
Micro Manufacturing Beverage
System

Parke Novak, Ryan Burns, Eric Velez, Lance

Adler

Dept. of Electrical and Computer Engineering
University of Central Florida, Orlando, Florida,

32816, United States of America

Abstract — The object of this project is to build an
automated beverage filler for small-scale manufacturing
purposes. The system will also verify certain parameters
regarding the filling process, and will confirm the weight of
each receptacle via a load cell. This system will have a
user-friendly graphical user interface to control and monitor
all parameters.

Index Terms — Beverage, Small-scale, Manufacturing,
Pouring, Sensor, Concentrate

I. Introduction

The beer brewing industry has rapidly transformed over
the 30 years. In 1988 there were 124 breweries in the U.S.,
now there are more than 7000. To accommodate for this
massive change in the industry, technology has been
developed to allow breweries to brew and can product on
a small scale. Recently, the shift toward small-batch
production began carrying over to beverages as well, such
as kombucha and soda. Some of the technology that has
been developed surrounding the beer industry, namely the
filling equipment, does not translate to the small-scale
soda industry.

When filling a beer can, product is pulled from a tank
and filled to a certain volume by the equipment, the only
calculation that is done by the software is the amount of
time the valve needs to be open to fill the can to a certain
volume. Soda is made in a different manner. Soda

contains two parts: carbonated water and concentrate
(which contains all the ingredients in a concentrated
form). When filling the soda into a can, the two parts must
be portioned out correctly and filled to the correct volume.

The pouring must be done accurately, which makes
valve choice an extremely important factor.
Many valves could not be considered for this project
because of their susceptibility to clogs. Most valves are
built to hande mediums with no impurities, such as water.
The concentrate that must be handled during soda
manufacturing contains undissolved solids and is also
much more viscous than water. The only valves that were
available on the market to handle such a medium cost
upwards of $500 per valve, which is far too expensive for
this project. Because of monetary constraints, we chose to
build our own servo-controlled ball valves for this project.
This type of valve is not susceptible to clogging, can
achieve an accurate pour, and also costs far less than what
is available on the market.

II. System Housing

A. Filling Unit Housing

The filling unit is a rectangular unit that is fixed to a
table at the bottom and has a guide on each side (so that it
may easily move up and down). The housing will have 6
fill heads coming from the body, which will have the
ability to fill 3 receptacles at once. Each receptacle
requires a carbonated water line and a concentrate line.
When the unit is filling cans, it moves to the lowest
position so that the fill heads are nearly touching the
bottom of the inside of the can. Filling from this position
reduces foam. Once the fill is completed, the unit moves
upward so that the user may remove the cans. To move the
unit up and down, a large linear actuator is fixed between
the top of the housing and the table.

B. Liquid Dispensing

The filling unit will pull liquid from two different
sources (carbonated water and concentrate). Both liquids
will be held in food-grade kegs in a cabinet below the
filling unit housing. The cabinet will be on wheels to
allow for easy transportation for the demonstration. ¼ inch
tubing will connect the kegs to the valves and fill heads.

The tubing used is food-grade vinyl. The cabinet will be
made out of plywood.

III. Core Components

A. SAM3X88E ARM Cortex M3

The microcontroller used for this project is the
SAM3X88E ARM Cortex M3. It has 512kb of flash
memory, has a clock speed of 84Mhz, and must be
supplied with a voltage source between 1.62V-1.95V.
When the microcontroller is on it has a current draw of
700uA. There is 100kb of SRAM (broken up into a 64kb
and 32kb banks) that can be used on the microcontroller.
The one downside of this microcontroller is that it doesn’t
have EEPROM simulation so an SD card must be used to
store user data, logs, and presets since if the project is
powered off and if the data were stored in flash/sram it
would be lost. There are over 100 i/o lines which allows
for everything in this project to be controlled.

B. Valves

We chose to build our own servo-controlled ball valves
for this project. Ball valves themselves are purely
mechanical devices that require relatively low torque to
turn off/on. Ball valves are exceptional candidates for this
project, they can handle almost and kind of media and
have a low cost. However, the major issue with ball valves
is that they are strictly mechanical devices. To electrically
control the valves, we connected servos to each valve. ¼
inch tubing will be used to connect one end of the valves
to the fill heads and the other end to the kegs.

C. Servo Motors

Servos have many gears which allow them to generate a
high torque output. They typically rotate slowly, and
usually have an axis of rotation limited to 180 degrees or
less. Due to the many gears, they can make precise
movements. Servos also provide positioning feedback to
the software, which make them ideal for this project.
Since the torque and positioning required for this project
are not substantial, servo motors will be able to do the job.

The servos will be controlled using the NXP PCA9685
chip. This chip simplifies the control of the servos and

localizes all components to one area of the PCB. The
PCA9685 communicates with the MCU via I2C protocol,
and controls the servos with various output pins. Using
this chip diminishes the number of pins used on the MCU
and also simplifies the code.

