
UCF Senior Design II

The Medspencer

A Smart Medicine Dispenser that Dispenses Medicine on Fixed-Schedule or As-Needed

Basis, for Individual or Family use

Department of Electrical Engineering and Computer Science

University of Central Florida

Dr. Samuel Richie and Dr. Lei Wei

Summer 2018

Senior Design 2 Document

Group 6

Ivan Alvarez Computer & Electrical ialvarez5@knights.ucf.edu

Matthew Hoover Computer Engineer matthewhoover@knights.ucf.edu

Sakeenah Khan Electrical Engineer sakeenahkhan@knights.ucf.edu

Gustavo Morales Electrical Engineer gmoralesburbano@knights.ucf.edu

mailto:ialvarez5@knights.ucf.edu
mailto:matthewhoover@knights.ucf.edu
mailto:sakeenahkhan@knights.ucf.edu
mailto:gmoralesburbano@knights.ucf.edu

ii

 i

Table of Contents

List of Figures .. vi

List of Tables ... ix

1.0 Executive Summary .. 1

2.0 Project Description.. 2

2.1 Motivations and Goals .. 2

2.2 Objectives ... 3

2.3 Requirements Specification .. 4

2.4 House of Quality ... 5

3.0 Related Standards and Constraints.. 6

3.1 Project Related Stands .. 6

3.1.1 IEEE Standards .. 6

3.1.2 FDA Standards ... 7

3.1.3 Soldering Standards and Safety ... 9

3.2 Design Constraints .. 11

3.2.1 Economic Constraints .. 11

3.2.2 Time Constraints .. 12

3.2.3 Manufacturability and Sustainability Constraints .. 13

3.2.4 Parts, Component, and Testing Constraints ... 14

3.2.5 Environmental Constraints... 16

3.2.6 Health and Safety Constraints .. 17

3.2.7 Ethical and Legal Constraints .. 19

3.2.8 Social and Cultural Constraints ... 21

3.2.9 Political Constraints or FDA Standards ... 22

3.2.10 Security Constraints ... 25

ii

3.2.11 Performance, Functionality, Usability, Reliability and Availability 27

4.0 Research and Background Information .. 28

4.1 Market Research ... 28

4.1.1 Existing Products ... 28

4.1.2 Input from Medical Professionals .. 30

4.2 Microcontroller ... 32

4.2.1 Research ... 33

4.2.2 Microchip PIC32MZ DA ... 34

4.2.3 Microchip PIC32MZ DA Starter Kit ... 36

4.2.4 MPLAB Harmony .. 37

4.2.5 ATMEGA328P Microcontroller .. 40

4.2.6 Raspberry Pi Compute Module 3 Lite ... 40

4.3 Display .. 40

4.3.1 Technical Background ... 41

4.3.2 Frame Buffer Space Saving Techniques .. 41

4.3.3 Innolux AT070TN90 ... 43

4.3.4 Resistive Touch Screen .. 44

4.3.5 Resistive Touch Screen Controller .. 46

4.4 Wi-Fi connection .. 47

4.5 Fingerprint Scanner ... 48

4.6 Motors ... 49

4.7 Speaker .. 50

4.8 Power .. 51

4.8.1 Power Supply ... 51

4.8.2 Power Regulation and Filtering ... 52

iii

4.9 Communication Protocols ... 52

5.0 Project Hardware and Software Design Details.. 56

5.1 Hardware Design .. 56

5.1.1 Hardware Block Diagram .. 56

5.1.2 Hardware Design Overview ... 58

5.1.3 Microcontroller Design .. 60

5.1.4 Wi-Fi Module... 64

5.1.5 Display Design ... 65

5.1.6 Fingerprint Scanner .. 68

5.1.7 Dispensing Mechanism .. 69

5.1.8 Speaker ... 71

5.1.9 Power Supply ... 72

5.1.10 Power Regulation and Filtering ... 73

5.2 Software Design .. 79

5.2.1 ATMega328P Software ... 80

5.2.2 User Interface ... 81

5.2.3 SQLite .. 82

5.2.4 Wi-Fi Communication ... 82

5.2.5 Fingerprint Scanner .. 83

5.2.6 Patient Identification & Adding/Removing a Patient 88

5.2.7 Prescription Parameters and Schedules ... 89

5.2.8 As-needed Medication Requests .. 90

5.2.9 Fixed-schedule Medicine Notifications and Requests 90

5.2.10 Rescheduling Doses ... 90

5.2.11 Recording events in Schedule & Summary Reports 91

iv

5.2.12 Python Structure... 91

6.0 Prototype Construction ... 95

6.1 Parts Acquisition and Bill of Materials ... 95

6.2 Printed Circuit Board .. 96

6.3 Prototype Constraints .. 96

6.4 Issues and Challenges ... 97

6.4.1 Hardware Issues ... 97

6.4.2 Software Issues .. 98

7.0 Prototype Testing .. 99

7.1 Hardware Testing .. 99

7.1.1 Breadboard and Development Board ... 99

7.1.2 PCB Testing ... 99

7.1.3 Testing Procedure .. 100

7.1.4 Microcontroller Testing ... 101

7.1.5 Touchscreen Testing .. 104

7.1.6 Display Testing .. 106

7.1.7 Wi-Fi Module Testing.. 108

7.1.8 Fingerprint Module Testing ... 108

7.1.9 Power Supply Testing .. 108

7.2 Software Testing ... 109

7.2.1 IDE Used .. 109

7.2.2 Python Procedures, Simulation, and Physical Testing................................... 110

7.2.3 ATMEGA328P Programming Procedures .. 112

8.0 Administrative Content ... 113

8.1 Milestone Discussion .. 113

v

8.2 Division of Labor .. 116

8.3 Budget and Finance Discussion .. 118

8.4 Project Operation .. 120

9.0 Conclusion .. 122

Appendix A: Citations .. 123

Appendix B: Copyright Permissions .. 129

vi

List of Figures

Figure 1. House of Quality.. 5

Figure 2. Cooling fan system with no maintenance .. 14

Figure 3. Wi-Fi module ESP8266 ... 15

Figure 4. Precise medication window scheme used by e-pill, LLC 29

Figure 5. PIC32MZ DA Family Block Diagram .. 35

Figure 6. J15 40-pin expansion ... 37

Figure 7. MPLAB Harmony generic block diagram .. 38

Figure 8. MPLAB Harmony Middleware diagram ... 39

Figure 9. MPLAB Harmony System Service example ... 39

Figure 10. Basic 24-bit color frame buffer; Total size: 1.099MB 42

Figure 11. 16-bit color frame buffer; Total size: 0.732 MB ... 42

Figure 12. Frame buffer with 256-color lookup table; Total size: 0.366 MB 42

Figure 13. Resistive touchscreen’s layers and electrodes ... 45

Figure 14. Measuring the Y component of a touch .. 46

Figure 15. AR1021 Resistive Touch Screen Controller Courtesy of Microchip 47

Figure 16. Filtered full wave rectifier ... 51

Figure 17. SPI communication using multiple slaves connected in parallel 53

Figure 18. UART communication connections .. 54

Figure 19. Transfer of data packets using UART communication 54

Figure 20. I2C communication connections using multiple masters and multiple slaves 55

Figure 21. Data message organization for I2C communication 55

Figure 22. Hardware block diagram showing team member responsibilities 57

Figure 23. Hardware block diagram ... 57

Figure 24. Main PCB schematic ... 59

vii

Figure 25. Main PCB layout ... 59

Figure 26. Raspberry Pi Compute Module 3 Lite (CM3L) .. 61

Figure 27. Raspberry Pi CM3L schematic .. 62

Figure 28. ATMEGA328P-PU microcontroller ... 62

Figure 29. ATMEGA328P-PU schematic .. 63

Figure 30. Bidirectional logic level shifting circuit .. 64

Figure 31. ESP-12F Wi-fi module .. 64

Figure 32. ESP-12F schematic .. 65

Figure 33. LCD display schematic.. 67

Figure 34. AR1021 schematic... 67

Figure 35. Picture of R307 fingerprint module ... 68

Figure 36. Exterior interface of the R307 fingerprint module .. 69

Figure 37. CD74HC238 3-to-8 Demultiplexer ... 70

Figure 38. SG90 servo motor .. 70

Figure 39. Dispensing mechanism schematic ... 71

Figure 40. 2W, 4Ω speaker ... 71

Figure 41. Audio amplifier schematic .. 72

Figure 42. 3-pin DC power barrel connector .. 73

Figure 43. Voltage regulation schematic ... 75

Figure 44. Voltage regulation PCB layout ... 75

Figure 45. 1.8V regulation schematic .. 76

Figure 46. -7V regulation schematic .. 76

Figure 47. 10V regulation schematic ... 77

Figure 48. 3.8V regulation schematic .. 77

Figure 49. 5V regulation schematic ... 78

viii

Figure 50. 16V regulation schematic ... 78

Figure 51. 10.4V regulation schematic .. 79

Figure 52. 12V regulation schematic ... 79

Figure 53. ATMega328P Software Diagram .. 80

Figure 54. Data package format of R307 fingerprint module ... 85

Figure 55. Schedule Selection Screen ... 89

Figure 56. Sample prescription label .. 89

Figure 57. Fingerprint Frame .. 92

Figure 58. Patient Frame ... 93

Figure 59. Administrator Frame .. 93

Figure 60. Fingerprint Frame .. 110

Figure 61. Patient Screen ... 111

Figure 62. Administrator or Caretaker ... 111

Figure 63. Division of labor .. 117

ix

List of Tables

Table 1. Connections for Fingerprint Reader on Arduino .. 15

Table 2. Connections for Servo Motors on Arduino... 15

Table 3. Typical Operation Conditions .. 44

Table 4. Processor Comparison .. 60

Table 5. Pin Assignment ... 66

Table 6. R307 Fingerprint Module Specifications and Ratings .. 68

Table 7. Power Requirements ... 73

Table 8. Voltage Regulation Devices ... 74

Table 9. R307 Package Formats for Fingerprint Processing Instructions 86

Table 10. R307 Package Formats for System-related Instructions 88

Table 11. Final Budget .. 95

Table 12. Example integration test cases related to page interaction 102

Table 13. Example system test cases .. 103

Table 14. Test cases relating to electrical properties of the touchscreen 105

Table 15. Test cases relating to the software performance of the touchscreen 106

Table 16. Test cases relating to the LCD .. 107

Table 17. Milestone chart ... 115

Table 18. Work Distribution ... 118

Table 19. Updated Budget List ... 119

 1

1.0 Executive Summary

For people with illness and health complications, it can be difficult to keep track of different

medicines and each medicine’s dosing schedule. It is important to follow the schedule

carefully to avoid an overdose or missing a dose. It can be easy to mix up medications and

consume the wrong medication as well. In addition, it is possible for prescription medicines

to be consumed by the wrong person, especially when they’re stored unprotected in a home

medicine cabinet. Our solution to these issues is the Medspencer, a device that dispenses

the right medicines to the appropriate person at the correct time. Our device will also record

the patient’s compliance or noncompliance with taking their medicine and relay it to the

health care provider, so that they can better advise and prescribe to the patient.

The main goal of this project is to accurately schedule and track multiple individual users’

medicines and dispense a single dose to a user at the appropriate times. The Medspencer

would be implemented in the household, for use by the family. The goals include: (1) to

help patients stick to their medicine schedules, so they don’t miss a dose or mix up

medicines; (2) to keep medicines secure so that patients cannot overdose, and the wrong

person cannot take the medicine; and (3) to record patients’ compliance/noncompliance

and inform the health care provider.

The features of the Medspencer are described as follows. Each user is programmed into the

Medspencer, and they can access the Medspencer by identifying themselves with a

fingerprint scan. Prescription drugs can be added to the dispenser into medicine vials

(added by the administrator) and can only be dispensed to the user they were prescribed to.

Each medicine vial is identified by its NDC number (medicine type), patient name,

prescriber information, and schedule type (‘fixed schedule’ vs ‘as needed’). The

Medspencer will notify a user when it is time to take their medicine. Users may also request

‘as needed’ medicines, in which case the Medspencer will check if enough time has elapsed

since the last dose and whether it has negative reactions with other medicines; then it will

decide whether to dispense the medicine. The Medspencer records when a user takes or

misses a dose. If a dose is missed, the Medspencer will either reschedule or skip the dose,

depending on the medicine’s schedule type. Every two weeks, the Medspencer sends a

summary report on the patient’s medication compliance to the administrator and health

care provider. If any medicines are running low or empty, the Medspencer will notify the

administrator. The administrator can be a caretaker or head-of-household, and is

responsible for putting medicines into the Medspencer, inputting prescription information

(such as schedules, prescribers, etc.), and adding users and fingerprint identification. Only

the administrator can open the device and access (add/remove) medicines, or add/adjust

schedules, prescriptions, and user information.

The Medspencer is an excellent method to aid patients and improve their medicine

compliance, as it takes care of organizing medications, scheduling them, and reminding the

patient. It is a good alternative to medication trays that must be sorted by the patient and

allow for human error.

2

2.0 Project Description

This section details the motivations, goals, and objectives for our senior design project.

Once the motivation and specific objectives were identified, we could narrow down how

to physically achieve said objectives and provide the described features. The project

requirement specifications details the necessary requirements to feasibly complete the set

objectives. At the end of this chapter, the trade-offs between engineering technology

capabilities and consumer desires are illustrated in the house of quality.

2.1 Motivations and Goals

As this is a senior design project, our first motivation for the project is to demonstrate and

apply the knowledge we have learned through attending the College of Engineering and

Computer Science at the University of Central Florida. Completing this project will allow

us to develop professionally and learn how to properly plan, manage, and execute a project

while working in a team. To demonstrate our knowledge, the team decided to create the

Medspencer, an automated medicine dispenser. The motivation for the Medspencer is to

increase medication adherence in patients with multiple prescription medications and

schedules.

Medication nonadherence, or noncompliance, is a serious issue and limits the effectiveness

of health care services and prescribed medications. According to the World Health

Organization’s 2003 report on medication adherence, about 50% of patients with chronic

illnesses do not take medications as prescribed [73]. Medication nonadherence has serious

health consequences. The implications of medication nonadherence include decreased

quality of life, poorly managed symptoms, and even death [22, 63, 87]. In addition,

nonadherence costs the health care system over $300 billion a year due to additional doctor

visits, emergency department visits, and hospitalizations. The costs associated with

nonadherence comprise up to 10% of total health care costs [63, 87]. This problem has

become even more serious over the years, as doctors and pharmacists develop and prescribe

increasingly complex and potent medication regimens. Research shows that in 2016, the

age-adjusted rate of deaths due to overdose in the United States increased to over three

times the rate in 1999 [48].

If patients are to become healthy and obtain the maximum benefit from health care services

and prescriptions, then they must comply with their prescribed medication regimens.

Increased support for patients and consideration of factors that affect medication

compliance may help patients stick to their medication regimen. Medication adherence is

associated with many factors, including social and economic, health care system related,

patient related, condition related, and therapy related factors [73, 87]. Some of the specific

factors that the Medspencer will attempt to target and alleviate are complexity of the

medication regimen, duration of therapy, frequent prescription changes, poor health

literacy, and the patient-provider relationship [87].

Our team’s motivation and main goal for this project is to help patients keep to their strict

medication regimens and show higher medication compliance. By creating a household

3

appliance that supports the patient’s compliance, the patient can become more independent

and will not have to rely on a caretaker to watch them or remind them all the time.

2.2 Objectives

For the Medspencer project, the main goal and objective is to increase medication

compliance in patients. This goal can be broken down into several specific objectives that

contribute to the main goal. First, we want to prevent patients from missing a dose or taking

a dose at the wrong time. These are easy mistakes to make, especially for complex

medication regimens or in the case of frequent prescription changes. To achieve this

objective, the Medspencer will schedule doses and notify the patient when it is time to take

the dose. In the case of a missed dose, the Medspencer will reschedule the dose. Another

objective of the Medspencer is to keep patients from overdosing, whether intentionally or

by accident. We also wish to prevent people from consuming other patients’ prescriptions.

Preventing these two events is especially important when it comes to strong prescription

medications, such as opioids. To this end, the Medspencer shall be a secure device that can

only be opened by an administrator/caretaker. Medications will only be dispensed to a

patient if it is time for the next dose (for fixed schedule prescriptions), or if enough time

has elapsed since the last dose (for as needed prescriptions). To access the device, a

fingerprint scan is required. This ensures that the correct patient is getting the prescription.

An additional objective is to strengthen the patient-provider relationship, by informing the

primary care physician (PCP) on the patient’s medication compliance. Accomplishing this

will allow the PCP to obtain a better understanding of the patient’s health conditions. This

will ensure that the PCP can accurately diagnose health issues, prescribe medications and

therapy, and advise the patient. By accomplishing these specific objectives, we believe that

the Medspencer will support the patient and help them stick to their medication regimen.

