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Abstract  —  Our project aims to produce an inexpensive, 
minimal-profile device capable of discerning the direction 

of gunshots. There are numerous applications, with active 
shooter situations, military environments, and policing as 
primary targets. Previous devices have utilized sampling 

rates in the megahertz and laborious algorithmic 
approaches to source and analyze sound data for this 
purpose; we present a machine learning solution using 

multilateration and a standard audio sample rate as a viable 
alternative on scaled-down hardware. 

Index Terms  —  Neural networks, machine learning,  

multilateration, microcontroller, PCB, location, gunfire, 

recognition, digital signal processing, ADC. 

I. INTRODUCTION 

The objective of this project was to create an audio sensor 

system that can be installed in multiple environments: on a 

building, at ground level, or on a moving vehicle. The 

Minuteman system can accurately detect gunfire 

discharges, being able to distinguish them from other 

sounds in the environment such as engine backfires or glass 

breaking. It discerns the precise direction of gunfire within 

the operational area of the sensor and then displays it 

visually. 

This system in its basic form will be affordable for most 

facilities, such as schools, public buildings, or sites of large 

public gatherings. Police officers, military organizations, 

private security, and other authorities will be able to afford 

and utilize the Minuteman system. Although it is not the 

primary intention of the project, the device will also be 

functional for home security and private facilities looking 

for security. It is a goal of this project to encourage further 

development in technological security systems against gun 

violence. 

II.  DESIGN OVERVIEW 

A. Initial Design 

The initial design for our Minuteman system comprised  

a series of distinct sensor devices utilizing triangulation. 

This version of the Minuteman system would monitor for 

audio signatures of a certain decibel intensity or higher, 

filtering out low intensity audio. It would have been only 

capable of securing facilities or specific locations, as 

locating gunshots would require the network of sensors to 

cooperatively pinpoint the location, while the central 

module determined if the audio was a gunshot or not. 

These devices were to use a Wi-Fi network that would 

have allowed other security devices to utilize the data from 

the system and respond to threats. 

B. Current Design 

Physically, our device is 1m by 1m by 50cm, with the 

main PCB and microcontroller at its base. Five microphone 

arms extend 50cm out, one in each cardinal direction, and 

one which extends straight up, perpendicular to the ground.  

The current design was modified to use multilateration 

instead of triangulation, since it was found to be more cost-

effective and just as accurate to use a single device with 

multiple sensors, as opposed to using two localized 

networks of sensors. The task of detection was also passed 

off onto the program hosted on a computer instead, since 

any central hub designed would only have microcontroller 

resources that would be too slow to be useful. Instead it was 

used to send an audio stream to the computer hosting the 

Minuteman program via USB. 

For detection, it was determined a neural network would 

cleanest solution to this task, and that instead of looking for 

audio that exceeded a minimum value, it would instead 

comb through audio continuously. This was to save 

resources and account for the fact that long-distance 

gunshots might fall beneath the volume threshold. Once a 

gunshot is identified, Minuteman monitors the audio for a 

signal peak and calculates the difference between the 

arrival times at the microphones during the same event. 

Once multilateration has determined the direction, it 

sends the data to the program’s UI, which will display the 

device’s location using the GPS module, and visualize it 

over Google Maps in a satellite view of the area. A cone 

displays the direction of the detected gunshot. 

 III. GOALS AND OBJECTIVES 

The goals of the project are: 

● A single device with several microphones to pick 

up nearby audio. 

● The device can be connected to a host computer 

and utilize a building’s or vehicle’s power supply. 

● A microcontroller to connect the sensors and 

stream audio to the program. 

● A program/app that can be downloaded to a host 

computer to manage the device and performs the 

majority of the software functions. 



● The device is affordable and broadly effective for 

the needs of multiple classes of users. 

IV. REQUIREMENTS 

The project’s requirements are presented in table I. 

         TABLE I 

PROJECT REQUIREMENTS 

Identify gunshots with 

minimum 

95% Accuracy 

Identify gunshots within 250 Meters 

Identify and display a gunshot 

within: 

2 Seconds 

Identify the direction of 

gunshots to within: 

5 Degrees 

Maintain a cost of less than: 150 USD 

V. SPECIFICATIONS 

The specifications for the project are shown in table II. 

 

TABLE II 

PROJECT SPECIFICATIONS 

The sensors are connected to a microcontroller, 

which is connected to the host computer program. 

