
Project Minuteman

Nathan Cunanan, Nathaniel Dunn, Daniel

Vicenti, Eric Watson, Adam Bush

Dept. of Electrical and Computer Engineering

University of Central Florida, Orlando, Florida,

32816-2450

Abstract — Our project aims to produce an inexpensive,
minimal-profile device capable of discerning the direction

of gunshots. There are numerous applications, with active
shooter situations, military environments, and policing as
primary targets. Previous devices have utilized sampling

rates in the megahertz and laborious algorithmic
approaches to source and analyze sound data for this
purpose; we present a machine learning solution using

multilateration and a standard audio sample rate as a viable
alternative on scaled-down hardware.

Index Terms — Neural networks, machine learning,

multilateration, microcontroller, PCB, location, gunfire,

recognition, digital signal processing, ADC.

I. INTRODUCTION

The objective of this project was to create an audio sensor

system that can be installed in multiple environments: on a

building, at ground level, or on a moving vehicle. The

Minuteman system can accurately detect gunfire

discharges, being able to distinguish them from other

sounds in the environment such as engine backfires or glass

breaking. It discerns the precise direction of gunfire within

the operational area of the sensor and then displays it

visually.

This system in its basic form will be affordable for most

facilities, such as schools, public buildings, or sites of large

public gatherings. Police officers, military organizations,

private security, and other authorities will be able to afford

and utilize the Minuteman system. Although it is not the

primary intention of the project, the device will also be

functional for home security and private facilities looking

for security. It is a goal of this project to encourage further

development in technological security systems against gun

violence.

II. DESIGN OVERVIEW

A. Initial Design

The initial design for our Minuteman system comprised

a series of distinct sensor devices utilizing triangulation.

This version of the Minuteman system would monitor for

audio signatures of a certain decibel intensity or higher,

filtering out low intensity audio. It would have been only

capable of securing facilities or specific locations, as

locating gunshots would require the network of sensors to

cooperatively pinpoint the location, while the central

module determined if the audio was a gunshot or not.

These devices were to use a Wi-Fi network that would

have allowed other security devices to utilize the data from

the system and respond to threats.

B. Current Design

Physically, our device is 1m by 1m by 50cm, with the

main PCB and microcontroller at its base. Five microphone

arms extend 50cm out, one in each cardinal direction, and

one which extends straight up, perpendicular to the ground.

The current design was modified to use multilateration

instead of triangulation, since it was found to be more cost-

effective and just as accurate to use a single device with

multiple sensors, as opposed to using two localized

networks of sensors. The task of detection was also passed

off onto the program hosted on a computer instead, since

any central hub designed would only have microcontroller

resources that would be too slow to be useful. Instead it was

used to send an audio stream to the computer hosting the

Minuteman program via USB.

For detection, it was determined a neural network would

cleanest solution to this task, and that instead of looking for

audio that exceeded a minimum value, it would instead

comb through audio continuously. This was to save

resources and account for the fact that long-distance

gunshots might fall beneath the volume threshold. Once a

gunshot is identified, Minuteman monitors the audio for a

signal peak and calculates the difference between the

arrival times at the microphones during the same event.

Once multilateration has determined the direction, it

sends the data to the program’s UI, which will display the

device’s location using the GPS module, and visualize it

over Google Maps in a satellite view of the area. A cone

displays the direction of the detected gunshot.

 III. GOALS AND OBJECTIVES

The goals of the project are:

● A single device with several microphones to pick

up nearby audio.

● The device can be connected to a host computer

and utilize a building’s or vehicle’s power supply.

● A microcontroller to connect the sensors and

stream audio to the program.

● A program/app that can be downloaded to a host

computer to manage the device and performs the

majority of the software functions.

● The device is affordable and broadly effective for

the needs of multiple classes of users.

IV. REQUIREMENTS

The project’s requirements are presented in table I.