Another objective of our team is to reduce the monetary and power costs associated with

using an automated medication dispenser. The automated medication dispensers for the

household that currently exist on the market are quite expensive, making them less feasible

options for many patients. Thus, our team aims to reduce the cost of research and

development so that the final cost for the consumer will be reasonable and less than the

competing products on the market. We will also try to reduce the power costs associated

with out device, as that is an additional cost to the consumer. To save power, we will put

the device in sleep mode until an event occurs (such as a fixed-schedule dose notification,

or an as-needed dose request).

We also aim to make the Medspencer as user-friendly as possible. We will utilize a

touchscreen display so the user can interface and interact with the Medspencer, and we will

keep the interactions simple. When it is time for a fixed-schedule dose, the Medspencer

will notify the patient, and all the patient must do is scan their finger and the medicine will

be dispensed. For an as-needed medicine request, the patient can scan their finger, then

select from the available medicines using the touchscreen. We will also make the set-up

for the Medspencer as simple as possible. When entering new medicines or new patients,

we will provide a template with different sections to parameterize the new addition. The

template will include preset options for the medicine type, schedule type, and so on.

4

2.3 Requirements Specification

“The system” refers to the Medspencer in this case.

Overview

• The system will have an expandable amount of cylinders that contain the medicine

• The system will have motors that dispense the appropriate medicine

• The system will determine patients’ identity via a fingerprint scanner

• The system will alert patients to schedule via a speaker

• The system will connect to the Internet over Wi-Fi

Physical

• The system will be no larger than 2 ft. x 1 ft. x 1 ft.

• The system will be no heavier than 20 lbs.

• The product’s cost will not exceed $300

• The system will have a wall plug adapter

• The system will rectify and step down power to necessary voltages

Data

• The system must store the following data for each medicine:

o Medicine type

o Medicine time restrictions

o Prescribing doctors’ email addresses

• The system must store the following data for each patient:

o Patients’ name

o Patients’ dose schedules

• The system will make records of medicine dispenses and will be able to send them

via email to the appropriate doctor

• The system will support the following administrator interactions:

o Add/edit/remove medicine

o Add/edit/remove patient

o Make changes to patients’ dose schedules

• The system will support the following user interactions:

o Dispense medicine at proper time

o Request “take anytime” medicine

Display and Touchscreen

• The system will have a screen at least 7” across

• The system will support the following human interfaces:

o Touch screen menu navigation

o Touch screen keyboard

5

2.4 House of Quality

M
ar

k
et

in
g

Q
u
al

it
y

E
as

e
o
f

U
se

P
il

l
C

ap
ac

it
y

S
ec

u
ri

ty

In
st

al
la

ti
o
n
 T

im
e

C
o
st

Engineering + + + + - -
Engineering

Targets

Quality + ⇑ ⇑ ↑ ↑ ↓ ↓

Power Usage - ↓ < 500 W

Screen Size + ↑ ↑ ↑ 7” WVGA

Memory Size + ↑ ↑ ↑ ⇓ > 1 MB

Dimensions - ↓ ⇓ ↓ < 2’ x 1’ x 1’

Cost - ↓ ↓ ↓ ⇓ < $2000

Legend

↑ Positive Correlation

↓ Negative Correlation

⇑ Strong Positive Correlation

⇓ Strong Negative Correlation

Figure 1. House of Quality

6

3.0 Related Standards and Constraints

This section outlines the official standards and design constraints that are related to our

project, the Medspencer. While some categories do not apply to this project very much,

there are a large number of standards that apply to any piece of medical hardware, as well

as technological restrictions, and legal requirements.

3.1 Project Related Stands

There are several standards that we must consider as we plan out this project. Standards

provide the guidelines and protocols that must be followed when managing projects and

creating/implementing products. The standards must be followed during the design process

to avoid scrutiny or liabilities. The standards that we have considered include IEEE

standards, FDA standards, soldering standards, and the standards of programming

languages we may use.

3.1.1 IEEE Standards

The Institute of Electrical and Electronics Engineers (IEEE) has the duty to regulate and

standardize many proposal and laws for better performance and usage of technology within

the technology industry. From the different sorts of connections that every domestic or

industrial project should use, to the proper documentation of tools and language used and

interconnection between systems, IEEE gives us the easiest and most effective way to

perform any engineering duty. The following IEEE standards were considered relevant for

the project.

IEEE 1588 Precision time Protocol (PTP) synchronizes clocks in a Local Area Network

(LAN). Its accuracy is adjusted to microseconds making it useful for control systems and

measures [36]. This is useful in our project due to the fact that MedSpencer will be

connected to a Wi-Fi module to for constantly update the clock to alert the patient about

his or her medication. The dispenser compares the current time with the time saved in the

patient’s profile for the scheduled medication.

IEEE P1619 Security in Storage Working Group (SISWG) [50] refers to the protection of

stored data and its corresponding cryptographic key management. This standard talks about

how the information within should be encrypted and decrypted for its use and not so easy

to decode for wrong purposes. There was a discussion about how the data will be managed,

by narrow-block or wide-block, resulting the narrow-block the most effective way to

operate information.

IEEE 830 software requirement specification [34] states all the requirement needed for a

project or product that uses a customized software. This standard establishes some

agreements between the customers and developers in order to fulfill the criteria and avoid

redesign. As our project will require its own software, the computer engineer in charge will

meet with the sponsor to discuss further details about the limitations and advantages of the

software to-be.

7

IEEE 11073 Medical Health device communication standard enables the communication

between a health-care device with an external computer. It provides detailed information

of the client’s health or device’s operational data [55]. This standard is extremely useful

for the MedSpencer due to it will generate weekly reports that will be sent to the authorized

doctor informing the patient’s compliance. Also, let us remember that there will be an

administrator that will take care of the device maintenance, when the medications are not

enough for the rest of the month or to add or remove patients from the device memory.

This administrator will also receive alerts concerning the device condition.

IEEE 829 Software test documentation [51] states the procedure for testing not only the

software but the system too through a system of eight stages, each one of these will create

its own document that goes from master test plan to master test report. [51] The test plan

will be carried away by our computer engineering team. They better than anyone knows

how the software will run. They created the flowchart that also gives a rough scope of the

system’s behavior.

IEEE 1016 Software Design Description [52] is a document that describes the software

behavior and features in order to inform the software developer for better understanding.

The MedSpencer will require a very detailed description because of its various inputs and

cases. The test that will be run on this software will be done according to the description

document created beforehand.

IEEE 1149.1 Joint Test Action Group (JTAG) [54] is the standard that is defined for

verification of proper connectivity within the printed board circuit (PCB). It plays a

complementary role with the digital simulation. It implements a serial communication

interface, that connects to an on-board test access port that runs through a series of test

registers to present chip logic levels and device capabilities. This standard is not only useful

but fundamental, because is the main test of the main board after the simulation has been

run and approved. This standard will be implemented to each individual PCB purchased.

3.1.2 FDA Standards

In the Food and Drug Administration, states that all Medical devices should be designed

and manufactured in such a way that, when used under the conditions and for the purposes

intended and, where applicable, by virtue of the technical knowledge, experience,

education or training of intended users, they will not compromise the clinical condition or

the safety of patients, or the safety and health of users or, where applicable, other persons,

provided that any risks which may be associated with their use constitute acceptable risks

when weighed against the benefits to the patient and are compatible with a high level of

protection of health and safety [80]. The medical devices has be effective and have high

performance standards. Each device must be designed with a purpose to be a clinically

effective when it produces the effect intended by the manufacturer relative to the medical

condition. For example, if a device is intended for pain relief, one expects the device to

actually relieve pain and would also expect the manufacturer to possess objective, scientific

evidence, such as clinical test results, that the device does in fact relieve pain.

8

Clinical effectiveness is a good indicator of device performance. Performance, however,

may include technical functions in addition to clinical effectiveness. For example, an alarm

feature may not directly contribute to clinical effectiveness but would serve other useful

purposes. Furthermore, it is easier to measure objectively and quantify performance than

clinical effectiveness.

Performance is closely linked to safety. For example, a blood collection syringe with a

blunt needle would perform badly for collecting blood and could inflict injury. A patient

monitor that does not perform well could pose serious clinical safety problems to the

patient. Thus, the safety and performance of medical devices are normally considered

together [27].

In Food and Drug Administration standard, an average phase in the life span of a medical

device are conception and development, manufacture, packaging and labeling, advertising,

sale, use, and disposal. The section for this project is in conception and development,

manufacture, packaging and labeling which is called Manufacturer.

In the manufacturer stage, the creator of the device, must ensure that it is manufactured to

meet or exceed the required standards of safety and performance. This includes the three

phases (design/development/testing, manufacturing, packaging and labelling) that lead to

a product being ready for the market. The term “user error” is defined as an act that has a

different result than that intended by the manufacturer or expected by the operator. User

error may result from a mismatch between variables, for example the operator, device, task,

or environment. By incorporating human factor engineering principles in design, and

appropriate training for users, the risk of user errors can be minimized.

The key advantage regarding quality systems is that they represent a preventive approach

to assuring medical device quality versus the previous reactive approach by inspection and

rejection at the end of the manufacturing line. Prevention has been proven to be more

efficient and cost effective in controlling manufacturing processes and maintaining medical

device quality. It is important to note that since the majority of medical devices are in the

medium- to low-risk classes, their compliance with regulations often depends upon the

declarations of manufacturers, thus the question of quality assurance naturally arises. This

is why it is critical for manufacturers to conform with quality system standards and for this

conformity to be subject to periodic audit by governmental or third party agencies.

The Food and Drug Administration has developed a guidance to provide the Agency’s

initial thinking on technical considerations specific to devices using additive

manufacturing, the broad category of manufacturing encompassing 3-dimensional (3D)

printing. Additive manufacturing (AM) is a process that builds an object by sequentially

building 2-dimensional (2D) layers and joining each to the layer below, allowing device

manufacturers to rapidly produce alternative designs without the need for retooling and to

create complex devices built as a single piece. Rapid technological advancements and

increased availability of AM fabrication equipment are encouraging increased investment

in the technology and its increased use by the medical device industry. The purpose of this

guidance is to outline technical considerations associated with AM processes, and

9

recommendations for testing and characterization for devices that include at least one

additively manufactured component or additively fabricated step.

From the research, this guidance is broadly organized into two topic areas: Design and

Manufacturing Considerations (Section V) and Device Testing Considerations (Section

VI). The Design and Manufacturing Considerations section provides technical

considerations that should be addressed as part of fulfilling Quality System (QS)

requirements for your device, as determined by the regulatory classification of your device

and/or regulation to which your device is subject, if applicable. While this guidance

includes manufacturing considerations, it is not intended to comprehensively address all

considerations or regulatory requirements to establish a quality system for the

manufacturing of your device.

This guidance focus on five broad themes: (1) materials; (2) design, printing, and post-

printing validation; (3) printing characteristics and parameters; (4) physical and mechanical

assessment of final devices; and (5) biological considerations of final devices, including

cleaning, sterility, and biocompatibility. A variety of different types of materials can be

used in additive manufacturing [27].

From the research found to patient a medical device for future expansion, it was found that

there are multiple view to be consider for standard-sized devices for example an interacting

design models often made by altering the features of a standard sized device for each

patient within a pre-determined range of device designs and size limits. This is typically

accomplished through the use of anatomical matching or design manipulation software that

may be developed specifically for the AM device, or through other third party software.

Patient-matching may also be accomplished by manual methods using specific

measurements on radiographs or key anatomic landmark measurements. Any software or

procedure used to make modifications to the device design based on clinical input should

include internal checks that prevent the operator from exceeding the pre-established device

specifications documented in the device master record. We recommend that the design

manipulation software or procedure used to make modifications to the device design

identify the iteration of the design being changed by the operator. In addition, because this

is a medical device, cybersecurity and personally identifiable information so the device in

to properly manage and care of personally identifiable information (PII) and protected

health information (PHI) is essential in any clinical application. More information is found

in protecting PII and PHI, please refer to the HHS Guidance on Significant Aspects of the

Privacy Rule. And the Food and Drug Administration include interactive steps in their

patient matching workflow be familiar with implementing the FDA's Guidance on the

“Content of Premarket Submissions for Management of Cybersecurity in Medical

Devices” [77].

3.1.3 Soldering Standards and Safety

The Institute for Printed Circuits (IPC), has some standards to follow regarding the proper

soldering, wiring and design of electronic circuits. As there are many standards to take in

consideration, this section will only name the most important considered for this project.

10

As stated in standard IEEE 1149.1 Joint Test Action Group (JTAG), the standard defined

for verification of proper connectivity within the printed board circuit, there comes the IPC

standards that are not only limited to soldering but also for measurements, stripping tools,

sorts of wire used for specific tasks and the proper way to run some test considering every

aspect in order to ensure the perfect functionality of the printed board.

IPC-2221 Generic Standard on Printed Board Design: [10] This standard considers the

generic requirements for the organic boards and its interconnectability with inorganic

materials. The requirements established in this standard are for design and how to connect

when there are different components and materials in order to achieve the physical and/or

electronic function.

This standard is very specific with the terms in which the instruction for either user or

supplier SHALL follow and which ones recommend to follow.

IPC-A-600F Acceptability of Printed Boards: [8] this is a documentation that only states

the ways in which the board should look in order to be considered as acceptable. In the not

so often case that the requirements does not meet the board's performance there are

protocols and documents to follow.

According to this standard the characteristics can be divided into two groups: externally

observable where all features and internal phenomena can be seen from the exterior; and

internally observable where the imperfection within the board need to be seen by

microsectioning. During evaluations the illumination should be precise so it lights the area

of interest, without being shadowed by any component.

IPC J-STD-001 Requirements for Soldered Electronic Assemblies: [12] the document

describes requirement to manufacture soldered equipment. It gives a controlled

methodology to ensure the good quality of work during the manufacture process.

This document classifies the finished product according to complexity, producibility,

performance and verification: general electronic products, dedicated service electronic

product, and high performance electronic products.

IPC-A-630 Acceptability Standard for Manufacture, Inspection, and Testing of Electronic

Enclosures: [9] Regarding the enclosure of the project, this standard sets the requirements

for the manufacture, inspection and test of it. For purpose of this standard, the enclosure is

defined as a box, a drawer, or a cabinet forming a top level system assembly.

It includes the mechanical parts to assemble a finished system, and the finished system

must be made of modular components for the an easy replacement. In a similar way as the

J-standard, this standard classifies the end products according to its producibility,

complexity and performance requirement into the general, dedicated service and high

performance electronic products.

IPC-4101C Specification for base materials for rigid and multilayer printer boards: [13]

this document specifies the requirement for the materials needed in order to be used in the

11

rigid or multilayer printed boards. According to this document there are two kinds of base

materials: the laminate base material (L) and the Prepreg base material (P).

IPC 9701A Performance Test Methods, and Qualification Requirements for Surface Mount

Solder Attachments: [11] this document establishes the test methods to evaluate the

performance of the soldered mount of the electronic assemblies. This test also provide an

approach of the equipment’s behavior under usage environment.

This document has the purpose to create standardized methods, and reports in order to

ensure and give the confidence of optimal performance of electronic assemblies.

IPC D 620 Design and Critical Process Requirements for Cable and Wiring Harnesses: [6]

This document provides design, critical process requirements and technical scope that have

been removed from the acceptance standards for cable and wire-harness assemblies. This

document is intent for mechanical and assembly engineers that will need to consider the

different cables and wires to accomplish a specific task.

This standard is important for our project when building the bread and in case of hard-wire

two ports of the final PCB. As many components comes with a built-in wire connector, we

need to consider if that wire is specific for voltage purposes. Let us remember than most

wires comes with different resistance that can affect the project functionality.

IPC 7711B/7721B Rework, Modification and Repair of Electronic Assemblies: [7] this

documents talks about the repairing procedure for integrated circuits. This version of

standard includes a coverage for process that lead is not present and guidelines for repair

operations. This document goes from guidelines, tools, procedures and methods for the

repair and restoration of electronic products.

Although we as a group are not going to repair the device, we must build it repairable so

the administrator can give proper maintenance and it must be easy to operate.

3.2 Design Constraints

Several realistic constraints limit and guide our project design. These design constraints

account for not only the identified requirement specifications, but also several outside

factors. These outside factors include economic constraints; time constraints;

manufacturability constraints; sustainability constraints; environmental constraints; health

constraints; safety constraints; ethical constraints; social constraints; political constraints;

security constraints; and parts, components, and testing constraints.

3.2.1 Economic Constraints

The budget cost of constructing the Medspencer was offset by the sponsor, Dr. Fredesvinda

Jacobs-Alvarez, MD, head physician of Esperanza Behavioral Health and Services. The

total cost amount to design and produce the Medspencer was around $450. This amount

includes all the components that were incorporated into the final Medspencer product, such

as the ATMEGA328P microcontroller, Raspberry Pi Compute Module 3 Lite, the PCB,

12

Wi-Fi module, fingerprint scanner, touchscreen display, servomotors, control unit for the

servomotors, wiring and electrical components, and so on. The predicted cost also includes

the research and development costs, which include the development boards, breadboards,

wires, resistors, capacitors, and other electrical components. The team kept receipts for all

purchased material. The team strived to be as economically frugal as possible.

