
Ion: An Interactive Robot

Assistant

Dennis Gebken, David Jaffie, and Mohammad

Rizeq

Dept. Of Electrical & Computer Engineering,

University of Central Florida, Orlando, Florida,

32816-2450

Abstract — Ion is an interactive, voice recognition-based

robot assistant that can help a user complete tasks in a more
involved, fun manner. Through voice recognition, Ion can
understand certain tasks that the user can give such as playing
music or searching google. Through face recognition and a
servo, Ion can interact with the user, recognizing and
following their face as well as reacting to the conversation.
This physical, interactive embodiment of a personal assistant
sets it apart from competitors who are essentially only a smart
speaker. This concept can be applied to help counter boredom
and monotony when sitting at the desk. This document
summarizes the design and implementation of the device.

Index Terms — Face detection, face recognition, personal
assistant, robotics, signal processing, voice recognition

I. INTRODUCTION

Ion is a device that builds on smart speakers and personal

assistant combinations that are taking the market by storm.

Devices such as Amazon Alexa and Google Home are

becoming very popular, helping to link people to the

internet through voice. These devices are missing one

crucial characteristic that the group built upon – physical

interaction and portrayal of emotion. It’s hard to interact

with a device when it is essentially just a smart speaker and

just responds with a voice. With Ion, there is a face that

comes with the product that helps the user feel closer and

more-personal with the device while also getting emotional

and physical feedback through visuals on the LCD display

and through motion by the servo.

The initial design for this project was influenced by

Peeqo, an animated, interactive robot much like Ion. Peeqo

was developed by Abishek Singh, an NYU grad student,

and responds to the user both in GIFs and by physically

twisting and turning. This cool, new concept for a personal

assistant prompted the team to design their own.

II. RELEVANT TECHNOLOGIES

A. Face Detection and Recognition

Computer vision (CV) is one of Ion’s key components.

The main functionalities of computer vision are to detect

faces, provide feedback to the MCU, and to recognize the

user. It helps Ion to record images and video as well as

helping Ion track the user’s face. This capability of Ion to

track faces is a key feature that separates it from other

personal assistant smart speakers. The CV software for this

project is implemented using OpenCV.

B. Voice Recognition

Voice recognition technologies are starting to be

included in a lot more products with the emergence of

hands-free devices, virtual assistants, and home

automation. Voice recognition is essentially transforming

analog sound waves into digital commands that the

software can recognize to carry out different tasks. Ion

relies on the microphone to take in the sound waves which

are then translated into a digital form which can be

understood by speech recognition software, Google Speech

API and Google Assistant SDK in this case. A standard

approach to voice recognition is to listen for a ‘wake-up

word’ in a sentence and then guess the sentence or

command with a certain amount of confidence. Higher-

level systems utilize artificial intelligence and machine

learning to better guess the command and to raise the

confidence that it is correct. With this sentence, the

software can then decide which command to start or which

task to complete. Ion supports almost any command that the

Google Assistant supports – this includes fetching the

weather, getting directions, and playing YouTube audio.

C. Audio Signal Processing

Audio signal processing is used for the voice recognition

part of the project. The audio signal is first received by the

microphone, which is then converted to an analog electrical

signal. After that, the microphone is filtered and amplified

to acquire a much clearer signal that goes through an

analog-to-digital converter so that the signal can be sent to

the main CPU. Once the CPU processes the digital signal,

it sends out that signal through a digital-to-analog converter

so that the speaker can finally convert the analog signal to

an audio signal for the user to understand the device’s

response. The process is further illustrated in figure 1

below.

Fig. 1. The audio signal processing part of the design is shown
from picking up the audio signal from the user to responding back
to the user with another audio signal.

III. STRATEGIC COMPONENTS

A. Microcontroller

The Raspberry Pi Compute Module 3 Lite is a version of

the Raspberry Pi that is intended for more industrialized

applications. The module does not include any peripherals

found on the regular SBC (Wi-fi, USB, HDMI, etc.).

Instead, it is a barebones component that can be connected

to a custom PCB via a SODIMM socket. The Lite version

was chosen over the regular version because of its use of

SD cards as main storage as opposed to flash. Another main

argument for choosing the Raspberry Pi was its quad core

processor which is needed for the image processing

algorithms explained above.

B. Microphone

The microphone used for the device’s voice recognition

is connected through a USB port. The microphone chosen

for the project, manufactured by Sienoc, is simple to use,

and does not take up too much physical space.

Fig. 2. Sienoc USB microphone used as a device input for
voice recognition. Image credits to www.amazon.com.

C. Speakers

The speakers are mainly responsible for device playback

and response. The speakers used are also connected through

a USB port. The USHONK USB mini speakers were found

the most compatible for the project based on price, sound

quality, and ease of use.

