM Cortex-M3)

Renesas RZ/A1 (ARM Cortex-A9), RX700 / RX71M, RX600 /
RX64M

SiFive RISC-V RV32

Silicon Labs EFM32 Gecko (Cortex-M3 and Cortex-M4F), 8051
compatible microcontrollers

Spansion FM3 ARM Cortex-M3, 32bi

St STM32 (ARM Cortex-M0, ARM Cortex-M7, ARM
Cortex-M3 and ARM Cortex-M4F), STR7 (ARM7),
STR9 (ARM9)

Ti RM48, TMS570, ARM Cortex-M4F MSP432, MSP430,
MSP430X, SimpleLink, Stellaris (ARM Cortex-M3,
ARM Cortex-M4F)

Xilinx Zynq, Zynq UltraScale+ MPSoC (64-bit ARM Cortex-
A53 and 32-bit ARM Cortex-R5), Microblaze, PPC405
running on a Virtex4 FPGA

https://www.freertos.org/a00090.html
https://www.freertos.org/a00090.html

22

Intel/x86 IA32 (32-bit flat memory model), Quark SoC X1000
(32-bit flat memory model), any x86 compatible running
in Real mode only

Table 7: Supported Microcontrollers

Fortunately the microcontroller chosen to be used for this project is supported, so
FreeRTOS can be used.

To install FreeRTOS onto the microcontroller Atmel Studio 7 must be used.
FreeRTOS must first be downloaded off the FreeRTOS website and then added
into the Atmel Studio project as a module.

3.10 Data Log

For the ARM Cortex M-3, one of the features that it has that it makes special in the
arduino due, is the USB host capabilities. There are two main types of USB
devices.

• USB slave

• USB host

A USB slave is a device that must plug into a USB host in order to function. Some
examples of common USB slaves are flash drives, web cam, printer, scanner, ect...
These devices are inserted into the host and respond to the host. The USB slave
will never initiate communication between these two devices that is the job of the
USB host.

A USB host will always initiate communication on the bus. If for example a flash
drive is plugged into a usb port, a file will only be saved onto it if the USB host
decides to save a file onto it. Since for this project a data log is going to be created
that tracks certain parameters, it’s highly desired to have the ability to view this
later on a computer. To be able to save the data report onto USB, a microcontroller
that has USB host functionality is needed and an actual USB port. The
microcontroller for this project supports USB host so that is covered all is needed
now is an actual USB port.

3.11 USB Port

To be able to write the data report to a flash drive a USB port is going to be needed.
The following USB ports can be used for this project:

USB Price

BOB-12700 $4.50

USB Type-A Jack $0.75

23

Table 8: USB Ports

For the first USB connected this is a breakout board. This is a usb on a board that
is meant to be screwed down on a surface but since a custom pcb is going to be
made this is not a good choice. The second USB is the same act USB as the first
(type-A jack) but without the breakout board. This makes it so that the USB port
can be part of the pcb without any issue.

The USB has 4 connections. GND, D+, D- and VCC. Ground is connected to the
ground for the whole circuit involving the microcontroller and VCC is going to be
the voltage that is used for the microcontroller so it should be connected. The D+
and D- are connected directly to the microcontroller for the USB to be effective in
the project.

3.11 Temperature Sensor

There are different types of temperature sensors and they are as follows:

• Thermocouple

• Thermowells

• RTD (Resistance Temperature Detectors)

• Thermistor

A thermocouple is a type of temperature sensor that has two dissimilar metal wires
that are joined together at a junction and temperature change causes a slight
change in voltage which can then be interpreted after the fact as a certain
temperature. Thermocouples are cheap, small, and have a wide temperature
range. A thermocouple is flexible since it can be used for both air and water
applications. This could work for this project since a temperature sensor is needed
to be in water.

A thermowell allows RTD probes, thermocouple probes and thermometers to be
inserted and removed to measured temperature without stopping the process.
These are usually found in industrial environments. This wouldn’t be too useful for
this project since the temperature is needed to be constantly regulated and not
checked every so often manually. Not to mention thermowells are relatively
expensive.

An RTD otherwise known as Resistance Temperature Detectors, are able to
measure temperature due to platnium, copper, nickel ect… having a well-defined
resistance versus temperature relationship (granted the RTD is within the
operating temperature). The material for the RTD (platinum, copper, nickel, ect…)
is going to be in a wire and wrapped around a ceramic or glass core and since all
the parts of the RTD are fragile they are housed in protective probes. RTDs are

24

very accurate for temperatures below 600 degrees C which shouldn’t be a problem
for this problem, but they are expensive.

A thermistor is a resistor that is dependent on temperature. There are mainly two
different types of thermistors:

• NTC (Negative Temperature Coefficient)

• PTC (Positive Temperature Coefficient)

A PTC also known as Positive Temperature Coefficient is a thermistor in which
resistance increases as temperature rises. PTC thermistors are commonly used
for circuit protection.

PTC Thermistor Resistance

Min
Resistance
Max

Min
Operating
Temp.

Max
Operating
Temp.

Price

PTCSL03T081DT1E 20 Ohms 120 Ohms -40C 165C $0.61

PTCSL03T121DT1E 20 Ohms 120 Ohms -40C 165C $1.08

Table 9: PTC Thermistor

These two thermistors are very similar to each other and the only noticeable
difference between the two is the price.

A NTC also known as Negative Temperature Coefficient is a thermistor in which
its resistance decreases as temperature rises. NTC thermistors are commonly
used for temperature measurement and are used for this project.

NTC Thermistor Tolerance Resistance Min

Operating
Temp.

Max
Operating
Temp.

Price

NKI10NF103C1R5E 5% 10K Ohms -40C 190C $5.27

NKI100NF103C1R1E 1% 10k Ohms -40C 190C $5.93

Table 10: NTC Thermistor

Since high accuracy is highly desired for this project the NKI100NF103C1R1E
thermistor are used.

3.12 Fluid Control System Hardware

For an industrial beverage filler, reliability and accuracy are crucial. Just a small
deviation in the systems performance and the product are ruined. Therefore, much
consideration was put into finding the correct components. The system dispenses
fluids from kegs pressurized at 10 psi.

25

Since the fluids are under pressure, there is no need to use a displacement pump.
Instead, valves used to control fluid portioning. The system dispenses into 3
containers at once. Each container is filled with carbonated water and concentrate
from kegs, therefore 6 total valves are needed.

3.12.1 Types of valves

Valves are used to control when and what ingredients will flow to the output line.
These are mostly controlled by the motors, but it is important to choose which valve
will work best with what is expected for this project.

3.12.1.1 Solenoid Valve

The most common and most available type of electronically controlled valves are
solenoid valves. The two most important factors to take into consideration when
choosing a valve are reliability and price. Three of the six valves carry concentrate
through them. This is where reliability truly becomes a concern. Valves can
typically handle water without issues, but the concentrate is a more viscous and
contaminated medium.

Undissolved solids in the concentrate can easily clog valves and render them
useless. The undissolved solids will gradually clog the valve, and slowly alter the
amount of fluid dispensed. Solenoid valves are especially susceptible to
undissolved solids, since the valves operation depends on the suction that comes
from a small hole in the rubber plunger. Solenoid valves may work well for a non-
industrial application, given their low price point and availability, but low reliability
will keep them out of serious contention for this project.

3.12.1.2 Pneumatic Diaphragm Valve

Diaphragm valves are controlled the same way as solenoid valves, and require a
solenoid in order to controlled electronically. The main difference between
diaphragm and solenoid valves is the diaphragm mechanism is actuated using
compressed air from an external source. The external source is typically an
industrial compressor. In order to activate the valve, a solenoid is excited which
allows the compressed air to pass, opening the valve.

These valves are extremely reliable, and can handle all sorts of media including
corrosive. The downside to these valves is that they are extremely expensive,
costing approximately $500 per valve. The valves also require an industrial air
compressor, which typically cost thousands of dollars. These valves would work
well with this project, but unfortunately due to their high cost they cannot be used.

26

Figure 4: PVC Ball Valve

Image Courtesy of United States Plastic Corp.

3.12.1.3 Ball Valve

Ball valves are among the most basic plumbing switches. Ball valves themselves
are purely mechanical devices that require relatively low torque to turn off/on. Ball
valves are exceptional candidates for this project, they can handle almost and kind
of media and have a low cost. However, the major issue with ball valves is that
they are strictly mechanical devices.

There are motor controlled ball valves available, but their cost are comparable to
that of the diaphragm valves. Motor controlled ball valves purchased on the market
are typically bulky, which limits their use in a project such as this. For this project,
ball valves are used, but in order for them to be used electronically they are
coupled with an electrically controlled component.

3.12.2 Types of motors

The motors will act as the electronically controlled component responsible for
controlling the ball valves. The motors used must be cheap, reliable, and produce
enough torque to open/close the ball valve. There are three types of motors that
are candidates for this project.

3.12.2.1 DC

The first candidate is a generic DC brush motor. These motors are very common
and come at a low cost. They are capable of high RPM and can rotate 360 degrees.

27

The downside to these motors is that they do not have precise positioning, which
is essential to this project. They also do not provide positioning feedback.

3.12.2.2 Stepper

Stepper motors are similar to brushless DC motors except that the motor stator
has grooves which are locked to the motor poles. This ensures that the motor
moves in discrete steps versus the brushless motor which rotates continuously.
Stepper motors typically have high torque capability as well, which is needed in
this project. Steppers have many teeth in the gears and this allows for extremely
precise positioning.

The downside to these motors is that they are bulky and draw a large amount of
power. They also do not provide feedback, so if the motor makes an error in
rotation, the software will not be aware. The torque required for this project is low,
so the chances that this motor will make an error while rotating is extremely small.
These motors would be perfect for this project, but they also have a relatively high
price and their bulkiness makes them difficult to work with.

3.12.2.3 Servo

Servos operate similar to steppers. They have many gears which allow them to
generate a high torque output. They typically rotate slowly, and usually have an
axis of rotation limited to 180 degrees or less. Due to the many gears, they can
make precise movements similar to the stepper motor. Servo motors typically have
three wires. One wire is GND, one is VCC, and one is for data.

The downside to servo motors is that the do not have positioning that is as precise
as a stepper motor. They also do not provide as much torque as a stepper motor.
However, a distinguished difference is that servos provide positioning feedback to
the software, which make them ideal for this project. Since the torque and
positioning required for this project are not substantial, servo motors areable to do
the job.

28

Figure 5: Servo motor

Image Courtesy of Sparkfun Electronics

3.12.3 Choosing a Servo Motor

When choosing a servo, price, torque, voltage, and quality were taken into
consideration. The relevant information for the servos considered is listed in Table
1 below.

Servo FEETECH 6V 6kg.cm
Analog Servo

HS-422 Standard
Deluxe Servo

MG996R High
Torque Metal Gear
Dual Ball Bearing
Servo

Price $12.95 $18.95 $3.70

Torque 5 kg·cm - 6 kg·cm 3.3 kg·cm - 4.1
kg·cm

9.4 kg·cm - 11 kg·cm

Voltage 4.8 V - 6.0 V 4.8 V – 6.0 V 4.8 V – 7.2 V

Current 160 mA – 190 mA 8 mA – 150 mA 500 mA – 900 mA

Speed 0.18 s/60º - 0.16 s/60º 0.21 s/60º - 0.16
s/60º

0.17 s/60º - 0.14 s/60º

Gears Plastic Plastic Metal

Dimension
s

40.8mm x 20.1mm x
38mm

40.6 x 19.8 x
36.6mm

40.7 x 19.7 x 42.9 mm

Table 11: Servo Comparison

The chosen servo is highlighted in the table above. The MG996R beat the other
servos in almost every category. The servo is tremendously cheaper than the

29

others. This is especially important considering there are6 servos used in this
project. Also, the MG996R has almost double the torque than the others. Given
that the servos will have a load attached (the ball valve), having a high torque
output is important for reliability. Even if the servo is able to move the valve, if it
does not have a suitable amount of torque it may prematurely fail. The operating
voltage between the servos is relatively the same, so this category isn’t of concern.

The operating current is the category where the MG996R falls behind. The
MG996R draws nearly four times the amount of the other servos. If the system
was being powered by a battery, then this would be a huge concern. Given that
the power for this system comes from an outlet, this current draw disparity isn’t
very important. The MG996R’s speed is higher than the other, even given the its
high torque output. The metal gears of the MG996R give it an additional edge with
regard to quality. The size of all the servos is relatively the same, so this category
isn’t of any concern. Given all this information, the MG996R is clearly the servo
that should be used for this project.

Figure 6: High-Speed Linear Actuator

Image Courtesy of Progressive Automations

3.12.4 Types of Linear Actuators

The linear actuator in this project is used to raise and lower the filling station. This
is required in order to fill the beverage from bottom to top – while being submerged
in the liquid. The main purpose of this is to reduce foam and also to conserve
carbon dioxide. If the beverage was not filled in this way, the liquid would make
more contact with the surrounding air. This leads to a higher air content in the fluid
(which leads to foaming) and more carbon dioxide loss.

The filling station will weigh a considerable amount {ENTER WEIGHT HERE} , and
the actuator will need to handle this weight. Also, the station must be able between
the UP and DOWN positions quickly.

30

Lastly, the actuator will need to be able to extend at least seven inches. This is
because the height of most 16 ounce cans is approximately six inches. 16 ounce
cans are the largest variety of container that this station is able to operate with.

The table below compares different types of linear actuators that are considered.

Actuator PA-15-8-33 FA-RA-22-12-XX AM-N-TGF12V300-
1

Price $145.00 $149.00 $66.99

Speed 3.15”/sec 4.5”/sec 0.39”/sec

Stroke 8” 8” 12”

Voltage 12 V 12 V 12 V

Force 33 lbs 22 lbs 225 lbs

Warranty 18 Months None None

Current 9 A 5 A 4.6 A

Limit Switch Built-in Built-in Built-in

Table 12: Linear Actuator Comparison

The PA-15-8-33 was chosen for this project. The deciding factors for this actuator
were the warranty and the force. The PA-15-8-33 is made by Progressive
Automations, which is a highly reputable company. They offer a great warranty,
which is very important given that this actuator is subject to intense use and will
likely have issues before the end of the warranty period. Also, in order to avoid
having the actuator prematurely stop working, it is important to make sure that it
can output sufficient force. 33 pounds should cover the weight of the filling station
and give us a margin of error to work with. The 22 pounds of force that the FA-RA-
22-12-XX outputs may be too close to the weight of the filling station, and may
potentially cause it to fail early.

Using the PA-15-8-33 will help avoid part replacement in the future. The tradeoff
for force in this case is speed, as the FA-RA-22-12-XX can complete its cycle
considerably quicker. In an industrial setting even a few seconds per cycle can
make a huge difference in production in the long run. However, potential downtime
would cause a delay that would far outweigh that of quicker FA-RA-22-12-XX
actuation speed. Therefore, the PA-15-8-33 was chosen.

The AM-N-TGF12V300-1 was not a serious contender. Although the AM-N-
TGF12V300-1 produces considerable force and comes at a highly discounted
price, the actuation speed is much too slow. The PA-15-8-33 would be able to
complete approximately eight cycles before the AM-N-TGF12V300-1 would be
able to complete just one.

3.12.5 Load Cell

31

A load cell is a device that detects a change in force by incorporating a micro-
electromechanical sensor (MEMS) called a strain gauge. A strain gauge is
basically a resistor that is contained in some sort of plastic enclosure. As the device
is bent, the resistance changes (either increases or decreases depending on
doping). This can be seen from the equation below. As the stain (ε) is modified,
the resistance changes.

In order to detect the change in resistance, a Wheatstone bridge is used. The
Wheatstone bridge effectively turns the change in resistance to a change in
voltage. If no force is applied, then 0V is detected. If there is a force applied, then
a voltage proportional to that force is detected. The Wheatstone bridge also
eliminates the effect of thermal change, which the resistance of the stain gauge is
heavily dependent.

By placing two stain gauges in the Wheatstone bridge (half-bridge) or four strain
gauges (full-bridge) the effect of thermal change is canceled out since it effects all
strain gauges equally. The detected voltage change is fed into an amplifier and
then into the MCU via an analog input. Lastly, the MCU converts the analog signal
into a digital signal via the internal ADC. The Wheatstone half-bridge configuration
is in Figure 7. In Figure 7, R3 and R4 are strain gauges.

Figure 7: Half-Bridge Wheatstone Bridge

3.13 Power Requirements

This system requires three different voltage levels and relatively high current
output. The MCU runs on 3.3V and draws very little current. The servo motors run
on 5V and consume almost 6A altogether. This high current output must be kept
in mind when choosing a regulator. The linear actuator runs on 12V and consumes
a max current of 9A. This is also a high current, and altogether the system may
pull as much as 16A at once. All power in the system will come from a 12V power
source that is plugged directly into a wall outlet. A 12V to 5V regulator and a 5V to
3.3V regulator are added to the system in order to meet the power requirements.

32

3.13.1 12 V Power Supply

The 12V power supply in this project are the main source of power for all the
components. Given that this system will draw up to 16A at one time, a power supply
with a high current capacity is needed. The most important aspects of the supply
that are evaluated are current capacity and price. The table below compares
various 12V power supplies.