 TABLE I

PROJECT REQUIREMENTS

Identify gunshots with

minimum

95% Accuracy

Identify gunshots within 250 Meters

Identify and display a gunshot

within:

2 Seconds

Identify the direction of

gunshots to within:

5 Degrees

Maintain a cost of less than: 150 USD

V. SPECIFICATIONS

The specifications for the project are shown in table II.

TABLE II

PROJECT SPECIFICATIONS

The sensors are connected to a microcontroller,

which is connected to the host computer program.

The microcontroller streams audio into a byte array

on the host computer program.

The program checks the array for the muzzle blast of

a gun using a convolutional neural network,

searching for specific features in a scaleogram

created by a continuous wavelet transformation.

The neural network is trained from a dataset of

gunshots and non-gunshot audio files of 80ms

length.

The network provides the program with a prediction.

If it is a gunshot, it will pass the audio array to

multilateration program to determine the direction of

the gunshot.

Within 2 seconds of the gunshot, the program will

send an alert about the gunshot and its direction from

the device’s location, as determined by GPS.

VI. RESEARCH AND THEORY

Research for this project explored the topics of

multilateration, gunshot sound signatures, neural network

architectures, and user interfaces.

A. Multilateration

Multilateration is a method widely used in real-time

locating systems to locate a source by using time distance

of arrival (TDOA) from receivers that are synchronized at

the same clock rate. To implement multilateration for a

two-dimensional case, a minimum of three receivers are

needed, while the three-dimensional case requires a

minimum of four receivers.

B. 2D Multilateration

Multilateration utilizes TDOA, since the time of arrival

of the signal is not known. The distance between two

receivers can be obtained by having a known propagation

speed multiplied by the TDOA as shown in (1). Ri

represents the distance, c represents the speed of sound, and

τi is time the first microphone that received sound (t0)

subtracted from the ith microphone that received sound (ti).

The speed of sound is dependent highly on temperature, so

a temperature probe is used to provide the value of T for the

speed of sound calculation shown in (2).

Ri = cτi = c(ti - t0) (1)

𝑐 = 331.3√1 +
𝑇

273.15 𝐾
 (2)

The x and y position of each microphone relative to the

origin is known, so the Pythagorean theorem can be applied

for Ri. The value of a0
2 and b0

2 becomes (x - x0)2 and (y -

y0)2 for the first microphone, and (x - xi)2 and (y - yi)2 for

the ith microphone as shown in (3). Taking the square root

of these, the final product is shown in (4).

𝑎𝑖 = 𝑥 − 𝑥𝑖 𝑏 = 𝑦 − 𝑦𝑖 (3)

√𝑎𝑖
2 + 𝑏𝑖

2 − √𝑎0
2 + 𝑏0

2 = 𝑐τ𝑖 = 𝑅𝑖 (4)

Given there are two unknowns for the TDOA of the first

two microphones, an equation can be derived from the third

receiver, which gives the two equations and two unknowns

that can be solved, shown in (5) and (6).

√𝑎1
2 + 𝑏1

2 − √𝑎0
2 + 𝑏0

2 = 𝑐τ1 = 𝑅1 (5)

√𝑎2
2 + 𝑏2

2 − √𝑎0
2 + 𝑏0

2 = 𝑐τ2 = 𝑅2 (6)

With these two equations, the solution to x and y would

be the intersection of two half-hyperbolas. In order to solve

this non-linear equation, a guess and check algorithm

would be required to solve the unknown variables of x and

y, but it is computationally expensive. To alleviate this

issue, a fourth microphone can be added to the sensor array

and is used to remove the square root of the equation in

order to linearize it, which can be solved as a system of

linear equations.

C. 3D Multilateration

Using multilateration in the third-dimensional case, a

fourth receiver is needed. Based on the equation derived in

the two-dimensional case, the z position of the microphone

relative to the origin is added, which is represented in (7).

Taking the square root, the final product is shown in (8).