D. Linear Actuator

The linear actuator in this project is used to raise and

lower the filling station. This is required in order to fill the
beverage from bottom to top – while being submerged in
the liquid. The main purpose of this is to reduce foam and
also to conserve carbon dioxide. If the beverage was not
filled in this way, the liquid would make more contact
with the surrounding air. This leads to a higher air content
in the fluid (which leads to foaming) and more carbon
dioxide loss.

The station must be able to go between the UP and
DOWN positions quickly. The PA-15 linear actuator is
used in this project for its high speed and high output
force. The PA-15 inputs 12V power and moves at 3.15”
per second. The high speed of this actuator allows the user
to efficiently produce product.

E. TFT Touchscreen Display

Touchscreens are a major part of the modern world,

especially with relation to User Interfaces and
Interactivity. As such, it was deemed important that the
project make use of a touchscreen system, both to limit the
number of input buttons on the board and to modernize the
machine.

The touchscreen used in this project is the 7” 40-pin
TFT Display, which allows for a 800x480 pixel picture.
The touchscreen, however, is useless on its own, as it
needs to be connected to a driver board for proper use.
The RA8875 Driver Board for 40-pin TFT Touch
Displays was utilized to correct the issue.

One of the major issues the team found itself in was that
the board itself was resistive rather than capacitive; this
lead to certain issues with touch recognition, specifically
where the touch occurred. This is explored later in the
software section of this report.

F. SD Card Reader

The SD Card Reader is needed for storing logs and
presets; in the event of a power outage, this memory
would be lost, as the SAM3X88E ARM Cortex M3 does
not have EEPROM. As the logs and presets are important
information that would be desirable to be maintained
through power outage, an SD Card Reader was considered
to be the safest option.

The SD Card Reader chosen was the SunFounder SD
Card Reader for Arduino systems. The SD card chosen
has a limit of 16 GB of memory; the reason for this was
two-fold: the extra space would allow testing to occur
without any potential problems regarding memory
limitations and/or memory leaks making the card
unsalvageable, and the fact that it was the smallest SD
card that could be found without special ordering.

IV. Sensors

A. Load Cell

This project utilizes a load cell to measure the weight of
the receptacle before and after a fill is completed. This is
done to ensure that the fill was done correctly, and the
data is compared with the data that is on file in the
software. The load cell used in this project utilizes a
half-bridge wheatstone bridge for reliability.

B. Temperature Sensor

Two temperature sensors are used in this project to
monitor water temperature. Both the carbonated water and
concentrate temperature must remain between 0 degrees
and 5 degrees celsius during operation. If the fluids are too
warm during filling, too much carbon dioxide will escape
resulting in a flat beverage. Two DS18B20 waterproof
sensors were used for this project. The sensors
communicate with the MCU via a digital I/O pin and
utilize the maxim single wire protocol for communication.

V. Power

A. 12V power

The 12V power is supplied using a common 12V wall
supply. The supply that we chose is BMOUO 12V 30A
supply. The supply inputs 120VAC and will supply the

entire project, and will connect directly to the 12V PA-15
linear actuator.

B. 5V Power

The TPS56637RPAR from TI is used to step down from
12V to 5V. The buck converter can supply up to 6A. The
converter will supply the servos and the display.

C. 3.3V Power

The TPS62125DSGR from TI is used to step down from
12V to 3.3V. The buck converter can supply up to
300mA. The converter will supply all ICs on the board
and also power all data pins.

VI. Software Components/Details

A. Standard Tools

The code used predominantly for this project was
completed in C++. Much of the design was based on the
Arduino Due, which provided an excellent starting point
for testing and coding design. Much of the work was
completed on the Arduino IDE, as it allowed for relative
ease with coding and testing on an Arduino design board.

B. User Interface

The project makes extensive use of a user interface for
determining what the user wishes to do. The flowchart in
figure 1 demonstrates how the user interface pages interact
with each other.

The making of the user interface was completed using
the TFT library as well as the RA8875 library. The TFT
library is a standard Arduino library for help in designing
and creating images and events on a touchscreen interface.
The RA8875 library is simply the library for the particular
touchscreen the project uses. The TFT library assisted in
creating pages and screens for interaction, but was not
directly designed for multi page setups; this had to be
coded directly for the project itself.

The user interface will make use of the RA8875 Touch
Screen mentioned above. Buttons were designed to move
between the pages. Several sensor and input checks were
designed such that the user may be prevented from
moving between pages, specifically if there is an invalid

Figure 1: User Interface Flow Chart

input. This is to prevent possible malicious and/or unsafe
use.