The microcontroller streams audio into a byte array 

on the host computer program. 

The program checks the array for the muzzle blast of 

a gun using a convolutional neural network, 

searching for specific features in a scaleogram 

created by a continuous wavelet transformation. 

The neural network is trained from a dataset of 

gunshots and non-gunshot audio files of 80ms 

length. 

The network provides the program with a prediction. 

If it is a gunshot, it will pass the audio array to 

multilateration program to determine the direction of 

the gunshot. 

Within 2 seconds of the gunshot, the program will 

send an alert about the gunshot and its direction from 

the device’s location, as determined by GPS. 

VI. RESEARCH AND THEORY 

Research for this project explored the topics of 

multilateration, gunshot sound signatures, neural network 

architectures, and user interfaces. 

A. Multilateration 

Multilateration is a method widely used in real-time 

locating systems to locate a source by using time distance 

of arrival (TDOA) from receivers that are synchronized at 

the same clock rate. To implement multilateration for a 

two-dimensional case, a minimum of three receivers are 

needed, while the three-dimensional case requires a 

minimum of four receivers. 

B. 2D Multilateration 

Multilateration utilizes TDOA, since the time of arrival 

of the signal is not known. The distance between two 

receivers can be obtained by having a known propagation 

speed multiplied by the TDOA as shown in (1). Ri 

represents the distance, c represents the speed of sound, and 

τi is time the first microphone that received sound (t0) 

subtracted from the ith microphone that received sound (ti). 

The speed of sound is dependent highly on temperature, so 

a temperature probe is used to provide the value of T for the 

speed of sound calculation shown in (2). 

Ri = cτi = c(ti - t0)       (1) 

𝑐 = 331.3√1 +
𝑇

273.15 𝐾
       (2) 

The x and y position of each microphone relative to the 

origin is known, so the Pythagorean theorem can be applied 

for Ri. The value of a0
2 and b0

2 becomes (x - x0)2 and (y - 

y0)2 for the first microphone, and (x - xi)2 and (y - yi)2 for 

the ith microphone as shown in (3). Taking the square root 

of these, the final product is shown in (4). 

𝑎𝑖 = 𝑥 − 𝑥𝑖           𝑏 = 𝑦 − 𝑦𝑖   (3) 

√𝑎𝑖
2 + 𝑏𝑖

2 − √𝑎0
2 + 𝑏0

2 = 𝑐τ𝑖 = 𝑅𝑖 (4) 

Given there are two unknowns for the TDOA of the first 

two microphones, an equation can be derived from the third 

receiver, which gives the two equations and two unknowns 

that can be solved, shown in (5) and (6).  

√𝑎1
2 + 𝑏1

2 − √𝑎0
2 + 𝑏0

2 = 𝑐τ1 = 𝑅1 (5) 

√𝑎2
2 + 𝑏2

2 − √𝑎0
2 + 𝑏0

2 = 𝑐τ2 = 𝑅2 (6) 

With these two equations, the solution to x and y would 

be the intersection of two half-hyperbolas. In order to solve 



this non-linear equation, a guess and check algorithm 

would be required to solve the unknown variables of x and 

y, but it is computationally expensive. To alleviate this 

issue, a fourth microphone can be added to the sensor array 

and is used to remove the square root of the equation in 

order to linearize it, which can be solved as a system of 

linear equations. 

C. 3D Multilateration 

Using multilateration in the third-dimensional case, a 

fourth receiver is needed. Based on the equation derived in 

the two-dimensional case, the z position of the microphone 

relative to the origin is added, which is represented in (7). 

Taking the square root, the final product is shown in (8). 

𝑐𝑖 = 𝑧 − 𝑧𝑖     (7) 

√𝑎𝑖
2 + 𝑏𝑖

2 + 𝑐𝑖
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ𝑖 = 𝑅𝑖 (8) 

With three equations, the three unknowns x, y, and z can 

be solved, as shown in (9), (10), and (11). 

√𝑎1
2 + 𝑏1

2 + 𝑐1
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ1 = 𝑅1 (9) 

√𝑎2
2 + 𝑏2

2 + 𝑐2
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ2 = 𝑅2 (10) 

√𝑎3
2 + 𝑏3

2 + 𝑐3
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ3 = 𝑅3 (11) 

With the addition of a fifth microphone, the square root 

can be removed, and a system of linear equations can be 

used to solve for the values of x, y, and z. In order to derive 

this, one of the square roots would be added to the right side 

of the equation, which can be substituted with the value in 

(12). Both sides of the equation would then be set to the 

power of 2, as shown in (13). After performing the FOIL 

method, the final product can then be rearranged to be set 

equal to 0 as shown in (14). 