Power Supply SUPERNIGHT 12V
30A

BMOUO 12V
30A

eTopxizu 12V 30A

Voltage 12 V 12 V 12 V

Max Current 30 A 29.2 A 30 A

Price $20.99 $18.88 $18.95

Overload
Protection

Yes Yes Yes

Weight 1.45 lbs 1.46 lbs 1.8 lbs

Dimensions 8.7 x 4.7 x 2.2 inches 8.5 x 4.6 x 2.1
inches

8.5 x 4.5 x 2.1 inches

Material Aluminum Aluminum Aluminum

Table 13: 12V Power Supply Comparison

All of the power supplies met the standards of this project and they were all almost
exactly alike in terms of specifications. Since none of the power supplies had a
specification that stood out amongst the others, the chosen supply was simply the
cheapest one.

3.13.2 5 V Supply

The 5V supply in this project is used to power the servo motors. The power supply
will also be connected to a 1.8V supply in order to power the board. The servo
motors in this project consume a lot of power – up to 900mA per motor. There are
six motors, so when all the servos are operating they will pull up to 5.4A. This was
the biggest factor that was taken into consideration when choosing a supply. The
second most important consideration was cost.

Almost all of the regulators were within one dollar of each other, so this was not a
concern. Other factors that were considered were footprint and efficacy. Footprint
was also not much of a concern, considering there is plenty of board space. Also,
since the project is supplied with power from an outlet and not a battery, efficacy
was also not an issue. The supply that was chosen had a balance of all of the
parameters considered.

A schematic of the supply is shown below. The designs were created using the
Texas Instruments WEBENCH Designer.

33

Figure 8: 5V Power Supply Schematic
Image Courtesy of Texas Instruments

3.13.3 1.8 V Supply

The SAM3X8E Arm Cortex M3 requires a 1.8V supply. This supply is needed
solely for the purpose of powering the MCU. The schematic diagram and PCB
layouts are shown below. The Vin min is 4.5V and the Vin max is 5.5V. The output
voltage is 1.8V with a max output current of 2A. The controller being used is the
TPS6208818YFP.

All of the inductor, capacitor, and resistor values shown in the schematic are used
with the controller to achieve the parameters previously listed. The designs were
created using the Texas Instruments WEBENCH Designer. To merge all
schematic designs onto one board, CadSoft Eagle are used. This software allows
for allows for all of the component schematics to be connected together into one
schematic.

The PCB layout can also be done using Eagle. Footprints from all of the
components are placed in optimal locations on the PCB board. After the footprints
are laid out, traces are drawn between footprints to connect the devices. The
footprints are connected in a manner that matches the schematic. Once the PCB
design is complete, the file are sent to a PCB manufacturer. After the PCB is
received, the components will need to be mounted. Some of the components are
extremely small and some have many pins. In order to reduce error in mounting
the components, the components and the PCB are sent to a third party for
mounting.

34

The 1.8V power supply was not necessary for the PCB, and on the final PCB
design the 1.8V regulator was not used. The internal voltage regulator on the MCU
was used instead to generate 1.8V.

Figure 9: 1.8V Power Supply Schematic
Image Courtesy of Texas Instruments

Figure 10: 1.8V Power Supply PCB Layout

Image Courtesy of Texas Instruments

35

3.12.6 Servo Control

To control a servo, a pulse width modulation signal (PWM) is used. The MCU
sends a PWM signal through the control wire to precisely control servo movement.
To safely and efficiently control all six servos, a motor controller is used. The servo
controller that was chosen for the project is the Adafruit 16-Channel 12-bit
PWM/Servo Driver.

This board are initially just used for testing the project. If there are no issues during
testing, then the schematic of this board are imported into Eagle and are merged
with the main PCB design. If the servo controller is unable to merge with the rest
of the design, then the Adafruit board are used in the final project. To control the
servos, all the servos must be connected to the servo control board.

Each servo must be connected to three pins on the servo control board, which are
labeled PWM, GND, and V+. PWM is the servo control signal, which indirectly
comes from the MCU. The MCU communicates with the servo control board using
I2C protocol. From this I2C communication, the servo control board generates a
PWM signal to the designated servo motor. The servo control board requires a
logic signal that is at least 3.3V. The MCU outputs logic at 1.8V, so a logic level
shifter are used.

This are described in the next section. The GND and V+ designations on the servo
control board are connected to the 5V power supply. A schematic of the servo
controller is shown below. The first portion of the schematic shows the servo pinout
and the second shows the controller and the I2C input.

Figure 11: Servo Control Board – Servo Pinout

Image Courtesy of Adafruit Industries

36

Figure 12: Servo Control Board

Image Courtesy of Adafruit Industries

3.12.6.1 Level Shifter

The level shifter in this project is used to assure communication is possible
between the 1.8V MCU and 5V servos. The level shifter chosen to be used is the
SparkFun Logic Level Converter - Bi-Directional. The SparkFun Logic Level
Converter will initially be used just for testing. If there are no issues with testing,
then the schematic are merged with the main schematic in Eagle. The level shifter
are placed onto the main PCB. If issues arise during the testing of the final PCB,
then the SparkFun Logic Level Converter may be used in the final project.

The bi-directional level shifter simply converts 1.8V logic to 5V logic, and 5V logic
back to 1.8V logic. If a level shifter was not used, the incoming 5V logic from the
servos would likely damage the MCU. The outgoing I2C or PWM signals from the
MCU would likely be treated as ‘0’ values to the servo or servo control board, since
these components operate at 5V. The schematic diagram of the

37

Figure 13: Level Shifter Schematic

Image Courtesy of Sparkfun Electronics

3.14 Other Fluid System Components

3.14.1 Kegs

For this project we’re going to use two kegs to hold the fluid to be dispensed. One
keg will hold carbonated water and the other will hold a concentrate (a
concentrated solution of active ingredients that hold all the components of the final
product). The kegs used are Cornelius kegs. This particular type of keg is perfect
for small scale operations. The keg doesn’t require any type of expensive
equipment to fill, clean, or handle. To fill the keg, the pressure valve must first be
opened (to alleviate pressure) and then a large portion of the top part of the keg
may be removed.

The liquid to be dispensed can then be dumped into the keg. In order to dispense
the fluid from the keg, there are two connections attached to the top. One
connection is for the outflow of fluid. There is a ¼ barbed connection that will feed
to the rest of the system. The other connection is also a ¼ barbed connection, but
this connection is an inlet and are hooked up to a compressed gas source. The
gas is attached to a regulator that is set at 30psi. This regulator will ensure that the
gas, and therefore the fluid, will flow at constant speed.

3.14.2 Compressed Gas

38

Both kegs in the system are pressurized using food grade carbon dioxide. This
pressure will propel the fluid through the entire system. Many industrial beverage
operations propel fluid using this method, which is one reason this method was
chosen. If the system was not pressurized, then a displacement pump would need
to be used. Displacement pumps are a common point of error especially with
tougher media like the ones being used in this project. The impurities in the
concentrate can easily clog most displacement pumps.

3.14.3 Tubing

The tubing in this project are almost entirely braided ¼ inch braided nylon.
Stainless steel and braided nylon are the two most common types of tubing used
in industrial food and beverage operations. Stainless steel is much too costly to
implement in this project. Typically, the stainless steel is custom made and welded
for the project. Also, stainless steel usually requires clamped connections.
Although using stainless steel and clamped connections is the most sanitary
method to distribute food though lines, it is far too expensive for this project.
Braided nylon is the second best option.

This type of tubing is very rigid and resistant to puncture. The nylon also grips
barbed connections very well due to its rigidity. A common source of contamination
in beverage lines is between the lines and the barbed fittings. Bacteria can form in
the small crevices of the barbed fitting. The braided nylon fits the barbed fittings
very snugly, therefore reducing potential bacteria content and increasing
sanitation.

3.14.4 Housing

The entire housing are able to move up and down – in order to fill the drinks from
the bottom of the container. In order to move, the PA-15-8-33 linear actuator are
connected to the top panel of the housing. The other end of the linear actuator are
connected to the table or counter, which the unit is mounted on. In order to ensure
that the housing moves with ease, guides are connected to either end of the
housing and mounted to the lower surface. The entire housing are made of either
stainless steel or aluminum in order to be sanitary and resistant to the environment
and frequent use. For demonstration purposes, the housing will be built using PVC.

The housing will contain the servo motors, ball valves, and tubing. The main water
line will feed into the housing where it are split into three sperate lines via a
manifold. The main concentrate line will also feed into the housing and split into
three lines. The servo connections will run out of the housing to the servo control
board. The power from the servo are connected to a relay on the PCB where it are
controlled by pins on the MCU.

39

40

4.0 Standards

Standards are designed such that a product that follows them will not suffer
problems later on when interaction occurs with either users or other products.
Through standards, products can work together rather than against each other; it
is through standards that products can be trusted not to damage themselves, other
products, or the users of those products.

By following standards, a product becomes more accepted, and therefore more
widely used. It is in the best interest of the individual/group to ensure that a product
follows all standards for both economic and safety reasons.

4.1 Health Standards

This project must strictly follow health standards. This beverage filler is designed
for relatively high volume industrial use, and therefore the beverages produced by
this machine are far reaching. If all health standards are not followed closely, many
people could be affected. Most of these standards deal with food contact with the
equipment that we use.

4.1.1 NSF/ANSI 61

This standard covers components that make contact with drinking water.
According to NSF/ANSI 61, if someone sells, manufactures, or distributes drinking
water they must comply. This project is designed for manufacturing beverages
using drinking water, thus it is applicable. Every aspect of our design must comply
with this standard. Fluid makes contact with storage kegs, tubing, and valves
before it is dispensed into the final container. The biggest concern with
contamination is lead leaching from metals such as brass and contamination from
certain schedules of PVC.

The valves that are used are made from a safe type of plastic that is NSF certified.
The tubing used is made from braided vinyl, which is food-safe and highest
recommended for use with food and beverage. The kegs are made from a food-
safe stainless steel and are constructed with the intent of beverage storage. If
possible, all components and surfaces should be made from a food-safe metal or
plastic.

4.1.2 FCC

41

The FCC governs communications technology in the United States. FCC
certification means that the product is safe for humans. The FCC evaluates
electromagnetic fields radiated by the device as well as radio frequency exposure.
All components in this are FCC certified where applicable. For example, the 12 V
power supply emits a significant electromagnetic field when regulating power, and
is therefore accompanied with an FCC certification. The following are
classifications of radio frequency devices.

4.1.2.1 Incidental Radiators

Incidental radiators are not intended to produce radio frequency energy over 9kHz.
These devices are not required to obtain equipment authorization. Incidental
radiators may occasionally produce frequency energy over 9kHz. If there is an
interference due to operation above the allowed 9kHz, then the user must remedy
the interference. The FCC recommends that engineers and manufacturers use
good judgement when choosing appropriate designation. Some examples of
incidental radiators are AC and DC motors, light switches, and power tools that do
not contain digital logic.

4.1.2.2 Unintentional Radiators

Unintentional radiators operate in the radio frequency band and contain digital
logic. These device typically operate between 9 kHz to 3000 GHz and are
additionally regulated under 47 CFR Part 15 Subpart B. Although these devices
may operate at high frequency, they are not intended to radiate wirelessly.
Examples of this type of radiator include coffee pots, wrist watches, and power
tools that use digital logic.

4.1.2.3 Intentional Radiators

Intentional radiators intentionally generate RF and may be operated without an
individual license. Examples of this type of radiator include cellphones and other
wireless communication devices.

4.1.2.4 Industrial, Scientific and Medical
Equipment

These devices include radiators that produce RF energy for purposes other than
telecommunication. Uses may include heating, ionization of gases, mechanical
vibrations, and acceleration of charged particles. Examples of this type of radiation
include microwave ovens, arc welders, and fluorescent lighting.

42

4.2 Communication Standards

4.2.1 Serial Peripheral Interface

Serial Peripheral Interface protocol is a standard of communication between two
or more devices, where one device is the “master” and one or more devices are
the “slaves”. In order to communicate, four pins are used on each slave device.

The pins are designated as serial clock (SCK), master in slave out (MISO),
master out slave in (MOSI), and slave select (SS). The master must add an

additional slave select line for each additional slave. For example, if there are 5
slaves, then the master must have 5 pins dedicated to slave select. This

configuration is shown in the diagram below.

Figure 14: SPI Master-Slave connections

Image courtesy of Corelis

There are four different modes of communication which set bus timing. These
modes depend on the devices being used. In mode 0, data is sampled during the
leading rising edge of the clock (this is the most common mode). In mode 1, data
is sampled in the trailing falling edge. In mode 2, data is sampled in the leading
falling edge of the clock. Lastly, in mode 3 data is sampled in the trailing rising
edge.

4.2.2 I2C
I2C is a communication protocol between two or more devices. I2C utilizes two
busses, a serial data line (SDA) and serial clock line (SCL). Each device connected
to the bus is addressable by a unique address and master/slave relationships exist

43

at all times. I2C has four modes of bidirectional data transfer. These four modes
are included in the table below.

Mode Bit Rate

Standard-Mode (Sm) 100 kbit/s

Fast-Mode (Fm) 400 kbit/s

Fast-Mode Plus (Fm+) 1 Mbit/s

High-Speed Mode (Hs-mode) 3.4 Mbit/s

Table 14: I2C Modes

When the bus is not busy, both the SDA and SCL lines are HIGH. All data
exchanges begin with a START and end with a STOP signal. A START occurs
when the SDA is pulled to LOW while the SCL is HIGH. The SCL must be HIGH
in order to avoid conflicting with another data transfer. A STOP occurs when the
SDA is pulled HIGH (signaling that the data line is idol) and the SCL is HIGH. This
is demonstrated in the diagram below.

Figure 15: I2C Start/Stop protocol

Image courtesy of NXP Semiconductors

After a START signal is given, the slave address is sent by the master. The master
sends the 7-bit slave address along with a read/write bit as the LSB. A ‘0’ signifies
a write and a ‘1’ signifies a read. If the master would like to change which device
(slave) to communicate with, then the master must repeat the START signal. The
master is not required to send a STOP command first. To speak with a device, the
master must send a START and the new slave address along with the read/write
bit. Once a connection with the slave or slaves is established, data is transferred
in 8-bit bytes, with the MSB transferred first. After each byte, the master drives the
SDA line high during the acknowledge (ACK) cycle. The data transmission cycle
is shown in the figure below.

44

Figure 16: I2C data transfer
Image courtesy of NXP Semiconductors

4.3 Sensor Standards

Sensor standards exist so that sensors may be used universally – this is the same
reason standards are set for other parameters in the industry. The bottom line is
that sensor standards ensure consistency across designs.

4.3.1 Temperature Sensor Standards

The governing body for temperature sensor standards is the American Society for
Testing Materials (ASTM). The ASTM is a guide that includes a tremendous
amount of standards. The ASTM standards guide of temperature measurement is
split into ten sections. The sections are explained below.

4.3.1.1 Digital Contact Thermometers

In this section, ASTM cites standard E2877 – 12e1 which is the standard guide

for digital contact thermometers. This standard provides an overview of digital

contact thermometers and also describes the nine different accuracy classes.

These classes cover temperatures ranging from –500 °C to 200 °C. Although

there are temperature sensors that can operate outside this range, they are

much less sought after and much less common. In order for a thermometer to

qualify for a certain class, it must accurately measure temperature in the

respective class within a certain tolerance. The guide also specifies what is

considered a “digital contact thermometer”. Thermometers that lie in this class

are platinum resistance sensors, thermistors, and thermocouples. The guide

goes on to specify recommended manufacturing practices and also establishes

SI units as the standard units.

4.3.1.2 Editorial and Terminology

Standards E344 – 18 and E1594 – 16 are included in this section. E344 – 18

outlines terminology to ensure understanding of future documents. E1594 – 16

further describes terminology and also outlines methods for expressing

temperature, temperature values, and temperature differences.

45

4.3.1.3 Fundamentals in Thermometry

This section outlines calibration – preparation and reporting. The standard

method of calibration is ice-bath submersion. The standards in this section,

notably E563 - 11(2016), go into detail about ice-bath preparation and

requirements.

4.3.1.4 Types of Thermometers

The remaining sections of the ASTM measurement standard guide go into depth

about the various types of thermometers and respective standards. The types of

thermometers mentioned are liquid-in-glass thermometers, resistance

thermometers, radiation thermometry, and thermocouples.

4.3.2 1-Wire Technology

1-Wire technology is basically a connection that uses serial protocol that

operates between 2.8 and 5.25V. The technology is called 1-Wire because

typically there is no pin used for power supply – the sensor draws power from the

data line. This is known as parasitic supply. A schematic diagram of this is shown

below.

Figure 17: 1-Wire Schematic

Image Courtesy of Maxim Integrated

Multiple 1-Wire devices may be connected to single I/O pin on a microcontroller.

This is possible because each device has a unit 64-bit identification code that is

used for distinguishing. This 64-bit code is factory programmed and may not be

46

changed. Each 64-bit product identification code contains an 8-bit family code

which identifies the device type and functionality.

4.3.2 Force Sensor Standards

The ASTM has also put forth standards for force measuring instruments. The

standards clarify necessary procedures for instrument calibration. It is important

to note that this standard only applies to force measuring devices that are elastic

or force-multiplying systems. Some of the applicable standards are listed below.