To begin, the user must log-in by input a Username and
Password; this is checked against pre-existing usernames
and passwords. If valid, the user is allowed to enter into
the main page. From the Main page, the user may go to
the Logs page, which holds the logs for usage, the Settings
Page, which allows the user to change the settings of the
brewing machine, and the Pouring Setup page (after
passing a temperature check).

Entering the Logs page allows the user to see how much
of the ingredient and water was used in production, as
well as how many times each preset was used. This
allows the user/manager of the machine to determine if
improper usage of the machine has occurred, as well as a
way to check inventory.

Entering the Settings Page allows the user to change the
Log-in settings for this user, as well as change the
ingredient settings (namely, the name, density, and safe
temperature of the ingredient). This allows the user to
ensure that security is kept and that the machine is
working within appropriately.

Entering the Pouring Setup Page requires the user to
pass a “Safe Temperature” check. This ensures that the
system is valid for brewing, as incorrect temperatures can
mean unsafe ingredients for brewing. Once on the

Pouring Setup Page, the user is capable of Making or
Deleting a Preset, which will update the Preset List as
needed. The current limit on Presets is 12; It is assumed
that most users will be able to determine whether a preset
is valid long before reaching that limit, and delete the
unneeded presets. Alternatively, the user may move onto
the Preset Selection page.

Once on the Preset Selection Page, the user may select 3
different presets (or the same preset 3 times). Upon
selecting the presets, the UI will check the temperature
sensor again to determine if the ingredient is still in the
safe zone; this is again to ensure that the brewing process
is safe. After this, it will go to the Weighing and Pouring
pages.

Immediately prior to brewing, the user will have to
weigh the 3 cans while they are empty. This is for the
weight checking later on (discussed more in the Math and
Equations Used section). The cans are then placed on the
pouring station, and the system will pour the appropriate
mix of ingredient and water. After this, the user will be
asked to weigh the cans (now full) again. The weight
sensors will determine whether the weight is within the
appropriate tolerance for the beverage. Should the
beverage be valid, a green circle will be displayed; should
the beverage be invalid, the user will receive either a red
minus or a red plus, detailing whether the beverage is

under- or overweight. Should the user find multiple reds
of a similar sign, it is indicative that the system is
outputting the beverage incorrectly; if there are three red
minus signs, then the system is likely working with an
incorrect density value for the liquid.

C. Touchscreen Calibration

Due to electrical faults from components being too close
together, or mechanical misalignment caused during
manufacturing, a touchscreen’s input is often faulty and
needs calibration. An example of the difference between
the reported input and the true, intended input is shown in
the figure below.

Figure 2: Touchscreen Distortion

So the aim of calibration is given some distorted input,

transform it to the true origin. The algorithm we went with
for calibration is the Classical Three Point Algorithm.

Figure 3: Input Map

The aim is to approximate the shape of the distortion
map by a circle which is assumed to have been rotated,
scaled, and shifted from the true origin.

Let there be three known points P1, P2, and P3.
Displaying their positions on the touchscreen and and
allowing the user to touch those points generates distorted
inputs P1’, P2’ and P3’. We can then generate values for
the following equations

 (1)
Where x and y are the true values, x’ and y’ are the read

values and the coefficients are the calibration constants
and are six unknowns, K being a value we provide. Using
the data of the three points, we generate six equations with
six unknowns and solve for the coefficients. Now given
any future inputs we can use this equation to approximate
where the users intended click is located.

D. Virtual Keyboard

Since we have a touchscreen and we require input from
the user, we’ve implemented a virtual keyboard. We use
the TFT library for our draw functions which includes the
rounded rectangle shape. Next we create a series of
constants to scale our keyboard into different sizes and
allow for key detection.

Figure 4: Button Layout

Then given some input we can detect the index of key

that was pressed.

 (2)

Note that the order of characters on the keyboard is

stored in a character array so the index is all we need to
know which character was pressed.

E. SD Card/Memory Usage

We have an object of the user and all of their presets in
main memory and seek long term storage in the SD card.
We construct a function capable of storing the user and
preset objects as shown in Figure 5.

Figure 5: User File Layout

Once the data is stored, we can retrieve it line by line to
instantiate a new object for use on the next bootup.

F. Valve/Motor Control

Valve and motor control was designed based on a
singular observation: there are only 4 phases for each
valve on the project. The phases are as follows: a) the
valve is closed, b) the valve is turning open, c) the valve is
completely open, and d) the valve is closing. Because of
this, it was determined that motors will have a specific
“fully open” setting and a “fully closed” setting.

The Arduino PWM Servo Driver library allowed the
project to safely determine a specific max value and a
specific min value. These values then allow for the
project to simply make a “turn” order to the servos, then
have the users wait until it has reached the final position.
To wit, this means that the deciding factor for motor
control is effectively time. The project makes use of
delays for this to occur; this is both because nothing else
should be happening while the motors are turning, and
because it allows for precise timing of the motor control to
occur.