𝑟𝑖 = √𝑎𝑖
2 + 𝑏𝑖

2 + 𝑐𝑖
2   (12) 

𝑟𝑖
2 = (𝑐τ𝑖 + 𝑟0)2   (13) 

𝑐τ𝑖 + 2𝑟0 +
𝑟0

2−𝑟𝑖
2

𝑐τ𝑖
= 0  (15) 

By setting the equation of the ith microphone in (15) equal 

to the same equation using the jth microphone, the root term 

of 2r0 can be removed, which linearizes the equation. The 

equation can then be written in the format shown in (16). 

The constant values of Ai, Bi, and Ci shown in (17) – (19) 

allow the formation of a 3 x 3 matrix and Di in (20) allows 

the formation of a 3 x 1 matrix. Using these two matrices, 

the inverse matrix formula can be used to solve for the 

values of x, y, and z. 

Ax + By + Cz + D = 0  (16) 

𝐴𝑖 =
2

𝑐
(

𝑥𝑖

τ𝑖
−

𝑥𝑗

τ𝑗
)            (17) 

𝐵𝑖 =
2

𝑐
(

𝑦𝑖

τ𝑖
−

𝑦𝑗

τ𝑗
)            (18) 

𝐶𝑖 =
2

𝑐
(

𝑧𝑖

τ𝑖
−

𝑧𝑗

τ𝑗
)            (19) 

𝐷𝑖 = 𝑐(τ𝑖 − τ𝑗) +
1

𝑐
(

𝑥𝑗
2+𝑦𝑗

2+𝑧𝑗
2

τ𝑗
−

𝑥𝑗
2+𝑦𝑖

2+𝑧𝑖
2

τ𝑖
)      (20) 

 

D. Gunshot Sound Signature 

Gunshots have a few notable regions in their sound 

signature. The first, rarely present, is the shockwave 

accumulating behind the bullet, if it is travelling both 

toward the receiver and above the speed of sound; this is 

unreliable and relatively quiet. The second, our region of 

interest, is the muzzle blast itself. It features the highest 

sound pressure level and is the first consistent sound to be 

noted after a firing. The third, which must be considered, is 

the reflection and echo of the muzzle blast, both the direct, 

off-the-ground reflection, and any reflections from any 

walls or surroundings. This can mirror the appearance of a 

gunshot, as seen below in Figure 1.  

E. Machine Learning 

Machine learning is an important part of this project. The 

Minuteman system needs to be able to distinguish gunshots 

from normal audio. In order to do that, an algorithm will be 

trained from pre-established data to make predictions about 

the implications of new data. For this project we decided to 

develop an artificial neural network for classification of 

audio. ANNs are models simulating a network of neurons 

which are connected to a number of (or all) the neurons in 

previous and subsequent layers [1]. Each neuron takes a 

Fig. 1   Gunshot sound signature with primary markers [4] 



certain number of input connections with weights, which 

modifies each input’s value. The neuron then sums them 

together and passes them into an activation function that 

determines the neuron’s output [1]. Training for a 

classification problem using supervised learning (which 

means the data has labels which designates the correct class 

for the data) is done by: 

1) Initializing weight values 

2) Feeding the data through the layers to produce an 

output 

3) Calculating the error of the output by comparing it 

to the input’s true label 

4) Adjusting the weights through backwards 

propagation, a process of determining the error for 

each node on the output layer, going to each node 

connected to the erroneous nodes, and then 

adjusting their connection weights, through the 

entire network 

A convolutional neural network is an ANN consisting of 

special convolutional layers. Specifically, they generally 

consist of an input layer, a series of convolutional and 

pooling layers, one or more hidden fully-connected layers, 

and an output layer [3]. A convolutional layer works by 

creating a number of kernels that cover small areas of the 

data. These kernels, convolved over the entire input, 

creating several filters of the data. Unlike a fully-connected 

layer, there are significantly fewer neurons and connections 

to adjust, and repeated or similar weights are reduced as a 

result. The final output of the convolutional layer is a 

number of feature maps generated by each kernel. 