𝑐𝑖 = 𝑧 − 𝑧𝑖 (7)

√𝑎𝑖
2 + 𝑏𝑖

2 + 𝑐𝑖
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ𝑖 = 𝑅𝑖 (8)

With three equations, the three unknowns x, y, and z can

be solved, as shown in (9), (10), and (11).

√𝑎1
2 + 𝑏1

2 + 𝑐1
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ1 = 𝑅1 (9)

√𝑎2
2 + 𝑏2

2 + 𝑐2
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ2 = 𝑅2 (10)

√𝑎3
2 + 𝑏3

2 + 𝑐3
2 − √𝑎0

2 + 𝑏0
2 + 𝑐0

2 = 𝑐τ3 = 𝑅3 (11)

With the addition of a fifth microphone, the square root

can be removed, and a system of linear equations can be

used to solve for the values of x, y, and z. In order to derive

this, one of the square roots would be added to the right side

of the equation, which can be substituted with the value in

(12). Both sides of the equation would then be set to the

power of 2, as shown in (13). After performing the FOIL

method, the final product can then be rearranged to be set

equal to 0 as shown in (14).

𝑟𝑖 = √𝑎𝑖
2 + 𝑏𝑖

2 + 𝑐𝑖
2 (12)

𝑟𝑖
2 = (𝑐τ𝑖 + 𝑟0)2 (13)

𝑐τ𝑖 + 2𝑟0 +
𝑟0

2−𝑟𝑖
2

𝑐τ𝑖
= 0 (15)

By setting the equation of the ith microphone in (15) equal

to the same equation using the jth microphone, the root term

of 2r0 can be removed, which linearizes the equation. The

equation can then be written in the format shown in (16).

The constant values of Ai, Bi, and Ci shown in (17) – (19)

allow the formation of a 3 x 3 matrix and Di in (20) allows

the formation of a 3 x 1 matrix. Using these two matrices,

the inverse matrix formula can be used to solve for the

values of x, y, and z.

Ax + By + Cz + D = 0 (16)

𝐴𝑖 =
2

𝑐
(

𝑥𝑖

τ𝑖
−

𝑥𝑗

τ𝑗
) (17)

𝐵𝑖 =
2

𝑐
(

𝑦𝑖

τ𝑖
−

𝑦𝑗

τ𝑗
) (18)

𝐶𝑖 =
2

𝑐
(

𝑧𝑖

τ𝑖
−

𝑧𝑗

τ𝑗
) (19)

𝐷𝑖 = 𝑐(τ𝑖 − τ𝑗) +
1

𝑐
(

𝑥𝑗
2+𝑦𝑗

2+𝑧𝑗
2

τ𝑗
−

𝑥𝑗
2+𝑦𝑖

2+𝑧𝑖
2

τ𝑖
) (20)

D. Gunshot Sound Signature

Gunshots have a few notable regions in their sound

signature. The first, rarely present, is the shockwave

accumulating behind the bullet, if it is travelling both

toward the receiver and above the speed of sound; this is

unreliable and relatively quiet. The second, our region of

interest, is the muzzle blast itself. It features the highest

sound pressure level and is the first consistent sound to be

noted after a firing. The third, which must be considered, is

the reflection and echo of the muzzle blast, both the direct,

off-the-ground reflection, and any reflections from any

walls or surroundings. This can mirror the appearance of a

gunshot, as seen below in Figure 1.