• E74 – 13 “Standard Practice of Calibration of Force-Measuring

Instruments for Verifying the Force Indication of Testing Machines”

• E74 – 18 “Standard Practices for Calibration and Verification for Force-

Measuring Instruments”

4.4 Soldering Standards

Soldering standards for this project were taken from Nasa’s technical standard
document. The standard is NASA-STD-8739.3. All components mounted on the
PCB are surface mounted (SMD). The connections that come out of the device to
be mounted are called part leads. Part leads can come be lapped, straight-through,
or clinched. All parts being mounted on the PCB for this project will have lapped
leads. Lapped leads can either be round or flat. In order to achieve an acceptable
connection between the lead and the pad, the lead must be placed flush with the
pad. To maintain a stable connection, there must be no torque on between the pad
and lead. Acceptable connections are shown in the diagram below. In order to
minimize torque and achieve a flush connection, the lapped terminations must not
hover more than 0.25mm above pad when static.

Figure 18: Lapped Lead Placement

Image Courtesy of NASA

47

5.0 Design

In this section more details on the design and the presentation are discussed.

5.1 Implementation

This system is meant to be implemented into a small scale beverage
manufacturing plant. The filler should be placed in the main processing line. The
kegs from which the filler draws concentrate may be placed at some remote area.
During actual implementation, carbonated water will not be drawn from kegs.
Instead, water are drawn from the main water line, filtered, and carbonated.
Typically, the water is filtered using at least a carbon filter to remove chlorine and
sediment. The water is carbonated using a carbonator. After carbonation the water
are passed through a chilling unit in order to retain the carbon dioxide in the water.
The chilling unit operates by chilling a water bath in which coil of drinking water
pass through. The water bath chills the coils to the temperature of the bath. The
temperature of the water are carefully monitored here. A temperature sensor are
place into the water bath of the chilling unit (the temperature of this water provides
a near estimate of the water temperature in the line). When the final product is
dispensed at the filling station, the water must be between 0 and 5 degrees
Celsius.

The concentrate that is held in kegs must also be chilled. The concentrate must be
similar in temperature to the water when mixed in the final product at the
dispensing stage. The concentrate will also pass through the chiller in order to be
brought to dispensing temperature. All lines after the chiller including the water
lines are insulated to reduce heating up before dispensing. At the filling station,
three cans are placed under the filling heads. Once the user tells the filler to “fill”,
the actuator will lower the fill heads into the containers. The valves will then
dispense the appropriate amount of water and concentrate into the beverage
container. Once the fill is finished, the fill heads will move up into starting position.
Once the heads are removed the operator is notified that he/she may remove the
filled containers. The operator will then seal the container. Once the product is
finished, the user will place the final product on the load cell which will take a
reading. If the weight of the container is not within the range, then the MCU will
notify the operator via the screen. If the fill was done correctly, the monitor will read
“Pass”.

5.2 Design Motivation

The main motivation of this design is to reduce the amount of defective product
that is released into the market place. The load cells help mitigate this by ensuring
that that the amount of fluid is correct. This is important for three reasons. The first

48

reason is that if the product is being overfilled, product is being wasted. The second
reason is that if the incorrect amount of concentrate is being dispensed, the
product will not taste correctly to the consumer. This can be potentially dangerous
if the beverage contains a hazardous chemical such as alcohol or caffeine. The
last reason is that underfilling the beverage may cause an air gap to form. Leftover
air in the container will interact with the beverage and will potentially oxidize the
drink. This can cause a drastic change in the taste of the beverage, especially if
the drink is juice based. It may also encourage the formation of mold or bacteria
which can be hazardous to consumers. A large air gap will also cause a pressure
loss. Most of the pressure in the beverage comes from the liquid itself and the
carbon dioxide gas. If the gap is large, the carbon dioxide gas will have a larger
volume to occupy and thus have a smaller pressure. This will lead to cans with a
deflated look that is not attractive to consumers.

Problems will also arise if the water is too warm. The beverage will not have
enough carbonation. This may be detrimental to the product. Although many
consumers may not be able to taste the difference in carbonation, the product may
feel flimsy and easily collapsible when a consumer grabs it on the shelf – similar
to the effect of not filling the container up entirely. This is especially important if the
beverage is shelved on a cooled rack. The free carbon dioxide will dissolve into
the beverage under cold temperatures and thus cause the internal pressure of the
container to drop dramatically. Beverages with this defect often cause
manufacturers a lot of money. Not only do they not get sold in stores, but they also
hold up product that was stocked behind them on the shelf. They can leave a bad
impression on a consumer, especially a first time buyer or potential buyer.

5.3 Presentation

In order to make this project presentable, some adjustments must be made. The
filling station is mounted on top of a table. The keg, carbon dioxide canister, and
other components that would typically be found throughout the warehouse are
placed below the table. There was no carbonator or chilling unit used during
presentation. The beverage is dispensed at room temperature. Also, the lines are
not insulated.

49

6.0 Project Software Design Details

In this section the details on how the software implemented for this project.

6.1 Threading and Multitasking

Figure 19: Threading Explanation
Image Courtesy of TutorialsPoint

First we formally consider the problem of multitasking and define it in terms of our
application. We consider two cases: using an internal clock to simulate
multitasking, and using the multiple cores of the chosen CPU to fully realize
multithreading.

We define our problem from the standpoint of the software. We consider an
arbitrary number of valves that need control, sensors that require monitoring, and
a screen that needs to display and read input. Considering the control required on
the valves: it is only setting a single bit on one of the pins. Thus we can assume
minimal delay in processing this operation regardless of our timing architecture.
However a problem does occur when we need to make a choice on what to do
with a valve – that is, what signals for a valve to open or shut. That requires the

50

input from the sensors. Which means that if the sensors reading is delayed, the
valve critical valve shut-off or open are delayed. Thus if a sensor reading is going
to be delayed, as it might be in the case that use the internal clock to simulate
multitasking, we need to guarantee that the delay is bounded by an acceptable
amount. So we must know at most what our bound is.

All of the CPUs being considered have maximum clock speeds on the order of
MHz so we can expect a clock delay on the order of microseconds if we really
need. That is reasonably small. So if we place a high priority on the interrupts for
the sensors to read we should be achieve feasible performance.

On the subject of actually threading the core, it obviously possible. And the
performance of that system isn’t worth going into detail on. It will work. But, it
aremore than what the system requires.

6.1.1 Conclusion

Aiming for an architecture which using the internal clock and interrupt service
routines to simulate multitasking is reasonable enough for acting as the kick-off for
valve-shut off and open. Thus this system opts in favor of it.

6.2 Memory Requirements

Considering the requirement of logging sensor data, then no form of read-only
memory will work. Additionally, we want to preserve the data beyond a loss of
power. So solely using RAM will not work. We need some form of external storage.
And we need some way of traversing the file system of the disk we implement.
Thus we need some something to handle this for us. It is possible to implement
our own file system management. But why reinvent the wheel when it’s free?

6.2.1 Arduino

As already mentioned, we use the Arduino IDE. This gives us access to libraries
that are capable of saving to external memory. One solution is to mount an SD
card onto the board. There exists an SD library for interfacing with the SD. A USB
is also possible.

6.2.2 SD Card

51

We assume that we mount an SD card with some form of SPI communication to
our board. An existing module exists as a reference, the Arduino SD module seen
in the figure below,

Figure 20: SD card example module
Courtesy of https://www.mschoeffler.de

Note that it isn’t particularly important the CLK speed for writing. Reasonable, we
wouldn’t want to write more than one time a second, and even that might be too
much. The reason is that much logging could quickly cause the log to begin
wrapping back around. So we would want the logger to be sparse with its actions.

Then we would need to form an SPI connection with the SD card. The Arduino IDE
does provide a library, SPI.h, for forming SPI connections.

6.2.3 USB

Alternatively a USB is possible. However there is a greater tradeoff in complexity
since there are no libraries I was able to find for this. We would need to write our
own library and the reward simply does not exists. An SD card can be hosted by a
USB with an SD port for transferring the logs from the SD onto any computer with
a USB.

6.2.4 Conclusion on Storage

An SD card is feasible, simple and quite effective for what is required in the project,
with the limiting factor of the clock being a non-issue due to the relative small
amount of read/write commands that will occur on average.

A USB does not have defined libraries, resulting in significantly more time and
effort needed to make it effective for the purposes of this project.

https://www.mschoeffler.de/

52

As a result of the above, an SD is opted for.

6.2.5 User Storage

We have an object of the user and all of their presets in main memory and seek

long term storage in the SD card. We construct a function capable of storing the

user and preset objects as shown in Figure 5.

Figure 5: User File Layout

Once the data is stored, we can retrieve it line by line to instantiate a new object

for use on the next bootup.

6.3 Logging

As mentioned, we don’t want to over log. So we take a reserved approach. Given
some discrete time over what we wish to measure, suppose, 10ms, we average
the readings taken within that time and record the low as well as the high of

53

whatever we are measuring (pressure, weight, etc...). Then we only need to record
the average over that time and the extremes. This preserves the peaks that might
happen during that time and still gives a fair reading of what happened over that
time without logging every sub-division.

The user should be given some form where they can decide how long they want
this time to be. A logging configuration page should be allowed. Note that there
exists a reading time for the sensors as well. That is a periodic interval for reading
in between the logs. Thus,

Where the first term is the period for reading from the sensors and the second term
is the period for logging. So the questions is whether to allow for a sensor
configuration option.

6.4 Sensor Reading Time Configuration

It’s possible to allow the user to configure the time for reads however this creates
unnecessary complications. Consider the data currently logged in a report. The
report was created using some sensor readings at some period reading. If we allow
the periodicity to be changed, what happens to the previous report. It no longer
reflects what we want. But this is really a small complication. It would be fine to just
allow the old readings to remain the same. And it’s not necessary to assume we
need the previous readings to reflect the same periodicity we use now.

A better questions is the necessity of configuring the periodic readings. Would it
be better to find a periodic reading which we are comfortable with for accuracy?
Or would we rather the user be allowed to later decide how often they want a
reading to occur? If we don’t allow the configuration, then we need to allow a small
enough period for reading that covers all possible cases of what a user might want.
This might achievable if we could think of every conceivable case and be sure that
were right about all of them. But it’d perhaps be better to save the mental exercise
and just allow the user to decide. This would help with optimizing the system so
that only the reading times we want are being used, and not more than we want.
Of course there would need to be a bound on how small the periodicity can be,
which is limited by the CLK.

6.5 Read-Write Collision

Next, consider the problem of a live logger and a live reporter. If this were a parallel
programming task, mutexes would need to be used as both the reporter and the

54

logger would be reading/writing from the same file. However since we are
simulating multitasking using clock interrupts, we do not allow the file ever to be
opened and read at the same time.

Suppose ISR1 handles the task of reading from a sensor and writing data to a log.
And ISR2 handles the task of reading from the log periodically and updating the
reporting software. Since they are both ISRs handled by a single CPU, it is
impossible for either to occur at exactly the same time. We can’t have the File
opened by both functions at the same time, or else their read/write pointers would
not exactly coincide. We could have two global read/write pointers and alter them
on call but that’s messy and uncalled for.

Instead, when ISR1 begins, it opens the data file. Writes what it needs to and
closes the file. Then ISR2 may begin at any time after. Open the file. Read what it
needs. Close and continue.

But this creates an additional complication. Supposed that ISR1 writes an arbitrary
number of times before ISR2 reads. ISR2 has no way of knowing the number of
times that ISR1 wrote and how many new values it needs to read. Additionally, it
doesn’t know what values are even new. It has no way to distinguish between
values it has read before and values it now needs to update. Thus we need a way
for it identify the next value to be read.

6.6 Logging Format

A simple solution to the problem of the ISR2 needing to some reference of what
data to read next is that have each data piece contain some identification number.
And then have the data piece contain some identification number. Next we need
the ISR2 to know what the last ID was that it read. So if it sees an ordered list,
once it sees the most recent ID, it knows all new values exist on one side of the
list. So we write to the file in an ordered format. Either specifically at the top, or the
bottom. Multiple complications arise from this solution.

One is that the file is constantly growing and needing to be opened and closed and
saved. As the file grows, these operations become more expensive. And could
cause delays in the system.

Two: the system needs to read all the way until the it finds the portion of data it
needs to read. Additional time is lost for this search.

The benefit of this solution is that it is simple. And that’s pretty much it.

If we were to implement this solution, the data could be formatted as such
 Data:
 <key> <value> <date> <time>,

55

 <key> <value> <date> <time>,
 …

An alternative solution is to maintain separate file pointers. That is to open the file
once for both reading and writing. Create a copy of the file pointer. One pointer for
reading, one for writing. Now each ISR only uses the pointer that it needs. The
minor complication with this solution is that it needs to guarantee writing will
happen before writing to avoid trying to read no change. If this is accomplished,
then the overhead of opening and closing a file many times is gone. Also we no
longer need to find where the new data is when we read, it will always be the next
increment of the pointer. And as a cherry on top, the key element of our data no
longer needs to be there since a consistent read pointer eliminates the need for us
to distinguish old and new data.

Thus our new data object is,

 struct LogData {
 float value;
 char[] date;
 char[] time;
 } typedef LogData

6.7 Remote Login

Login is a bit of a problem. If we do only have a source of code running at a time
and it’s listening for changes on the screen, how does it listen to network requests.
The answer is that it can’t do both. Again we rely on sequential nature of the code
to make it appear as if it does both. Assume our device is currently idle. It is not
generating drinks, nor producing reports, nor even logged in. It sits at the home
page. Calm and alert.

Since only one process runs, we can’t run a server separately from our application.
So the option is to implement our own server or use the code provided by someone
else. However even if we get that code, we can’t thread based on our design.

An alternative solution, is to install an Operating System onto disk, boot from there
and then run a server and our application separately using the OS’s scheduler.
The approach would be simple. Run Node.js as the server. Then we could locally
store the login info. On request from the Web Application built no the Node stack,
we can verify a user login and present them with a UI that allows them to remotely
navigate and control out system.

A problem with this solution is that it solves the problem by using a javascript
server. This means that if we want to make the application the user sees once he
logs in fully functioning, the server needs to make calls to our embedded program

56

which would require the program to listen for calls from the server. That’s just
nonsense. The original reason we considered this solution is because the code
can’t listen for those external calls. Better would be to implement the code that
runs the platform on the server so that it only needs to receive the HTTP request
from the remote user and then begin processing the request. This would ultimately
mean we write the entire code Java. So although we’ve simplified the task of
hosting a server to receive user logins, we complicate the embedded task. We also
now require the JRE which uses much more memory than just running our original
C code. And we’ve also appended the need for an Operating System. However
perhaps the largest drawback is the speed performance lost to using the JRE
instead of C. A question then is raised about is the loss in speed too great? Or is
it manageable? Is the question even worth exploring? Perhaps a reconsideration
of the feature’s value is better.

6.8 Conclusion on Remote Login

Requiring remote user login adds too much complexity to the C embedded code.
And if we opted for an OS with a Node stack, it adds system complexity and cost.
We should consider further whether this feature is worth the costs associated with
the current explored solutions.

6.9 Local Login

This is feasible. Since we don’t require to listen to network calls, a user could easily
use the touch screen and an onscreen keyboard to enter their login information.

Login information could easily be stored locally on the disk. A simple file
containing objects,

 struct User {
 char[] userName;
 char[] password;
 Presets[] presets;

 } typedef User

6.10 Security

Since these usernames and passwords are being stored locally, on the reasoning
that there is no network connection, it is fine to store these in plain text. The only
way areread is if someone has acquired the device physically. In that instance

57

there are greater causes for alarm than someone stealing login credentials and
getting access to another person’s presets!

6.11 Network Login Security

If remote login is decided to be used, we don’t want to store the username and
password in plain text. An option would be receive passwords as regular text and
run them through an algorithm that expands a password into an incomprehensible
jumble of fixed size. We store the corrupted password instead of the normal
password. As long as the function for corruption is one-to-one, we can guarantee
that no password except the one which is correct is accepted. Then when we
receive a password from the server and the username, we first check that the
username exists in the repository. Assuming it does exists, corrupt the given
password. If the corrupted password matches the one stored, we accept the login.
Else reject. Thus we never store the password in plain text.

For example, suppose we require passwords to be up to length n. Then for each
character in the password consider the following process,

1. Compute ASCII value for each character.
2. Let each digit of the ASCII value correspond to a letter from A-J (69 -> FI)
3. Then append the two corresponding letters as part of the corrupted

password
1. Then append the two corresponding letters as part of the corrupted

password.
Continue appending until the there are no more character in the password.

6.12 Code

For this project, we coded in the Arduino IDE and made use of its libraries. We

also used it to compile and receive our .hex file. As a result, we coded the whole

project in C++. So we were able to use OOP concepts to maintain visibility over

the moving parts of the project without getting clouded by a mishmashed

overcast of cluttered code.

6.13.1 UTFT

UTFT (Universal Thin-Film-Transistor) is a library for configuring and supporting
the use of a number display modules. It’ll allow us to create a display object in

58

memory and use the libraries functions to drawn the object we want to display on
the screen. The more general explanation of the motivation to use this library is
found in section 3.3.6

UTFT uses approximately 80KB of flash memory.