After the convolutional layer, a pooling layer will 

downsample the data in the feature maps by merging 

neighboring cells in blocks. Typically, this is done by 

taking either the average of the data or the maximum value. 

This is important, as along with receptive fields, it increases 

the robustness of the analysis against data translation (or the 

perspective or change of perspective of the data of the 

sensor) [3]. 

Activation functions also influence the results of our 

network. For the Minuteman network, the tanh and sigmoid 

activation functions were trialed. Tanh is a popular 

activation function which competes with ReLU. While 

ReLU is typically preferred, especially for deep neural 

networks; however, since we are creating a binary 

classification network, tanh produced a better output 

alongside sigmoid. Tanh takes the sum through a 

hyperbolic tangent function. A sigmoid activation function 

is used for the final output since the output is binary. 

Sigmoid functions evaluate their inputs and produce an 

output between zero and one with a hyperbolic curve 

toward each. The final prediction is rounded to the closest 

number. 

Dropout is used to reduce oversampling. Dropout 

randomly chooses connections and completely disables 

them, reducing the total connections and forcing the 

network to simplify the data as it proceeds. 

Flatten is used to reshape the data into a format that can 

be passed into a fully-connected dense layer. The fully-

connected layer is a simple layer where all of the neurons 

in the layer is connected to all of the possible inputs. This 

is needed to reduce the input to the final output, which only 

has a total number of neurons for each class. In this case, 

since our network is a binary classifier, it only has two. 

In order to compile our network, we need an optimization 

and a loss function. The loss function calculates the ‘loss’, 

or the error in the network after it makes a prediction [2]. 

For Minuteman, the ‘binary cross-entropy’ function was 

selected, since that is designed for binary classification 

systems. The optimization function attempts to minimize 

the loss function by adjusting the learnable features of the 

algorithm. Minuteman utilizes the Adam optimization 

function. 

A diagram of the Minuteman CNN architecture is shown 

in Fig. 2. 

 

Fig. 2. A simplified view of the architecture for the Minuteman 

convolutional neural network  



C. User Interface 

One of the means of displaying the output in our 

Minuteman project is using a companion software that 

presents the data acquired by the other parts of the system, 

which are getting in the gunshots from firearms fired. There 

are many different options to be considered when 

efficiently creating a presentable, easy-to-use interface for 

the project's multiple components. 

There are options in line in creating the right interface, 

ranging from using WPFs to using programming languages 

like C, C++, or Java. Looking into the right choices, we 

have concluded that using C#, one of the best programming 

languages in object-oriented programming, is the best one 

that can relay in the information coming from the sources 

of data that the interface will pick up. Microsoft Visual 

Studio, as researched, is a reliable application in the 

creation of a complex user-friendly interface such as used 

for our project. A Windows Forms library was utilized 

heavily as the primary method of lining up all the 

components properly, so that the user won't get confused 

when using buttons or accurately reading the information to 

be displayed on the application itself. 

We found out that the Windows Forms using C# is 

convenient for this type of project because C# is a useful 

language in terms of building/designing and interactive 

software that the person can have control over in his/her 

own time over any other languages being used.  

One of the main things discussed in as group early in the 

semester is the usage of Google Maps satellite to 

appropriately show and mark where the microphone setup 

is located and the general vector direction of where the 

gunshots are fired. Using some sort of map will properly 

display what is being asked by the system so that whoever 
is using the companion software knows what is happening 

and isn’t lost on what the markers mean eventually. We 

initially planned on just displaying some information about 

said gunshots, but we have determined it was way more 

practical to present. 

VII. HARDWARE DESIGN 

Our requirements demand an array of audio sources, an 

orientation sensor, a GPS module, and a microcontroller, 

with the MCU gathering and forwarding all signals to the 

host PC. The audio sources themselves will each consist of 

a microphone and an amplification and filtering stage, and 

they will all tie into a simultaneous sampling ADC. Primary 

elements of the system are shown below in Table III. 

 

 

 

  

Table III. Primary hardware elements 

Purpose Device 

Microcontroller ATSAM3X8E 

GPS u-blox NEO-6M 

Orientation Sensor Bosch BNO055 

ADC ADS8586S 

Amplifier TL072 

Microphone CMC-6035-130T 

A. System Overview 

Each microphone will logically connect to the MCU after 

the analog handling of the signal, as will the two other 

sensors. This data will be routed to the host PC, which will 

first check the audio for the target sound signature. After a 

sound signature match, the multilateration algorithm will 

comb through the relevant data, looking for identifying 

markers – namely the muzzle blast’s peak and valley of 

pressure, as represented in the audio waveform – 

computing the direction of the source. The direction and 

location information will be passed to the application’s 

GUI, which will use that information and the statically 

calculated timestamp to display that data using a Google 

Maps API. This can be seen in Figure 3 below. 

