MEMS Wireless Transceiver for Use of Non-Invasive System Diagnostics

Critical Design Review - Summer 2019

Group 9: Jessica Ondrizek Toluwaleke Olutayo Justin Phelps

MOTIVATION

- Noninvasive testing helps avoid catastrophic failures by identifying issues early.
- Our sponsor requires a method of communicating with a MEMS sensor that is placed inside a rotating motor.
- Current technology does not support the frequency the sponsor wants to operate at.

REQUIREMENTS

- Design a transceiver that transmits and receives frequencies within the 27 MHZ ISM band
- Visualize received signal for analysis
- Transmit data to computer for potential further analysis

DESIGN SPECIFICATIONS

CATEGORY:	SPECIFICATION:
Power	Consume less than 10 watts
Production Cost	Cost less than \$1,500.00
Tx/Rx Distance	A minimum distance of 1 m
Deliverables	Microcontroller code

STANDARDS

- IEEE Standard 1149.1-2001 IEEE Standards Test Access Port and Boundary-Scan Architecture
 - "This standard relates to the maintenance, testing, and support of assembled printed circuit boards (PCBs) and the testing of internal circuits."
 - Provides an easier way to test and troubleshoot the PCB
- Standard Wireless Communication Protocols (Wifi, Bluetooth) cannot be used at the selected design frequency (~27 MHz), as such the transceiver module had to be custom designed from scratch.

DESIGN CONSTRAINTS - FREQUENCY

- Availability of components is limited at this frequency band
 - Self-resonant frequency of inductors limits components even more
 - Inductors must have a self-resonant frequency 10x the higher than the operational frequency

DESIGN IMPLEMENTATION

DESIGN IMPLEMENTATION: Transmission

Sponsor Provided

DESIGN IMPLEMENTATION: Signal Reception

Sponsor Provided

SIGNAL GENERATION

SIGNAL GENERATION

TRANSMITTED SIGNAL AMPLIFICATION

Power Amplifier Design

- Operational amplifiers were placed in master slave configuration to increase current output.
- Slew rate was made to be sufficiently large to allow for minimum signal distortion.
- Operational amplifier power driver provides a cheaper and more powerful alternative to costly wide band amplifiers.

POWER AMPLIFIER (Texas Instruments LMH6703MAX/NOPB)

LOW PASS FILTER FOR ISM COMPLIANCE

LOW PASS FILTER FOR ISM COMPLIANCE

INCOMING SIGNAL FILTER

BANDPASS FILTER

INCOMING SIGNAL CONDITIONING

INCOMING SIGNAL CONDITIONING

ADC SIGNAL BUFFER

ADC SIGNAL BUFFER

RF SWITCH: TX/RX SELECT

ANALOG DEVICES HMC199AMS8

Part	Analog Devices HMC284AMS 8GE	IDT F2912	Analog Devices HMC199AMS 8 / 199AMS8E
Switching Time	5 ns	1.1 us	20 ns
Operating Frequency Range	DC - 3.5 GHz	300 kHz - 8 GHz	DC - 2.5 GHz
Cost	\$3.46	\$4.75	\$2.54

RF SWITCH (Analog Devices HMC199AMS8): RX/TX SELECT

DOWN-CONVERTER MIXER

DOWN-CONVERTER MIXER

Down-Converter Mixer

- Frequency is too high to be sampled by ADC
- Mixer shifts received signal frequency to a lower frequency (~27 MHz ~1 MHz) for digital processing

MCU (TMS320F28335PGFA)

DEVICE	TMS320F28335	TMS320F28332
FREQUENCY (MHZ)	150	100
ON-CHIP FLASH MEMORY (kB)	512	128
# OF GPIO PINS	88	88
INSTRUCTION CYCLES (ns)	6.67	10
ADC CONVERSION TIME (ns)	80	80
COST	\$25.98	\$17.60

UART: PC Interface

UART: PC Interface

SOFTWARE CONCEPT DESIGN

The software design will make use of the following programs and interfaces:

Program Name	Function
TI Code	For Editing, Debugging, Linking,
Composer	mapping, and Compiling.
TI DSP software Overlay (C2000 Control Suite)	Provide Device specific code, header files, and example projects.
UART Software	Output DSP data on PC via USB
(Putty)	Port.

MCU SOFTWARE FUNCTIONALITY FLOWCHART

ADMINISTRATIVE

ASSIGNMENT	PRIMARY	SECONDARY
FILTER DESIGN	JUSTIN	TOLU
MIXER DESIGN	TOLU	JUSTIN
SCHEMATICS	JESSICA	JUSTIN
SOFTWARE	TOLU	JUSTIN, JESSICA
PCB DESIGN	JESSICA	JUSTIN, TOLU

PROJECT EXPENSES

CATEGORY	ESTIMATED COST	PURCHASER
Total Parts	\$736.39	Sponsor
Test Parts	\$60.00	Sponsor
Altium Designer Software	\$99.00	Group 9
PCB (5 boards)	\$400.00	Sponsor
Final Document Binding	\$20.00	Group 9
Total Project Cost	\$1,315.39	-

PROGRESS REPORT

PROJECT CHALLENGES: PCB DESIGN

- Will require a multilayer device
 - 4 layer PCB:
 - Mounted components
 - Signal pathway
 - Power plane
 - Ground plane
- 100+ components to solder

INTENDED AGENDA

ASSIGNMENT	DUE DATE
PCB (rev. A)	6/10
Complete PCB	6/28
Complete Software	6/28
Complete Testing/Integration	7/19
Final Presentations	7/26

QUESTIONS?