E. Machine Learning

Machine learning is an important part of this project. The

Minuteman system needs to be able to distinguish gunshots

from normal audio. In order to do that, an algorithm will be

trained from pre-established data to make predictions about

the implications of new data. For this project we decided to

develop an artificial neural network for classification of

audio. ANNs are models simulating a network of neurons

which are connected to a number of (or all) the neurons in

previous and subsequent layers [1]. Each neuron takes a

Fig. 1 Gunshot sound signature with primary markers [4]

certain number of input connections with weights, which

modifies each input’s value. The neuron then sums them

together and passes them into an activation function that

determines the neuron’s output [1]. Training for a

classification problem using supervised learning (which

means the data has labels which designates the correct class

for the data) is done by:

1) Initializing weight values

2) Feeding the data through the layers to produce an

output

3) Calculating the error of the output by comparing it

to the input’s true label

4) Adjusting the weights through backwards

propagation, a process of determining the error for

each node on the output layer, going to each node

connected to the erroneous nodes, and then

adjusting their connection weights, through the

entire network

A convolutional neural network is an ANN consisting of

special convolutional layers. Specifically, they generally

consist of an input layer, a series of convolutional and

pooling layers, one or more hidden fully-connected layers,

and an output layer [3]. A convolutional layer works by

creating a number of kernels that cover small areas of the

data. These kernels, convolved over the entire input,

creating several filters of the data. Unlike a fully-connected

layer, there are significantly fewer neurons and connections

to adjust, and repeated or similar weights are reduced as a

result. The final output of the convolutional layer is a

number of feature maps generated by each kernel.

After the convolutional layer, a pooling layer will

downsample the data in the feature maps by merging

neighboring cells in blocks. Typically, this is done by

taking either the average of the data or the maximum value.

This is important, as along with receptive fields, it increases

the robustness of the analysis against data translation (or the

perspective or change of perspective of the data of the

sensor) [3].

Activation functions also influence the results of our

network. For the Minuteman network, the tanh and sigmoid

activation functions were trialed. Tanh is a popular

activation function which competes with ReLU. While

ReLU is typically preferred, especially for deep neural

networks; however, since we are creating a binary

classification network, tanh produced a better output

alongside sigmoid. Tanh takes the sum through a

hyperbolic tangent function. A sigmoid activation function

is used for the final output since the output is binary.

Sigmoid functions evaluate their inputs and produce an

output between zero and one with a hyperbolic curve

toward each. The final prediction is rounded to the closest

number.

Dropout is used to reduce oversampling. Dropout

randomly chooses connections and completely disables

them, reducing the total connections and forcing the

network to simplify the data as it proceeds.

Flatten is used to reshape the data into a format that can

be passed into a fully-connected dense layer. The fully-

connected layer is a simple layer where all of the neurons

in the layer is connected to all of the possible inputs. This

is needed to reduce the input to the final output, which only

has a total number of neurons for each class. In this case,

since our network is a binary classifier, it only has two.

In order to compile our network, we need an optimization

and a loss function. The loss function calculates the ‘loss’,

or the error in the network after it makes a prediction [2].

For Minuteman, the ‘binary cross-entropy’ function was

selected, since that is designed for binary classification

systems. The optimization function attempts to minimize

the loss function by adjusting the learnable features of the

algorithm. Minuteman utilizes the Adam optimization

function.

A diagram of the Minuteman CNN architecture is shown

in Fig. 2.

Fig. 2. A simplified view of the architecture for the Minuteman

convolutional neural network

C. User Interface

One of the means of displaying the output in our

Minuteman project is using a companion software that

presents the data acquired by the other parts of the system,

which are getting in the gunshots from firearms fired. There

are many different options to be considered when

efficiently creating a presentable, easy-to-use interface for

the project's multiple components.

There are options in line in creating the right interface,

ranging from using WPFs to using programming languages

like C, C++, or Java. Looking into the right choices, we

have concluded that using C#, one of the best programming

languages in object-oriented programming, is the best one

that can relay in the information coming from the sources

of data that the interface will pick up. Microsoft Visual

Studio, as researched, is a reliable application in the

creation of a complex user-friendly interface such as used

for our project. A Windows Forms library was utilized

heavily as the primary method of lining up all the

components properly, so that the user won't get confused

when using buttons or accurately reading the information to

be displayed on the application itself.

We found out that the Windows Forms using C# is

convenient for this type of project because C# is a useful

language in terms of building/designing and interactive

software that the person can have control over in his/her

own time over any other languages being used.