Regarding the customer costs, our team aimed to provide an effective product for less than

current products on the market. The Livi Automated Medication Dispenser is the most

advanced home medicine dispenser that we found on the market and is the only one that

automatically sorts and dispenses medicines, so it does not require pre-sorting of medicines

into trays or cups. The Livi costs $1999 to buy [60]. If we manage to build the Medspencer

using $300, then potentially the Medspencer could be marketed at $600. This would

provide a good profit margin of 100%. $600 is a comparable price to some other medicine

dispensers on the market and significantly less than the Livi, and still allows us to develop

a device with enhanced performance and added features (as compared to the current

dispensers on the market).

The team attempted to keep costs as low as possible, so no waste is incurred. To this end,

the team carefully designed the circuit connections and tested the hardware components

and connections appropriately. This way, parts were not damaged. If parts were damaged

or broken, we would need to repurchase them, which would incur additional costs. By

paying attention to detail and testing our designs by simulation and physical testing, we

kept the total costs for the Medspencer low.

At the end of the Senior Design 2 semester, the total costs incurred to create the

Medspencer project was $440.92. However, $221.95 of that was pure research and

development costs, as we needed to purchase the CM3L development board and Arduino

development board in order to do initial testing and prototyping. With that in mind, the

manufacturing cost of the Medspencer is $218.97. This is within our target goal of <$300

for manufacturing.

3.2.2 Time Constraints

Because this design project is a Senior Design Project, time is limited to the two semesters

given to complete the project. The first semester involves designing the Senior Design

project and writing the Senior Design 1 Document. The second semester involves

implementing the project design and creating a working device.

Two months (March and April) were allotted to conduct the necessary research, design the

project, and plan the execution, which includes prototyping the Medspencer and building

the finished product. Researching the Medspencer involved conducting market research

and investigating the available technologies we may use. Designing the Medspencer

involved choosing the specific hardware components we will use for our device, designing

the hardware connections and circuits, and planning the software design for the

Medspencer.

13

Then, three months were allotted to buy the chosen parts, prototype the Medspencer device,

design the PCB, assemble the device hardware and write the software, and test the finished

Medspencer device. Because this was such a limited time frame, it is imperative that the

team planned the milestones wisely to complete the project on time and allow time for any

necessary modifications. We ordered all the necessary parts during early May. By the early

June, we began prototyping the device using the development board and breadboard,

ensuring that the circuitry and basic coding is correct. Then the PCB was designed received

by late June. After soldering and testing the PCB, a second revision for the PCB was

required, which was designed and received by mid-July. During the second half of July,

we worked on on soldering the board, assembling the final device, finishing up the

software, and testing to ensure everything worked correctly.

3.2.3 Manufacturability and Sustainability Constraints

Manufacturing the Medspencer may require more research considering that the device will

store medication for longer periods of time. Most of the medication need a cool

environment where to be store at. Since the medication will share room and will be

enclosed with many servos, PCBs and a voltage regulator, a ventilation system must be

added in order to keep an ideal environment for the medication.

Since the device will require a voltage regulator to handle all the charge burden, it must be

powerful enough to run all the module pieces, but also small enough to fit in the box. So

far the elements such as the fingerprint reader, the servo motors, the cooling fan, the

touchscreen display and the speaker do not use more than 7V, so a 12V-DC voltage supply

will suffice our criteria. We can separate the project into different modules so it would be

easier to make everything work. After every module is properly functioning, they must fit

within the box for proper showing. We must remember that the dispenser will be for

domestic use, that means it should not exceed certain size and certain weight.

For the sustainability of the device, there must be a certified administrator that will change,

remove and provide the medication whenever is needed. As the MedSpencer have Wi-Fi

connection and is capable to report via email to the doctor in charge about the patient

compliance, by similar means it will alert the administrator when the device is running out

of medication and also when to add or remove a patient from the device’s system.

The administrator will also be in charge of the maintenance of the hardware and software

of the dispenser. A simple and common issue that will face the dispenser is the dust. As

the machine has a cooling fan, it will drag dust from the air to the inside part. Neither the

patients, nor the caretakers can do the inside cleaning because they do not know the proper

procedure for maintenance. As the medications will be sealed in the plastic containers, dust

or other contaminants cannot get to them.

As we can see in Figure 2, a common issue regarding any device that uses a cooling fan

system. It is no so important when this is within the Central Processing Unit (CPU) because

it only involves electronic components that can be cleaned every once in a while, but when

this happens to a unit where medicine is involved, it is unacceptable. The administrator

14

should keep a regular schedule for the device maintenance that includes cleaning the

cooling fan system and also to clean the plastic medicine containers.

Figure 2. Cooling fan system with no maintenance [39]

Courtesy of dirtycomputer.com

3.2.4 Parts, Component, and Testing Constraints

In order to achieve the complete functionality of the project we can divide it into modules.

There will a be the servo motor modules, the fingerprint reader module, the display module

and the cooling-fan module. Each one of them are only hardware components. Everything

regarding software will be explained in another sub-section. Summarizing the project, the

Medspencer takes into account the clock from the internet and compare it with the pre-

assigned schedule of each one of the patients on file. Once a match is found the device will

sound to alert the patient and it will not stop sounding until a fingerprint is placed on the

fingerprint reader and this matches to the patients’.

The Medspencer has a touchscreen display that will help the administrator to input the

information about patients, change the medication slots and allows more options for

caretakers. These options make it possible to take medication out for their patients in case

of travel. The administrator options is only enabled when his/her fingerprint is read by the

dispenser.

In order for the internet connection to happen we are attaching a ESP8266 Wi-Fi module

so the clock will always be updated. This component will have email purposes that will be

described later on in chapter 5.

15

Figure 3. Wi-Fi module ESP8266 [44]

Courtesy of generationrobots.com

What is unique to this project is that the dispenser will identify each patient through his or

her fingerprint. The fingerprint reader used is a R307 optical fingerprint reader that it can

be easily connected to an Arduino microprocessor in order to do some test. This reader

needs an input voltage of 5V to work. While doing some test on an Arduino board, we had

to make the connections described on Table 1 so the reader could work properly:

Table 1. Connections for Fingerprint Reader on Arduino [45]

Reader Arduino

Power input (red) 5V

Ground (black) GND

Data in(white) Port 3

Data out (green) Port 2

Our first goal with the fingerprint reader is to store different samples of fingerprint. Once

the fingerprint is recognized and linked to an existing patient, the proper servo is activated

to dispense the correct amount of pills. These servos also work with an small input voltage

of 5V. Running some tests on the Arduino, we noticed that we can manage the degrees that

the servo can make its arm to turn and also the speed of it. In Table 2 there is described the

proper connections for the servo to work with the Arduino.

Table 2. Connections for Servo Motors on Arduino [5]

Servo Arduino

Power (red) 5V

Ground (brown) GND

Signal (yellow) Port 9

16

The medication was stored in plastic containers that meet the FDA standards for storing.

For the purpose of this project, these containers were modified at the bottom to add special

filters that were attached to the servo motors. Once the servo motors rotate, they let the

medications leave the container and fall through the tubes that will lead to the base of the

device so the patient can take it. The tubes, according to the FDA Guidance on Container

Closures, can be made of glass, high density polyethylene or metal, so they cannot alter the

composition of the medication.

The cooling fan system does not consume too much energy and is only there to refrigerate

the inner environment of the dispenser so the medication does not suffer from the heat and

lose its effectiveness. All those components, the main board, the servo motors and the

closure can create a warmer environment where the medication containers will become

poisonous for the them. This cooling fan is be triggered by a temperature sensor that

monitors the inside temperature in order to avoid to get warm enough to be considered

dangerous.

The enclosure for this project was made of acrylic and has a door through which the

administrator should replace empty containers or replace medications and give

maintenance to the parts.

3.2.5 Environmental Constraints

The Environmental constraints on having this device will use power however, the device

will not use huge power; it only requires 16-20V and 2A. On the other hand, this device

can save the environmental by not allowing the patients and caretakers to throw the

medication away down the sewage line or into the ocean because some medication can

have a 1 to 2 week half-life in the human body but longer in the ocean and fishes where

other humans can absorb these deadly efforts. In the EMBO reports, “Medicines have an

important role in the treatment and prevention of disease in both humans and animals. But

it is because of the very nature of medicines that they may also have unintended effects on

animals and microorganisms in the environment. Although the side effects on human and

animal health are usually investigated in thorough safety and toxicology studies, the

potential environmental impacts of the manufacture and use of medicines are less well

understood and have only recently become a topic of research interest. Some of the effects

of various compounds—most notably anthelmintics from veterinary medicine and

antibacterial therapeutics, but there are many other substances that can affect organisms in

the environment. Pharmaceutical substances may also be degraded by biological organisms

in treatment systems, water bodies and soils as well as abiotic reactions. Generally, these

processes reduce the potency of medicines; however, some breakdown products have

similar toxicity to their parent compounds. Furthermore, degradation varies significantly

depending on chemistry, biology and climatic conditions. For example, the half-life of the

antiparasitic ivermectin under winter conditions is six times greater than in the summer and

the compound degrades faster in sandy soils than in sandy loam soils. The natural estrogens

17β-estradiol and estrone degrade in the aerobic and anoxic tanks of activated sludge

systems, whereas 17α-ethinylestradiol only degrades under aerobic conditions. All this

17

adds to the complexity of the problem and calls for individual solutions for individual

pharmaceuticals and applications” [21].

“The US Food and Drug Administration (FDA) requires environmental risk assessments

of human and veterinary medicines on the effects on aquatic and terrestrial organisms

before they allow a product to the market, and the EU introduced similar requirements in

1997. These environmental impact studies investigate the potential negative effects on fish,

daphnids, algae, bacteria, earthworms, plants and dung invertebrates. Much of the data are

publicly accessible—many of the environmental assessments are published on the FDA's

web site—and provide a reasonable body of data for further study. However, there are valid

questions about the real-world value of these studies. Risk assessments usually use standard

ecotoxicity tests, which are often short-lived and focus predominantly on mortality as the

endpoint. Moreover, aquatic tests tend to focus on the water compartment and do not take

into account pharmaceuticals residing in sediments. In general, the effects observed in

these studies occur at much higher concentrations than those that are measured in the

environment. What is less known are the more subtle effects that therapeutically active

substances can have on organisms in the environment, such as growth, fertility or

behaviour” [21].

3.2.6 Health and Safety Constraints

The medical profession has long subscribed to a body of ethical statements developed

primarily for the benefit of the patient. As a member of this profession, a physician must

recognize responsibility to patients first and foremost, as well as to society, to other health

professionals, and to self. The following Principles adopted by the American Medical

Association are not laws, but standards of conduct that define the essentials of honorable

behavior for the physician.

The nine principles of medical ethics are a physician shall be dedicated to providing

competent medical care, with compassion and respect for human dignity and rights, a

physician shall uphold the standards of professionalism, be honest in all professional

interactions, and strive to report physicians deficient in character or competence, or

engaging in fraud or deception, to appropriate entities, a physician shall respect the law

and also recognize a responsibility to seek changes in those requirements which are

contrary to the best interests of the patient, a physician shall respect the rights of patients,

colleagues, and other health professionals, and shall safeguard patient confidences and

privacy within the constraints of the law, a physician shall continue to study, apply, and

advance scientific knowledge, maintain a commitment to medical education, make relevant

information available to patients, colleagues, and the public, obtain consultation, and use

the talents of other health professionals when indicated, a physician shall, in the provision

of appropriate patient care, except in emergencies, be free to choose whom to serve, with

whom to associate, and the environment in which to provide medical care, a physician shall

recognize a responsibility to participate in activities contributing to the improvement of the

community and the betterment of public health, a physician shall, while caring for a patient,

regard responsibility to the patient as paramount, and a physician shall support access to

medical care for all people.

18

They also must Food and Drug Administration when prescribing medications. In addition,

medical profession must follow the Medicare regulations and law on treating and servicing

patients where all health insurance companies follow Medicare laws but add their own

requirements and recommends.

One example of where this device will benefit for the patient is using Celexa (generic:

Citalopram hydrobromide). It is a drug used for antidepressant medication. However, the

FDA issued a Drug Safety Communication (DSC) stating that citalopram should no longer

be used at doses greater than 40 mg per day because it could cause potentially dangerous

abnormalities in the electrical activity of the heart. Citalopram use at any dose is

discouraged in patients with certain conditions because of the risk of QT prolongation, but

because it may be important for some of those patients to use citalopram, the drug label

has been changed to describe the particular caution that needs to be taken when citalopram

is used in such patients. The revised drug label also describes lower doses that should be

used in patients over 60 years of age. Changes in the electrical activity of the heart

(specifically, prolongation of the QT interval of the electrocardiogram [ECG]) can lead to

a risk of an abnormal heart rhythm called Torsade de Pointes, which can be fatal. Patients

at particular risk for developing prolongation of the QT interval include those with

underlying heart conditions and those who are predisposed to having low levels of

potassium and magnesium in the blood.

The facts about Celexa is that it works by increasing the amount of serotonin in the brain.

Available as 10 mg, 20 mg, and 40 mg tablets. Also available as an oral solution (10 mg/5

mL). In 2011, a total of approximately 31.5 million prescriptions were dispensed for

citalopram from U.S. outpatient retail pharmacies. In 2011, approximately 7.2 million

patients received a dispensed prescription for citalopram from U.S. outpatient retail

pharmacies. In 2011, according to U.S. office-based physician practices, approximately

89.5% of citalopram drug use was at doses of 40 mg and below and 6% of drug use was at

doses above 40 mg per day.

The maximum recommended dose of citalopram is 20 mg per day for patients with hepatic

impairment, patients who are older than 60 years of age, patients who are CYP 2C19 poor

metabolizers, or patients who are taking concomitant cimetidine (Tagamet®) or another

CYP2C19 inhibitor, because these factors lead to increased blood levels of citalopram,

increasing the risk of QT interval prolongation and Torsade de Pointes. Electrolyte and/or

ECG monitoring is recommended in certain circumstances Consider more frequent ECG

monitoring in patients for whom citalopram use is not recommended, but is, nevertheless,

considered essential.

Patients at risk for significant electrolyte disturbances should have baseline serum

potassium and magnesium measurement, with periodic monitoring. Hypokalemia and/or

hypomagnesemia may increase the risk of QTc prolongation and arrhythmia and should be

corrected prior to initiation of treatment with periodic monitoring. Citalopram should be

discontinued in patients found to have persistent QTc measurements greater than 500 ms.

Advise patients on citalopram to contact a healthcare professional immediately if they

experience signs and symptoms of an abnormal heart rate or rhythm (e.g., dizziness,

19

palpitations, or syncope). If patients experience symptoms, the prescriber should initiate

further evaluation, including cardiac monitoring.

In conclusion, this medication example can be the reference to set the project standard and

if this device is cleared but the FDA to hold and dispense this medication then any

medication is possible.

3.2.7 Ethical and Legal Constraints

Pharmacists and physicians both follow the code of ethics. They must know what they are

giving out and why they are giving it out. From the 1970, the “Controlled Substances Act

(CSA) has been used by law enforcement to decrease drug abuse and dependence among

Americans by regulating the production, sale, purchase and use of many drugs. This act

gives authority to the Drug Enforcement Administration (DEA) to monitor and control the

use of substances, both legal and illegal. Because of the many differences between the

various types of substances, and between each individual substance, the CSA puts each

substance into one of five categories, called Schedules. These categories give each

substance a simple classification that helps both law enforcement and the medical

community to easily understand its nature” [82].

The CSA states the following factors affect a drug’s schedule which are potential for abuse,

scientific information available regarding the drug’s pharmacological effect, scientific

understanding of the drug, historical and current patterns of abuse, magnitude of abuse,

possible risks to public health, risk of developing psychological or physical dependence.

“The DEA explains, Schedule V drugs have the least potential for abuse, while Schedule I

drugs are considered to have the highest abuse and dependence potential. The DEA also

lists the following examples for each drug schedule meaning schedule I: heroin, LSD,

marijuana and ecstasy, schedule II: Ritalin, Adderall, oxycodone, methadone, cocaine and

methamphetamine, schedule III: anabolic steroids, testosterone, ketamine, products with

less than 90 milligrams of codeine per dosage and products with less than 15 milligrams of

hydrocodone per dosage, schedule IV: Xanax, Valium, Ambien, Soma and Ativan, and

schedule V: cough medications containing less than 200 milligrams of codeine or per 100

milliliters, Lyrica, Motofen and Lomotil” [82].

Furthermore, the DEA has some Federal Regulations for example in Part 1304 of the

Records and Reports of Registrants under the Inventory Requirements which has 5 parts

which states in the general requirements, “Each inventory shall contain a complete and

accurate record of all controlled substances on hand on the date the inventory is taken, and

shall be maintained in written, typewritten, or printed form at the registered location. An

inventory taken by use of an oral recording device must be promptly transcribed.