6.13.2 Initialize UTFT

First we need to create a display module object using the UTFT constructor. The
constructor we can use is

• UTFT(Model, RS, WR, CS, RST, ALE)

• Model is the a number ID associated with the type of display module we
use. The display modules and their associated IDs can be found on the
supported display modules PDF of the UTFT documentation. The ID we will
use arespecified once we decide the display to use.

• RS specifies the Register Select which is what enables us to select between
instruction mode and character mode. Instruction mode is what we will use
for this project. It allows us to send discrete commands to the display
module. Contrast this with the alternative Character Mode which only allows
us to send character data over the 8bit data bus of the display module. The
UTFT library allows us to send the character data we want through the
print(...) functions which arediscussed later. Thus there’s no need to use the
limited character mode. To select Instruction Mode typically requires us to
the set the pin to low. However this will need to be verified on the equipment
we will use.

• WR specifies the pin we can write to.

• CS specifies the chip select.

• RST specifies the reset pin for clearing data.

• ALE is an optional parameter for latched 16bit shields. It’s not necessary for
what we are building so we won’t discuss it.

Once the UTFT object is created we can initialize the values of the object with,

InitLCD([Orientation])

• Where Orientation is an object with PORTRAIT and LANDSCAPE
attributes.

This would reset the colors of the display and set the font to none.

6.13.2 Using TFT

59

Suppose we intend to create a clickable button. The functions mentioned int 3.3.6
would be used and here we describe their interaction with a little more clarity. The
fillRoundRect(x1, y1, x2, y2) function fills a rounded rectangle in at the specified
location with the currently set color. The UTFT display module object created by
the constructor always creates its new object using the current set color when
calling on the drawn functions. So if you wanted the rectangle to be a specific color
we would call the setColor(r,g,b) function from our UTFT object. The r,g,b
parameters are unsigned short integers (0-255). Thus if we wanted the rectangle
we just drew to be red we would first call setColor(255, 0, 0) and only then call the
function create the round rectangle.

6.13.3 URTouch

Like UTFT, this library was first mentioned above is section 3.3.7. Here we explain
its implementation details and usage with more clarity. Recall the URTouch library
supports receiving the input on the LCD screen and stores it in a URTouch object.
Additionally it has a pin for signaling interrupts.

6.13.4 Touchscreen Calibration

 Due to electrical faults from components being too close together, or mechanical

misalignment caused during manufacturing, a touchscreen’s input is often faulty

and needs calibration. An example of the difference between the reported input

and the true, intended input is shown in the figure below.

Figure 2: Touchscreen Distortion

So the aim of calibration is given some distorted input, transform it to the true

origin. The algorithm we went with for calibration is the Classical Three Point

Algorithm.

60

Figure 3: Input Map

The aim is to approximate the shape of the distortion map by a circle which is

assumed to have been rotated, scaled, and shifted from the true origin.

Let there be three known points P1, P2, and P3. Displaying their positions on the

touchscreen and and allowing the user to touch those points generates distorted

inputs P1’, P2’ and P3’. We can then generate values for the following equations

(1)

Where x and y are the true values, x’ and y’ are the read values and the

coefficients are the calibration constants and are six unknowns, K being a value

we provide. Using the data of the three points, we generate six equations with six

unknowns and solve for the coefficients. Now given any future inputs we can use

this equation to approximate where the users intended click is located.

6.13.4 URTouch Initialization

Like the UTFT, there exists URTouch constrcutor for setting the required pins,

URTouch(TCLK, TCS, TDIN, TDOUT, IRQ)

• TCLK is the Touch clock

• TCS is the Touch Chip Select

• TDIN is the Touch input.

• TDOUT is the Touch output.

• IRQ the pin for signaling Touch interrupts.

Once the function object created, calling InitTouch([Orientation]) on that object will
initialize the touch screen for use.

61

6.13.4 URTouch Precision

The URTouch library offers a means for lowering and raising precision for a
tradeoff in performance. The function is,

setPrecision(precision)

Which uses precision enum types of PREC_LOW, PREC_MEDIUM, PREC_HI,
PREC_EXTREME. Note that it will take longer to higher precisions. Considering
that the application of this doesn’t require fast input, and we may well opt for a
small screen, it would be best to use one of the higher options. Testing can be
done to ensure we choose the smallest one that maximizes performance and
minimizes delay to our liking.

6.13.5 URTouch Usage

Once the screen is touched, data is stored in a buffer for the URTouch object.
Using a built in method from the library, we could periodically check if data is ready
to be read (assuming we don’t use interrupts). The method dataAvailable() will
return true if data is ready to be read. We then use the class method read() to
convert the raw data to URTouch fields x, and y. Then we can use getX() and
getY() to get the coordinates of the touch.

So if we had made a call earlier to UTFT of fillRoundRect(50,50,100,100) and then
when we read the data we get coordinate (75,75) we know that the rectangle
created above was clicked. So supposing this rectangle was a button for going to
Reports, we could then make a call to another function we’d written drawReport().

6.13.6 Screen State

Consider that we are using either CLK or click interrupts for checking if the screen
has been touched. Now suppose that it has been touched at some coordinate K.
Now we need to check if a button existed at K so we can process the request the
user has. However there exists multiple pages. So how will we know which screen
it is we’re on for checking if a button exists?

A simple solution is to use a global screen state. Then we can use enumerated
types for each page and we only need to check which page we’re on. Once we
know the page, we know what boxes should exist and where they exists.

6.13.7.0 Virtual Keyboard

62

Since we have a touchscreen and we require input from the user, we’ve

implemented a virtual keyboard. We use the TFT library for our draw functions

which includes the rounded rectangle shape. Next we create a series of

constants to scale our keyboard into different sizes and allow for key detection.

Figure 4: Button Layout

Then given some input we can detect the index of key that was pressed.

(2)

Note that the order of characters on the keyboard is stored in a character array

so the index is all we need to know which character was pressed.

6.13.7.1 Input Page

Whenever we want to input something we know we’ll at least need to draw the
keyboard. But there is second consideration, do we draw the keyboard over the
existing page or load a new page for input?

If we load a new page for input, it seems a bit counterintuitive from what we’ve
come to expect from most programs. Typically when input is being requested on a
touch screen, a key board is popped up from seemingly under the page, and

63

overplayed onto the current page. The keyboard, once done, is dropped down and
it’s context exited. The previous page never needs to be reloaded.

It is possible to do this and we can consider another possibility. We could load an
entirely different page for keyboard input. This might seems strange but consider
that we’re not drawing a context on top of another context. We don’t need to keep
track of that complexity and we use less memory as result.

A third option is to draw the keyboard within the context of the page. To the user,
it’ll still seem like the keyboard is its own context, but actually we have written over
the previous context within that segment of the page. Then when the keyboard is
done, we would simply need to reload the page which called the keyboard.

The downside of that method is sheer ugliness. The page would appear to blip,
because it’s being reloaded, once the keyboard is done being used. The benefit
would be that like the second option, it doesn’t rely on concurrent contexts and
does require the complexity of conserving those contexts. And as an aesthetic
bonus, it appears to operate as modern programs do with virtual keyboards.

6.13.8 Preset Modeling

If we’re going to used store presets as data to be retrieved and interpreted by our
program as timing for valves and sensor data requirements, then we need to be
sure we understand the needs of a beverage at production time. Once we know
what a beverage making process needs to keep track of during production, we can
set that as the data to be stored in the Preset Schema.

So first we consider the process of making a beverage. It might be that there are
multiple valves, each controlling some flow of ingredient. There can be two cases
for determining how long to keep a valve open.

If we want to release a specific amount for a period of time where we assume flow
rate to be consistent, we can just designate an instruction to have a time-period
for keeping the valve open. Again this works only under the assumption that flow-
rate is consistent. The error is that they may not be. We can consider an alternative
approach, but we will see even that has it’s issues.

Suppose then that we decide to take measurements of the weight of the container
as we dispense a fluid into it. Then we simply need to set a small enough periodic
interval for checking the fluid that the system areable to hit the target within a
reasonable margin of error. However there is also a drawback if we were to only
rely on this method. Consider if the amount of a concentrate being added is smaller
than the weight sensor is able to measure.

The idea is that if we can’t rely on the weight sensor, use a periodic value for setting
the dispense time.

64

If the change in weight is easily measurable, it would be better to rely on the weight
sensor than setting the periodic interval.

Recall that this is only a single instruction we’re considering. A preset is made
based off a series of instructions. So a preset must contain an array of instructions,
each with a type and a target (valve).

Next, we need to define an instruction.

6.13.9 Instruction

As noted before, instructions can come with two types, either a measurement of
time or a measurement of the beverages weight. So an instruction needs some
way of determining which functionality to implement. We can have an enumerated
type for determining the how to measure the success of the dispensing. Then an
instruction will have a targetWeight and a timeToWait value. Only one areused
depending on the type.

The last component of an instruction is the valve to operate on. Suppose that we
have N valves. We could use an enum as well to declare which valve the instruction
should use. So the Instruction will have a targetValve that is equal to the enum of
the valve it corresponds to.

65

Thus we have,

enum instructionType { Time, Weight }
enum valves { valve0, valve1, ... , valveN }
struct Instruction {

enum instructionType type;
enum valves targetValve;
float targetWeight;
float timeToWait;

} typedef Instruction;

The value that targetWeight should take is simply the reading we want to see on
the weight sensor. However the time to timeToWait is a little less obvious. Is it
seconds? Is it in milliseconds? Is it even good practice to have it in seconds? Yes,
for abstraction purposes it would make the most sense to store it in seconds. The
reason is that this data type is stored from what the user enters. It’s normal to think
in terms of seconds instead of clock cycles. However our program must convert
that into clock cycles when it’s creating the ISR for scheduling the valves to turn
off. So we can assume that the function that calls this makes use of this data type
will need to be aware that the time is in seconds and adjust accordingly.

6.13.10 Storing Presets

There are two possibilities: we could store all presets in a single file or create a file
per preset. If they’re stored in a single file, the search times would be small for our
preset we want to delete or edit since we’re allowing a maximum number of 32
presets. There really is no gain from complicating this by using a file per presets
so we will opt for a single file.

It’s worth noting that we want to know how many presets exist in a file before add
or lookup information from it (considering the case where there are no presets to
load). So the first byte of the presets file should just be a number that lets us know
how many presets we have stored.

Then we look at a file, we can look at only the first byte and know exactly how
many presets exist. Then we don’t have to count all the presets when we add a
new preset. We just look at the first byte, increment the count and append the new
preset.

We should also include another header byte. The default index. This tells the
software on bootup which preset to begin using for manufacturing by default.

The user should be prompted each time before they begin brewing, by seeing
some type of selection of presets. But the first preset that is already in the selection
box arethe one that is marked as the default.

66

6.13.11 Instruction Data Size

Now we aim to calculate the total memory that’s going to be used by the presets.
First we look at the size used by Instructions.

• InstructionType enum has two enums so it is 8 Bytes (Not dynamic)

• Valves enum is 4N Bytes where N is the total valves (Not dynamic)

• Type is 4 bytes

• TimeToWait is 4 bytes

• TargetValve is 4 bytes

• TargetWeight is 4 bytes

So the total number of bytes per Instruction is 16 Bytes. Instructions are by in large
the biggest part of the preset schema. Since there could be many instructions per
preset.

We can optimize this by choosing to not use an enum for the any of the valves or
the instruction type. An alternative solution is to define the valves and types at the
header space of the program using a number on the range of a byte. Then we
could set the values using those predefined expressions and change the data type
to a char. This would reduce the bytes per Instruction to 10 bytes.

Assuming that the references to the pins can be extracted from only one byte is
safe.

6.13.12 Preset Data Size

Now we will consider the size of a Preset

• First there is the name. We will restrict preset names to be 16 characters.
So name has at worst 16 bytes (1 for each char) and 4 bytes for the pointer.
A total of 20 bytes.

• The Instruction pointer is 4 bytes and the array of instructions will by C16
bytes. Where C is the total number of Instructions. Thus 4 + C16 bytes.

• Lastly, there is only 1 Byte for the numberOfInstrucitons.

Thus the total number of bytes per Presets is 25 + C16. It has been previously
expressed that the maximum number of presets is going to be 32. If we allowed
this we would be using 800 bytes for constant space and 512C bytes dynamically.
That means for only one instruction, we are looking at a worst case of over 1KB.

We can see a table of the approximations below:

Total Instructions Allowed (C) Kilo-Bytes

67

1 1

2 2

4 3

8 5

16 9

32 17

64 33

Table 15: C versus KB

16 Instructions seems like a we’d be giving more than needed. For our purposes,
no drink arethat complicated. Our system doesn’t have the many valves to even
consider. And since each instruction maps to a unique valve, and there would be
no need to use the same valve twice, we only need to allow for as many
instructions as there are valves.

Thus the correct approximation for this file is to use C = 8, which concludes 5KB
for our presets.

6.13.12 Revisiting Logging

We had previously mentioned the aspects of logging but now we will visit them
with a more granularity.

Given the chip selected for this project, we can expect about half a megabyte of
megabyte of flash memory if we decide not to use some external storage. Then
we need to consider that logging should be restricted.

In general, we know that we want to log approximately 2 different types of data.
Logging the temperature of the water bath, and the weights of the beverages
produced. It is possible to allow these measurements to go on indefinitely but that’s
obviously reckless and asking for trouble. So we know we need to limit the amount
of data being logged per tracking target.

To know how much we should restrict logging, we need to know the size of each
data point. Before we considered marking the time of the data point so that would
be able to tell the old data from the new data. Marking data like this is intuitive but
costly in memory.

An alternative is to remove the need for timestamping and keep an index of the
most recent value appended to the file.

Imagine the data file organized like so

<dataPoint1>
<dataPoint2>
<...>

68

<dataPointN>

Note that the X in dataPointX does not define it’s relation to the other data points
in time. Only in index. When we open the file, if there was an index marker that
told us the most recent dataPoint added was index k, and we wanted to append a
new piece of data, we would only need to replace the data value of index (k + 1)
% N. Then we increment the index and mod it by the maximum index + 1. Note
that N is being used to also mark the maximum number of data points we allow for
storage.

If we always use this method for replacement, we can always be certain the index
k + 1 is the oldest entry in the file.

6.13.13 Restricting Logging

We have now secured a way so that we only need to store the value of each data
point and not an additional timestamp. We only need to append and index and
maximumIndex datapoint at the start of the file to be used each time the file is
navigated.

We can assume each data point in the file is 4 bytes. This is because the water
bath is measured in temperature, so it’s best to use a float to store its data.

It would be possible to store the data in a single byte by truncating the float to an
integer and storing that value in an unsigned byte. We are allowing ourselves not
to worry about the case where the temperature exceeds 255 or dips into the
negative. But we avoid that case altogether and allow for greater precision by
simply using a float.

So the total logging file will by approximately 4N bytes where N is the total logs we
want to keep track of. Even a modest 200 data points allowed keeps this log under
a Kilobyte, so issues with logging and memory overflow will not exist.

6.13.14 Logging Headers

A final note on a logging file is the headers required.

• CurrentIndex – the index of the most recent data point

• Max – the maximum value seen by this log

• Min – the minimum value see by this log

• Average – the average value of all the values seen by this log.

69

6.14 User Interface Pathing

Figure 21: Page Flowchart for User Interface

Created using draw.io

The user interface will follow a set of screens, with connections between each
connecting screen. These connections are visualized in the graphic above.

6.14.0 UI Buttons

The User Interface will make use of buttons to move between different screens.
Each button will have three potential colors. The first color is the “standard/idle”
color, which areused for show that the button can be pressed but is currently
inactive. The second color is the “active/pressed” color, which are either green in
the case of “forward” movement (for example, moving between the Main Page to
the Brewing page) or white in the case of “backwards” movement (Logging out
from the Main Page). The final color is the “restricted” color, which will appear as
a grayscale version of the button; this is only possible on certain buttons when
specific requirements are not met (i.e. The BREW button on the Main Page will not
work if the temperature is not within the correct range).

70

Figure 22: Button Colors used for UI

Created using draw.io

6.14.1 Login

Figure 23: Login Screen used for UI

Created using draw.io

The User Interface will always start at the Login screen. Here, the users are asked
to provide a Username and Password. This are checked against a locally stored
information system, which will ensure that the person attempting to access the
Micro Manufacturing Beverage System has the proper authority to do so.
Username and Password length are between 4-characters and 8-characters; the
username and password are alphanumeric with capitalization and punctuation
being critically checked. Should either the username or password fail, an error
screen will appear detailing the mistake; the system will assume that the username

71

is incorrect if both username and password are incorrect. After logging in
successfully, the user will move to the Main/Start Page.

6.14.2 Main/Start Page

Figure 24:UI Design for Main Page

Created using draw.io

In the Main/Start Page, the user can select between three options to select what
they wish to do: Logs, Settings, and Brew. However, the user may not be able to
access the brew option if under improper settings. When the user has logged in,
the system begins a sensor check. If any of the sensors fail to match their specified
requirements, the option to access the Brew Page are greyed out and have a red
triangle warning next to it. When this red triangle is chosen, an error message will
appear; this error message will explaining which sensor (or sensors, in the case of
multiple failures) has failed. The system preforms this check every few seconds
to ensure that all sensors are up-to-date. Should the user wish to log out, they
may do so from the Main/Start Page. At the top right of the Main Page, the
temperature should be displayed.