Fig. 3. USHONK USB mini speakers used for device response
and media playback. Image credits to www.amazon.com.

D. Camera

Because the resolution of the camera is set to 320x240,

an inexpensive camera module was chosen. It had to be

compatible with the Raspberry Pi in order to make use of

the Camera Serial Interface. The camera chosen for the

device was the Keyestudio camera module Rev 1.3.

Fig. 4. Keyestudio camera module Rev 1.3 which is compatible
with the Raspberry Pi Compute Module 3, which can also be used

for prototyping with the Raspberry Pi 3 microcontroller. Image
credits to www.amazon.com.

E. Wi-Fi

The ESP 12-E Wi-Fi chip is used to provide the device with

wireless internet access. Internet is mainly used for the

device to stream media and search open libraries for device

response as an assistant.

Fig. 5. ESP 12-E WiFi chip which is connected to the main
CPU for internet access.

F. LCD

The Pi Foundation model is a 7” LCD touch screen with

a resolution of 800x480. The screen has capacitive touch,

allowing for multi-touch interaction with the device - up to

10-finger touch capability in fact. It has an operational

voltage of 10V, making it compatible with the power

supply needed for the other modules. The main

functionalities of the LCD are to display the GUI, display

YouTube videos if necessary, and to also display GIFs.

Fig. 6. The Pi Foundation LCD screen. Image credits to
Adafruit.

G. MCU and Motors

An Atmega328-au was chosen to be the motor control

unit (MCU) because of its simplicity and price. It only

needs to receive signals via I2C and generate PWM signals

for the servo and an RGB LED. An Attiny was also

considered but did not have enough GPIO pins. The au form

factor was chosen to reduce the footprint on the PCB.

Fig. 7. The Atmega328-au chip that is already mounted on the
PCB along with a ruler below it for size measurement. It is
responsible for controlling the servo motor and an RGB LED

H. Storage

For storage, a microSD card socket was included to store

the device’s operating system and software.

Fig. 8. The microSD card socket used to store the device’s
operating system.

I. Troubleshooting

A USB-A socket is added to the device mainly for

connecting the microphone and speakers that are connected

through a USB hub, but it could also be used for

troubleshooting. A keyboard or other peripherals can be

used through this USB port to troubleshoot the device in

case of any malfunctioning.

Fig. 9. The USB type A socket to be used for connecting the

microphone and speakers along with troubleshooting if required.

J. Power Source

To power the device’s PCB, a micro-USB port was used

that can take an input of 5V and then voltage regulators do

the rest of the work. A micro-USB port was used since

micro-USB cables are very common amongst consumers.

Fig. 10. The microUSB port that is used to accept an input power
source. It is responsible for powering the PCB.

K. Voltage Regulators

Since the device’s main CPU requires multiple input

voltages, three linear dropout voltage regulators were used

to regulate voltages of 3.3V, 2.5V, and 1.8V. No voltage

regulator was required for the 5V input since it was already

regulated.

Fig. 11. The LM317MBSTT3 linear dropout voltage regulator

used to regulate certain voltages required by the device’s
components.

IV. SOFTWARE DESIGN

A. GUI

The graphical user interface (GUI) functions as a

secondary means of communication between the user and

the device, behind voice control. It is the main point of

integration between all that Ion can do including voice

recognition, face detection and recognition, user data and

profiling, applications such as Spotify, YouTube, and

internet searches. One last major functionality of the GUI

is to display Ion’s emotional states as GIFs including

smiling, yawning, etc. This provides Ion with a fun,

interactive way to visually interact with the user.

The GUI is designed with Kivy, an open-source python

library. Kivy is a library that is often used for development

of natural user interfaces (NUIs) that involve multi-touch

interfaces and widgets. It includes a library of touch-aware

widgets and hardware accelerated OpenGL drawing which

is perfect for GUI development. Python is a great language

to develop a GUI in because it is easy to learn, is event-

driven which is ideal for a GUI.

The GUI layout includes a front page which displays a

welcoming GIF or face that is displayed on boot-up. From

there, the user can tap the screen to navigate to the menu,

where the user can see a clock with the current time as well

as launch YouTube or the web browser. The user can also

navigate to the ‘Commands’ page, where they can see the

available voice commands that Ion recognizes.

Fig. 12. The Graphical User Interface program flowchart.

B. Voice Recognition

The voice recognition is implemented using Google

Speech API and utilizes the Google Assistant SDK which

allows the target device to essentially function as a Google

Assistant. With the Google Assistant, python scripts are

used to create a request with the Google Speech API in the

form of a JSON file. This JSON file contains the recorded

audio that was picked up by the mic. From there, the device

sends the JSON to the API which is processed into text and

returns it back to the device in the form of a JSON file in a

format that Ion can now recognize with the Google

Assistant SDK. The voice recognition is further illustrated

in a flowchart shown next page in figure 13.