Controlled substances shall be deemed to be “on hand” if they are in the possession of or

under the control of the registrant, including substances returned by a customer, ordered

by a customer but not yet invoiced, stored in a warehouse on behalf of the registrant, and

substances in the possession of employees of the registrant and intended for distribution as

complimentary samples. A separate inventory shall be made for each registered location

and each independent activity registered, except as provided in paragraph (e)(4) of this

20

section. In the event controlled substances in the possession or under the control of the

registrant are stored at a location for which he/she is not registered, the substances shall be

included in the inventory of the registered location to which they are subject to control or

to which the person possessing the substance is responsible. The inventory may be taken

either as of opening of business or as of the close of business on the inventory date and it

shall be indicated on the inventory [83].

Initial inventory date. Every person required to keep records shall take an inventory of all

stocks of controlled substances on hand on the date he/she first engages in the manufacture,

distribution, or dispensing of controlled substances, in accordance with paragraph (e) of

this section as applicable. In the event a person commences business with no controlled

substances on hand, he/she shall record this fact as the initial inventory [83].

Biennial inventory date. After the initial inventory is taken, the registrant shall take a new

inventory of all stocks of controlled substances on hand at least every two years. The

biennial inventory may be taken on any date which is within two years of the previous

biennial inventory date [83].

Inventory date for newly controlled substances. On the effective date of a rule by the

Administrator pursuant to §1308.45, 1308.46, or 1308.47 of this chapter adding a substance

to any schedule of controlled substances, which substance was, immediately prior to that

date, not listed on any such schedule, every registrant required to keep records who

possesses that substance shall take an inventory of all stocks of the substance on hand.

Thereafter, such substance shall be included in each inventory made by the registrant

pursuant to paragraph (c) of this section [83].

Inventories of manufacturers, distributors, registrants that reverse distribute, importers,

exporters, chemical analysts, dispensers, researchers, and collectors. Each person

registered or authorized (by §1301.13, 1307.11, 1307.13, or part 1317 of this chapter) to

manufacture, distribute, reverse distribute, dispense, import, export, conduct research or

chemical analysis with controlled substances, or collect controlled substances from

ultimate users, and required to keep records pursuant to §1304.03 shall include in the

inventory the information listed below [83].

Inventories of manufacturers. Each person registered or authorized to manufacture

controlled substances shall include each controlled substance in bulk form to be used in (or

capable of use in) the manufacture of the same or other controlled or non-controlled

substances in finished form, the inventory shall include the name of the substance, and the

total quantity of the substance to the nearest metric unit weight consistent with unit size.

For each controlled substance in the process of manufacture on the inventory date, the

inventory shall include the name of the substance; the quantity of the substance in each

batch and/or stage of manufacture, identified by the batch number or other appropriate

identifying number; and the physical form which the substance is to take upon completion

of the manufacturing process (e.g., granulations, tablets, capsules, or solutions), identified

by the batch number or other appropriate identifying number, and if possible the finished

form of the substance (e.g., 10-milligram tablet or 10-milligram concentration per fluid

ounce or milliliter) and the number or volume thereof [83].

21

For each controlled substance in finished form the inventory shall include the name of the

substance; each finished form of the substance (e.g., 10-milligram tablet or 10-milligram

concentration per fluid ounce or milliliter); the number of units or volume of each finished

form in each commercial container (e.g., 100-tablet bottle or 3-milliliter vial); and the

number of commercial containers of each such finished form (e.g. four 100-tablet bottles

or six 3-milliliter vials) [83].

In this section (damaged, defective or impure substances awaiting disposal, substances held

for quality control purposes, or substances maintained for extemporaneous compoundings)

the inventories shall include the name of the substance; the total quantity of the substance

to the nearest metric unit weight or the total number of units of finished form; and the

reason for the substance being maintained by the registrant and whether such substance is

capable of use in the manufacture of any controlled substance in finished form [83].

3.2.8 Social and Cultural Constraints

When a patient walks out a faculty, clinic, or outpatient office, physicians and other

providers always worry when patients are out in sociality. Especially from the hospitals,

“patients are being discharged sooner, often in the process of convalescence rather than at

baseline health status. This requires physicians to more effectively communicate

instructions for post-discharge care to patients, family members, and outpatient providers.

A comprehensive review on improving all aspects of this process is beyond the scope of

this article; we will focus specifically on improving medication use. Patients are very

susceptible to medical errors in the days immediately following hospital discharge. Forty-

nine percent of hospitalized patients experience at least one medical error following

discharge, most commonly involving medication use. An estimated 19–23% of patients

suffer an adverse drug event (ADE) after discharge. Most of these errors and ADEs could

be prevented through better communication. This commentary will discuss several

common barriers to proper medication use after hospital discharge and review potential

solutions based on the experience in the United States” [31].

Another social constraint is when patient states that the medication is working for the first

month and they stop taking that medication automatically without the physician’s

approved. Later, they compliant to the staff or physician that the medication is not working

and need other medication. While the medication that has not been taking is at home and

if the patient takes the new medication and the medication leftover they can get a big

complication or death.

A cultural constraints example is a study found in “'Rituals of Silence' Haafkens examines

the use of benzodiazepines – medicines prescribed for mental distress – by women in the

Netherlands. She describes how the medicines not only make it possible for women to live

on with their mental health problems, but also provide society with a means to control

anxiety and stress. The ambiguous relation between self-control of female distress and

medicalized social control of life problems is the main theme of another chapter in our

book.

22

On the one hand, women use benzodiazepines like other medicines to enhance the quality

of their individual lives. Medicines liberate them from bodily discomfort, and give them

means to control natural bodily processes such as conception, menstruation and

menopause. Medicines are part of day-to-day body regimes, in which women strive to

fulfill societal expectations of work capability, appropriate fertility, attractive appearance,

and mental stability. On the other hand, benzodiazepines and other medicines also function

as a medical means of social control. In modern societies, where medicine has replaced

religion as a dominant moral ideology and social control institution, more and more of

everyday life has come under medical dominion, influence and supervision, a process

known as medicalization. Around 1990, at the time of Haafkens' study, about one in every

seven women had a prescription for benzodiazepines filled annually in the Netherlands;

men received such prescriptions much less often. Dutch medical guidelines acknowledged

that the drugs were not as safe as initially thought, and recommended that the duration of

benzodiazepine use be limited to one to two weeks, a few months at the most. Despite this

advice, long-term use of benzodiazepines remained relatively common in the Netherlands,

affecting an estimated three percent of the Dutch population.

The efficacy of the medicines, therefore, is ambiguous. For the women who use them, the

medicines are indispensable to stay in control of their lives. At the same time, many of

those using them feel that the medicines have taken control of them. They would like to

stop but cannot. The medicines are empowering as well as disempowering” [31].

Another social and cultural constraint is the language barrier, if the patient is Hispanic or

Russian and they recently came to the USA.

3.2.9 Political Constraints or FDA Standards

In the Food and Drug Administration, it states that all Medical devices should be designed

and manufactured in such a way that, when used under the conditions and for the purposes

intended and, where applicable, by virtue of the technical knowledge, experience,

education or training of intended users, they will not compromise the clinical condition or

the safety of patients, or the safety and health of users or, where applicable, other persons,

provided that any risks which may be associated with their use constitute acceptable risks

when weighed against the benefits to the patient and are compatible with a high level of

protection of health and safety [80]. The medical devices have be effective and have high

performance standards. Each device must be designed with a purpose to be a clinically

effective when it produces the effect intended by the manufacturer relative to the medical

condition. For example, if a device is intended for pain relief, one expects the device to

actually relieve pain and would also expect the manufacturer to possess objective, scientific

evidence, such as clinical test results, that the device does in fact relieve pain.

Clinical effectiveness is a good indicator of device performance. Performance, however,

may include technical functions in addition to clinical effectiveness. For example, an alarm

feature may not directly contribute to clinical effectiveness but would serve other useful

purposes. Furthermore, it is easier to measure objectively and quantify performance than

clinical effectiveness.

23

Performance is closely linked to safety. For example, a blood collection syringe with a

blunt needle would perform badly for collecting blood and could inflict injury. A patient

monitor that does not perform well could pose serious clinical safety problems to the

patient. Thus, the safety and performance of medical devices are normally considered

together [27].

In Food and Drug Administration standard, an average phase in the life span of a medical

device are conception and development, manufacture, packaging and labeling, advertising,

sale, use, and disposal. The section for this project is in conception and development,

manufacture, packaging and labeling which is called Manufacturer.

In the manufacturer stage, the creator of the device, must ensure that it is manufactured to

meet or exceed the required standards of safety and performance. This includes the three

phases (design/development/testing, manufacturing, packaging and labelling) that lead to

a product being ready for the market. The term “user error” is defined as an act that has a

different result than that intended by the manufacturer or expected by the operator. User

error may result from a mismatch between variables, for example the operator, device, task,

or environment. By incorporating human factor engineering principles in design, and

appropriate training for users, the risk of user errors can be minimized.

The key advantage regarding quality systems is that they represent a preventive approach

to assuring medical device quality versus the previous reactive approach by inspection and

rejection at the end of the manufacturing line. Prevention has been proven to be more

efficient and cost effective in controlling manufacturing processes and maintaining medical

device quality. It is important to note that since the majority of medical devices are in the

medium- to low-risk classes, their compliance with regulations often depends upon the

declarations of manufacturers, thus the question of quality assurance naturally arises. This

is why it is critical for manufacturers to conform with quality system standards and for this

conformity to be subject to periodic audit by governmental or third party agencies.

The Food and Drug Administration has developed a guidance to provide the Agency’s

initial thinking on technical considerations specific to devices using additive

manufacturing, the broad category of manufacturing encompassing 3-dimensional (3D)

printing. Additive manufacturing (AM) is a process that builds an object by sequentially

building 2-dimensional (2D) layers and joining each to the layer below, allowing device

manufacturers to rapidly produce alternative designs without the need for retooling and to

create complex devices built as a single piece. Rapid technological advancements and

increased availability of AM fabrication equipment are encouraging increased investment

in the technology and its increased use by the medical device industry. The purpose of this

guidance is to outline technical considerations associated with AM processes, and

recommendations for testing and characterization for devices that include at least one

additively manufactured component or additively fabricated step.

From the research, this guidance is broadly organized into two topic areas: Design and

Manufacturing Considerations (Section V) and Device Testing Considerations (Section

VI). The Design and Manufacturing Considerations section provides technical

considerations that should be addressed as part of fulfilling Quality System (QS)

24

requirements for your device, as determined by the regulatory classification of your device

and/or regulation to which your device is subject, if applicable. While this guidance

includes manufacturing considerations, it is not intended to comprehensively address all

considerations or regulatory requirements to establish a quality system for the

manufacturing of your device.

This guidance focus on five broad themes: (1) materials; (2) design, printing, and post-

printing validation; (3) printing characteristics and parameters; (4) physical and mechanical

assessment of final devices; and (5) biological considerations of final devices, including

cleaning, sterility, and biocompatibility. A variety of different types of materials can be

used in additive manufacturing [27].

From the research found to patient a medical device for future expansion, it was found that

there are multiple views to be considered for standard-sized devices: for example, an

interacting design models often made by altering the features of a standard sized device for

each patient within a pre-determined range of device designs and size limits. This is

typically accomplished through the use of anatomical matching or design manipulation

software that may be developed specifically for the AM device, or through other third party

software. Patient-matching may also be accomplished by manual methods using specific

measurements on radiographs or key anatomic landmark measurements. Any software or

procedure used to make modifications to the device design based on clinical input should

include internal checks that prevent the operator from exceeding the pre-established device

specifications documented in the device master record. We recommend that the design

manipulation software or procedure used to make modifications to the device design

identify the iteration of the design being changed by the operator. In addition, because this

is a medical device, cybersecurity and personally identifiable information so the device in

to properly manage and care of personally identifiable information (PII) and protected

health information (PHI) is essential in any clinical application. More information is found

in protecting PII and PHI, please refer to the HHS Guidance on Significant Aspects of the

Privacy Rule. And the Food and Drug Administration include interactive steps in their

patient matching workflow be familiar with implementing the FDA's Guidance on the

“Content of Premarket Submissions for Management of Cybersecurity in Medical

Devices” [77]

Another Political constraint is the cost of health care which has been escalating slowly but

steadily. “Lately, the speed of this development has become harder to accept as it has

greatly outpaced the growth of the national economy in many countries. The multiple

reasons for this trend include the growth in expensive technologies and increasing demand

for services fueled by a complex mix of social changes—for example, improved levels of

education, the commodification of medicine, and the general medicalization of life.

There is also rising demand for quality improvement and quality control in health care.

Some of the equally complex social developments underlying this are the increasing

autonomy, rights, and knowledge of patients; commodification of the doctor patient

relationship towards a provider client relationship; declining trust in professionalism and

professional judgment; greater trust in statistical research; and less toleration of medical

25

error. These trends affect the different parties involved in health care—patients, doctors,

and administrators or payers—differently, and can lead to conflicts of interest.

It has also become commonplace to argue that increasing resources will not necessarily

produce any good if not spent effectively. Thus, when more money is promised for

healthcare, it is done on the condition that it can be proved that the money is spent on

effective interventions. This trend has created an unprecedented need for the medical

profession to explicitly justify its actions in both medical and economic terms. Evidence

based medicine (EBM), or the whole outcomes movement, is a central tool in this process

of increasing the accountability of medicine.

Cost control and quality improvements are often combined in practical health care

development—to get better for less is an obvious ideal for healthcare administrators. Even

if, however, this might be logical and practical on the administrative level, for individual

patients and doctors it is often the cause of much of the confusion that surrounds both EBM

and rationing. We argue that this confusion of costs and quality has made it difficult for

doctors to foresee and react to the changes EBM implies for the whole profession” [72].

Moreover, “costs inevitably play a role when CPGs are created and individual patients

treated, even if in many cases only implicitly, for at least two reasons. First, because for

CPGs to be relevant their recommendations must be realistic—that is, possible to apply in

practice. A guideline recommending a treatment that nobody can or wants to provide is

futile, and more likely to be damaging if there is no realistic alternative recommendation—

for example, Western HIV treatment guidelines in most African countries. Second, because

opportunity costs—that is, the alternative goods (not just monetary) that will be lost if a

treatment is given—must be considered. Considering costs as part of trying to find the best

possible solution to an individual patient’s problem is a traditional and important part of

medical praxis. It is common that patients do not buy medication they consider too

expensive, or use a lower dosage than prescribed, without reporting this to the doctor.

Patients always consider opportunity costs on their individual level, and these naturally

depend on the way the health care is financed. On the individual level, cost considerations

can in theory be dealt with relatively simply by letting individual patients decide what they

are willing to pay for certain services. In insurance based systems people can choose the

insurance policy they like and can afford, although, at least in the US, this appears true in

most cases only in theory. And even in theory, it is quite optimistic to think we could

correctly predict our reactions to some possible future diseases and ailments that we have

no experience of at the moment” [72].

3.2.10 Security Constraints

The device will be a home appliance placed in an open area like the kitchen where the

patient(s) and caretaker/administrator can access the device. If the device can be opened

without a key or any other permission then the device is vulnerable. They would have

access to the medication and the data storage. Thus, it is important to secure the device so

only the administrator can access all of the medicines and data.

26

Another security constraint is the wireless communication capabilities present in many

modern Medical Devices (MDs). This is a major source of security risks, particularly while

the patient is in open (i.e., non-medical) environments. To begin with, the implant becomes

no longer “invisible”, as its presence could be remotely detected. Furthermore, it facilitates

the access to transmitted data by eavesdroppers who simply listen to the (insecure) channel.

This could result in a major privacy breach, as Medical Devices (MDs) store sensitive

information such as vital signals, diagnosed conditions, therapies, and a variety of personal

data (e.g., birth date, name, and other medically relevant identifiers). A vulnerable

communication channel also makes it easier to attack the implant in ways similar to those

used against more common computing devices, i.e., by forging, altering, or replying

previously captured messages. This could potentially allow an adversary to monitor and

modify the implant without necessarily being close to the victim [24].

Another Security constraint is software or web application to defined the roles of the patient

and caretaker to have specific access to the each of them. “The content to be secured is

declared using one or more web-resource-collection elements. Each web-resource-

collection element contains an optional series of url-pattern elements followed by an

optional series of http-method elements. The url-pattern element value specifies a URL

pattern against which a request URL must match for the request to correspond to an attempt

to access secured content. The http-method element value specifies a type of HTTP request

to allow.

The optional user-data-constraint element specifies the requirements for the transport layer

of the client to server connection. The requirement may be for content integrity (preventing

data tampering in the communication process) or for confidentiality (preventing reading

while in transit). The transport-guarantee element value specifies the degree to which

communication between the client and server should be protected. Its values are NONE,

INTEGRAL, and CONFIDENTIAL. A value of NONE means that the application does

not require any transport guarantees. A value of INTEGRAL means that the application

requires the data sent between the client and server to be sent in such a way that it can't be

changed in transit. A value of CONFIDENTIAL means that the application requires the

data to be transmitted in a fashion that prevents other entities from observing the contents

of the transmission. In most cases, the presence of the INTEGRAL or CONFIDENTIAL

flag indicates that the use of SSL is required.

The optional login-config element is used to configure the authentication method that

should be used, the realm name that should be used for the application, and the attributes

that are needed by the form login mechanism” [57] .