6.14.3 Logs Page

In the Logs Page, the user can access information about the operations that have
taken place at the Micro Manufacturing Beverage System. The user may choose
between options to view what information they are searching for. If the user
chooses Ingredient Usage Log, the user may view the current amount of both
ingredient and water usage based on the current run, with the option to reset the

72

amounts if needed. If the user chooses the Preset Usage Log, the user are given
information on how often a preset was used, again with the option of reseting the
log if necessary. The user may leave these options and return to the Main/Start
Page via a return button.

6.14.4 Settings Page

In the Settings Page, the user is given options for changing system options. If the
user chooses to Login Settings, they can change the username and password for
a user account. If the user chooses the Ingredient Settings, the user can change
the name of ingredient, its density, and the safe temperature of the ingredient such
that the safety checks for brewing are passible. The user may leave these options
and return to the Main/Start Page via a return button.

6.14.5 Brew Page

Figure 25:UI Design for Brew Page

Created using draw.io

In the Brew Page, the user is given two options: the user may create a new brew,
which will send them to the New Brew Options Page, or the user can choose from
a preset that had already been made via the Brew Preset Page. If the sensors
checking the system find an error (i.e. the temperature sensor finds an incorrect
temperature for brewing), an error message will appear displaying the error and
send the user back to the Start/Main Page. At the top right of the page, the
temperature is displayed so as to ensure that the system is operating
appropriately.

73

6.14.6 Brew Preset Page

Figure 26: UI Design for Brew Preset Page

Created using draw.io

In the Brew Preset Page, the user can select between the presets that have
already been made and saved to the system. There are 4 options per page, with
the option to switch pages if the preset the user is looking for does not appear.
When clicking on a preset, the user can choose to modify the preset or simply
select it; if modify was chosen, the user is taken to a page displaying information
on the preset, including the preset name, the amount of preset in percentage, and
the total volume of the preset. The user may choose to delete a preset from this
screen as well. The total number of presets possible are limited to 12 to prevent
potential memory issues.

6.14.7 Brew New Options Page

In the Brew New Options Page, the user attaches a name to the new brew and
specifies the amount of ingredient used in percentage and the total volume of the
beverage. The amount used will translate to the following formula:

Where is the amount of an ingredient, is the amount added to the
brew as the valve is opened, F is the flowrate under normal circumstances, t is the

74

time the valve areopen, and is the amount added to the brew as the
valve is closed. The reason that A_activate needs to be considered is due to how
valves may leak on start-up and A_deactivate needs to be considered because of
lingering/remaining ingredient in the tube-line after the valve has been closed.
When the options have been decided, the preset are saved and the user may move
to the Pour Drink Page. If the user does not wish to do this, the user can return to
the Brew Page.

6.14.8 Pour Drink Page

The Pour Drink Page has little user interaction and is more of an information page,
detailing which ingredient is being poured into the brew at the current time, as well
as giving a brief estimation of the time remaining for the brew. At the beginning of
this page and in between ingredients, it will ask the user to weigh the container
that will be/is holding the drink so as to ensure that all parts are being measured
correctly. If any of these parts are not correct (i.e. too little of an ingredient was
poured), it will inform the user that the batch was bad and that the user should get
rid of the drink; in the event that it is too little, there will be a red negative sign,
while too much will show a red positive sign. Afterwards, it will allow the user to
return to the Brew Preset Page (where they can choose their next option), create
the same brew again, or go to the Main/Start Page.

6.15 Front/Back-End Memory Read/Write

75

Figure 27: Front-End and Back-end Relation for User Interface
Created using draw.io

The relationship between the front-end (what the user will see) and the back-end
(what the user will not see) is an important part of any project. When dealing with
a device that are used for testing different drink combinations, memorizing certain
pieces of information carries significant weight, and it is important if not tantamount
that there is a clear understanding of how and when memory is affected in this
project.

6.15.1 Login

The first memory access (regardless of the intention of the user) occurs when the
user logs in. The user inputs their username and password into the front-end,
which is sent off to the back-end. From here, the username and password are
compared with the information stored in the memory. If the usernames and
passwords are correct, then a “pass” is sent back to the front end and the user can
enter the Main/Start Page. However, if either the username or password do not
match with the recorded memory, an error screen displaying this is sent to the

76

user, preventing them from advancing; if both the username and password are
failures, the system will assume that the username is incorrect.

6.15.2 Activity Log Page

When accessing the Activity Log page, the back-end sends the actions committed
by each user as a list ordered based on most recent user activity and what actions
they took. This allows for security checks to occur if any unauthorized access
occurs.

6.15.3 Test Batches/Presets Used Page

When accessing the Test Batches/Presets Used page, the back-end sends a list
of usages for each preset (listed in order of most recent usage). It will then list the
usage of ingredients. From here, users can view which combinations prove
popular for testing, and adjust inventory management as needed.

6.15.4 Adjust Inputs Page

When accessing the Adjust Inputs page, the front-end allows the user to change
values for the inputs available. When the user has finished making changes, the
front-end sends the changes to the back-end. The new information is written to
the memory, updating the system with the new information.

6.15.4 Add New Login Page

When accessing the Add New Login page, the front-end allows the user to add an
additional user. When the user has finished setting up the new account, the front-
end sends the changes to the back-end, where the new user is written into
memory.

6.15.5 Brew New Options Page

When accessing the Brew New Options page, the front-end allows the user to
create a new mixture. When creating a new mixture, they can add a name to the
mix while deciding on the proper ingredient amounts. When the user has brewed
the beverage, the user can choose to save the mixture as a preset for next time; if
the user chooses to do this, the front-end sends the recipe along with the name to
the back-end, where the preset is written into memory. It should be noted that this
cannot occur if there are currently 32 active presets already written into the system;

77

this is to limit the data changes and ensure that the user doesn’t stockpile recipes
that will not be used.

6.15.6 Brew Preset Page

When accessing the Brew Preset Page, the back-end sends a list of presets to the
front-end upon page entrance. The list is limited, only showing 4 presets per page;
to list all 32 presets on one page would be impossible with the size of the
touchscreen available. To access other presets, the user will need to choose the
next/previous page option, which will load up the next presets on the list. Should
the user feel the need to delete any preset, the front-end will send the back-end a
deletion notice, which will lead to the preset being removed from the list and the
memory being updated via writing the new list. For the purposes of operation, this
removes the preset at the current position, and moves all other presets below it up
by one.

6.16.0 MERN Stack

In a previous section, we noted the dangers of using an embedded approach

with Javascript as the core language and reliance on the Java Virtual Machine. If

the resource expenditure is deemed appropriate, then we can now consider the

solution methods allowed by that framework.

Considering the problem of login, we need the ability to host a server that has

internet connection and is able to write to pins of the board on command. As noted

before, this means that we need some level of multithreading or at least the

appearance of it. Add in the complication of producing a UI as well, and the idea

of a web-application may come to the mind of some experienced software

designers. However we are dealing with an embedded environment. Knowing our

limitation on memory and speed might cause us to disregard the idea of a MERN

stack outright. However given the strength of the CPUs being considered and the

disk space provided by the SD card, our only limitation would be the need for an

Operating System and the memory available to support the Java Virtual Machine.

Let us define the components of a MERN stack and it’s feasibility.

The MERN Stack consists of MongoDB, Express, React, and Node.js.

6.16.1.0 MongoDB

78

MongoDB is a non-relational database that stores data in groups known as

Collections. Each collection is defined by a Mongoose Schema and are JSON

(Java Script Object Notation). A JSON object can be thought of as a HashMap

where each variable name is replaced by a key and the value is just an object.

Since it’s just an object, it can be anything. A string, an integer, or another JSON.

For the purpose of our project, we could create a Schema just for authentication.

An example would be,

const Schema Authentication = new Schema ({
loginName: String,
password: String
userID: String

}

Of course these would not be stored in plain text with their true values but would

be stored in their encrypted form by some algorithm similar to the one described

in the above sections. We could also easily create similar schemas for our logging.

Using the struct defined before but in Mongoose Schema form.

The userID variable is what maps the authentication object to the user object which

holds all the user’s presets. Assuming login is successful, the user object can be

passed to the instantiation of the session formed with the device.

6.16.1.1 MongoDB Local Storage

There are two options for where we can store the database. One is external on

some third-party hosting. This would mean connecting to them through the internet

and sending the queries via HTTP. The other is host a Mongo database on the Pi.

Ultimately the implementation of this is largely the same as if we were to have it

hosted externally.

So what are the benefits? Well for one if the design is decided to not allow wireless

connection to the internet, the database would still be available. The downside if

that our own machine needs to process lookups and writes instead of using the

machine of the hosting server. So although we gain some degree of independence,

we suffer a loss in speed/performance.

A large downside of this is consider when the system is offline. If we wanted to

review the system’s data remotely, we only have the connection to the system to

79

do so. However that connection no longer exists. Thus our ability to check the data

around the clock a direct result of the system being online around the clock.

6.16.1.2 MongoDB Remote Storage

There are many third-parties that offer the ability to do this. A free one with

reasonable space is Atlas. It offers about 500MB for free which is much more than

what we’ll need. Connection is easy to be made via the Mongoose library and has

prewritten functions for writing queries to the database. All that’s needed is the key

and login information of the database which is made upon creation. Similarly, a

key is used for local database management as well.

The most glaring benefit of using a third party for storage is that the only processing

we do for retrieving and saving data is the request. This request is made through

an HTTP call. So in reality, the only processing we do it an HTTP request. We

leave the actual navigation of the database, storing, and uniqueness validation to

the remote host.

The second bonus of this is that the data stored there is always available to us.

This of course that the third-party will always be available which is actually one of

the faults of this approach. Placing our data on a remote server means relying on

them to always have it available and their servers up. This might not always be the

case. So it would be wise to backup our data on one of our own servers. Preserving

the data and the functionality of it in the event that the remote database is

temporarily or permanently lost.

The overhead of this is that the WiFi of our device will need to be reasonably fast

if we’re going to making perhaps a couple hundred write/read requests a second

when we consider logging. The exact amount of times we may want to do these

operation may be bottlenecked by our connection if we decide on using an external

storage.

6.16.1.3 Mongoose

Mongoose is an open-source library that is used to communicate with a MongoDB.

It is able to form the connection and then make queries. It provides a compact

approach of this through methods of a mongoose object.

80

If you recall, a userID was placed in the AuthenticationSchema. The reasoning

was to be able to directly reference a user object containing a set of presets

designated by that user. So once a user logs in, how would I know who that login

information belonged to if I did not have a pointer to it? Would it have made more

sense to place the Authentication information inside the User Schema?

Consider that you wanted to enter a Rome and you required a pass. Every resident

and traveler to that city has a pass to get in. The pass is itself a unique object that

defines who can use. But does the pass identify anything about the person using

it? Certainly not. It is the person who can use it that defines the pass. So it follows

that since a user defines a pass, the pass should not contain information about the

user other than a reference to them. Similarly, the user doesn’t need to contain

information about the pass. So Authentication receives it’s own Schema that

contains a reference to the user. And the user contains no references to the

authentication.

Now consider how this containment would work for our application. Once a login

is received, we would need to search the database for entries matching the

username given. The username must be unique and this is enforced at the time a

Schema is created with

 loginName: {
 type: String,
 unique: true

}

Mongoose then provide find() function for the schema. You can pass a JSON

object containing the parameters that need to match the object being returned.

Note that this is not a promise that there is only one object in the collection

matching that description. Thus find() returns an array of object regardless of the

number of object found. Once we receive the object, since the schema guaranteed

the username was unique, we know the array areof size one and the authentication

object we are concerned with areat the zero index.

Now that we have the object, we confirm that the passwords match by first running

the given password to the encryptor. If the two encrypted strings match, we can

then allow for authentication and create a session.

Recall in the session, we need to include the user object. Now we make another

call using mongoose, findById(). In MongoDB, when an object is added to a

81

collection, it is automatically added with a unique id under a _id field. So when we

create an authentication, we would simultaneously have created a user object.

That user object would have a unique _id and that is what we would store in the

Authentication userID field.

With authentication being accepted, we use the findByID function and the userID

field returned from the login request, to search for the target user and stores their

information and preferences into the session created for the current user.

Additionally, there are other functions that will serve us well for updating, and

deleting data from the database.

Lastly, a note about using Mongoose to delete values from a JSON object is that

it is not simply enough to rewrite the object by saving a cloned version with the

intended object removed. MongoDB favors , and rightfully so, explicit deletion. That

is that simply because the field was not placed into the copied object, does not

necessarily mean that you want to delete that object. It may have been the intent

of the user to update the series of fields included and preserve the ones ignored.

Thus to remove a field and its value from the object, you must save it with field

included but with the value set to undefined. The undefined value is considered a

flag for deletion and willfully expresses the intent of the user to delete that field.

6.16.1.4 Conclusion

Recall the concerns faced by using files as our pseudo-database from the C only

approach. There were problems considered about using Global pointers, opening

and closing files too often, and the problem of synchronizing data between tasks

due to not know what data is new or old.

A remote MongoDB does not remedy the issue of what data is new and what is

old for logging. If a call is made to the database to retrieve logging information, that

data still needs to be parsed to update the frontend for the new values.

But it does remedy the worry of opening/closing files and/or an unwanted reliance

on global values. This means to we avoid the computation and complication

overhead of the solutions offered to those problems for the tradeoff on relying on

an internet connection.

82

6.16.2.0 Express

Express arethe framework for Node.js. It is provided under the MIT license and

areour main access point from the internet.

At initialization time, we designate to the express objects what ports it should listen

to. Thus we must guarantee that a port is open on our device.

6.16.2.1 API

Consider a user a remote user is attempting to make a call to the device to begin

brewing beverages. It must have some way of communicating exactly that

intention. Or consider that the user wants to change the polling rate of the sensors,

or delete old data, or set new preferences. For every option the user has, there

must be a clear protocol between the device and the user’s application of what

they are allowed to do and what information they must send over to achieve that

result. Thus the device will need some Application Protocol Interface. Express

offers a simple way of implementing this via routing.

6.16.2.2 Routing

The idea is that now that we have an endpoint open for our device, we can use a

similar idea to subnetting for specifying intentions. So suppose that we have

opened our devices’ server on http://localhost:8080. Now we know we have a

collection of authentications and a user wants to create a new authentication

(create a new account). We specify an endpoint for them do this on through

express. In particular we can route all actions regarding authentication to a single

endpoint. http://localhost:8080/authentication.

This is handled by Expresse’s router object. Once we instantiate a router, we can

specify it’s function by using

router.<HttpRequest>(“/function”, function(…))

• router – is the router object

• HttpRequest – is the HTTP GET/PUT/… request made by the application

• “/function” – is the endpoint appended on our host domain

• Function() – is the actual logic to be followed.

83

So for authentication it might an authenticate function which would could be a GET

request.

Now that we have defined our routing, we simply include it in original express

object specifying the /authentication maps to routes we created for it.

6.16.3.0 React

Figure 28: React Overview

Courtesy of https://blog.frevvo.com/reacting-to-react/

Now recall before that we were using the UTFT library to create our User Interface.

In the MERN stack we have React. React is a set of libraries that places the HTML

code normally used for front-end development into more modern looking versions

of itself with some added capabilities. Overall React is essential to the project and

could be easily replaced with just standard HTML without any noticeable loss in

function. And perhaps even a slight increase in response time since. The reason

for this is that the libraries used by React are ultimately still HTML in some form

with added CSS to make it looks a better. Thus we’d be using the base HTML with

a flavoring on top for added aesthetic.

A downside of React is that it requires a considerable bit of memory to use. The

library alone is approximately 300MB. So the rationale is that if we’re going to use

a large SD card, it might be useful to take advantage of the tools given to create

the most visually pleasing User Interface.

84

There’s no reason to sacrifice a chance to make our application look better if we

have the resources for it.

6.16.3.1 Components

In React the HTML code is divided into components. Components are the like the

blueprint of the HTML but written in a similar syntax. Like a house being built, React

provides the language with which to measure and specify how the house should

look and feel. The HTML code being the cemented establishment derived from the

React component specification.

Because of React’s popularity, it has gained a wide spread code support from its

users. As a result, most things you can conceive of wanting to do on web page,

React has some component already made to help with that.

Consider you want to make a button on your page. In HTML a simple <button>

would work. But there’s a limitation to the original HTML button design. They were

intended to be used submitting forms. So the attributes you can specify in only

HTML directly follow only from that functionality. You can tell the button where to

send the data (URL) and what method to use to send it (POST, GET). However

you cannot specify code to be done before submitting or just to run some set of

code independently.

That is, suppose you want a button that updates a current list of items on screen.

But the screen is quite dense with information and you’re typing up some more

information on other parts of the current page. Thus you don’t want to reload the

whole page. You only want the data that needs updating to be reloaded.

This is where React starts to show its value. Because React was designed with

the knowledge that it would run alongside Javascript, it implemented ways of

deffering variable name calls and even entire processes to Javascript equivalent.

So suppose you had some function written called updateItems(). A React Button

has a property onClick which expects to receive a Javascript function. Then when

the button is clicked, it’s that function that is called. So no promise is made to

reload a page, or direct input somewhere else.

This is liberating because now we can allow a button to have arbitrary functionality.

