ERGCK

SMART BIKE RACK SYSTEM

Group 13 Amanda Chanthalangsy EE Vanessa Garcia De Quevedo CpE Joel Gonzalez CpE Trung Luu CpE

MOTIVATION

We aim to encourage people to give up their cars in favor of bicycles for those shorter commutes. Heavily populated areas suffer from congestion, heavy traffic, and pollution which can be alleviated by encouraging commuters to take advantage of a greener solution such as using a bike for reaching nearby locations. Our smart bike rack aims to make bringing your bike anywhere as convenient as possible.

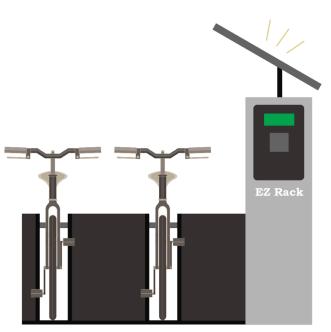
Reduce Traffic

Heavily populated areas suffer from traffic congestion

Increase convenience

Can't find parking?

Eco-friendly solution

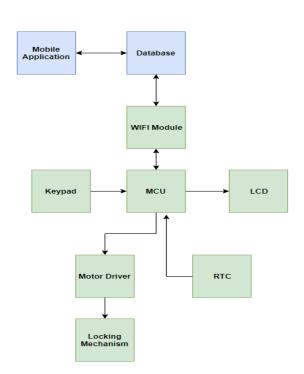

Less traffic means less cars

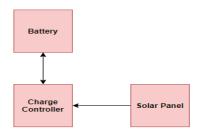
GOALS & OBJECTIVES

- Provide a convenient place to store your bike
- Eliminate the worry of having to carry a lock and chain
- Provide a means of reserving a slot and checking availability
- Self-sufficient with power provided by a solar panel

SPECIFICATIONS

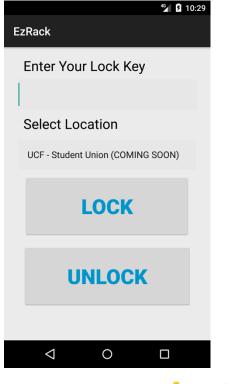
Secure at least 2 bicycles


Lock / unlock within 5 seconds of user input from the UI


Operate at least 8 hours without recharge

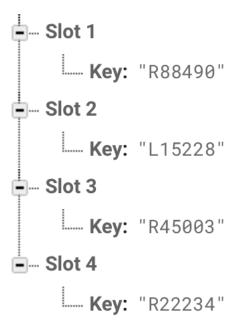
Charge controller provides 12V and 5V load

SYSTEM OVERVIEW

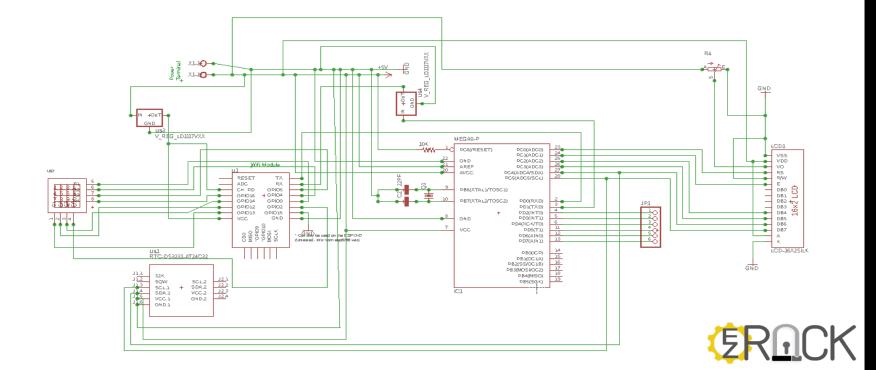


MOBILE APPLICATION

- Android application allows users to reserve, lock, and unlock, their slot directly from their android device.
- Reservations should be held for a maximum of 15 minutes.
- Users will not have to worry about signing in



FIREBASE


Real-time Database: Secure and server less database is used to store the keys and update the slot availabilities in real time.