The auth-method child element specifies the authentication mechanism for the web

application. As a prerequisite to gaining access to any web resources that are protected by

an authorization constraint, a user must have authenticated using the configured

mechanism. Legal auth-method values are BASIC, DIGEST, FORM, and CLIENT-CERT.

The realm-name child element specifies the realm name to use in HTTP basic and digest

authorization. The form-login-config child element specifies the log in as well as error

pages that should be used in form-based login. If the auth-method value is not FORM, then

form-login-config and its child elements are ignored [24].

27

With this web command, they will need to be update to the newer standards which contain

higher security parameters and a bit complex algorithm to sort out unwanted or unnecessary

character and number from the input of the user.

3.2.11 Performance, Functionality, Usability, Reliability and

Availability

The performance is the more of a quality to do survey for a given population.

From the House of Quality and comparing to other device out in the market, functionality

of the timing when the patient scan their fingerprint to the time the device dispense the

medication. The device will have a 1-2 min to respond.

Usability is for the patient to access the medication which is predicted to be less than 2

mins. The patient will scan their fingerprint and push on the touch screen to confirm that

the patient is the patient shown. Later, the patient will push a button on the screen if the

medication or “as needed” meaning when the patient just request the medication at random

times. Then the next screen will show in simple terms instead of the medication name for

example Zolpidem (Ambien) it will say and show the reason why they are taking the

medication. For example, Ambien is for sleep problems. In addition, this device will be

used for a family of 4 users or patients and a caretaker.

For now, this device will be 99% reliable for 1 yearly check-up due to the importance of

patient’s medication for live and death scenarios. On the other hand, the device will be plug

in to the outlet however in future improvement that device will be powered by battery for

12 hours due to weather and disaster in the area.

The availability of the device is 365 days a year and operational 24 hours a day and 7 days

a week.

28

4.0 Research and Background Information

The research conducted in preparation for designing the Medspencer product includes

research on similar products in the market; technologies that we plan to use to develop the

Medspencer; and power considerations. When researching technologies, we considered our

project requirements, then studied the available technologies and how they work, in order

to ascertain how we can implement the technologies to accomplish our goals for the

Medspencer. Researching available technologies and figuring out the Medspencer’s

specific needs helped us later when we chose what specific hardware components to

purchase to develop the Medspencer.

4.1 Market Research

Market research is an important part of researching when it comes to product development.

By researching what products are already available, we can ascertain what features are

already offered or not, and whether they are effective. This helps us design a unique product

with new and improved features and/or at a more agreeable price to consumers.

4.1.1 Existing Products

While there are a few household automated medicine dispensers on the market, they are

quite expensive and do not have the same features that have been described for the

Medspencer. All the medicine dispensers on the market that we studied are only for one

person use. Also, the devices do not verify that the correct person is taking the medicines.

None of the dispensers can reschedule in the case of a missed dose. All the dispensers

mentioned will sound an alarm and/or light up when it is time for a scheduled medicine

dose. They are locked devices, and do not allow patients to access medicines outside of the

schedule dose time. Researching other automated medicine dispensers that are already on

the market is advantageous, because the team can consider possible new features that could

be added or existing features that may be improved upon.

e-pill, LLC sells a series of automatic medicine dispensers [17]. The cost of most

dispensers ranges from $450 to $595. The e-pill medicine dispensers require pre-sorting of

the medicines into the medication tray. The medication tray has a finite number of

compartments, so the tray must be refilled more frequently if the patient must take multiple

doses in a day; the frequency of refilling ranges from once per month (for one dose a day)

to every few days. Doses can be scheduled up to 3 or 6 times per day at different specified

times (depending on the product), and there is an optional early dose feature. The

Medication Window used for e-pill medicine dispensers is illustrated below in Figure 4.

Our team is considering a similar scheme for the Medspencer’s dosage window. The

dispenser is locked; however, reviews say it is easy to tamper with the device to open it.

The tamper-resistant medicine dispensers range from $650 to $995. The e-pill MedSmart

Plus will send a call, text, or e-mail to the caregiver if the medication has not been taken

within 60 minutes of the scheduled time, and costs $895. If a dose is missed, the device

simply skips that dose.

29

Figure 4. Precise medication window scheme used by e-pill, LLC [38]

Courtesy of e-pill ® Medication Reminders

Another product on the market is the Philips Automated Dispensing Service, which is

available at a monthly subscription price of $59.95 a month [16]. The Philips dispenser

requires pre-sorting of medicines into 60 cups, and can accommodate up to 40 days of

medicine. Up to 6 doses per day can be scheduled, and there is an optional early-dose

feature. The Philips can give reminder alerts for non-pill medications that are not housed

in the dispenser as well. There is a program for as-needed (PRN) medications. If the dose

is missed, that box’s medicine will be dumped in a secure container, so the dispenser does

not keep the medicines organized and separated. Alerts can be sent to the caregiver for the

number of missed doses, reminders for refilling, dispenser errors, and loss of electricity.

The dispenser is connected to the patient’s telephone landline, so the caregiver can be

contacted if a dose is missed. The patient’s activity can be viewed through the online

Monitoring Report. Schedules and reports can be accessed using an online portal or app.

A cheaper option is the MedReady 1700 Automatic Dispenser, which costs $149 [15]. The

medications must be pre-sorted, and the tray can hold 28 doses. Up to four doses can be

scheduled per day. The MedReady 1700PRN dispenses only as-needed (PRN) medications

by allowing the user to set a minimum time between doses. It costs $159. The Medready

1750 (Landline monitored) and MR-357FL (Cellular monitored) offer cellular and landline

monitoring to track medication compliance. The call center will be contacted when a dose

is missed or when there is a malfunction or power outage. Then the call center notifies the

caregiver via email, text messages, or phone calls. A complete compliance history is

available on the website. The cellular model allows caregivers to change settings via the

online portal. The 1750 costs $197 with a $16 per month monitoring fee, while the MR-

357 costs $297 [15, 30]. Devices with a flashing light, in addition to the audio alarm, is

available for $10 more than the regular prices.

A more advanced medicine dispenser on the market is the Livi Automated Medication

Dispenser [60]. The Livi can be purchased for $1999 or rented for between $79-$99 a

month. The Livi can handle a variety of pill shapes and sizes, however to do so, someone

must measure the pill size and fit the matching “fit kit parts” to the medication container.

The Livi can hold up to 15 medicines in separated vials, and medicines do not need to be

hand-sorted. This saves time from sorting medicines or loading the machine, as up to 90

30

days’ worth of each medication can be stored. In addition, it makes adding or changing out

prescriptions easier in the case of a new prescription. Doses can be scheduled up to 24

times a day, and the machine can dispense as-needed (PRN) medication. There is an

optional early-dose feature. The Livi ensures only the quantity allowed for a given time-

frame is dispensed, including daily do not exceed needs. The Livi can also give up to 15

additional reminders for items not stored in the Livi. The Livi has its own telephone service

and can send text messages or emails to the caretaker when a dose is taken or missed, when

the lockable device cover is opened, and when inventory levels are low. The Livi can

generate reports and statistics about medicine adherence. The Livi web portal allows easy

scheduling and real-time monitoring of medications. The Livi cloud stores medication

history and adherence data for easy sharing with the physicians and other caregiver(s).

Four medicine dispensers; e-pill, MedReady, Philips, and Livi; were studied in depth to

analyze the current market, and ascertain what features are currently available. Most of the

automated medicine dispensers require pre-sorting of medicines. This takes a significant

amount of time, and requires more frequent refilling. When new medicines are prescribed

or a prescription must be stopped, it can be difficult to re-sort the medicines. In contrast,

the Livi has 15 separate medicine vials. This allows for easy organization, and medicines

can easily be refilled or swapped out. However, the Livi requires involved physical set-up

by the caregiver to facilitate this. We planned to fill the Medspencer with separate medicine

vials, to avoid the need of pre-sorting. Many of the studied products allow early doses, and

have a dosage window between 30 min to 180 min (depending on the device). We planned

to utilize this optional early-dose scheme for the Medspencer. Some of the medication

dispensers allow for online access, where the schedules could be modified remotely. This

can be helpful when a patient needs the assistance of a caregiver to modify the scheduling.

The Philips and Livi dispensers provide as-needed (PRN) medications, in addition to the

scheduled medicines. We also planned to provide PRN medications for the Medspencer.

All the dispensers have options for phone or email alerts to the caregiver. Some of them

also have online portals, where schedules and compliance reports can be accessed. Our

team planned to send phone or app alerts to the caregiver, and email compliance summary

reports to the physician and caregiver every few weeks. We also planned to incorporate

some unique features into the Medspencer. One such feature is a rescheduling algorithm,

which will adjust the dosing schedule if a dose is missed. We also planned to add options

for medicines that must be taken alone. Currently the home medicine dispensers on the

market are one-person use. The Medspencer handles multiple users and uses fingerprint

identification to ensure the correct person gets their medicine.

4.1.2 Input from Medical Professionals

The team met and spoke with Dr. Fredesvinda Jacobs-Alvarez, a psychiatrist that heads a

private practice in Orlando. We discussed the project with her to better understand the

needs of physicians and patients who would use the Medspencer. Dr. Jacobs-Alvarez

explained about how physicians interact with the EMR (Electrical Medical Records)

system, prescribe medications, and how an alert system to identify patients with poor

compliance may improve the safety and compliance for patients.

31

In medicine, compliance describes the degree to which a patient correctly follows medical

advice. Most commonly, it refers to medication compliance, as we refer to it here. There

are various cases of patients being noncompliant with their prescribed medications; patients

may take more or less than prescribed or may take the wrong medication. Providing support

to the patient can help them stay compliant with their medication schedule, and often results

in increased compliance even after support is stopped. Thus, the Medspencer, which

provides support for patients to take their medicine on time, should help improve

compliance even if use of the device is discontinued. Dr. Jacobs-Alvarez also impressed

upon us the importance of the physician and pharmacist’s awareness of the patient’s

compliance, so that they can accurately gauge the patient’s health and give better medical

advice and treatment. After discussing this with Dr. Jacobs-Alvarez, the team decided to

incorporate the summary report feature into the Medspencer. The Medspencer will

automatically email a summary report to the PCP (Primary Care Physician) every two

weeks to report on the patient’s medication compliance.

Dr. Jacobs-Alvarez explained that medical practices have EMR systems that record

information on all the patients, visits, prescriptions, diagnoses, and notes. An alert system

that automatically alerts the Pharmacy and the PCP if the patient is not being compliant by

sending an alert via internet to the provider’s EMR would be ideal. If the patient’s

compliance was automatically sent to the EMR, they physician would have an easier time,

as they could see all of the information about the patient summarized in one place. It would

avoid any records getting lost or mixed up. Also, sending an alert on noncompliance to the

pharmacy would allow the pharmacist to withhold medicines if they see the patient is not

taking them, to prevent the patient from hoarding medicines or paying extra money for

medicines they are not using. Unfortunately, for this Senior Design project, we do not have

the permissions to access the EMR. However, if this product were to be developed after

the end of Senior Design, then we could investigate gaining access to the EMR and creating

and maintaining secure access. If we gained access to the EMR, then the Medspencer could

send compliance/noncompliance reports directly to the EMR to be reviewed by the PCP.

In addition, the Medspencer could automatically download the prescriptions and

prescription schedules for the given patient from the EMR data. This would allow for easier

set-up for the device, and automatic data retrieval when new medicines are prescribed.

Dr. Jacobs-Alvarez also advised us to keep all prescriptions separated. For example, if two

patients are prescribed Medicine A, each patient’s prescription should still be kept in a

separate vial. That way, each person gets the right amount of medicine they were

prescribed, and no one takes another person’s medicine.

Another point that Dr. Jacobs-Alvarez brought up is that the Medspencer could be

advantageous by reducing medicine production costs. A common way to help patients take

their medicine on schedule is by putting the medicine in a bubble pack. However, the cost

of producing the bubble pack makes the overall medicine cost higher. Also, if the schedule

is changed or a new medication is prescribed, then the bubble pack must be discarded and

a new one must be purchased. Using the Medspencer can reduce the medication cost

because the Medspencer automatically sorts out medicines and dispenses them at the

correct time. Also, rescheduling or adding new prescriptions is easy with the Medspencer.

Another cost component for medicine production is the informational print-out. If the

32

Medspencer accessed the NDC Database, then the medicine information could be read

from the Medspencer. Then a print-out would not have to be provided, which would save

money.

4.2 Microcontroller

The microcontroller is the central hub of an embedded system. A complete computing

ecosystem, the microcontroller contains a processor, memory, and numerous peripherals

that allow it to be flexible in how it is used. These peripherals, such as digital inputs and

outputs, ADC modules, comparators, clocks, timers, and communication interfaces that

support UART, SPI, I2C, CAN, USB, or Ethernet, along with more specialized offerings,

are implemented into a microcontroller to allow one component to perform many different

functions. For the Medspencer, the microcontroller oversees recording patient and

medicine data, displaying things on the LCD, handling data from the touch screen and

fingerprint scanner, making alerts via speaker, and sending commands to the Wi-Fi module

and servo-motor controller.

From a data analysis standpoint, the computing requirements are not heavy. The amount

of data that we must record, process, and transmit is very small, and even a budget

microcontroller could handle the processing. What really dictates the requirements of the

Medspencer’s microcontroller is the display. The display we have chosen is a 7” 800x480

touchscreen, which presents a processing and memory threshold that the microcontroller

must beat.

One microcontroller we considered is the Microchip PIC32MZ DA. A member of

Microchip’s 32-bit PIC line and MZ family, this chip’s main selling point is its 3-layer

hardware-supported graphics processing unit, supported by 32 MB of RAM. Additional

products from Microchip and other manufacturers were considered, but none beat the cost

and features of the MZ DA.

Additionally, the idea of using a chip not designed for graphics was considered. After all,

if the chip had enough RAM and a fast processor, images were just numbers, we could

write our own graphics library, right? As it turns out, most chips with high enough statistics

to support our screen already had some sort of graphics support, and that without certain

hardware structures in the chip, we would spend most of our processing power on buffering

the screen, not running our project. Not to mention that writing a custom graphics library

when others have already done so and have software to support development would just be

a difficult waste of time and energy.

While developing the project in Senior Design 2, we initially attempted to work with the

PIC32MZ DA. However, there were many issues with this microcontroller. The graphics

library and may other libraries for the microcontroller were supposed to be completed and

included in MPLAB Harmony, the development platform for PIC32 microcontrollers.

However, many of these libraries had issues or were unfinished or unwritten. We also had

many issues when trying to utilize I2C and UART communication with the PIC32MZ DA.

With all of these issues, we reconsidered our microcontroller choice and did additional

research, and decided to use the Raspberry Pi Compute Module 3 Lite (CM3L) and the

33

ATMEGA328P-PU microcontroller. The CM3L is the main master and directly controls

the LCD display, resistive touch panel, and wi-fi module. The ATMEGA328P controls the

dispensing mechanism, speaker, and fingerprint scanner.

4.2.1 Research

Initial research led us to the Microchip PIC32MZ DA. A relatively new product (released

in 2017), this microcontroller, while boasting some neat capabilities, seemed like overkill

for the Medspencer. The display requirements for this project are very simple: some menus,

some text, a keyboard, with a possible addition of simple images for icons if time and space

permit. A hardware-accelerated 2D graphics processing unit (GPU, like the thing in your

PC that plays Crysis) just didn’t seem necessary. Additionally, the cost of the development

board ($130) was considered to be excessive [46].

For cheaper, less powerful alternatives, other Microchip offerings were first examined. 16-

bit processors are usually much too small and slow to handle our display. Most are used in

ultra-low-power operations, where there is no need to handle the size of data that this

application requires. Even Microchip’s PIC24F DA, a 16-bit microcontroller with

hardware support for graphics processing, can only support a resolution up to WQVGA

(480 x 272) with 16-bit color, a far cry from the scale required [1].

When looking at Microchip’s 32-bit offerings, the majority still do not have the memory

required to support our screen size, though they do have the throughput. The thing is that

most of these chips have pretty obvious intended uses that make them specialized for

particular tasks. The MX series have a variety of size and speeds to fit a range of

applications. The MM is a lower-powered MCU with FPGA-like logic programming

capabilities. The MK has more timers, comparators, DACs, and includes motor encoders

and decoders, which makes it suited for analog peripherals control. The MZ EF has a faster

processor than the MZ DA and has a specialized floating point unit, but it lacks the extra

memory and graphics processing unit, making it suitable for intensive signals applications.

The MZ DA is simply the member of the family specialized for graphics processing and

big screens, and that is what this project is looking for [3].

Many of these microcontrollers, both 16-bit and 32-bit, have some sort of parallel

communication bus: this allows them to utilize external memory to hold the frame buffer.

While this is a valid option, it would result in much more complexity and more production

work, and potentially higher cost as well. The PIC32MZ DA is unique in that it has a 32MB

bank of SDRAM incorporated into the chip. This allows it to support such large screen

sizes without needing external memory (in effect, it has external memory attached to that

parallel master port, just integrated into the chip) [46].