 

B. Microphone 

Our microphone model is a small, omnidirectional 

condenser microphone, which produces a small AC output 

voltage. It is rated to a maximum input level of 130dB, 

which is safely operational for nearly all applications – only 

point-blank firings of high-powered guns threaten to break 

that threshold, and these are naturally outside of our 

interest. A sound pressure above that level would merely 

Fig. 3.     System Block Diagram 



result in a non-representative span of recording; it would 

not damage the microphone. 

Our device has a typical output range of +/- 8 mV and a 

measured maximum of +/- 25 mV (at well over 100dB), 

which is later amplified. 

C. ADC 

The ADC operates for up to six channels at a maximum 

of 250k samples per second as a function of its primary 

timings – 1 microsecond for signal acquisition before 

sampling and roughly 3 microseconds for the subsequent 

conversion and data reads. Running at our target rate of 

44.1k samples per second, this leaves a period of just over 

18 microseconds between each sampling period for other 

operations to be performed by the MCU, as controlling the 

ADC is an operation outside the scope of the peripheral 

controllers and DMA controller of the MCU. It samples all 

signals on command, holding those values for the 

conversion process, which is necessary for our time-

dependent multilateration algorithm. 

D. Absolute Orientation Sensor 

The combined gyroscope, accelerometer, and 

magnetometer module computes the orientation of our 

device in space, returning the Euler angles of our device, 

which allows us to align the sensed direction vector and 

produce a meaningful output. The device also features a 

temperature monitor, allowing us to find and use an 

accurate value for the speed of sound, which is temperature-

variant. 

E. GPS 

The simple GPS module was chosen primarily for its 

relatively fast cold-start time of 32 seconds. The device will 

be powered on for some time before USB connection is 

initiated, so this latency is easily hidden. It returns standard 

longitude and latitude values which easily feed into Google 

Maps. 

F. MCU 

The microcontroller receives and centralizes all data 

before transmitting it to the host PC via USB. Important 

characteristics are its USB 2.0 Hi-Speed support and its 

84MHz clock rate. 

G. PCB Layout 

The Minuteman project will use the Unite States standard 

120V AC at 60 Hz to convert it down using a wall adaptor 

to 12V DC at 2 Amps. This 12V DC will then go through 

the dual output LTM4622A and single output 

LMR23610ADDA to create the 3.3V DC, 5V DC, and the 

10V DC. In the final stage, the 10V DC will be inverted by 

the MAX1044 to -10V DC. These voltages have a high-

power efficiency of 89% for 3.3V DC, 91% for 5V DC, and 

95.6% for 10V DC.  

Both the central module PCB and microphone PCB were 

designed using the KiCad software because of its large 

component library and its zero monetary cost. These boards 

were manufactured by JLCPCB with a central module PCB 

size of 91mm*114mm and the microphone PCB size of 

57mm*38mm. The size of both PCBs designs gave ample 

room for tracing and correct sectioning without being 

oversized.  

The central PCB was divided into six sections. Two 

power sections, one for each integrated circuit, so minimal 

interference would affect our other sections. The ADC 

section is split between the analog input of the microphone 

connector and the digital output going into the 

microcontroller (uC). The uC section being placed in the 

middle of the board so that the ADC section and the USB 

section could be separated from the power sections. The 

USB section was placed close to the uC, because it requires 

minimal tracing, corners and vias to mitigate interference 

with high speed data transfer. The final JTAG and sensor 

section at the bottom of the PCB. The sectioning of the PCB 

makes it easy to troubleshoot and solder.  

The microphone PCB is simpler in its design and layout, 

with the connector pins to the right providing power and 

output to the microphone PCB. The center of the PCB is 

used for audio amplification and the band-pass filter of 72 

Hz to 7.6 kHz. The cutoff frequency is ideal for the audio 

samples that the Minuteman requires. The right section of 

the PCB contains the CMC-6035-130T microphone and the 

5V DC power source it requires.  