85

6.16.3.2 App.js

This is the manifest file of a React application. When Node.js is started, a script is

ran, react-start. This script looks at the /src directory of a project and looks for the

App.js file.

This file is used to specify to the application all the Routes to be used by the

application. Similar to how we specified the router for Express, we specify which

endpoints correspond to which Javascript files we’ve created. That is supposed

we have written a page for Logging called Logging.js. When a user is on our

domain, we want the path there to be http://localhost:3000/logging. Note the

change in port as opposed to the routing API we specified earlier. That’s because

it's good practice to decouple your API from your frontend application. The reason

being if you want to work on one portion and it starts misbehaving as a result, you

haven’t lost the functionality of the other portion.

In order to map the Logging.js to that endpoint we simply add a route to it in App.js

<Route exact path="/logging" component={Logging} />

Using this for all the pages needed by the application provides an easy to maintain,

top level view of the application’s components.

6.16.3.3 render()

When a component page is being loaded, it looks for a render() function. This

function is the page but serves return the components and their functionality to the

called which is the main process running the application, Node.js.

The render function is called when new changes happen to the screen. But Node.js

is clever. It doesn’t simply need to redraw all the components. By default, when

the state of the page is changed, render is called, but it can be specified what to

do on update so that the entire page isn’t reloaded which was that problem we

wanted to avoid with the original html button.

shouldComponentUpdate() is the function we can overwrite on each component

to tell the component on a change of state exactly what we want it to reload. Thus

86

with some care, we can specify only the portion that requires reloading and not the

entire page.

6.16.3.4 React state

Consider a user logging into a system. Once the user logs in, his information needs

to get passed from the login page once authentication is confirmed, to the next

page. And the next page, and so on. It’s a set of data that needs to be preserved

and maintained throughout the use of the application.

Enter the state. A state is a variable that exists at component level that holds all

the relevant data for that component. Thus all functions being used within that

component have the scope to view the state. It’s a common approach to pass

states between pages. So whenever there is a link being used by one component,

some state data is preserved and passed in to the next component. Notice how

this is different from global state. Instead of existing at a higher level of visibility

than the current component, it exists at component visibility. And a copy is passed

to the next component visibility when a call to change components is made.

But there is an alternative. State passing may be useful, but having a global state

has the benefit of allowing for multiple pages to be interacting at the same time.

That is suppose that a user has a session on our application. On page they have

opened is to the logging information. They are currently tracking changes in the

production. Simultaneously they have a page open to the presets page. They are

in the process of changing the presets. Deleting or creating new ones. In particular

they are changing the presets of the current log they are tracking on the other

page. So once the changes are made on the one presets page, the logging page

should immediately start reflecting the change. If the data was only being

preserved in local state to the components, this would not be possible. The new

updated state from the presets page would need to be passed to the logging page

and the logging page reloaded. However we circumvent this problem entirely by

providing a global store of data that is within scope to both components

simultaneously.

6.16.3.5 React Redux

87

Figure 29: Redux Data Flow

Image courtesy of Github Open-Source reduxjs Project

Redux is another open-source library to aid in the development of React projects.

It’s function is to create, maintain and secure the protocol for a global store that

other components can share a live feed to.

Given some Action by the user, Redux uses a dispatcher function specified by the

developer to update the necessary data. It can use middleware to connect with the

API routes written from Express. And then uses a reduces to merge the data into

the new data into the store. The View, or the Component in our case, is constantly

monitoring the store’s state and on a change is able to use the new data.

6.16.3.6 onComponentDidMount()

The next key function when a Component page is loaded it the

onComponentDidMount(). It is called before the render function and serves to do

any preprocessing the page requires before displaying the information to a user.

An example might be updating visits, or verifying the state of the Redux store.

88

6.17.0 Axios

Axios is another open-source library that is useful for our project. As mentioned we

are hosting our API on a Node.js server. So it areopen to the internet and the API

is accessed by making calls to the endpoints of the server. So if our components

are running on Javascript code, we need code that can hit those endpoints. This

is how Axios comes in.

Axios allows Javascript to make HTTP requests to any endpoint desired and

include a body or set of parameters in the requests.

6.17.1 Node.js

This arewhat actually runs our server. Express and React setup our logic and

Node.js opens to ports on our device to be open to the internet.

With this, we’ve completed our MERN stack.

6.18 Tentative Schematic Design

The following is the tentative schematic design for the project:

89

Figure 30: Tentative Schematic

In this schematic it consists of 7 main parts:

• Microcontroller

• 12v to 5v converter

• 5v to 1.8 converter

• 16 Channel Servo Driver

• Load cell amplifier

• Touchscreen

• Thermometer

These 5 parts are all going to be part of the PCB that’s going to be used in this

project. In senior design 2 this schematic design is more than likely going to be

changed either due to a design change or to make the schematic more efficient

ect…

6.18.1 Microcontroller

90

The microcontroller is the central part of the schematic design. Everything is

connected to it. The important thing to note about the microcontroller is the power

and gnd pins.

The following power pins are connected to the 1.8v power source:

• VDDIO

• VDDOUT

• VDDIN

• VDDBU

• VDDPLL

• VDDCORE

The following ground pins are grounded:

• GNDUTMI

• GNDBU

• GNDPLL

• GNDANA

• GND

6.18.2 12v to 5v Converter

This 12v to 5v buck converter steps down the voltage from the power source which

is 12v to 5v. The 5v power source is used to power the servo driver and the load

cell amplifier.

The 5v voltage that has gone through this converter is then used in another buck

converter in this schematic.

6.18.3 5v to 1.8v Converter

The 5v to 1.8v buck converter steps down the voltage from the 12v to 5v buck converter

so that microcontroller can be powered. The microcontroller has an operating supply

voltage of 1.8V so using 5v or 12v would destroy the microcontroller and is the reason

why the voltage has the brought down twice for it to be used in the microcontroller.

91

6.18.4 16 Channel Servo Driver

To make the 6 servos work in this project a servo driver must be used. The pins

on the board are separated into power pins and controls pins. There are 3 types

of power pins:

• GND

• VCC

• V+

The GND pin is of course connected to the ground. VCC is the supply voltage for

the servo driver and must be between 3-5V and for this project all the VCCs are

5v. The V+ is an optional power pin that distributes power to the servos and isn’t

going to be used in this project.

There are 3 control pins:

• SCL

• SDA

• OE

The SCL pin is an I2C clock pin that connects to an I2C clock line on the

microcontroller. The SDA pin is the same as the SCL but it would be connected to

a different I2C clock line. The OE pin is an output enable and is used to disable all

the outputs when high and enables all the outputs when low. This is an optional

pin and won’t be used in this project.

6.18.5 Load Cell Amplifier

For the chosen Load Cell the wiring will look as follows:

Figure 31: Load Cell Wiring

92

On the load cell board there are colors that are associated with each node on the

Wheatstone bridge and the following table shows which color is associated with

which node on the bridge:

Wheatstone Bridge Node Wire Color

Excition E+ or Vcc Red

Excition E- or Gnd Black or Yellow

Output+ O+, Signal S+, or Amplifier +

A+

White

O-, S-, A- Green or Blue

Table 16: Wire Colors

These connections are found on the left side of the load cell board and connects

to the amplifier. On the right side of the board there are 5 connections that need to

be made to the controller for the load cell to function.

• VDD

• VCC

• DAT

• CLK

• GND

The VCC is the analog voltage that is going to actually power the load cell and the

VDD is the voltage that is used to set the logic level. So for this case the VCC is

5v and the logic of the microcontroller 1.8 so VDD is 1.8V.

The GND pin is connected to the ground and the DAT AND CLK pins needs to be

connected to the microcontroller. A GPIO pin on the microcontroller will work with

the DAT and CLK pins.

6.18.6 Touchscreen

The touchscreen connects to the microcontroller through SPI. The pins that use

SPI on the microcontroller are as follows:

I/0 Pin Peripheral A

PA25 SPI0_MISO

PA26 SPI0_MOSI

PA27 SPI0_SPCK

93

PA28 SPI0_NPCS0

PA29 SPI0_NPCS1

Table 17: SPI Pins

A pin header is used to connect the pins on the touchscreen to the pins on the

microcontroller.

6.18.7 Thermometer

A thermometer is going to be connected to a 3 pin header.

• VCC

• I/O

• GND

The VCC pin is going to be the 5v power that is used across the board. The I/O

pin connects to the microcontroller. GND of course connects to ground. A resistor

is connected in between the VCC and I/0 pin.

6.19.0 Software Final Design

Before we define the final design we acknowledge our hardware to work with. We

are working with half a megabyte of flash memory, 64KB of RAM. Our libraries and

expected data places us about 111KB of memory being needed just for our code

to start. Thus we have a significant code space. But there is a complication. These

libraries need to either be in the flash memory or in programmed to them. We know

we can program the chip to run our code, but how can we load a library onto it

before we program our code to run there.

Assuming that we can transfer the files to our chip, we’re well within our memory

restrictions. So there’s no cause to be alarmed.

• We opt for the URTouch and UTFT libraries discussed in 6.13.

• The Cyclic Logging index technique mention in 6.13 Logging Revisited

• The system will not support wifi, or remote login

• And the we opt for the data types derived in 6.13

94

7.0 Testing

To ensure that the product is safe for use and effective, proper testing must be
done on all levels; an individual part lagging may cause a cascading failure later.
Through testing, a product can be refined to allow for more accurate
measurements and smoother running of software.

7.1 Hardware Testing

Hardware testing aredone both on an individual component level, then with
combinations of the components. Almost all testing will occur in room-temperature
lab room, to help establish a medium through which all parts are equally tested.

Testing of the hardware begins with all components individually; this is both to
ensure that all of the hardware that was ordered is operating correctly and to give
a clearer example as range and speed of operation. Component testing beings
with valves; allowing the team to know what makes the valve move and the limit of
that movement set the foundation for future work on the project, as the valves are
critical for the actual operation of the Micro Manufacturing Beverage System.

The next major set of components tested focus on the sensors. Without the
sensors, there would be no clear way of understanding if the temperature,
pressure, and weights for each ingredient are in a stable condition; if the
ingredients are in an unstable condition, problems associated with brewing
become much more likely to occur. As a result, the sensors are nearly as important
to the b Micro Manufacturing Beverage System as the actual brewing components
of the Micro Manufacturing Beverage System. Each sensor is tested individually
and put through a small but noticeable variety of circumstance to help identify the
best possible locations for each sensor. With the sensors in the right place, the
chances of potential problems getting caught early before brewing increases
greatly.

The last major set of components boils down to the actual brewing equipment,
such as tubes are moving the ingredients or the pressurized gas for actual brewing.
This is less about stress testing and more so about ensuring all parts are operating
correctly (i.e. the tubes do not leak).

After individual parts have been tested, the system is built, during which additional
testing occurs when several components interact with each other. It is during this
stage that the timing used for the valve system during the brewing arefound; after
running several tests, the group areable to narrow down the timing offsets required
to account for turning the valve on and off with regards to ingredient management.

95

Upon full construction, the Micro Manufacturing Beverage System aretested to
ensure that no parts were improperly installed. At this point, the testing that went
into individual parts has made all members of the group intimately familiar with
each component that they can identify any problems that may come up with the
installation.

7.2 Hardware Specific Testing

1. Power Operations
a. User turns power off for Micro Manufacturing Beverage System

i. Expected Result: the Micro Manufacturing Beverage System
should turned off almost immediately and becomes
inoperable as a result of power loss

b. User turns power on for Micro Manufacturing Beverage System

i. Expected Result: the Micro Manufacturing Beverage System
turns on quickly and begins loading OS for use within 10
seconds of power-on.

ii. Practical Alternative: the Micro Manufacturing Beverage

System may wait up to 30 seconds between power-on to
operational state.

2. Temperature Sensors

a. Temperature sensor is held in controlled environment at X degrees
i. Expected Result: Temperature Sensor will have display X

degrees as an output

ii. Practical Alternative: Temperature sensor displays a
temperature with 1 degree of the controlled X temperature.

b. Temperature sensor is held in correct place, with value checked

against a thermometer
i. Expected Result: the temperature read by the thermometer is

the same as the temperature found by the temperature sensor

ii. Practical Alternative: the difference in temperature values
between the thermometer and the temperature sensor are
roughly 1 degree.

The temperature sensor is allowed to be off by a degree since the Micro
Manufacturing Beverage System is not allowed to operate unless it is at least 4
degrees below the upper “spoil” point and 4 degrees above the lower “spoil” point.
As a result, the temperature sensor does not need to be exact; the temperature
sensor just needs to be able to tell if the temperature is significantly off balance for
operational purposes.

96

3. Weight Sensors

a. Weight sensor is tested with an object that weighs X grams
i. Expected Result: the weight sensor will display X grams as an

output

b. Weight sensor is used in common operation and compared to
another weighing device

i. Expected Result: the weight sensor’s output will match the
output given by the other weighing device

Unlike temperature sensors, the weight sensor cannot have a sizeable level of
tolerance due to how a slightly different amount of ingredient input can significantly
change both the output that was requested as well as the level of leftover input
ingredients. The weight sensors have to be significantly accurate; its values have
to be within a gram of the expected amount at most, and even then this may be
cause for an error.

4. Valves
a. The system is given an input amount (via software calculation), and

the valve is then sent a signal to open. After a calculated time (again
via software), a signal is sent to close the valve.

i. Expected Result: the Micro Manufacturing Beverage System
will fill the testing container with the expected input amount.

Additional test may be necessary as the project moves from the conceptual phase
and onto the building/coding phase.

7.2.0 Display Testing

The display used in this project is a 800x480 TFT touchscreen. In order to properly
drive the display using an ARM Cortex M3, the RA8875 driver board from Adafruit
was used. This board handles all of the parameters of the touchscreen including
memory, refresh speed, and pin requirement. If the ARM Cortex M3 was used to
drive the touchscreen, more than 40 pins would have been required. The RA8875
breakout board communicates with the MCU using SPI, and only needs 6 pins for
communication and 3 for power.

The 6 pins used for communication are INT, RST, CS, MOSI, MISO, and SCK.
These pins are used to transmit packets of data using SPI protocol to simply control
of the board from an external MCU. The connections are shown in figure 25.

Since the RA88775 is a 5V chip, high-speed level shifters are used to translate
logic between the 3.3V ARM chip. The on-board level shifter used is the
CD74HC4050 from Texas Instruments. This level shifter has a very small
propagation delay (approximately 10ns) which makes it ideal for driving a display.

97

The 3 pins used for power are GND, 3Vo, and VIN. The GND pin must be the same
for all boards and power sources. This is a common ground between all
components. The 3Vo pin is used in level shifting, since there is a voltage
discrepancy in the logic. The 3Vo pin is used as a reference for the level shifters.
The VIN pin is connected to the 5V power source. The display as well as the
RA8875 IC are powered by 5V. This configuration is shown in figure 32.

Figure 32: RA8875 Driver Board Connection

To test the display, the Adafruit RA8875 library was downloaded and example
sketch “buildtest” was uploaded to the Arduino Due using the Arduino IDE. The
code iterated through different display colors and finally allowed the user to draw
on the screen. This is shown in figure 33, where the display is colored green. The
Arduino Due is at the top of the image (circled in blue). The Arduino Due is
connected to the RA8875 board (circled in pink) using 6 jumper wires for
communication and 2 jumper wires for power. The power lines are GND and 3Vo.
The Arduino UNO (circled in green) is used as a 5V power source. During actual
operation, the Arduino UNO arereplaced by the TPS40305 5V regulator. The
regulator is connected to the GND and VIN pins on the RA8875 board.

98

Figure 33: Display Testing

7.2.1 Servo Testing

The servos used in this project were chosen for primarily for the torque they could
output. This is extremely important in order to ensure the servo can rotate the ball
valve consistently. This was an area of interest during testing. Two other primary
interests during testing were making sure that the level shifters worked and also
that the servo could accurately and consistently rotate 90 degrees.

The entire setup that was used in testing the servos is shown in figure 34. The
Arduino Due (circled in blue) is connected to the level shifter (circled in pink) using
three jumper wires. The PWM which drives the servo motor is outputted from digital
pin 9 on the Arduino Due. The 5V power which drives the servo power pin and
converts the 3.3V ARM logic is outputted from the Arduino Uno (circled in red).
The Arduino Uno was used as a 5V power supply for testing, but during
implementation all 5V power will come from the TPS40305 5V regulator. The servo
motor is circled in yellow and the ball valve is circled in orange.

99

Figure 34: Servo Testing Setup

The servo control line requires 5V PWM signals to operate properly. The motor will
except a 3.3V PWM signal, however the torque output aresignificantly lower. In
order to properly operate the servo motor, a bi-directional level shifter was used to
step the 3.3V PWM signal to a 5V PWM signal. The connection of the level shifter
is shown in figure 35. The left side of the level shifter is for the lower voltage level
(3.3V). The right side is for the higher voltage level (5V). Pin 9 on the Arduino due
(black jumper wire on the left side) is connected to the LV1 on the level shifter. The
3.3V power pin on the Arduino Due is connected to the LV pin on the level shifter
(brown jumper on left side). The GND pin on the Arduino Due is connected to the
GND pin on the level shifter (white jumper on the left side). The servo data pin is
connected to the HV1 pin on the level shifter (white jumper on the right side). The
5V power is connected to the HV pin on the level shifter (black jumper on the right
side) and the GND pin on the level shifter is connected to the common ground
between all devices (grey jumper on the right side).