Microchip also has a family of MPUs called SAM. Some series of SAMs are also graphics

capable, and could fulfil our requirements. However, microprocessing units usually do not

contain as many peripheral interfaces as MCUs do, and require external support, like

various memories. This would be an increase in complexity for our project with no

discernable gain, so the PIC32 MZ DA wins at Microchip.

34

Other manufacturers were also considered. TI doesn’t make graphical LCD screen

controllers; the only “graphics” products offered were for segmented displays. Many of

NXP Semiconductors’ 32-bit processors that were large enough to support our screen had

the support to run an operating system, which is definitely overkill for this project. Renesas

Electronics presented a similar situation, with their RZ/A1L being comparable to the MZ

DA, but also having support for Linux, and seemed to be more difficult to acquire. Renesas

does offer a number of “driver” chips, which take commands from a microcontroller and

control the screen by themselves, but that also adds hardware complexity to the project and

limits our ability to try new things.

Another major factor is price. The PIC32MZ DA ranges from $10 to $15, depending on

the exact model, with the development kit clocking in at $130. At first, this seemed quite

expensive compared to a hobbyist product like a Raspberry Pi, but more research shows

this is actually rather cheap as development kits go.

At the end of the day, the requirements for this project push the microcontroller into an

interesting place: more powerful than the industrial and automotive applications for sensors

and controllers, but not quite into the field of OS-capable MPUs powering the Internet of

Things. We wanted to keep this project out of Linux to force ourselves to use lower-level

tools and technologies; not everything has to be solved by buying the most impressive chip

and only using a fraction of it. It seems that the PIC32MZ DA is a bit of a rare breed in the

middle, and it’s interesting that it was the first thing we found. Additionally, the $130 price

tag on the development board is really very cheap compared to some other dev kits out

there.

Additional research and testing in Senior Design 2 pushed us to drop the PIC32MZ DA as

our central microcontroller unit. Instead, we adopted the Raspberry Pi Compute Module 3

Lite and the ATMEGA328P microcontroller to take over processing for the project.

4.2.2 Microchip PIC32MZ DA

The first microcontroller that we considered using for our project is the PIC32MZ DA,

which would be the main master for the entire device and would directly control each of

our peripherals and touch screen display. The PIC32MZ DA has a large number of

components, many of which we would not use.

This microcontroller has a three-layer graphics controller that supports 24-bit color, and is

powered by a dedicated graphics processing unit (GPU), which is rare for a

microcontroller. Once initiated, the GPU runs separately from the CPU to allow for

graphics processing to not impede the normal processing of the microcontroller. The GPU

can draw lines, fill or clear rectangles, perform bit blitting, and handle transparency. Unlike

most other microcontroller functionalities, a direct hardware interface (i.e. register access)

is unavailable, and development must use the provided library in the MPLAB Harmony

Software [68].

Separate from the GPU is the Graphics LCD (GLCD) Controller, which is responsible for

managing layers, color palettes, dithering, cursors, and directly interfacing with the screen

35

hardware. All of the signal timing and refresh rates related to the screen are handled by the

GLCD controller. While the GPU creates and changes the content of the memory buffer,

the GLCD controller will be constantly transferring that display data to the assigned data

bus; in fact, it even has its own direct memory access to offload this work from the CPU

entirely. This controller supports varying screen sizes, varying color depths, layers, alpha

blending, programmable cursors, and gamma, brightness, and contrast support [75].

Figure 5. PIC32MZ DA Family Block Diagram [68]

Courtesy of Microchip Technology

36

The memory that the GPU and GLCD controller use for the frame buffer has its own

controller separate from the main on-chip memory. Depending on which model PIC32MZ

DA is purchased, this controller either controls 32MB of SDRAM integrated into the chip

itself, or it has pins to control banks of external SDRAM. It is this dedicated memory

directly connected to the graphics controller in the MZ DA that make it so well adapted to

graphics-heavy projects [68, 75].

The PIC32MZ DA has six ADC modules: these analog-to-digital converters sample a

voltage and return a numeric value based on the reading. Once enabled, an ADC will be

constantly sampling its input, waiting for a trigger to tell it to hold the signal steady. Once

the trigger is received, the ADC module disconnects from its input, and begins its core

functionality: successive approximation. Mathematically, the successive approximation

register (SAR) is performing a binary search on the held voltage. Using a selection of

comparators, the SAR first determines if the voltage is above or below ½ VCC, then

depending on that result, if the voltage is above or below ¼ or ¾ VCC, on and on until it

reaches its smallest comparisons. The ADCs in the PIC32MZ DA have 12-bit resolution,

so there are 12 layers of comparison that break down VCC into 2^12=4096 distinct voltage

levels [68, 74].

The MZ DA also contains multiple communication interfaces: CAN, UART, SPI, I2C,

USB, and Ethernet. Even though the Medspencer will require an Internet connection, it

will be achieved by a separate Wi-Fi controller, not this Ethernet interface. However, that

chip will have to be interfaced with, as well as the fingerprint scanner and motor controller.

These communication interfaces will come in handy when interfacing with such a wide

selection of peripherals. Additionally, we have the ability to add a USB port to the

Medspencer, should it need computer communication, USB peripherals, or both [68].

4.2.3 Microchip PIC32MZ DA Starter Kit

The PIC32MZ DA Starter Kit is a PCB development board for the PIC32MZ DA. The

board features a number of useful hardware expansions to the microcontroller, allowing

for functionality testing and rapid prototyping. The Starter Kit can be purchased with a

choice of one of four microcontrollers, depending on if the customer wants a model with

integrated RAM and/or a crypto engine. The microcontroller comes on a separate PCB

called the Daughter Card which attaches to the Development Board. Once attached to the

dev board, the microcontroller has a number of peripherals that it can use [67].

The Starter Kit features USB ports for power and UART communication, a Micro-SD card

slot, an Ethernet port, three push-buttons, three LEDs, an onboard programmer-debugger,

a 40-pin expansion connector, and a 168-pin connector for application boards. In total,

there are 5 USB ports on this board, each with a different purpose: power, host-based

applications, UART serial communication, on-board debugging, and OTG/device-based

applications. Finally, a fun fact we noticed: the 40 expansion pins are mapped to the exact

same functions as the 40-pin expansion (J15) on the Raspberry Pi (assumption being that

Microchip has recognized the number of products that have been designed for that

specification) [67].

37

Figure 6. J15 40-pin expansion [67]

Courtesy of Microchip Technology

The 168-pin application board connector (J3) on the back of the dev board is meant to

connect to some other prototyping boards that Microchip sells. However, the datasheet

provides both a part number for the mated connector (Hirose FX10A-168S-SV) and a

pinout, which would allow us to attach our own LCD. The LCD we have chosen also

provides a pinout and a recommended connector (Hirose FH12A-50S-0.5SH), and it should

be possible to wire these two connectors together to prototype our own screen connection

[67].

4.2.4 MPLAB Harmony

MPLAB Harmony is a software framework of modules that provide building blocks for

constructing firmware for the PIC32. It is closely associated with other tools from

Microchip, such as the MPLAB Harmony Configurator (MHC) and the MPLAB X

integrated development environment. The MHC is a plugin for MPLAB X IDE to allow

for a graphical representation of the chosen PIC32 MCU configurations. This gives

simplicity to setting up the functions of an MCU, including clocks, pins, and software

modules. These tools will be used to construct the firmware for the Medspencer’s MCU

[64].

38

Figure 7. MPLAB Harmony generic block diagram [64]

Courtesy of Microchip Technology

MPLAB Harmony is a framework of libraries, supported by device drivers, that allow for

the development of applications for the PIC32 family of microcontrollers. Closest to the

hardware are Peripheral Libraries (PLIB), simple libraries that hide register details to the

drivers above to allow more portability between hardware. The device drivers provide an

interface between the peripheral and the software, allowing access to functionality through

a consistent set of functions. These manage all access to a peripheral, and so monitor

concurrent accesses and managing the state of the peripheral.

This multi-layered approach is designed to allow for portability between hardware, which

is usually impossible when working closer to the hardware, as is normal with MCUs. The

modular approach also encourages code reuse and usage of pre-made libraries, which saves

developers time and difficulty.

A different category of module is the middleware library. Some peripherals are too

complex to control directly and require extra processing power or interpreting complex

protocols. Examples of these complex protocols include USB interfaces, network

connections, or LCD controllers. These middleware stacks are built on device drivers and

system services, and allow for a more abstracted control of these services. For the

Medspencer, the LCD controller middleware will be of special importance.

39

Figure 8. MPLAB Harmony Middleware diagram [64]

Courtesy of Microchip Technology

Often, a firmware will have more than one module that needs to access a system peripheral,

such as a timer. If a module attempted to set the functionality of a timer while it was in use

for another module, then they would likely catastrophically interfere. However, a layer of

abstraction allows for a System Service to control the peripheral, and handles the needs of

multiple modules. The example system timer now has the responsibility to fulfil the

modules’ requests and keep them from interfering with each other.

Figure 9. MPLAB Harmony System Service example [64]

Courtesy of Microchip Technology

40

Overall, the MPLAB Harmony firmware solution provides support for complex

functionality and granular hardware abstraction, allowing unparalleled flexibility in

hardware choice and multi-module support.

4.2.5 ATMEGA328P Microcontroller

The ATMEGA328P is a popular microcontroller for embedded designs. It is a low-power

8-bit microcontroller based on the AVR enhanced RISC architecture, and with 32kB of

flash memory, 1kB EEPROM, and 2kB SRAM, it is suited to applications where it

connects and controls low-power components. There are 23 programmable I/O lines, with

USART, PWM, SPI, I2C, and ADC interfaces available. Rugged and reliable, this

microcontroller can retain information for 100 years at a temperature of 25 degree Celsius

with a projected data retention failure of less than 1 PPM. When the ATMEGA328P is in

power-save mode the asynchronous timer continues to run, allowing the user to maintain a

timer base while the rest of the device is sleeping [88].

4.2.6 Raspberry Pi Compute Module 3 Lite

The Raspberry Pi Compute Module 3 Lite (CM3L) is a System on Module (SoM), which

is a PCB containing a processor, memory, and supporting power circuitry. It conforms to

the mechanical specification for a 200 pin SO-DIMM module, and therefore fits with many

DDR2 SO-DIMM sockets available on the market, though it is obviously not electrically

compatible with them. The CM3L contains a BCM2837 processor, and the software

includes the ARMv8 instruction set and Linux software stack. 1GB RAM is available, and

an SD card up to 64 GB can be fitted using the SD/eMMC interface. The CM3L has 48

GPIO pins and supports I2C, SPI, UART, SD/SDIO, HDMI, USB, and DPI

communication interfaces [89].

The Compute Module is effectively a stripped-down Raspberry Pi Model 3, with no

connectors or 5v power regulation, and all I/O pins exposed onto the socket. This makes it

much less usable out-of-the-box, but much more flexible for designers who can design their

own PCB.

4.3 Display

The display is the main communication channel between the system and the user. Whether

it is general overviews of functionality, live updates of a specific task, or just pictures of

cats, the display is how humans can see what the system is doing. Not only does the system

communicate to the user through the screen, but with the addition of a touch-sensitive panel

over the display, the user can now communicate back. Infinitely more flexible than a

keypad or a bank of switches, a touch screen lets the system choose exactly what

information it requires from the user, then presents them with a tailor-made interface to

communicate through. Buttons, switches, knobs, keypads, even pen and paper can be

emulated in the touchscreen. This allows for unparalleled flexibility in intercommunication

between machine and man.

41

Consequently, the screen is a very important piece of hardware for the Medspencer. An

administrator will need to enter strings of text into the system for patient names, medicine

ids, and email addresses. However, the admin will also have to set up schedules, and that

will take a very different kind of interaction than plain text. Additionally, the end users of

this system will need to interact to ask for medication, or to answer alerts, or any number

of other things. This broad scope of interaction is what makes the touchscreen such an

important piece of the Medspencer: it acts as many different kinds of human interfaces.

4.3.1 Technical Background

A screen is simply a large array of pixels, each with the capability to show a color. The

amount of unique colors that can be shown on a screen is called its color depth, and this is

directly related to the number of bits that indicate the color of a single pixel. The more bits

that are used to define a color, the more variety of colors can be reproduced. To

communicate this color information to a display, there is a set of data lines that are mapped

to the color data bits.

To display an image on the screen, you first set the screen’s color data lines, to the value

of the color you want the first pixel to be. Then, the clock signal pulses, which causes the

screen to move on to the next pixel, and it reads in the value on the color data lines again.

As the pixel being updated moves across the screen and then down to the next row, the data

lines are set to the color for that pixel, and eventually fills the screen with colors. Now,

obviously, this must happen very fast, as screens have a large number of pixels that must

be refreshed multiple times per second.

For the microcontroller producing this pixel data, it can be hard to know which pixel needs

to be what color. Because the pixels are transmitted line-by-line, complex shapes, color

shading, and multiple layers of objects could be very computationally difficult to process

for each individual pixel, especially if that pixel’s value depends on the values of pixels

around it (eg. a blurring effect). The solution to this problem is called a frame buffer. A

section of memory is set aside to contain a copy of the screen. This is a bitmap with the

value of every pixel recorded. Now the microcontroller can draw anything it wants onto

this buffer before it feeds it pixel-by-pixel to the screen.

4.3.2 Frame Buffer Space Saving Techniques

The screen chosen for this project is of resolution WVGA, which means it is 800 pixels

wide by 480 pixels tall. It also supports 24-bit color. If a frame buffer was used for a full-

color screen this size, the microcontroller supporting it would need over 1MB of RAM

(800 px * 480 px * 3 B). This is much more data than any budget microcontroller was

intended to have to deal with. However, techniques exist to limit the amount of memory

needed for the frame buffer.

42

Figure 10. Basic 24-bit color frame buffer; Total size: 1.099MB

The simplest option is to limit the size of the stored colors. Instead of setting aside 24 bits

for each pixel, only use 16 bits. A common way to partition 16 bits into red, green, and

blue components is the ratio of 5:6:5. This means a microcontroller only needs 16 output

data lines: the extra wires for the screen’s color data lines would be tied to ground to signify

0. Only the most significant bits of color data would be saved, squeezed into two bytes.

This uses 2/3 the amount of memory as a full frame buffer (800 * 480 * 2B) and gives

65,536 possible colors, but some color depth is lost.

Figure 11. 16-bit color frame buffer; Total size: 0.732 MB

A more complex possibility is to use a color lookup table. This involves a frame buffer that

doesn’t store full 24-bit colors, but only an index to a table that stores the full colors. A

microcontroller using this strategy sends data to all 24 color data lines on the screen, so the

screen can show full-precision colors, but the frame buffer can only store a subset of those

colors. A lookup table with 8-bit color entries would allow the use of a frame buffer that

takes half the memory as above and can only produce 256 different colors, but can utilize

all of the color depth of the display.

Figure 12. Frame buffer with 256-color lookup table; Total size: 0.366 MB

1 2 … 800

1 FF0000 C39B6F D4CE4C

2 3399FF 008000 2F11E5

…

480 649A67 D76FF7 9604C8

1 2 … 800

1 F800 C4CD D669

2 34DF 0400 289C

…

480 64CC D37E 9039

0 FF0000

1 2 … 800 1 C39B6F

1 0 1 5 2 2F11E5

2 3 4 2 3 3399FF

… 4 008000

480 5 0 6 5 D4CE4C

6 9604C8

43

There is more cleverness that can be applied to the color lookup tables. If all that is going

to be displayed on the screen are flat color menus, text, shapes, etc., then a full gamut of

colors is not needed, and the limited palette is acceptable for the given purpose. Even some

anti-aliasing and smoothing between colors could be displayed, if properly accounted for

in the color table. If a full-color image was going to be displayed on the screen, then it

should be pre-processed to determine the most-used colors, and come compressed with a

color table. After all, if only a fraction of real colors can be displayed at once, then saving

colors that aren’t used in the image is a waste of color gamut. Indeed, depending on the

size of the color table, the amount of memory available, and the application requirements,

it wouldn’t be unfeasible to save multiple color tables and treat them as different palettes

for different uses (e.g. This object uses palette 1, while that object uses palette 2, etc.). The

developers for cartridge-based video game consoles were masters at these sorts of space-

saving tricks.

However, with all that research done, we decided to use a microcontroller large enough to

handle the screen at full size. In the past, clever methods like these were required to store

visual data in small memories, but given that microcontrollers exist today that not only can

run a screen of this size, but also provide powerful graphics processing that is easily usable,

these techniques are more trouble than they’re worth.

4.3.3 Innolux AT070TN90

The screen requirements for the Medspencer are fairly straightforward: it needs to be big

enough to use as a keyboard, and the graphics don’t need to be too complicated. The screen

will be the main human interface for the Medspencer, used for menu systems, a keyboard,

and visual alerts. Therefore, the most basic use of the screen will be to show words and

boxes: potentially a lot of them, possibly overlapping, and preferably in fun colors. These

basic requirements are pretty simple.