One of the main things discussed in as group early in the

semester is the usage of Google Maps satellite to

appropriately show and mark where the microphone setup

is located and the general vector direction of where the

gunshots are fired. Using some sort of map will properly

display what is being asked by the system so that whoever
is using the companion software knows what is happening

and isn’t lost on what the markers mean eventually. We

initially planned on just displaying some information about

said gunshots, but we have determined it was way more

practical to present.

VII. HARDWARE DESIGN

Our requirements demand an array of audio sources, an

orientation sensor, a GPS module, and a microcontroller,

with the MCU gathering and forwarding all signals to the

host PC. The audio sources themselves will each consist of

a microphone and an amplification and filtering stage, and

they will all tie into a simultaneous sampling ADC. Primary

elements of the system are shown below in Table III.

Table III. Primary hardware elements

Purpose Device

Microcontroller ATSAM3X8E

GPS u-blox NEO-6M

Orientation Sensor Bosch BNO055

ADC ADS8586S

Amplifier TL072

Microphone CMC-6035-130T

A. System Overview

Each microphone will logically connect to the MCU after

the analog handling of the signal, as will the two other

sensors. This data will be routed to the host PC, which will

first check the audio for the target sound signature. After a

sound signature match, the multilateration algorithm will

comb through the relevant data, looking for identifying

markers – namely the muzzle blast’s peak and valley of

pressure, as represented in the audio waveform –

computing the direction of the source. The direction and

location information will be passed to the application’s

GUI, which will use that information and the statically

calculated timestamp to display that data using a Google

Maps API. This can be seen in Figure 3 below.

B. Microphone

Our microphone model is a small, omnidirectional

condenser microphone, which produces a small AC output

voltage. It is rated to a maximum input level of 130dB,

which is safely operational for nearly all applications – only

point-blank firings of high-powered guns threaten to break

that threshold, and these are naturally outside of our

interest. A sound pressure above that level would merely

Fig. 3. System Block Diagram

result in a non-representative span of recording; it would

not damage the microphone.

Our device has a typical output range of +/- 8 mV and a

measured maximum of +/- 25 mV (at well over 100dB),

which is later amplified.

C. ADC

The ADC operates for up to six channels at a maximum

of 250k samples per second as a function of its primary

timings – 1 microsecond for signal acquisition before

sampling and roughly 3 microseconds for the subsequent

conversion and data reads. Running at our target rate of

44.1k samples per second, this leaves a period of just over

18 microseconds between each sampling period for other

operations to be performed by the MCU, as controlling the

ADC is an operation outside the scope of the peripheral

controllers and DMA controller of the MCU. It samples all

signals on command, holding those values for the

conversion process, which is necessary for our time-

dependent multilateration algorithm.

D. Absolute Orientation Sensor

The combined gyroscope, accelerometer, and

magnetometer module computes the orientation of our

device in space, returning the Euler angles of our device,

which allows us to align the sensed direction vector and

produce a meaningful output. The device also features a

temperature monitor, allowing us to find and use an

accurate value for the speed of sound, which is temperature-

variant.

E. GPS

The simple GPS module was chosen primarily for its

relatively fast cold-start time of 32 seconds. The device will

be powered on for some time before USB connection is

initiated, so this latency is easily hidden. It returns standard

longitude and latitude values which easily feed into Google

Maps.

F. MCU

The microcontroller receives and centralizes all data

before transmitting it to the host PC via USB. Important

characteristics are its USB 2.0 Hi-Speed support and its

84MHz clock rate.

G. PCB Layout

The Minuteman project will use the Unite States standard

120V AC at 60 Hz to convert it down using a wall adaptor

to 12V DC at 2 Amps. This 12V DC will then go through

the dual output LTM4622A and single output

LMR23610ADDA to create the 3.3V DC, 5V DC, and the

10V DC. In the final stage, the 10V DC will be inverted by

the MAX1044 to -10V DC. These voltages have a high-

power efficiency of 89% for 3.3V DC, 91% for 5V DC, and

95.6% for 10V DC.