Ease of Use: Unlike traditional database systems like MySQL, Oracle DB, and MongoDB, Firebase provides storage without the need of any backend, server side code.

EMBEDDED SYSTEM

WI-FI CONNECTIVITY

Specifications				
Arduino Wifi Shield ESP8266 01 ESP8266				
Operating Voltage 5V		3V	3V	
Wireless Standard IEEE 802.11		IEEE 802.11	IEEE 802.11	
Frequency Range2.4 - 2.497GHz		2.412 - 2.484 GHz	2.412 - 2.484 GHz	
Cost	Discontinued	\$5.00	\$3.25	

MICROCONTROLLER

Specifications			
	ATMega328P-PU	ATmega2560	
Pin Count	28	100	
Flash Memory	32KB	256 KB	
СРИ Туре	8-bit AVR	8-bit AVR	
Number of I/O Pins	23	54	
Operating Voltage	1.8V - 5.5V	1.8V - 5.5V	
Cost	\$4.66	\$12.21	

SYSTEM DISPLAY

1602A LCD Display Module: Provides a user interface without the need for an android smartphone. Provides user instructions for interfacing with the system.

Specifications			
Operating Voltage 5V			
Display Format	16 Character x 2 Lines		
Cost	\$5.99		

KEYPAD

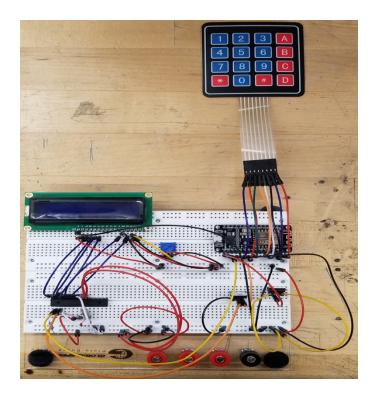
Membrane 4x4 Matrix Keypad allows users to interact with the kiosk's user interface.

Specifications			
Maximum Rating24 VDC, 30mA			
Interface	8 pin access to 4x4 matrix		
Cost	\$ 3.40		

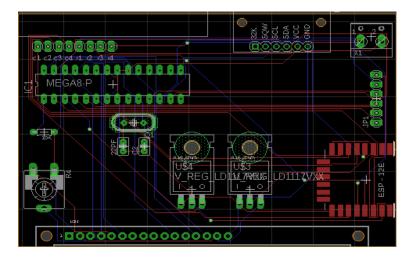
REAL-TIME CLOCK MODULE

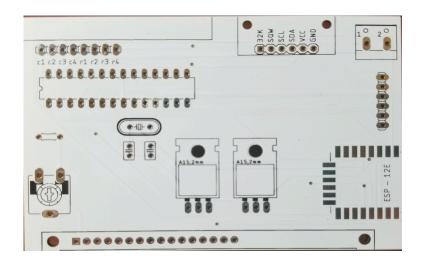
The **DS3231** is used to keep accurate time in the system. It continues to keep time even when disconnected from its main source of power.

Specifications		
Operating Voltage 3.3V		
Accuracy	±2ppm from 0°C to +40°C	
Cost	\$6.99	


TESTING

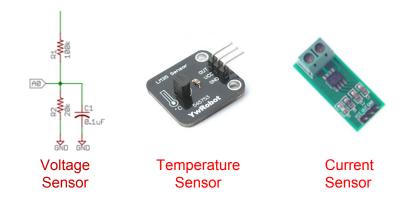
The **UNO R3** Development board is used for prototyping and testing.




TESTING

CHARGE CONTROLLER

- PWM 12V
 - Arduino Nano (ATmega328P)
 - 20x4 LCD Module Shield
 - ACS712 Current Sensor
 - LM35 Temperature sensor
 - LM2596 Step Down Buck Converter
 - From 3.0-40V to 1.5-35V (DC)
- Renogy 50W 12V Monocrystalline panel
- 12V 35AH Sealed Lead Acid Battery