However, the MCU chosen to power this project is quite powerful, and will allow for much

more than simple boxes and words. With transparencies, color blending, layers, and lots of

storage, there are a number of possible ways for the display to be jazzed up (transition

effects, full-color images, etc.). In reality, however, style and beauty come second to

getting the thing to work, so plans of an aesthetic nature will be made once the team has

excess time on their hands.

The screen chosen for this project is an Innolux AT070TN90, a Chinese display commonly

found in consumer electronics. There are a number floating around Amazon, eBay, and

Alibaba, so they are pretty cheap (~$20). They have a WVGA resolution (800 x 480),

support 24-bit color, and can be found with a resistive touch panel incorporated into the

screen. The datasheet contains a pinout for the 50-channel flexible flat cable (FFC), which

contains all of the color channels, power connections, and timing signals for the display.

The datasheet also contains specifications for the exact timing to send the screen color data,

though thankfully the PIC32MZ DA’s LCD controller will handle the screen’s timing

requirements if you set it up properly.

44

The datasheet gives a recommended connector for the FFC, a Hirose FH12A-50S-0.5SH.

According to the pinout, while many of the lines are simply data lines, with voltage levels

that should switch between 0 and ~3.3, a number of wires are power lines, and require

much higher voltages than digital hardware usually calls for. This will certainly have to be

taken into consideration when designing our power distribution for the product, as the Gate

voltages go outside normal digital operating ranges.

Table 3. Typical Operation Conditions [14]

4.3.4 Resistive Touch Screen

We decided to use a resistive touch panel. The alternative technology for touchscreens is a

capacitive touchscreen. The resistive touch panel relies on mechanical pressure, while the

capacitive touchscreen measures changes in electric field due to the conductivity of your

fingers. We chose to use the resistive touchscreen because of its lower price, and the fact

that it reacts to multiple kinds of touch, whether it’s a finger or a stylus.

This display senses touch through a device called a resistive touchscreen. The touchscreen

has three layers: one conductive layer with electrodes at across the top and bottom (Y1,

Y2) of the screen, a spacer layer in the middle, and another layer with electrodes on the left

and right (X1, X2) of the screen. Each of these electrodes has a wire connected to it that

will connect to the microcontroller.

Min. Typ. Max.

DVDD 3.0 3.3 3.6 V

AVDD 10.2 10.4 10.6 V

VGH 15.3 16.0 16.7 V

VGL -7.7 -7.0 -6.3 V

Input signal voltage VCOM 3.6 3.8 4.0 V

Input logic high voltage VIH 0.7 DVDD - DVDD V

Input logic low voltage VIL 0 - 0.3 DVDD V

Values
UnitSymbolItem

Power voltage

45

Figure 13. Resistive touchscreen’s layers and electrodes

When the screen is touched, the top layer is pressed against the bottom layer and forms an

electrical connection at that point. To measure the Y component, two different voltages are

placed at Y1 and Y2. This causes a voltage gradient across the Y layer, and the Y

component of the touch location is a voltage in that gradient, relative to its location. At the

point, the electrical connection between the X layer and the Y layer make the X layer’s

voltage equal to the point touched on the Y layer. The voltage of X1 or X2 can be measured,

and the voltage of Y1 is obtained. This is in some sense similar to a voltage divider.

46

Figure 14. Measuring the Y component of a touch

This process can be repeated with the layers swapped to obtain the X component of the

touch, and with these voltage measurements, the coordinate of the touch can be calculated.

This type of screen is simple and robust, and can detect pressure of any sort, not just a

finger.

4.3.5 Resistive Touch Screen Controller

The touch panel requires an ADC module, and touch coordinates are calculated by

measuring the voltage gradient across the touch panel. We considered three different

possibilities to control the touch panel.

The first method we considered is using the ADC modules on the PIC32MZ DA

microcontroller to directly supply power to, measure, and calibrate the touch panel. This

was our initial plan, but since the PIC32 didn’t work for our LCD display specs, we decided

to forego this option.

The method that we decided to utilize is to control the resistive touch panel using the

AR1021 Resistive Touch Screen Controller [90]. This controller processes the touch data

and delivers calibrated touch coordinates to the host MCU. It communicates with the host

over I2C communication.

47

Figure 15. AR1021 Resistive Touch Screen Controller

Courtesy of Microchip [90]

For the Raspberry Pi CM3L, the touch panel may also be controlled using USB. Utilizing

the USB bus requires more hardware circuitry and power overhead, however it’s more

flexible. Since we’re planning to have a self-contained manufactured product, we decided

it’s more economically efficient not to use the USB method.

4.4 Wi-Fi connection

The following sections show the research that was done to give the microcontroller Wi-Fi

connection capabilities, and the different approaches that were considered to solve the

problem. Having a fast Internet connection is important for any piece of technology these

days, so a quality solution was needed.

In searching for a wireless frequency interface module, the module must be secure in the

regulations and laws under the Section 3.1.2 and 3.2.2, and send and receive

communication signals using protocols and regulations standards for internet connectivity.

The product that was initially considered is the CC3220 SimpleLink Wi-Fi Wireless and

Internet-of-Things Solution, a Single-Chip Wireless MCU. This contained the requirement

for the device that is being created with added features. The Microcontroller unit has up to

27 GPIO Pins, an Application Microcontroller Subsystem and Wi-Fi Network Processor

(NWP) Subsystem, high-level secure system Software Tamper Detection, cloning

protection and secure boot. In addition, for the future project the added feature of Internet-

of-Things. In the Application microcontroller subsystem, a Cortex-M4 processor is used

which has a 64-bit ARM Thumb instruction, an upgrade from previous education courses.

Also in the application subsystem is advanced high-performance bus (AHB-Lite)

interfaces: system bus interfaces and the low-cost debug solution featuring like Debug

access to all memory and registers in the system, including access to memory-mapped

devices, access to internal core registers when the core is halted, and access to debug

control registers even while SYSRESET is asserted [77].

The other option we explored, which is the option we ended up going with, is the

ESP8266EX Wi-fi module by Espressif. This chip is a popular Wi-fi microcontroller with

many cheap versions on the market. This module can perform either as a standalone

application or as the slave to a host MCU. The ESP8266EX can interface to a

microcontroller using SPI/SDIO or I2C/UART interfaces. It compactly integrates antenna

48

switches, RF balun, power amplifier, low noise receive amplifier, filters and power

management modules, and requires minimal external circuitry. The chip integrates an

enhanced version of Tensilica’s L106 Diamond series 32-bit processor and on-chip SRAM

[93, 94].

4.5 Fingerprint Scanner

This project requires patient authentication to ensure that only approved patients will use

the Medspencer, and that patients receive only the medications that were prescribed to

them. Passwords or pins can be easily stolen or forgotten. People who are elderly or have

mental issues may also have a hard time remembering them. To these ends, we will utilize

a fingerprint scanner. As every human has their own unique fingerprint, fingerprint

scanning works as a secure method of identification. Thus, the fingerprint scanner provides

an easy and secure way for patients to identify themselves to the Medspencer.

The two major technologies used for fingerprint scanning include optical scanning and

capacitive scanning. Capacitive fingerprint scanners generate fingerprint images using

electrical current. The sensor is made of one or more semiconductor chips containing an

array of cells; each cell contains a capacitor. The sensor is connected to an integrator, a

circuit built around an inverting operational amplifier. When placed on the sensor, the

surface of the finger acts as a third capacitor plate. The varying distance between the sensor

and the finger, caused by fingerprint valleys and ridges, causes a change in the total

capacitance. Thus, the capacitor under a ridge will have greater capacitance than if it were

under a valley. To scan the finger, a fixed charge is applied to the integrator. The capacitors

affect the amplifier’s voltage output, which can be measured to determine whether the

voltage is characteristic of a ridge or a valley. By reading every cell in the sensor array, an

overall fingerprint image can be produced [47].

Meanwhile, the touch surface of an optical fingerprint scanner is a glass surface, and

underneath the glass is a light source (such as a light-emitting diode or a layer of phosphor)

which illuminates the touch surface for digital capture. The light illuminates and reflects

off the finger, and the reflected light passes onto the charge coupled device (CCD), which

is an array of light-sensitive diodes called photosites. Each photosite generates an electrical

signal in response to photons. The conversion of photons into electrons by the individual

photosites allows the information to be stored and transformed into pixels, which

collectively make up digital images [47,81]. An advantage of capacitive scanners is that

they require a real fingerprint-type shape, which makes them harder to trick. They are also

more compact than optical sensors, since the semiconductor chip is smaller than a CCD

unit [47]. An advantage of optical sensors is lower maintenance; capacitive scanners are

more sensitive, as they require constant surface protection from electrostatic discharge

(which could permanently damage the sensor). Other advantages of optical sensors include

lower price, larger imaging surface areas, and higher resolution [81].

While biometric fingerprint analysis is an effective way to secure systems, it is not

infallible. There are different methods by which a user could trick a fingerprint scanner.

Optical scanners sometimes cannot tell the difference between a picture of a finger and the

finger itself. Meanwhile, capacitive scanners can be fooled with a mold of a finger. To

49

make systems more reliable, additional pulse and heat sensors could be used to verify that

the scanned finger is real, live finger. Another method to make systems more reliable is to

combine biometric analysis with another security measure, such as a password. However,

for the Medspencer, we want our system to be easy to use for the elderly and other people

with possible mental or psychological issues. These people may have trouble remembering

passwords. After considering our target consumers, we decided fingerprint scanning will

be our primary method of identification. To make the device more secure however, we

could add pulse or heat sensors [47].

4.6 Motors

On choosing a motor between brushless DC motors, servo motors or inverters? When it

comes to speed control, the common choice is a three-phase induction motor that controls

speed by use of a general-purpose inverter. For many, this may be the natural choice

because it allows you to freely set a temporary driving speed that you can change in the

future. If speed, torque, or improved controls are needed, upgrading to a servo motor is

certainly an option. However, considering the relatively low cost of the inverter driven

three-phase motor, by changing to a servo motor you will face the problem of increasing

expenditure. The servo motor stabilizes speed and solves the problem of synchronization

of multiple conveyors, but taking cost into consideration, compromises in your setup would

almost certainly be necessary.

The position of the brushless DC motor is, in simple terms, between the inverter and the

servo motor. It is a motor dedicated to speed control that controls speed as effectively as a

servo motor for a lower price, closer to that of an inverter.

Most AC induction motor inverters do not communicate with the motor, however recently

with additional encoders or analog signal devices added separately to the motor or moving

parts, this is becoming an option. The drawback is the additional costs and tuning to a

typically low cost solution. The majority of today's inverters still run open loop. Under the

open-loop system, when the load changes, the actual speed does not follow the command.

This is why the speed changes (slower when more load is added) and depending on the

load, why speed synchronization over multiple axes is difficult. Also, because torque is

lower in an AC motor at high or low speeds from rated speed, which is an inherent torque

characteristic of the three-phase motor, it is difficult to obtain both the speed and torque

you want at the same time. The inverter is effective when the operation continues at a fixed

speed, but it is not ideal for multi-speed operations. Heat is also a common component to

AC induction motors. To combat this a cooling fan is attached to the back of the motor.

Due to the AC induction motors design, heat rises when the motor runs slow and the

cooling fan is runs slower. Inversely, when the motor is running at high speed, heat from

the windings is also increasing.

Both the servo motor and the brushless DC motor adopt a PM motor (permanent magnet is

used for the rotor) and come standard with closed-loop speed control, where the motors

operation status is fed back to the driver. This ensures the motor speed remains constant at

the commanded level and enables the speed of two motor axes to be synchronized.

Additionally, flat torque is produced whether operating at high or low speed. Even if the

50

load changes, at whatever speed is commanded, stable driving speed is ensured. This means

these two motors are highly effective in situations in which the inverter struggles.

Needless to say, the servo motor is different from the brushless DC motor. Generally

speaking, the difference is that one is capable of high performance and all around speed

control, while the other is dedicated solely to speed control [23].

4.7 Speaker

One of the functions that we plan to include in the Medspencer is the function to remind

the patient when it is time to take their dose of medicine. In order to alert the patient, we

plan to utilize a buzzer or speaker. When it is time for a patient to take a medication dose,

the speaker will play a simple sound or beep to alert the patient.

A cheap and commonly used audio device is the piezo buzzer, and it can be used to make

simple beeps, tones, and alerts. The working principle of the piezo buzzer is based on the

inverse piezoelectric effect, which was discovered in 1880 by Jacques and Pierre Curie.

The piezoelectric effect states that when certain solid materials (such as crystals and certain

ceramics) experience applied mechanical stress, electric charge will accumulate. The

inverse is also true; an applied electric field can result in the generation of mechanical strain

[69].

A piezo buzzer makes use of a piezoelectric element such as a crystal or ceramic. When an

AC voltage with a frequency in the kHz range is applied across the piezoelectric element,

the element undergoes mechanical stress and deformation, resulting in some oscillation.

This oscillation will occur at the same frequency as the AC signal and will result in an

audible sound. The usable frequency range depends on the materials that are used in the

piezo buzzer. Piezo buzzers generate sharp sounds, so they are typically used as alarms or

alerts [49].

Another possible audio device we may use is a small passive speaker. This speaker employs

a passive radiator and an active loudspeaker (main driver). The loudspeaker is an

electroacoustic transducer, and converts an electrical audio signal into a corresponding

sound. The most common type of speaker is a dynamic speaker, and it uses a voice coil,

which is a coil of wire suspended in a circular gap between the poles of a permanent

magnet. When an alternating current is applied to the voice coil, the coil is forced to move

back and forth, according to Faraday’s law of induction. This causes a conically shaped

diaphragm that is attached to the coil to move back and forth, which pushes on the air to

create sound waves [62]. The passive radiator is also known as a drone cone. The passive

speaker uses the sound trapped in the enclosure to excite a resonance that allows the

speaker to output deeper pitches. The resonance frequency is determined by the passive

radiator’s mass. Passive radiators are commonly used in home stereo speakers, subwoofer

cabinets and car audio speaker systems [66].

51

4.8 Power

This section details the research that went into determining how to provide power to our

device. This includes considerations such as the power source, transforming and AC-to-

DC conversion, power regulation, filtering, and low power modes.

4.8.1 Power Supply

To power the Medspencer, we use standard city power. In the United States, the AC power

standard is 120 V and 60 Hz. To power a device using this AC power, first the power must

be scaled down to safer levels using a transformer. Then we must convert the AC power to

DC power. Finally, the voltage and current levels must be scaled down according to the

ratings of each component of the Medspencer.

To build an AC to DC converter, first it requires a transformer to decrease the AC voltage

amplitude. Then the secondary side of the transformer is connected to a full wave rectifier

circuit, which makes the entire voltage waveform positive. A capacitor is used to filter the

voltage waveform and convert the voltage to a constant DC output. The capacitor filtering

accomplishes this because as the AC input voltage decreases below its maximum value,

the capacitor discharges, which keeps the output voltage at a roughly constant value. A

ripple voltage can be observed in the output voltage waveform. The transformer-based AC

to DC circuit is shown below, and it includes the transformer, full wave rectifier, and

filtering capacitor [37, 59].

Figure 16. Filtered full wave rectifier

52

4.8.2 Power Regulation and Filtering

In order to power each individual component of the Medspencer, the voltages and currents

must be scaled down to match the ratings of the components. We used voltage regulators

to scale down the voltage, to avoid damaging any of our hardware components.

To limit the voltage input to components, we purchased voltage regulators, such as

switching regulators or low-dropout (LDO) voltage regulators. Voltage regulators can be

placed in parallel to the load, connected to the power supply and ground. This keeps the

load input voltage regulated to safe operating levels.

The power input to each component should be filtered of noise. To filter out noise,

capacitors can be placed in parallel to a load; these are called decoupling capacitors or

bypass capacitors. Decoupling capacitors suppress high-frequency noise in the power

supply, which may cause damage to sensitive hardware components. The current-voltage

relation for a capacitor is I(t) = C dV(t) / dt. This equation shows that for constant voltage

DC operation, there is zero current, and the capacitor acts like an open circuit. For high

frequency power supply, the capacitor acts like a short circuit. Thus, using a decoupling

capacitor allows high frequency noise to be shorted to ground, while the DC voltage supply

still goes to the load.

4.9 Communication Protocols

This section discusses the different communication protocols that may be used for the

Medspencer and compares them. The relevant communication protocols that we will

discuss in this section include SPI, UART, and I2C.

First, communication channels can be simplex, half duplex, or full duplex. Simplex

communication channels can only send information in one direction. Half duplex

communication channels may transmit data in both directions, however it can only

communicate in one direction at a time. Full duplex communication channels may transmit

data in both directions simultaneously [65]. Data can be transmitted either in parallel or

serial form. For parallel communication, bits are sent at the same time through separate

wire connections. For serial communication, the data bits are sent serially through a single

wire [18].