Fig. 13. The voice recognition flowchart.

C. Computer Vision

Face detection and face recognition are the components

that make up computer vision (CV) for Ion. They are used

to identify the user, detect the user’s face location within

the camera’s frame, and to provide feedback to the ‘face-

the-user’ system that allows Ion to follow the user’s

movement.

To identify the user, a face needs to be detected by the

face detection algorithm and matched to a saved face in the

user database. If a match is found, a prompt will confirm

with the user whether the identification was correct or not.

Once this has been done, only the face tracking feature will

run until the face has been out of sight for a specified

amount of time. The face detection feature determines the

position of the face within the camera frame and either

returns its location as a 2-D coordinate marking the face’s

center, or the image capture and the bonding rectangle of

the face. The 2-D coordinates are used by the face-the-user

system, the image while the image and bounding rectangle

are used by the facial recognition algorithm.

The facial detection software’s purpose is to detect faces

in frames captures by the camera. The facial detection

software was written in python and makes use of the

OpenCV library. Python was chosen because of its

readability and portability. It is pre-installed in the Linux

operating system, specifically Raspbian which we are

using, and has a broad spectrum of useful libraries that were

used for Ion. Most programming was done in the Atom text

editor and prototyped on a PC with the help of a webcam.

Final adjustments for compatibility were made on a

Raspberry Pi and its native python IDE.

The main hardware constraint for facial detection is

processing power. Since the facial detection software is a

key component of the servo feedback system, lag had to be

reduced as much as possible. Therefore, input from the

camera is set to a frame size of 320x240 pixels. In order to

free up processing power for other programs, facial

detection does not run continuously. The interval in which

facial detection runs depends on the amount and priority of

other simultaneous processes. Video playback and all other

user experience centric processes are of higher priority.

Two facial detection methods were considered: Haar

classifiers and linear binary patterns (LBP) classifier. Both

of these methods have key advantages and disadvantages.

Haar tends to be more accurate and have a low false positive

rate. This reduces the chance for Ion to mistake an object

for a person. However, Haar is slower and has problems in

difficult lighting conditions. LBP, on the other hand, is fast

and has less problems with changes in lighting conditions.

The drawback is a loss in accuracy and more false positives.

The two most important factors are speed and accuracy,

so it was difficult to select one method over the other. At

the end, an implementation using the Haar method was

running fast enough because the image size was reduced to

320x240 pixels and only a grayscale color palette is used.

The algorithm does struggle a bit in lower lighting but

fewer false positives do not cause Ion to turn away from the

user as does happen with LBP classifiers. figure 14 shows

the high-level flowchart of the face detection algorithm.

Fig. 14. The face detection algorithm.

The facial recognition software takes the output from the

from the facial detection software (bounding rectangle of

the detected face and the image in which it was detected)

and tries to match the detected face to a known user from

Ion’s internal database. The framework use for the facial

recognition algorithm is the same as for the facial detection

algorithm described above.

The facial recognition software was implemented with

Eigenfaces. Eigenfaces (Principal Component Analysis)

uses a training set of pictures taken in the same lighting

conditions. Eigenvectors and eigenvalues will then be

computed from a covariance matrix that represents the set

of training pictures. These so-called eigenfaces can then be

used to compute the difference of a face to these eigenfaces.

Comparing these deltas of various pictures will generate a

match (with determined range) if the face in the pictures is

the same. Because of the reliance in even lighting

conditions, this method requires a controlled environment.

All compared pictures must also be of the same size and be

normalized.

The advantage of using eigenfaces is that it is very fast

and does not need a lot of storage space and is very accurate

when the lighting conditions are ideal and unchanged. It

also does not need a very high-resolution image which

speeds up processing time and reduces storage needs even

further. The drawbacks are that it handles varying lighting

conditions, change in facial expression, varying

background, and faces of different sizes poorly. The

recognition depends on lighting rather than facial features.

[1]

Because of its drawbacks, the images get cropped around

the face-binding rectangle produced by the facial detection

algorithm. This reduces the effect the background has on

the method. The cropped image is then resized to 100x200

pixels, which should normalize it (face centered in the

image and of a uniform size). To reduce the errors when the

user’s face is tilted or rotated, several different sets of

eigenfaces should be generated by asking the user to take

several pictures from varying positions when calibrating

the system. figure 15 on the right shows the flowchart of

the facial recognition algorithm.

Facial detection for Ion is not advertised as a security

feature because of accuracy concerns but rather as an

interactive feature helping to humanize Ion.

Fig. 15. The face recognition algorithm.