To control the time, we use a combination of the time
and amount formulas found in the “Math and Equations
Used” section below. In essence, the time is found by
taking the amount of ingredient/water poured into the cup,
subtract out the opening and closing values on pouring
(this is a roughly constant amount), and then determine the
time need based on flow rate of the ingredient/water.
From here, the time is input into the system, which
determines the appropriate time to send a “close valve”
signal.

On the coding side, time is designed around delays. It
was determined that .1 second delays would occur while
waiting for alternative instructions; this was used because
it allowed easy testing to occur, as well as allowed for an
adjustable flow rate while testing occurred. Delays were
used because the PWM Servo Driver Library is designed
to only send “turn” instructions then have the motors hold
their positions until an alternative “turn” instruction is
sent. In this way, a delay does not affect the movement of
the servos; rather, it is how the servos are capable of
moving.

VII. Math and Equations Used

The project made use of the following formulas for
ensuring operational efficacy.

A. Weight Formula

To calculate the weight of a can when filled with the
proper beverage, the weight of the can while empty (

), the density () and the amount () of bothW empty d A
water and ingredient are needed. While the majority
weight may come from the liquid, it is necessary for the
empty can weight to be calculated to ensure that incorrect
weight is the result of a failed liquid pouring rather than
the can being slightly heavier than anticipated. The
equation for finding the full weight of a can is the
following:

 (3)d) d)W F ull = W empty + (W ater * AW ater + (Ingred * AIngred

B. Amount Formula

The primary means of controlling the motors in this
project is by determining the length of time for the motors
to be active. Calculating the time needed for the motors to

operate needs the time to turn on the motors (), the tof f−>on
time it remains open (), and the time to turn off the topen
motors () are added together. The equation for ton−>of f
total time is the following:

 (4)ttotal = tof f−>on + topen + ton−>of f

Because the time to go from off->on and on->off on the

motors is exactly 0.5 seconds each, the only real variable
in the equation is the time the motors remain open.

C. Amount formula

As stated above, the primary variable used for
determining motor operation time is the time the motor
remains open. To calculate this, the project makes use of
an amount formula; this needs the amount when the
motors are opening () and closing () added Astart AF inish
together (these are roughly constant), then it requires that
this sum be added to the multiplication of the flow rate for
water and ingredient () by the time the motors remain rF
open (). The total amount formula is as follows:topen

 (5)F r)Atotal = Astart + (* topen + AF inish

All parts of this formula are constant (or as constant as

possible outside of theory) with the exception of the time
the motors remain open, which allows the project to
determine how long the motors remain open.

VIII. Design and PCB

The PCB for this project looks likes like the following:

Figure 6: PCB

The pcb has 3 buck converters:

● 12v to 5v
● 12v to 3.3v
● 12v to 1.8v

The pcb inputs power from the power supply using a

12v and gnd pads which then go through the buck
converts to power everything for the project. The
following is the hardware diagram for the project:

Figure 7: Hardware Diagram

The microcontroller, the crystal and all the filtering for

the input of the microcontroller are found in the middle of
the board. Headers for the tft touchscreen driver board,
relay, and jtag are found on the bottom of the board. The
jtag will allow the atmel ice to program the
microcontroller.

On the right side of the pcb the servo board (PCA9685
chip) and load cell (HX711) are implemented onto the
board. The header for the servo board can support up to 8
servos. There are also pads for the load cell

IX. Conclusion

These systems and components comprise the Micro
Manufacturing Beverage System. This system will allow
the small-batch soda manufacturing community to
produce product automatically at a low price point.
Implementation of the system will allow small-scale
manufacturers to move away from manual production
lines and join the neighboring industries in automation.

Acknowledgement

The authors wish to acknowledge the assistance and
support of Dr. Samuel Richie and Dr. Lei Wei over the
course of Senior Design I/II.

References

● Analog Devices, MMSE-Based Multipoint
Calibration Algorithm for Touch Screen
Applications by Ning Jia

The Team

Ryan Burns, a senior
Computer Engineering Student
from University of Central
Florida with a focus on
Object-Oriented Software
Design and Discrete
Mathematics. He intends to
pursue a career in Software
Engineering upon graduation.

Eric Velez, is an Electrical
Engineering major that is
pursuing a career in Electrical
Engineering more
specifically in dsp audio.

Lance Adler, a senior
Student from the Electrical
Engineering curriculum at
the University of Central

Florida. Lance looks forward to pursuing his career in
control systems.

Parke Novak, a senior Student
graduating from the Computer
Engineering curriculum at the
University of Central Florida.
Pursuing a career in the computer
engineering profession, specifically
in User Interfaces, Robotic Vision,
and Integrating Hardware/Software
Ideas.