MPPT VS PWM

PWM	МРРТ
Switches that connects solar array to a battery.	More Complex (Expensive).
Automatically adjust its charging to older batteries.	Harvest more power from solar array.
Helps avoids with gassing and heating to battery (Float stage).	Better suited for colder conditions.
Good low cost solution.	~150-200W or higher to take advantage of MPPT benefits (Operate above battery voltage; "boost" in cold climate when the battery is low).
Allow rapid recharge.	
Typically recommended for use in smaller systems where MPPT benefits are minimal (Hot Climate).	
	ERLC

SENSORS

If 5V = ADC count 1024

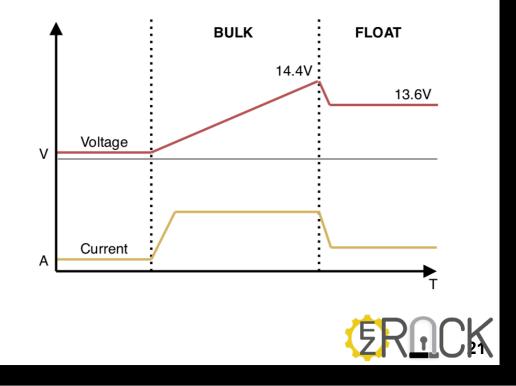
- Voltage Sensors utilize Voltage divider
 - Vin =Vout*[(R1+R2)/R2]
 - Vin = ADC count * 0.00488 * [(R1+R2)/R2]
- Temperature Sensor: if 10mV/C
 - Temp C = (5/1024) * ADC count * 100
- Current sensor

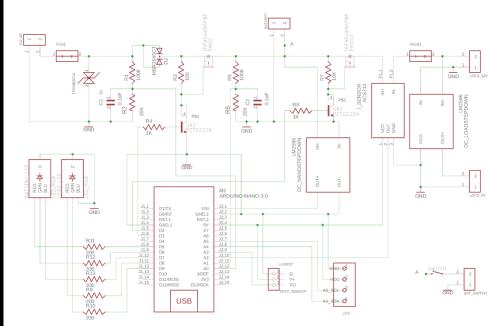
DISPLAY / LED

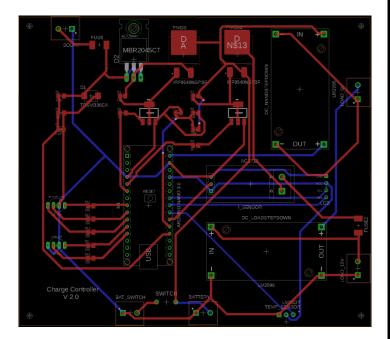
- 20x4 LCD Display
 - Solar Wattage
 - Battery Wattage
 - Temperature
 - \circ State of charge
 - Charging
 - Not Charging
 - Current
 - Load Energy and Power
 - P=V*I; E = P*t

- LED Indicator
 - Battery Status
 - Red -> Voltage is low
 - $B_{volt} < 12V$
 - Green -> Voltage is Good
 - 12V < B_{volt} < 14.4V
 - Blue -> Fully Charged
 - B_{volt} => 14.4V
 - Load Status
 - Green -> On

•
$$S_{volt} < 5V$$

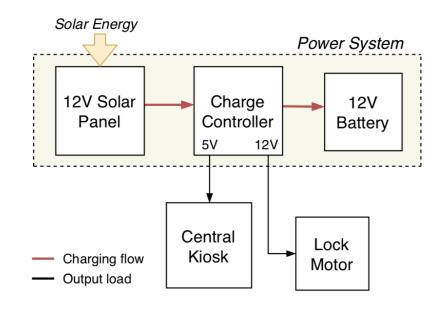

- B_{volt} > 11.5V
- Red -> Off


CHARGING ALGORITHM


2-Stage Battery Method

- Bulk Stage maximum charge to preset battery voltage value. (BULK_CH_SP = 14.4)
- Float Stage battery voltage is reduced after charge is complete. This is to prevent gassing of the battery. (FL_CH_SP =13.6V)