Both the central module PCB and microphone PCB were

designed using the KiCad software because of its large

component library and its zero monetary cost. These boards

were manufactured by JLCPCB with a central module PCB

size of 91mm*114mm and the microphone PCB size of

57mm*38mm. The size of both PCBs designs gave ample

room for tracing and correct sectioning without being

oversized.

The central PCB was divided into six sections. Two

power sections, one for each integrated circuit, so minimal

interference would affect our other sections. The ADC

section is split between the analog input of the microphone

connector and the digital output going into the

microcontroller (uC). The uC section being placed in the

middle of the board so that the ADC section and the USB

section could be separated from the power sections. The

USB section was placed close to the uC, because it requires

minimal tracing, corners and vias to mitigate interference

with high speed data transfer. The final JTAG and sensor

section at the bottom of the PCB. The sectioning of the PCB

makes it easy to troubleshoot and solder.

The microphone PCB is simpler in its design and layout,

with the connector pins to the right providing power and

output to the microphone PCB. The center of the PCB is

used for audio amplification and the band-pass filter of 72

Hz to 7.6 kHz. The cutoff frequency is ideal for the audio

samples that the Minuteman requires. The right section of

the PCB contains the CMC-6035-130T microphone and the

5V DC power source it requires.

VIII. SOFTWARE DESIGN

A. Cyclic MCU Timing Window

While transmitting to the host PC, audio samples for all

five microphones are required at the consistent, precise

period of 1/44100Hz – every 22.7 microseconds. These can

be generated and gathered in roughly 4 microseconds,

leaving a window of just over 18 microseconds for

communication blocks. UART I/O is channeled through the

Peripheral DMA Controller (PDC), using a few of these

time periods per second to coordinate and accumulate that

data. USB transmissions are performed in blocks of 512

bytes, requiring 512B / 480MBps = roughly 1 microsecond

for the data itself to send. This fits with comfortable

overhead for the protocol itself and for the host PC to attend

to the USB channel.

Both the UART management and the USB signaling will

occur infrequently as new timing windows come along,

with the UART needs managed by a timer and the USB

needs taking priority due to buffer management

considerations.

B. USB Packet Format

The need to differentiate sensor data like latitude,

longitude, and orientation, each with unique timings,

requires a signifier in the data packet to the host PC. One

byte of control bits is sufficient for this purpose, and, as

each audio sample is two bytes in size, the spare, odd byte

is used as a simple incrementing packet number counter,

shown below in Figure 4.

C. Neural Network Implementation

The Neural Network for Minuteman is trained using

Keras, which is an API using a TensorFlow framework.

TensorFlow is notable for its development and useful

libraries for neural network projects. TensorFlow

specifically allows the usage of a GPU to calculate the

model, which is better optimized for large models of data.

Keras in particular is easy to use and greatly simplifies the

process of creating and compiling the network, as well as

running it.

Since the audio stream from the USB is constantly

updating within a short time-span, the model for the

network had to be converted to the programming language

used for the UI, to avoid having to implement a pipeline, or

other complicated inter-program system that might create

an unnecessary delay. For this purpose, a library called

TensorFlow Sharp was used to import a graph of the trained

model onto the program in C#. Then it can quickly predict

the input from the audio stream, informing the system if it

needs to run multilateration analysis or if it should continue

sending audio streams for gunshot detection.

D. Interface Implementation

It was an easy task managing all the different components

in the User Interface. The team decided on making the GUI

simple and peaceful to look at. Nothing too out of the

ordinary and well balanced so that the one using the

program can travel to every page properly. The main duty

in creating this program is that it works the right way, which

means that it should be as error free as possible. There was

no prior experience to C# for the group, so we had to learn

another programming language along the way. In that way,

we can gain experience for future endeavors and all

priorities that might relate to a programming language like

this. C# isn’t any different to Java or C because it has

similar methods in creating such code.