100

Figure 35: Level Shifter Connections

An important aspect of testing the servo motors was making sure that the servo
produced enough torque to rotate the ball valve. The servo was connected to the
ball valve using M2 machine screws and a servo horn. To produce maximum
torque on the ball valve, the servo horn must be as long as possible and be
mounted as close to the tip of the lever on the ball valve. The servo horn must also
be mounted snugly in order to reduce vibration, which will reduce induced torque.
The connection between the servo and the ball valve (circled in red) is shown in
figure 36 To test the servo motor, an example sketch was used from the Adafruit
servo library. The sketch “servo_test” was uploaded to the Arduino Due using the
Arduino IDE. The test code will rotate to servo 90 degrees in and then –90 degrees
to return to the starting position. The code used to test is shown below.

#include <Servo.h>

Servo myservo; // create servo object to control a servo

// twelve servo objects can be created on most boards

int pos = 0; // variable to store the servo position

101

void setup() {
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
}

void loop() {
 for (pos = 0; pos <= 90; pos += 1) { // goes from 0 degrees to 180 degrees

 // in steps of 1 degree

 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position

 }
 for (pos = 90; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees

 myservo.write(pos); // tell servo to go to position in variable 'pos'
 delay(15); // waits 15ms for the servo to reach the position

 }
}

To test if the servo was able to handle the load. I observed the servo rotate under
no load to see if the servo was able to rotate properly and position properly. I then
attached the servo to the ball valve (as shown in figure 36) and observed how the
servo functioned under load. The servo was able to rotate the lever on the ball
valve (shutting it on and off). The servo also appeared to be able to rotate the full
90 degrees and also appeared to center properly by visual inspection.

Figure 36: Servo/Ball-Valve Connection

102

7.2.2 Load Cell Testing

To test the load cell, the setup shown in figure 37 was used. The Arduino Due
(circled in yellow) is connected to the load cell using pin 2 for load cell data and
pin 3 for load cell clock. The 3V and GND pins are also used for level shifting. The
Arduino Uno (circled in red) is used as a 5V power source. The HX711 board is
used as an amplifier and ADC (circled in blue). Since the MCU outputs 3.3V logic,
level shifters (circled in pink) were used. The load cell (circled in green) is
connected to the HX711 board.

Figure 37: Load Cell Testing Setup

The loadcell was configured and was tested using the following code from
“HX711_basic_example” in the HX711 library on the Arduino IDE.

#include "HX711.h"

// HX711 circuit wiring

const int LOADCELL_DOUT_PIN = 2;

103

const int LOADCELL_SCK_PIN = 3;

HX711 scale;

void setup() {

 Serial.begin(57600);

 scale.begin(LOADCELL_DOUT_PIN, LOADCELL_SCK_PIN);

}

void loop() {

 if (scale.is_ready()) {

 long reading = scale.read();

 Serial.print("HX711 reading: ");

 Serial.println(reading);

 } else {

 Serial.println("HX711 not found.");

 }

 delay(1000);

}

The code displays readings from the load cell to a serial monitor at a 57600 baud
rate. The load cell continued to spit out a range of values even when no force was
applied. To make sure that the load cell was working properly, a force was applied
to the load cell and the change in values was observed. To test the accuracy of
the load cell was, a 100g weight was used for calibration. Before calibrating, an
appropriate offset value had to be chosen since the load cell was sending a range
of readings to the serial monitor even when no force was applied. To find this offset
value, an average of the values was taken. The offset value chosen was 8334655.
After the offset was entered, the load cell values ranged between –30 to 30 under
no force. When the 100g weight was placed on the load cell, the values hovered
around 40844. To convert the output to grams, the entire reading and offset were
divided by 408.44. This effectively converted the readings to grams. After entering
the line of code shown below, the output displayed values that ranged between
99.87 - 100.03.

Serial.println(reading – 8334655 / 408.44f);

The load cell in this project contains two strain gauges in a half-bridge
configuration. One strain gauge is located at the top of the cell and one is located
at the bottom. The output of the device has four connections, E-, E+, A-, and A+.
The ‘E’ lines are input (reference) voltage. The ‘A’ lines are the analog outputs.

104

Figure 38: Load Cell/HX711 connection

The output of the HX711 board is the load cell data line (DT). The SCK line is used
to sync the clocks of the devices. The DT connection on the HX711 board is fed
into pin 2 on the Arduino Due. The SCK connection is fed into pin 3 on the Arduino
Due. This connection is shown in figure 39.

105

Figure 39: Load Cell Data Output and Clock

In order to properly connect the HX711 board to the Arduino Due, level shifters
were used. The only connections that needed to be level shifter were the
connections to the Arduino Due I/O pins. The connections were the DT to pin 2
connection and the SCK to pin 3 connection. The configuration used to properly
level shift the logic is shown in figure 40. Line 1 is connected to the DT pin on the
HX711 board. Line 5 on the low voltage side of the shifters is connected to pin 2
on the Arduino Due. Line 2 is connected to the SCK pin on the HX711 board. Line
6 on the low voltage side is connected to pin 3 on the Arduino Due. Line 3 is
connected to 5V and Line 4 is connected to common GND. Line 7 is connected to
3V and line 8 is connected to common GND.

106

Figure 40: Level Shifter Connections

7.3 Software Testing Environment

Software testing are completed with tested inputs in the system and will occur over
the course of coding the software for the project as well as when the project is
completed.

Software testing will occur in twice: a) when writing the code, to ensure that the
code is working properly and will achieve the proper result (or error in the case of
error testing), and b) when the device is fully built, to ensure that the final product
is operating smoothly and correctly. The reason for this break-up in testing is that
scenario A testing is much easier to accomplish than scenario B, especially since
scenario B will occur during a time when it aredifficult to re-code the system; when
everything is in place, it is not desirable to have to remove the any components.

In scenario A, testing will occur via the IDE used for creating the code. In Scenario
B, it area visual test of the system and its outputs.

107

7.4 Software Specific Testing

1. Login system
a. User inputs false username and password

i. Expected result: User receives error stating incorrect
username

b. User inputs correct username but false password

i. Expected result: User receives error stating incorrect
password

c. User inputs incorrect username but correct password

i. Expected result: user receives error stating incorrect
username (system assumes username is wrong before
password is wrong)

d. User inputs correct username and password

i. Expected result: user is logged in, sees Start/Main Page

e. Under the Settings page, select the Add New Login page, and create
a new username and password, then log out and attempt log in using
the new username and password

i. Expected result: user is logged in, sees Start/Main Page

Arguably one of the most important security features of the product is the login
system; without it, anyone would be able to use the product. As such, it is
tantamount that the login system works properly so that only authorized individual
may use the product. A username and password are used to determine if the user
attempting to log in is authorized for use; the system assumes that a username is
wrong before a password is wrong, so that an unauthorized user cannot simply try
passwords as well.

2. Page movement
a. User will move between all pages, moving forward and back as

necessary to ensure all paths are working appropriately
i. Expected result: no difficulty moving between pages

b. User will attempt to move between pages whenever possible while
sensors feed false data designed to display errors

i. Expected result: user areunable to access the Brew Page,
and therefore unable to brew anything at this time.

Page movement is obviously important; if you cannot move between UI pages,
there isn’t a whole that can be accomplished with the Micro Manufacturing
Beverage System. The tests are mostly to ensure that the system is working

108

properly, rather than acting a stress test for the Micro Manufacturing Beverage
System.

3. Sensor and Sensor Errors
a. Input false temperature sensor data

i. Expected result: user receives error stating which
temperature sensor is failing

b. Input false weight sensor data during a “brewing” cycle (only for

software testing)
i. Expected result: user receives error stating weight is incorrect

and to return container to drink output tray

c. Attempt to brew when there is not enough ingredient available
i. Expected result: user receives error stating that they cannot

brew due to a lack of ingredients

d. Load up either the Main Page or the Brewing Page, and compare the
temperature found there to the temperature measured via a standard
thermometer in the same location as the sensor

i. Expected result: the two values should be equal, or at least a
close match

e. Go to the Logs page and go to the Freezer Levels Page. Compare

the displayed value for sensors a simulated value input into the code
i. Expected result: the values should be a match

Because the Micro Manufacturing Beverage System is designed to create
beverages, a major part of the project revolves around sensors that are supposed
to ensure that all ingredients are in good condition (even if the Micro Manufacturing
Beverage System is designed for test purposes rather than large-scale
automation). If the sensor can’t detect that the ingredients are non-optimal, it can
an effect on the drink that the Micro Manufacturing Beverage System produces; at
incorrect temperatures, it the ingredients may be spoiled or frozen, and at incorrect
pressures, the valves might close too early or too late to properly create the
combination of ingredients that were requested.

4. Memory checks
a. Input string of data for user to view in Activity Log

i. Expected result: user views data correctly as a list; this is less
of an error check and more of a translation check for the
system

b. Input string of data for user to view in Test Batches/Presets Used

i. Expected result: user views data correctly as a list; as with the
previous check, this is less of an error check and more of a
translation check for the system

109

c. Make a new Brew, then save the data as a preset

i. Expected Result: new preset is made

d. Go to Brew Presets, select the preset saved in the previous test and
brew the new preset

i. Expected Result: User should be able to view the information
on the preset prior to brewing, then the preset should be
successfully brewed when it has reached that point

e. Go to Brew Presets, select the preset used in the previous two tests,

and delete it
i. Expected Result: user should be able to delete the preset from

memory. Any presets listed after this preset should be
incremented down (i.e. preset 4 becomes preset 3 for the
page) as needed.

f. Make a new Brew, then attempt to save the data as a preset while

there are already 32 presets available
i. Expected Result: user should receive an error screen stating

that they cannot save any more presets, while suggesting that
they remove presets they no longer use

g. Turn off the Micro Manufacturing Beverage System after ensuring

that there are several presets saved, then turn the Micro
Manufacturing Beverage System back on. Go to the page that
displays presets.

i. Expected Result: user should be able to access all of the
presets that were saved prior to turning the power off. All
presets should have maintained previous positions.

Due to the nature of the Micro Manufacturing Beverage System, memory has to
be maintained throughout the usage of the Micro Manufacturing Beverage System.
If the Micro Manufacturing Beverage System cannot be trusted to keep the presets
it used, this can cause problems when going between daily operations; the presets
contain information that can be easily compared within the system, and allow for
rapid testing with only minor tweaks as needed. It also allows new brews to be
tested against older brews.

5. UI Buttons
a. Upon loading into the Main Page while all sensors are within the

correct range of operation, the user should view the colors of the
buttons

i. Expected result: All buttons should bin the “idle” color.

110

b. Upon loading into the Main Page while at least one of the sensors
are not within the correct range of operation, the user should view
the colors of the buttons

i. Expected result: the Brew Buttons should not be available for
usage

c. User clicks on a “forward” button (i.e. the BREW button on the Main
Page)

i. Expected result: user should see the BREW button change
color when pressed, and then move to the next page (in this
case, the Brew page)

d. User clicks on a “backward” button (i.e. the red Log Out button on

the Main Page)
i. Expected result: user should see the button change color

when pressed before returning to the previous page

e. User clicks on a “forward” button while that button is in “restricted”
mode

i. Expected result: No change should occur; the button should
not change color to better reflect the lack of action.

Compared to many other parts, ensuring the UI buttons work properly is not a
significant part of the operation of the Micro Manufacturing Beverage System.
However, without ensuring that the UI buttons work properly, this can result in
confusion on the part of the User, which should be avoided whenever possible.

Additional test may be necessary as the project moves from the conceptual phase
and onto the building/coding phase.

111

8.0 Administrative Content

This section of the document are to show how well the team can manage their time
and budget on this project. The timeframe and due dates for each milestone are
shown from the initial Project Idea being decided upon to the Project Presentation
time. The budget are listed to show each expense that makes up the Micro
Manufacturing Beverage System with the approval of all members of the group.

8.1 Milestone Discussion

This section will break down the milestone completion of the project. It will show
the project process from the initial idea stage in Senior Design 1 in the Spring of
2019 semester down to the final presentation at the end of Senior Design 2 in the
Summer of 2019 semester.

At the current time, all milestones are currently on schedule, with sufficient time to
complete other problems. It should be noted that many of our milestones often
have similar due dates; this is usually because testing of physical components
occur prior full integration into the system, allowing the software team to set up
initial foundations for the hardware-software integration. This in turn allows each
member of the group to work a task with minimal waiting between members. It is
interesting to note that the majority of actual project work occurs during Senior
Design 2 rather than senior design 1; this means that group are focused on how
to properly build the project prior to actually building it, but it also assumes that no
unexpected problems will arise as testing occurs.

8.1.1 Senior Design 1 Milestone Discussion

Senior Design 1 acts as a way to establish a group, determine a project idea to
work on, and generally plan out the entire process from research to ordering of
components to designing and building the project, followed of course by testing
and presentation of the project. Because of the importance of the process, as well
as the limited time frame students will have to work with to fully produce a project,
it is tantamount for a plan of action be designed and made ready for Senior Design
2 to flow smoothly.

Senior Design 1 offers the team a basic start-up timeframe to begin compiling
ideas for what the team will work on for at least two semesters. That being stated,
there is little reason to grant the team too great of a time for this period. A period
of a week was considered by the professors to be sufficient time to form a team
and begin the idea formulation process, and the team for this project saw little
reason to increase the time. The idea was agreed upon by the group on the

112

twentieth of January after comparing the inputs of all team members and their
respective knowledge for the project.

Senior Design 1

Milestone Start Date End Date Status

Project Idea Decided

1/13/2019 1/20/2019 Completed

Initial Project Documentation
1/21/2019 2/1/2019 Completed

Project Research

2/1/2019 3/1/2019 Completed

Project Draft Document

3/1/2019 3/29/2019 Completed

Project Components Received

3/1/2019 3/29/2019 Completed

Project PCB Designed

3/30/2019 4/20/2019 Completed

Project Final Document

3/30/2019 4/20/2019 Completed

Table 18: Senior Design 1 Project Milestones

The second task, after determining which project to work on, was to begin the most
basic of documentation for the idea. A time frame of one and a half weeks (11
days) was given for the task; while this was sufficient for the most basic of
documentation, the group found that little of the project was finalized at this time.
The group realized that while they had help narrow down potential solutions to their
problem, the solutions would require additional research to help determine which
would be selected for the final product. The initial project documentation was
completed on the first of February with little difficulty.

The third task was the preform general project research. This task proved to be
incredibly broad, and caused many minor frustrations as a result of finding that
certain parts were unable to work together properly. It proved to be an illuminating
experience for the group, as few members had experience with hardware being
outright incompatible in their time. It also shed light on the topic of budget and the
slow but steady increases in prices; the process of determining whether a more
expensive sensor or valve was actually necessary was a major talking point in the
group. While most major research had finished on the twenty-eighth of February
(a day ahead of schedule), it was agreed within the group that the full research
required for the project may not finish until after Senior Design 1 had finished.

The fourth task was the project draft, a basic 60 page write-up on what research
had occurred. Nearly an entire month was set aside for this task due to the sheer
amount of work necessary to complete it. The group was able to finish it on the
twenty-ninth of March, with minimal difficulty finishing the task despite completing
it on the final day. As a whole, the paper was mostly limited to formatting errors

113

rather than serious issues, and was considered by the group to be a success as a
result.

The fifth task was gather the necessary components and supplies for the project.
This task was to be accomplished at the same time as the writing of the sixty page
paper, so as to have multiple problems addressed at the same time. A majority of
the components arrived before the twenty-ninth of March, as agreed upon by the
deadline set by the group. Unfortunately, not all components were able to arrive
at the deadline, with the final parts arriving on the ninth of April due to shipping
problems. This set the group back as a result, due to the fact that testing on
components was impossible without all the parts necessary to run them. While
time is being made up elsewhere, this delay presents a cascading problem for the
next two reports due during the Senior Design 1 semester.

The sixth task was to design the PCB. This task aregiven less time than originally
intended due to the lateness of the component arrival. While the team is prepared
to make up for the lost time and aremore than able to finish the PCB prior the final
report, this has forced the team to delay major actions and ideas for the second
report, specifically on certain tests for the hardware and how the outputs can be
affected in certain conditions. The team was able to complete this task on the
assigned date, and will test the design at the beginning of Senior Design 2.

The seventh task was finish the final document of Senior Design 1. This document
will need to be around one hundred and twenty pages long, detailing all findings
as a result of the research and component testing, as well as demonstrating the
PCB design agreed upon by the group prior to creating and testing it on the final
product. This area challenge for the team due to the lateness of the equipment
arrivals as well as the other aspects of the group members lives taking potential
priority. While less time is available than what would be desired, the team sees no
potential problem completing the final project report for Senior Design 1 within the
deadline.

As a whole, Senior Design 1’s milestones were being followed in a timely and
efficient manner, but are now being subjected to a slipped schedule as a result of
the component delay. While regrettable, this provided a wonderful learning
experience for the group; a schedule can be changed greatly changed by the most
insignificant of delays.