VIII. SOFTWARE DESIGN 

A. Cyclic MCU Timing Window 

While transmitting to the host PC, audio samples for all 

five microphones are required at the consistent, precise 

period of 1/44100Hz – every 22.7 microseconds. These can 

be generated and gathered in roughly 4 microseconds, 

leaving a window of just over 18 microseconds for 

communication blocks. UART I/O is channeled through the 

Peripheral DMA Controller (PDC), using a few of these 

time periods per second to coordinate and accumulate that 

data. USB transmissions are performed in blocks of 512 

bytes, requiring 512B / 480MBps = roughly 1 microsecond 

for the data itself to send. This fits with comfortable 

overhead for the protocol itself and for the host PC to attend 

to the USB channel. 

Both the UART management and the USB signaling will 

occur infrequently as new timing windows come along, 

with the UART needs managed by a timer and the USB 



needs taking priority due to buffer management 

considerations. 

B. USB Packet Format 

The need to differentiate sensor data like latitude, 

longitude, and orientation, each with unique timings, 

requires a signifier in the data packet to the host PC. One 

byte of control bits is sufficient for this purpose, and, as 

each audio sample is two bytes in size, the spare, odd byte 

is used as a simple incrementing packet number counter, 

shown below in Figure 4. 

C. Neural Network Implementation 

The Neural Network for Minuteman is trained using 

Keras, which is an API using a TensorFlow framework. 

TensorFlow is notable for its development and useful 

libraries for neural network projects. TensorFlow 

specifically allows the usage of a GPU to calculate the 

model, which is better optimized for large models of data. 

Keras in particular is easy to use and greatly simplifies the 

process of creating and compiling the network, as well as 

running it. 

Since the audio stream from the USB is constantly 

updating within a short time-span, the model for the 

network had to be converted to the programming language 

used for the UI, to avoid having to implement a pipeline, or 

other complicated inter-program system that might create 

an unnecessary delay. For this purpose, a library called 

TensorFlow Sharp was used to import a graph of the trained 

model onto the program in C#. Then it can quickly predict 

the input from the audio stream, informing the system if it 

needs to run multilateration analysis or if it should continue 

sending audio streams for gunshot detection. 

D. Interface Implementation 

It was an easy task managing all the different components 

in the User Interface. The team decided on making the GUI 

simple and peaceful to look at. Nothing too out of the 

ordinary and well balanced so that the one using the 

program can travel to every page properly. The main duty 

in creating this program is that it works the right way, which 

means that it should be as error free as possible. There was 

no prior experience to C# for the group, so we had to learn 

another programming language along the way. In that way, 

we can gain experience for future endeavors and all 

priorities that might relate to a programming language like 

this. C# isn’t any different to Java or C because it has 

similar methods in creating such code.  

The plan is to have a sign in/register system when the 

program is launched. This way, users can have their own 

accounts to be able to log in/log out with ease whenever 

they want to. Once the user has logged into the main 

program, the user enters the main interface that shows 

buttons like the record/stop, a log for gunshots which state 

a timestamp of all things captured by the microphone setup 

and will display an alert if a gunshot is detected or not.  

The biggest chunk of the interface is the Google Maps 

satellite view that we planned on experimenting with early 

in the semester. What we chose the open source NuGet 

package called Gmap.NET that illustrates different kinds of 

maps/satellite for viewing and the ability to use markers and 

arrows to show direction of mark coordinates on the map 

itself. In this project, we have illustrated directional arrows 

coming out of the microphone setup to show the general 

direction of the audio sources captured by the setup. 

IX. CONCLUSION 

Results have been promising, as we met or exceeded all 

stated requirements, with a final neural network accuracy 

of 99.17%. This was measured against a test set riddled 

with strongly misleading null samples such as loud impacts, 

background highway traffic, and generator whir. 

Our system also lends itself to a natural extensibility 

through multiple networked devices, because it ultimately 

outputs a unit vector and the receiver’s fixed, known origin. 

The host code requires only a minor addition to network 

two or more nearby devices to find the intersection of these 

produced lines and thus the exact location of the sound 

source in 3D space. This is rarely a large improvement over 

a precise direction, but the implementation cost is so low 

that it seems highly practical if one were to expect to 

operate multiple units in the same general area. 

With an extended training dataset, this setup looks ready 

to receive and detect even low-volume gunshots, running 

on minimal-cost hardware and with an easily portable, 

mobile frame.  

Fig. 4     Example 512-byte USB packet 
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