V. PROJECT DESIGN

A. Power Consumption

To approximate the device power consumption, although

not completely accurate since power in the device is not

constant, a table, table 1 shown below, was constructed

illustrating all the nominal input voltages, current draws,

and power consumption by each of the components that

require power from the supply. It was then concluded that

the device easily matches its power consumption

requirement of less than 50W.

Table I

Power Consumption

B. Power Connections

After the power consumption table was established, it

helped with building a power connections diagram, shown

below in figure 16, that gives a better idea on how to

properly power the components on the PCB and where to

place them. The final decision for the component placement

on the PCB was done after the data connections were

considered as well.

Fig. 16. PCB power connections diagrams, whatever is inside
the square is mounted on the PCB while the outside is connected
externally.

C. PCB Schematic

Once all the power connections were planned out, it was

simple to design the PCB schematic. The schematic was

divided into multiple parts and sorted into categories for

better organization. Shown below in figure 17 is one of the

parts of the PCB; the Motor Control Unit (MCU). The

MCU is responsible for handling the PWM for the servo

motor that will rotate the device and for blinking RGB

LEDs.

Fig. 17. The MCU chip schematic drawn on EAGLE along with
its connections.

Next, shown below in figure 18, is the group’s CPU, the

Raspberry Pi Compute Module 3. It is responsible for all

the rest of the main functions and processes done by the

device. The 100kΩ resistors shown in the schematic are

pull-up resistors to prevent GPIO floating.

Fig. 18. The CPU chip schematic drawn on EAGLE along with
its connections.

Component Nominal

Input

Voltage

(V)

Nominal

Current

Draw

(mA)

Power

Consumed

(mW)

Processor 5 16 80

LCD 5 ~500 ~2,500

Servo Motors 5 500 2,500

Motor Control

Unit

5 0.5 2.5

WiFi Chip 3.3 80 264

Camera 5 250 1,250

LEDs 5 ~20 ~100

microSD Card 3.3 100 330

USB

Peripheral

5 ~500 ~2,500

Total:

~2.0A ~9.5W

After that, shown below in figure 19, are the device

peripherals. In that section, there is a three-pin male

connector for the LCD 5V input and ground (One pin was

reserved for future functionality), a USB-A port for the

microphone and speakers/troubleshooting, the ESP-12E

Wi-Fi chip, the camera and display serial interfaces, and

finally the microSD card socket along with all their

connections.

Fig. 19. The PCB peripherals drawn on EAGLE along with their
connections.

Finally, shown below in figure 20, is the power section.

It shows the microUSB power input, along with the three

voltage regulators that are connected in a certain sequence.

As the CPU requires, the sequence is that it should receive

its input voltages from highest to lowest. So, the output of

every higher voltage regulator is connected to the input of

the lower voltage regulator. That was also to have less

power dissipated in every regulator; less power wasted and

less heat in each.

Fig. 20. The PCB power section drawn on EAGLE that shows
the input power going through the micro-USB port and the three
voltage regulators along with their respective connections.

ACKNOWLEDGEMENTS

The members would like to thank Dr. Lei Wei and Dr.

Samuel Richie for their dedication to helping students

throughout the semesters.

BIOGRAPHIES

Dennis Gebken is a senior CpE

student at UCF, graduating in

August 2018. He opened a family

restaurant, completed two

internships, and worked full time

as an engineering coordinator for

Universal Creative’s engineering

division. He will be joining

Universal Creative as an associate

engineer upon graduation.

David Jaffie is a senior CpE

student at UCF, graduating in

August 2018. He completed two

internships throughout the course of

his undergraduate degree, both in

military and DoD simulation. He

will be joining Veraxx Engineering

Corporation as a Software Engineer

upon graduation.

Mohammad Rizeq is a senior EE

student at UCF, graduating in

August 2018. He worked part time

with the Student Academic

Resources Department as a

Supplemental Instruction Leader

for two semesters for the Electrical

Networks course. At the time of

completion of this project, he is

undecided where he wants to work

full-time.

REFERENCES

[1] Philipp Wagner, “How to implement the Eigenfaces and
Fisherfaces algorithm in GNU Octave/MATLAB and
Python”,
https://github.com/bytefish/bytefish.de/blob/master/blog/fis
herfaces.md, August 2017

	I. Introduction
	II. Relevant Technologies
	A. Face Detection and Recognition
	B. Voice Recognition
	C. Audio Signal Processing

	III. Strategic Components
	A. Microcontroller
	B. Microphone
	C. Speakers
	D. Camera
	E. Wi-Fi
	F. LCD
	G. MCU and Motors
	H. Storage
	I. Troubleshooting
	J. Power Source
	K. Voltage Regulators

	IV. Software Design
	A. GUI
	B. Voice Recognition
	C. Computer Vision

	V. Project Design
	A. Power Consumption
	B. Power Connections
	C. PCB Schematic

	Acknowledgements
	Biographies
	References