8.1.2 Senior Design 2 Milestone Discussion

Senior Design 2, unlike Senior Design 1, operates under the assumption that the
students already have a plan for the entire semester and can begin almost
immediately on building and coding their project. The expected result is that most
of the actual project building and design should be finished relatively quickly, so as

114

to allow for rigorous testing to occur and allow the team to adjust and fix any
problems found with extreme haste.

The first major task of Senior Design 2 is to create the outer casing (i.e. the
frame/box) of the project and build the PCB that was designed for the project.
These tasks, despite being fundamentally opposite in nature, are done together to
allow for all members to work on a task at the same time. Building the PCB
designed in Senior Design 1 was a task done in patience, due to the nature of
project. By moving too fast, it was possible to miss an important piece of
information that would have crippled the project early on.

The second task of Senior Design 2, which will run concurrently with the PCB
building, is the creation of the code that are used for determining sensor values
and the alerts needed in such a case that the sensors are incorrect. This included
individual component testing to ensure the accuracy of these values for a later
date. As the nearly all components arrived at the time of writing this report, no
problems or delays were expected at this time; the team was able to complete this
task rather quickly to help with other areas.

Senior

Design 2

Project Outer Casing

and PCB Built

4/30/2019 6/10/2019 Completed

Project Sensor

Software Written

4/30/2019 6/10/2019 Completed

Project Sensors/Valves

Installed and PCB
Testing

4/30/2019 6/15/2019 Completed

Project All Hardware

Installed / PCB
Finalized

5/15/2019 6/25/2019 Completed

Project All Software/UI

Code Written
5/15/2019 6/25/2019 Completed

Project Testing

5/25/2019 7/15/2019 Completed

Project Product

Finalized
6/15/2019 7/20/2019 Completed

Project Presentation

6/20/2019 7/21/2019 Completed

Table 19: Senior Design 2 Project Milestones

115

The third task involves the installing of the sensors and the testing of the PCB to
ensure that it is capable of working correctly. While the PCB design created during
the end of Senior Design 1 should have worked, it is important to recognize the
differences in theory and reality. The PCB failed to account for the Arduino Due’s
inherent difficulty with programming over JTAG. This left the group in a major
problem that would cascade into the final product.

The fourth task was to install all the hardware and finalize the PCB. As the PCB
was failing due to the difficulty of the Arduino Due, this was not easily done. To
counter balance this, the group focused on making sure everything was perfect on
the development board and attempted to get another PCB.

The fifth task was to finish writing the code for the project. This task was mostly
completed by the same time as it was expected to. As a result, every page in the
UI was finished and all of the basic formulas and actions were added. However,
numerous technicalities prevented a truly finished product, such as accuracy and
aesthetics; while not to detract from the precision of the code, testing at a future
date would allow for accuracy improvements while also ensuring that the entire
system worked.

The sixth task was to test the final product. While testing should have occurred
over the course of Senior Design 2, this was more encompassing and designed to
be testing that interacted with all parts of the Micro Manufacturing Beverage
System together. This should occur on many levels, with systematic testing
designed to identify shortcomings in the design. Despite what should be a
straightforward task, the group set aside a significant amount of time for this, as a
high accuracy was desired. As such, while the team has agreed that reaching this
task early was imperative to a more fluid and functional final product, there was no
rush to finish this task ahead of time.

The seventh task was to finalize the product. Based on information gained from
testing in the previous task, changes were made in order to fine tune the final
product in ways not previously expected or encountered. Theoretically, this task
should not be necessary; practically, nothing goes according to plan, and it was
important to set aside a specific time for address and making changes to finalize
the product. This was accomplished to the best possible degree given the time
allowed, as well as the difficulties encountered via hardware.

The eighth and final task was to present the final product. Presenting the final
product occured on two seperate days (Friday July 26 and Monday July 29), but
there was plenty of time to prepare for this given the schedule that was kept. As
the presentations were based entirely on what was accomplished in the project, it
only makes sense that the project would work as a conclusion to all of the groups
hard work.

116

As a whole, Senior Design 2 depended heavily upon the work that was planned
out in Senior Design 1. Scheduling was given more leeway, with major parts given
a chance to be built, tested, and rebuilt as needed in this later semester when
compared to Senior Design 1. As far as timing goes, the team agreed that there
was plenty for each section, as many of these tasks could have been easily
completed within a few days at most; the extra time was for redundancy purposes,
to allow a member to not rush through building and unnecessarily damage the
product.

8.2 Budget

This section will include a brief description of how the project are financed and
other factors that effected are decisions to purchase particular parts. This
section will also include a table that shows displays parts and their respectable
costs.

8.2.1 Financing Decisions

The project are mostly financed by one member of the group. One member of the

group are keeping the project. The person that are keeping the project after it is

completed are financing 80% of the project. The other members will finance the

remaining 20%. Since the remaining 20% are divided three ways, the other

members will each be accountable for 6.66% of the entire project. Decisions on

buying parts was a group effort. We deliberated as a group about which

particular parts were suitable for the project and arrived at a unanimous

decisions on whether to purchase each part.

8.2.2 Purchased Parts

The table below breaks down each part cost, quantity, and part name.

Part Quantity Total Cost

Arduino Due 1 38.97

Linear Actuator 1 154.69

HX711 Board 1 3.49

Load Cell 1 6.78

TFT Display 1 39.88

RA8875 Driver Board 1 27.56

Temperature Sensors 2 6.00

Valves 6 30.00

Servos 6 22.20

117

Servo Driver Board 1 19.67

Housing 1 75.00

12V Supply 1 15.46

PCB 2 50.00

Buck Converters 3 12.00

 Total Cost: 501.70

Table 20: Part Cost Breakdown

8.3 Work Division

The Micro Manufacturing Beverage System has four individuals tasked with the
building and coding of the Micro Manufacturing Beverage System. To divide the
work in an effective manner, two teams were created to ensure both parts of the
Micro Manufacturing Beverage System are built in a timely manner.

The first team is the Hardware team. The Hardware team is tasked with ensuring
that all parts and equipment are in the correct positions and are operating
appropriately. This team will have a predominate focus on the PCB design and
building. After the PCB is built and the Micro Manufacturing Beverage System has
had multiple components successfully installed, the Hardware team will begin to
focus of testing the components such that it can output a more accurate beverage
prototype.

The second team is the Software team. The software team is tasked with making
sure that the appropriate information is being exchanged between the input
sensors and the output valves such that the Micro Manufacturing Beverage
System can work without minimal error. The Software team will focus
predominately on creating the UI for the Micro Manufacturing Beverage System,
as well as saving the appropriate information such that presets and user data can
survive a power outage/down.

These two teams were split because the nature of the Micro Manufacturing
Beverage System requires both extensive hardware and software work. To ensure
that the Micro Manufacturing Beverage System is built and coded in a timely
manner, both the Hardware and the Software teams areworking at the same time;
in this manner, the project can be rapidly tested after making a simplistic UI and
backend. While this means that more time might be spent on testing rather than
designing, it allows the teams to work alongside each other rather than waiting
until one team has finished for another team to start.

To counterbalance the problem stated above, both teams will assist in the testing
phase of the project. This is done to ensure that both teams collectively agree on
the level of output from the Micro Manufacturing Beverage System.

118

The Hardware team are Eric Velez and Lance Adler, who are both Electrical
Engineers. The Software team are Parke Novak and Ryan Burns, who are both
Computer Engineers. This division was chosen based on the respective strengths
of each team member.

Adding to this, should any team begin to fall behind on their section, enough time
in the schedule permits the other team to assist them in finishing the tasks required.
This is to help deal with potential problems found while building the Micro
Manufacturing Beverage System, as well as keep all members up to date on any
changes required for operation to begin again.

8.4 Copyright

Due to the fact that no patents are created for this project, the niche nature of the
Micro Manufacturing Beverage System (being that it is specifically designed for
testing), and the general lack of specialized hardware, the threat of copyright is
minimal.

119

9.1 Appendix A: Works Cited

Works Cited
1743. (n.d.). From Mouser Electronics:

https://www.mouser.com/ProductDetail/Adafruit/1743?qs=sGAEpiMZZMve4%2F

bfQkoj%252bI1W3rujPEMIZvlvtqfpWks%3D

2V DC 2A Wall Power Supply Adapter with 2.1mm x 5.5 Plug 2A(2000MA) AC 100-240V

to DC 12Volt Transformers, Switching Power Source Adaptor for 12V 3528/5050

LED Strip Lights. (n.d.). From Amazon: https://www.amazon.com/Adapter-100-

240V-Transformers-Switching-

Adaptor/dp/B07GRZB5Y9/ref=asc_df_B07GRZB5Y9/?tag=hyprod-

20&linkCode=df0&hvadid=242082743678&hvpos=1o2&hvnetw=g&hvrand=1252

1102941941367459&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint

=&hv

8-channel Bi-directional Logic Level Converter - TXB0108. (n.d.). From Adafruit:

https://www.adafruit.com/product/395

Ada, L. (n.d.). Pinouts. From Adafruit: https://learn.adafruit.com/16-channel-pwm-servo-

driver/pinouts

Arduino. (n.d.). From Arduino: https://www.arduino.cc/en/uploads/Main/arduino-Due-

schematic.pdf

Arduino and DS3231 Real Time Clock Tutorial. (n.d.). From How To Mechatronics:

https://howtomechatronics.com/tutorials/arduino/arduino-ds3231-real-time-clock-

tutorial/

ATMEGA32U4-MU. (n.d.). From Mouser Electronics:

https://www.mouser.com/ProductDetail/Microchip-Technology-

Atmel/ATMEGA32U4-

MU?qs=JV7lzlMm3yJYRpi0cY3cKw%3D%3D&gclid=EAIaIQobChMI1InS54764A

IVjFcNCh0UrQmCEAAYAiAAEgLD6PD_BwE

Atmel. (n.d.). From MouserElectronics:

https://www.mouser.com/datasheet/2/268/doc11057s-1369003.pdf

ATSAM3X8EA-AU. (n.d.). From MouserElectronics:

https://www.mouser.com/ProductDetail/Microchip-Technology-

Atmel/ATSAM3X8EA-AU?qs=sGAEpiMZZMtQuSbTnHsVtm6dgCW59dFS

120

Building an Arduino on a Breadboard. (n.d.). From Arduino:

https://www.arduino.cc/en/Main/Standalone

FreeRTOS FAQ. (n.d.). From FreeRtos: https://www.freertos.org/FAQMem.html

Library: URTouch. (n.d.). From Rinky-Dink Electronics:

http://www.rinkydinkelectronics.com/library.php?id=92

Library: UTFT. (n.d.). From Rinky-Dink Electronics:

http://www.rinkydinkelectronics.com/library.php?id=51

MSP430G2553IRHB32R. (n.d.). From Mouser Electronics:

https://www.mouser.com/ProductDetail/Texas-

Instruments/MSP430G2553IRHB32R?qs=sGAEpiMZZMsuBfEaN9EhVfuKxkcA8

SoY

Official FreeRTOS Ports. (n.d.). From FreeRTOS:

https://www.freertos.org/RTOS_ports.html

SEMICONDUCTOR, A. (n.d.). 24-Bit Analog-to-Digital Converter (ADC) for Weigh

Scales. From SparkFun:

https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf

SparkFun. (n.d.). From SparkFun: https://learn.sparkfun.com/tutorials/load-cell-amplifier-

hx711-breakout-hookup-guide?_ga=2.62641641.4373212.1555694583-

1780506403.1554854212

SparkFun Load Cell Amplifier - HX711. (n.d.). From SparkFun:

https://www.sparkfun.com/products/13879

STM32F103TBU6TR. (n.d.). From Mouser Electronics:

https://www.mouser.com/ProductDetail/STMicroelectronics/STM32F103TBU6TR

?qs=sGAEpiMZZMuoKKEcg8mMKJ29ob8kKavQ%252B9bS9Z%252BTzJkgoUg

2ATmo2A%3D%3D

The Arduino Playground. (n.d.). From Arduino:

https://playground.arduino.cc/code/FiniteStateMachine/

TLV76050DBZR. (n.d.). From Mouser Electronics:

https://www.mouser.com/ProductDetail/Texas-

Instruments/TLV76050DBZR?qs=sGAEpiMZZMsGz1a6aV8DcLm6%2Fe7CQV8I

c%2Feb5Yk0Rt0%3D

121

Webench Power Designer. (n.d.). From Texas Instruments:

https://webench.ti.com/power-designer/switching-regulator

	1.0 Executive Summary
	2.0 Project Description
	2.1 Motivation and Goals
	2.2 Objectives
	2.4 Hardware Diagram
	2.5 Software Diagram

	3.0 Research and Background Information
	3.1 Similar Projects and Products
	3.1.1 Drink Wizard
	3.1.2 Under the Sun Drink Mixer
	3.1.3 Smartender
	3.1.4 KnightTime
	3.1.5 Active Noise Cancelation Device
	3.1.6 Conclusion

	3.2 Stretch Goal
	3.3 Components
	3.3.1 Barrel Jack
	3.3.2 Wall adapter power supply
	3.3.3 Regulator
	3.3.4 Capacitors
	3.3.5 Touchscreen Lcd
	3.3.6 UTFT Library
	3.3.7 UrTouch Library
	3.3.8 Real Time clock

	3.4 Microcontroller
	3.4.1 ATMEGA32U4
	3.4.2 Cortex-A53
	3.4.3 Msp430
	3.4.4 SAM3X8E Arm Cortex M3

	3.5 State Machine
	3.6 FSM Library
	3.7 Multithreading vs RTOS
	3.8 Arduino Scheduler
	3.9.1 CMSIS RTOS
	3.9.1 Keil RTOS
	3.9.1 FreeRTOS
	3.10 Data Log
	3.11 USB Port
	3.11 Temperature Sensor
	3.12 Fluid Control System Hardware
	3.12.1 Types of valves
	3.12.1.1 Solenoid Valve
	3.12.1.2 Pneumatic Diaphragm Valve
	3.12.1.3 Ball Valve
	3.12.2 Types of motors
	3.12.2.1 DC
	3.12.2.2 Stepper
	3.12.2.3 Servo
	3.12.3 Choosing a Servo Motor
	3.12.4 Types of Linear Actuators
	3.12.5 Load Cell

	3.13 Power Requirements
	3.13.1 12 V Power Supply
	3.13.2 5 V Supply
	3.13.3 1.8 V Supply
	3.12.6 Servo Control
	3.12.6.1 Level Shifter

	3.14 Other Fluid System Components
	3.14.1 Kegs
	3.14.2 Compressed Gas
	3.14.3 Tubing
	3.14.4 Housing

	4.0 Standards
	4.1 Health Standards
	4.1.1 NSF/ANSI 61
	4.1.2 FCC

	5.0 Design
	5.1 Implementation
	5.2 Design Motivation
	5.3 Presentation

	6.0 Project Software Design Details
	6.1.1 Conclusion
	6.2 Memory Requirements
	6.2.1 Arduino
	6.2.2 SD Card
	6.2.3 USB
	6.2.4 Conclusion on Storage
	6.2.5 User Storage

	6.3 Logging
	6.4 Sensor Reading Time Configuration
	6.5 Read-Write Collision
	6.6 Logging Format
	6.7 Remote Login
	6.8 Conclusion on Remote Login
	6.9 Local Login
	6.10 Security
	6.11 Network Login Security
	6.12 Code
	6.13.1 UTFT
	6.13.2 Initialize UTFT
	6.13.2 Using TFT
	6.13.3 URTouch
	6.13.4 Touchscreen Calibration
	6.13.4 URTouch Initialization
	6.13.4 URTouch Precision
	6.13.5 URTouch Usage
	6.13.6 Screen State

	6.14 User Interface Pathing
	6.14.0 UI Buttons
	6.14.1 Login
	6.14.2 Main/Start Page
	6.14.3 Logs Page
	6.14.4 Settings Page
	6.14.6 Brew Preset Page
	6.14.7 Brew New Options Page

	6.15 Front/Back-End Memory Read/Write
	6.15.1 Login
	6.15.2 Activity Log Page
	6.15.6 Brew Preset Page
	6.16.0 MERN Stack
	6.16.1.0 MongoDB
	6.16.1.1 MongoDB Local Storage
	6.16.1.2 MongoDB Remote Storage
	6.16.1.3 Mongoose
	6.16.1.4 Conclusion
	6.16.2.0 Express
	6.16.2.1 API
	6.16.2.2 Routing
	6.16.3.0 React
	6.16.3.1 Components
	6.16.3.2 App.js
	6.16.3.3 render()
	6.16.3.4 React state
	6.16.3.5 React Redux
	6.16.3.6 onComponentDidMount()
	6.17.0 Axios
	6.17.1 Node.js
	6.18 Tentative Schematic Design
	6.18.1 Microcontroller
	6.18.2 12v to 5v Converter
	6.18.3 5v to 1.8v Converter
	6.18.4 16 Channel Servo Driver
	6.18.5 Load Cell Amplifier
	6.18.6 Touchscreen
	6.18.7 Thermometer
	6.19.0 Software Final Design

	7.0 Testing
	7.1 Hardware Testing

	8.0 Administrative Content
	8.1 Milestone Discussion
	8.1.1 Senior Design 1 Milestone Discussion
	8.1.2 Senior Design 2 Milestone Discussion
	8.2 Budget
	8.3 Work Division
	8.4 Copyright

	9.1 Appendix A: Works Cited