SCHEMATIC & PCB



• Off-Grid Solar Powered

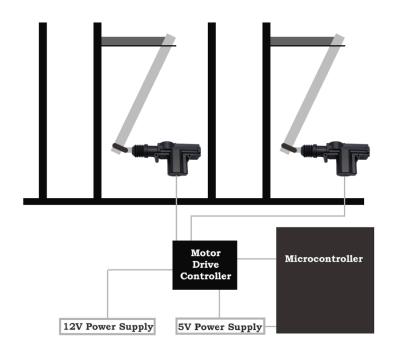
• Energy Independence = competitive

SOLAR PANEL

12V Monocrystalline Solar Panel			
Manufacturer	Renogy		
Max Power	50W		
Operating Voltage	18.5 V		
Operating Current	2.70 A		
Weight	9.9lbs		
Cost	\$88.00		

BATTERY

12V AGM Sealed Lead Acid Battery			
Manufacturer	Universal Power Group		
Operating Voltage	13.6-14.9 V		
Initial Current	5.25A		
Amperage	33 Ah		
Cost	\$64.99		



LOCK MOTOR

Manufacturer	Progressive	InstallGear	
Part Number	PA-14-6-35	IGDLA-2	
Voltage	12 VDC	12 VDC	
Stroke distance	6"	1"	
Retracted Length	10.13"	5.31"	
Current (max)	5A	2.6A	
Water Resistant	Yes Yes		
Price	\$111.99	\$9.99	

LOCKING MECHANISM

Lock Operation			
	Locked Unlocked (Pull) (Push)		
Input 1	+	-	
Input 2	-	+	

MOTOR DRIVER

L293N Dual Full-Bridge Driver

Drives up to two DC motors simultaneously

Total max DC current 4A

Features clockwise and anti-clockwise

Total power dissipation 25W

Price \$6.99

ISSUES

Budget

More funding for more secure components

Wireless Connectivity

Replaced ESP-01 with ESP-12E

Motor Driver

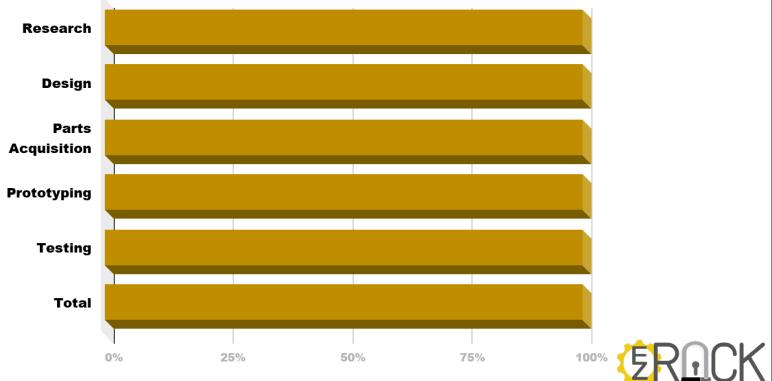
Replaced L293D with L292N

Charge Controller

PWM Vs. MPPT

WORK DISTRIBUTION

Name	Mobile App	Embedded Systems	Charge Controller	Housing/ Lock Mechanism
Joel	Primary	Secondary		
Vanessa	Secondary	Primary		
Trung			Primary	Secondary
Amanda			Secondary	Primary


BUDGET

Item	Price/Uni	t Quantity	Total Cost
50W 12V Renogy Solar Panel	\$132.03	1	\$132.03
12V 35Ah Lead Acid Battery	\$64.99	1	\$64.99
UNO Project Starter Kit	\$34.99	1	\$34.99
ATMega328P w/ Bootlader 3pc	\$13.98	1	\$13.98
Keypad	\$4.87	2	\$9.75
ESP8266 12E Node MCU	\$8.39	1	\$8.39
ESP8266 12E	\$5.89	1	\$5.89
RTC	\$5.99	1	\$5.99
12V Lock Actuator (2pc)	\$9.57	1	\$9.57
ACS712 Current Sensor Module	\$7.20	2	\$14.40
Arduino NANO	\$7.99	1	\$7.99
TVS Diodes	\$6.41	2	\$12.82
20x4 LCD Module	\$12.99	1	\$12.99
LM35 Analog Sensor	\$6.99	1	\$6.99
Various Electrical Components	Various	Various	\$150
Building Materials	Various	Various	\$150

Total: \$640

PROGRESS

Questions?