The plan is to have a sign in/register system when the

program is launched. This way, users can have their own

accounts to be able to log in/log out with ease whenever

they want to. Once the user has logged into the main

program, the user enters the main interface that shows

buttons like the record/stop, a log for gunshots which state

a timestamp of all things captured by the microphone setup

and will display an alert if a gunshot is detected or not.

The biggest chunk of the interface is the Google Maps

satellite view that we planned on experimenting with early

in the semester. What we chose the open source NuGet

package called Gmap.NET that illustrates different kinds of

maps/satellite for viewing and the ability to use markers and

arrows to show direction of mark coordinates on the map

itself. In this project, we have illustrated directional arrows

coming out of the microphone setup to show the general

direction of the audio sources captured by the setup.

IX. CONCLUSION

Results have been promising, as we met or exceeded all

stated requirements, with a final neural network accuracy

of 99.17%. This was measured against a test set riddled

with strongly misleading null samples such as loud impacts,

background highway traffic, and generator whir.

Our system also lends itself to a natural extensibility

through multiple networked devices, because it ultimately

outputs a unit vector and the receiver’s fixed, known origin.

The host code requires only a minor addition to network

two or more nearby devices to find the intersection of these

produced lines and thus the exact location of the sound

source in 3D space. This is rarely a large improvement over

a precise direction, but the implementation cost is so low

that it seems highly practical if one were to expect to

operate multiple units in the same general area.

With an extended training dataset, this setup looks ready

to receive and detect even low-volume gunshots, running

on minimal-cost hardware and with an easily portable,

mobile frame.

Fig. 4 Example 512-byte USB packet

REFERENCES

[1] A. Kaushik, A.K. Soni, Rachna Soni, A Simple

Neural Network Approach to Software Cost Estimation.

Global Journal of Computer Science and Technology:

Neural & Artificial Intelligence, Vol. 13, Issue 1, Version

1.0, Year 2013.

[2] J. Brownlee, “Loss and Loss Functions for Training

Deep Learning Neural Networks,” Machine Learning

Mastery, 28-Jan-2019. [Online]. Available:

https://machinelearningmastery.com/loss-and-loss-

functions-for-training-deep-learning-neural-networks/.

[Accessed: 19-Jul-2019].

[3] Piczak, Karol J. ENVIRONMENTAL SOUND

CLASSIFICATION WITH CONVOLUTIONAL

...Institute of Electronic Systems Warsaw University of

Technology, http://karol.piczak.com/papers/Piczak2015-

ESC-ConvNet.pdf.

[4] R. C. Maher and S. R. Shaw, “Deciphering gunshot

recordings,” in Proc. Audio Engineering Society 33rd

Conf., Audio Forensics—Theory and Practice, Denver,

CO, June 2008, pp. 1–8.

BIOGRAPHIES

Nathan Cunanan is a graduating

Computer Engineering major from

the University of Central Florida.

He is planning to apply to

Lockheed Martin or Harris Corp.

as a software engineer after he

graduates from the university.

Nathaniel Dunn is a graduating

Electrical Engineering major at the

University of Central Florida. He

has been working as an intern

within his field and plans to

continue his professional career

post-graduation.

Daniel Vicenti is a Computer

Engineering major. He plans on

pursuing a software engineering

career with an emphasis on neural

networks and machine learning.

Eric Watson is a graduating

Electrical Engineering and

Computer Engineering dual major

at the University of Central

Florida. He is planning to attend

graduate school to further develop

his interests within his field.

Adam Bush is a graduating

Computer Engineering major at

the University of Central Florida.

He spent one year working with

UCF’s Computer Architecture Lab

on an NSF Research Experience

for Undergraduates grant and plans

to work within the lowest

abstraction layers of computer

architecture.