SPI stands for Serial Peripheral Interface, and it is synchronous and full duplex. Unlike

UART or I2C communication, SPI allows for data to be transmitted continuously, as data

is not send in packets. SPI communication also allows for a single master to control

multiple slave systems. The speed of data transfer and sampling is determined the clock

frequency, which is configured by the master system. The master can communicate with

multiple slaves by setting the slave select pins. Slaves can be wired in parallel (if there are

53

multiple slave select pins), or they can be daisy-chained (if only one slave select pin is

available). The connections for parallel slaves are shown below in Figure 17. Data is

transferred serially through MOSI (master output/slave input) and MISO (master

input/slave output) lines. In total, four connections are required: clock, slave select, MOSI,

and MISO. Disadvantages of SPI include that there is no acknowledgement that data was

received, or error checking (like with a parity bit) [18].

Figure 17. SPI communication using multiple slaves connected in parallel [18]

Courtesy of Circuit Basics

UART stands for Universal Asynchronous Receiver/Transmitter, and consists of a physical

circuit connection for a microcontroller or IC. UART communication is asynchronous and

full duplex, and can transmit and receive serial data. Two UARTs communicate directly

between each other using just two wires. The TXD pin of one UART is connected to the

RXD pin of the other UART, as shown below in Figure 18. First the transmitting UART

converts parallel data into serial form, then transmits it to the receiving UART, as shown

below in Figure 18. The transmitting UART adds start, parity, and stop bits to the

transmitted data packet, which define the beginning and end and allow for error checking.

The organization of the data packet is shown in Figure 19. The receiving UART reads the

incoming bits at the Baud rate frequency; both UARTs must operate at the same Baud rate

[20].

54

Figure 18. UART communication connections

Courtesy of Circuit Basics [20]

Figure 19. Transfer of data packets using UART communication

Courtesy of Circuit Basics [20]

I2C stands for Inter Integrated Circuits, and it is synchronous, half duplex, and allows for

multiple masters and multiple slaves. Similar to UART, I2C only requires two wires to

transmit data between devices. One line allows the master and slave to send and receive

serial communication. The other line carries the clock signal, which is controlled by the

master. The connections required for multiple masters and multiple slaves is shown in

Figure 20. Data is transferred in messages, and they include start and stop conditions as

well as acknowledge bits. The address frame specifies the slave to be communicated with;

each slave compares the address sent from the master to its own address, and will return an

acknowledge if it matches. The overall organization of a data message for I2C is shown in

Figure 21. An advantage of I2C communication is that it supports multiple masters and

slaves, and the acknowledge bit confirms whether frames are transferred correctly.

However, I2C communication has a slower data transfer rate than SPI communication, and

requires more complicated hardware implementation [19].

55

Figure 20. I2C communication connections using multiple masters and multiple slaves

Courtesy of Circuit Basics [19]

Figure 21. Data message organization for I2C communication

Courtesy of Circuit Basics [19]

56

5.0 Project Hardware and Software Design Details

This chapter discusses the design details of our Medspencer device. The first half discusses

the hardware design of the Medspencer and provides details on the component choices and

designed circuit schematics. When looking into specific hardware components, we

considered the project requirements, the available technologies, and the pros and cons of

all the available products for purchase. The second half of the chapter discusses the

software choices and designs.

5.1 Hardware Design

Section 5.1 details the physical hardware components, interfaces, and electrical circuit

connections that will be used to build the Medspencer. The first section presents an

overarching view of all the hardware components used for the Medspencer. The specific

hardware components that we have chosen and their characteristics and ratings are

presented, as well as detailed circuit schematics that will interface the power supply, MCU,

and peripherals.

5.1.1 Hardware Block Diagram

For the senior design project, the first task of our team was to write an initial “Divide and

Conquer” document. In this document, we included a hardware block diagram that

illustrates the general design plan ideas and necessary hardware components. We split up

the project based on all of our physical hardware components, in order to ensure that each

team member contributed equally.

For this project, the hardware components that are required include the microcontroller,

WVGA touchscreen display, Wi-Fi module, fingerprint scanner, speaker, and motors. The

components are displayed below in the hardware block diagram in Figure 22. The

components are color coded according to which team member the responsibility is assigned

to. In addition, the progress status is indicated within each block.

57

Figure 22. Hardware block diagram showing team member responsibilities

Laying out this initial block diagram allowed us to create a good starting point for

conducting research and designing the Medspencer. After further research and testing, the

design changed and matured in order to facilitate the effective and timely completion of

the project. The modified hardware block diagram is displayed below in Figure 23.

Figure 23. Hardware block diagram

58

The hardware block diagram in Figure 23 is more detailed and shows the final choices for

the main control units and the methods to control each of the peripherals. It also illustrates

the communication/signal protocol used for each peripheral. As shown in the diagram, the

Compute Module 3 Lite (CM3L) is the main control unit. The CM3L directly controls the

LCD display via Display Parallel Interface (DPI); the resistive touch panel via the AR1021

touch panel controller, which communicates using I2C; and the ATMEGA328P

microcontroller, which also communicates using I2C. Since the CM3L and the

ATMEGA328P use different voltage levels, a bidirectional logic level shifter is required

to avoid damaging the CM3L. The ATMEGA328P directly controls the fingerprint scanner

through UART communication, and sends pulse-width-modulated (PWM) signals to the

speaker. For the dispensing mechanism, the ATMEGA328P sends a PWM signal and an

address to a demultiplexer, which then selects the appropriate motor to receive the PWM

signal and rotate, thereby dispensing the correct medication.

5.1.2 Hardware Design Overview

A prototype for the Medspencer has been completed as a requirement of Senior Design 2.

Throughout the report the different components and parts regarding hardware and software

were mentioned and explained in order to give more detailed explanation of the project

functionality. The purpose of this section is to assemble all these components and get a

clear image of how the Medspencer works. From the electronic inner components to the

outer enclosure, this subsection will list the characteristics for which these parts were

selected and how they help to achieve the objective in a better way.

For this project, the main components required include the Pi CM3L, ATMEGA328P

microcontroller, LCD display, resistive touch panel, fingerprint scanner, speaker, and

dispensing mechanism. Additional components include an SD card reader, a touch panel

controller IC, an audio amplifier for the speaker, a demultiplexer to control the motors that

make up the dispensing mechanism. To communicate between the microcontrollers and

our various peripherals, the interfaces we utilized include Inter-Integrated Circuit (I2C),

Universal Asynchronous Receiver/Transmitter (UART), Display Parallel Interface (DPI),

Secure Digital Input Output (SDIO), and Pulse Width Modulation (PWM).

Our final design uses two PCBs. The main PCB has the Pi CM3L, ATMEGA328P, and all

the peripherals and their corresponding circuitry. The second PCB has all of the voltage

regulation circuits and accepts 20V DC power. The PCBs are connected using a ribbon

cable. Figure 24 shows the final schematic for the first PCB, and Figure 25 shows the final

PCB layout.

59

Figure 24. Main PCB schematic

Figure 25. Main PCB layout

60

Each of the hardware components and their required external circuitry are discussed in

detail within this chapter. The voltage regulation PCB is shown and discussed later on in

this chapter.

5.1.3 Microcontroller Design

For the purposes of our project, we have chosen to utilize the ATMEGA328P

microcontroller in conjunction with the Raspberry Pi Compute Module 3 Lite (CM3L). We

also considered using the PIC32MZ DA microcontroller by Microchip. Table 4 compares

the qualities, requirements, and capabilities of the three different processing units we

considered.

Table 4. Processor Comparison

 PIC32MZ DA Pi CM3L ATMEGA328P

COST $20.63 $25.00 $2.15

PROGRAM

MEMORY

2M bytes SD card (8GB) 32K bytes

DATA MEMORY 640K bytes 1G byte 2K bytes

I/O PIN 176 200 23

CLOCK RATE 200MHz 1.2GHz 20MHz

POWER 1.8V and 3.3V 1.8V and 3.3V 5V

Originally, we chose the Microchip PIC32MZ DA as the central processor of our project.

The main draw to this microcontroller was its graphics capabilities: it had a hardware

graphics processing unit and LCD controller, which supported the screen size we had

chosen for this project. It was also accompanied by a software framework for developing

graphical applications. And like all microcontrollers it had numerous hardware peripherals

that we would also need. However, after initial testing, the PIC32MZ DA was found to be

less capable than advertised. The development framework and documentation for the

graphics hardware were poorly developed and often contained unfinished or broken code,

which made developing graphics applications difficult. It was also new, having been

released last year, which made finding resources for it difficult. With time running out, we

made the decision to move our graphics functionality to a different processor: the

Raspberry Pi Compute Module 3 Lite (CM3L).

The CM3L is a system-on-module, which has a 1.2GHz Broadcom processor and 1

gigabyte of memory. It supports the Linux operating system, has a number of video

controllers, and is more than powerful enough to run our user interface software. However,

the CM3L only replaced the graphics portion of our controller needs.

With the graphics being managed by a different processor, the speed, cost, and memory of

the PIC32MZ DA was unnecessary for simply controlling peripheral devices. Keeping in

mind cost and development time, we chose to replace the controller functionality with an

ATMEGA328P. This is a microcontroller we had experience working with, and its low

61

cost meant that we could easily have multiple prototypes and development environments

active at once.

The CM3L, as shown in Figure 26 below, is effectively a stripped-down version of the

Raspberry Pi 3. This device is a PCB that contains nothing but a Broadcom processor, a 1

GB bank of DDR2 memory, and a few regulation circuits. It has 200 I/O pins, 54 of which

are general purpose, and a number of peripherals. The ones used in this project are an I2C

communication bus, for interfacing with the ATMega controller; a Display Parallel

Interface (DPI), used to control the LCD screen; and two SDIO interfaces, to which the SD

card non-volatile memory and the ESP-12F Wifi module are connected. It runs Linux,

which facilitates our user interface software, as well as any future expansions in

functionality. The operating voltages are 1.8 and 3.3 V [89].

Figure 26. Raspberry Pi Compute Module 3 Lite (CM3L) [89]

Courtesy of Raspberry Pi

The schematic for the CM3L is shown in Figure 27. The necessary connections include the

I2C bus to communicate with the ATMEGA328P and the AR1021 touch screen controller,

SDIO interfaces for the SD card and ESP-12F Wi-fi module, and Display Parellel Interface

(DPI) for the LCD display, as well as connections to power and ground, decoupling

capacitors, and pull-down resistors as recommended by the datasheet [89].

62

Figure 27. Raspberry Pi CM3L schematic

The ATMEGA328P, shown in Figure 28, is a popular microcontroller for embedded

designs. With 32 kB of flash program memory and 2 kB SRAM data memory, it is suited

to applications like this, where it connects and controls low-power components. It has an

I2C communication bus, which we use to connect it to the Compute Module, and enough

general purpose I/O to control all our peripherals. Simple, cheap, and effective.

Figure 28. ATMEGA328P-PU microcontroller

63

The necessary connections for the ATMEGA328P microcontroller include PWM signal

connections for the motors (PWM1) and speaker (PWM2), UART connections for the

fingerprint module, address bits for the demultiplexer that controls the motors, and

SDA/SCL connections for the I2C bus. The schematic in Figure 29 below illustrates the

necessary connections for the ATMEGA328P.

Figure 29. ATMEGA328P-PU schematic

As already mentioned, the CM3L and ATMEGA328P communicate over I2C. Because the

CM3L and ATMEGA328 have different operating voltages, special care must be taken

where they communicate. To avoid damaging the Compute Module with the ATMega's 5V

signals, a bidirectional logic level shifting circuit was needed [92]; this circuit is shown in

Figure 30.

64

Figure 30. Bidirectional logic level shifting circuit

This circuit requires a MOSFET transistor with a very low threshold voltage, as it must be

able to activate when 3.3V is applied to the gate. The BSS138 MOSFET was chosen for

this application. The I2C communication bus standards require a pullup resistor on the bus

so the signal is never left floating, and those resistors are incorporated into both sides of

the design of the level shifter. This circuit was used on both wires of the I2C bus.

5.1.4 Wi-Fi Module

The Wi-Fi module chosen for this project is the ESP-12F module by Espressif, which

utilizes the ESP8266 IC. The ESP-12F module is shown in Figure 31 below. The ESP8266

integrates an enhanced version of the Tensilica L106 32-bit RISC processor, which uses

low power consumption and reaches a maximum clock speed of 160 MHz. The Real-Time

Operating System (RTOS) and Wi-Fi stack allow 80% of the processing power to be

available for user application programming and development [93].

Figure 31. ESP-12F Wi-fi module [93]

Courtesy of Espressif

65

We utilized the SDIO interface to communicate between the ESP-12F and the Raspberry

Pi CM3L [94]. Figure 32 below shows the schematic for the ESP-12F, with all of the

necessary connections to power and interface the module.

Figure 32. ESP-12F schematic

The operating voltage for this module is 2.5-3.6V. To power the Wi-Fi module, 3.3V is

supplied by the LP5912-3.3 LDO regulator.

5.1.5 Display Design

The display we utilized is the Innolux AT070TN90 LCD Display. The LCD display we

chose to use is a WVGA display with 800x480 resolution and 24-bit color. Each color, red,

blue, and green, is controlled with 8 bits. The display is controlled directly by the Pi using

the Display Parallel Interface (DPI). The alternative option to control the LCD display is

by using an HDMI cable. This option requires more hardware circuitry and power

overhead, however it’s more flexible. For our project applications, which would be one

self-contained manufactured product, we don’t need the flexibility to plug in/out the screen,

so we decided it’s more efficient to use the parallel data out.

The screen requires a number of signal and power lines to operate correctly. The GLCD

controller on the microprocessor provides direct pinouts for the screen enable (DE), V-

Sync (VS), H-Sync (HS), clock (DCLK), and color data (R<7:0>, G<7:0>, B<7:0>).

Additionally, there are some data lines that will have to be hardwired. VCOM should receive

3.8V (typ). MODE should be pulled high to enable horizontal and vertical synchronization.

The L/R and U/D should be high and low, respectively, to indicate up to down and left to

right. RESET should be normally be pulled high, but if pulled low will cause the display

to enter its reset state. The datasheet suggests attaching to an RC reset circuit [14].

66

Table 5. Pin Assignment [14]

Pinout Symbol Power/Input Description

5,36,38,48 GND P Power ground

6,46 VCOM I Common voltage

7 DVDD P Power for digital circuit

8 MODE I DE/Sync mode select

9 DE I Data input enable

10 VS I Vertical sync input

11 HS I Horizontal sync input

12-19 B<7:0> I Blue data

20-27 G<7:0> I Green data

28-35 R<7:0> I Red data

37 DCLK I Sample clock

39 L/R I Left/right selection

40 U/D I Up/down selection

41 VGH P Gate ON voltage

42 VGL P Gate OFF voltage

43 AVDD P Power for Analog circuit

44 RESET I Global reset pin

47 DITHB I Dithering function

To interface with the LCD display, we utilized the Display Parallel Interface (DPI) on the

Raspberry Pi CM3L. The schematic for the LCD display connections is shown below.

(Note that the pin numbers are reversed from the numbers in the datasheet’s pin assignment

table [14]). The connector we used is the FH12A-50S-0.5SH 50-pin FPC/FFC connector

manufactured by Hirose, as recommended by the datasheet [14].

67

Figure 33. LCD display schematic

To power the LCD display, six different supply voltages are required [14]. These are

discussed in detail later on in this chapter.

The touch panel utilizes the AR1021 resistive touch screen controller, which communicates

to the CM3L using I2C. The AR1021 is connected to the X1, X2, Y1, and Y2 electrodes

on the resistive touch panel. This controller processes the touch data and delivers calibrated

touch coordinates to the host MCU. The operating voltage is 2.5-5V [90]. 3.3V is supplied

to the AR1021. The schematic for the AR1021 is shown below.

Figure 34. AR1021 schematic

68

5.1.6 Fingerprint Scanner

The fingerprint scanner that we utilized for this project is the R307 Fingerprint

Identification Module by Hangzhou GROW [70]. This fingerprint scanner utilizes an

optical sensor to scan the fingerprint and create a digital image. A picture of the R307

fingerprint module is displayed in Figure 34. The specifications and ratings for the R307

are summarized in Table 7 [70].

Figure 35. Picture of R307 fingerprint module

Table 6. R307 Fingerprint Module Specifications and Ratings [70]

Power

input

Working

current

Finger

detection

power

Baud rate Image

acquiring

time

Average

search

time

Template

size

4.2-6 V

or 3.3 V

50 mA,

<75-80 mA

3.3-5 V

(5 μA)

9600*N bps,

N=1~12

(default N=6)

<0.5 sec <1 sec

(1:1000)

512 bytes

The fingerprint module comes with a scanner, detection section, and four pins for

connections, which include power supply, ground, RXD, and TXD. The module requires

200 msec for initialization, during which it cannot accept commands. Fingerprint

processing involves two parts, fingerprint enrollment and fingerprint matching. When

enrolling a fingerprint, the user must enter the fingerprint two times. The system will

process the two finger images, then generate and store a template of the finger. When

matching, the user enters the fingerprint and the system will generate a template of the

finger and compare it with the templates in the fingerprint library. The matching mode can

69

be either 1:1 or 1:N. For 1:1 matching, the fingerprint module will compare the live finger

with a specific template designated in the module. Meanwhile for 1:N matching, or

searching, the system will search the entire fingerprint library for the matching finger. The

system will return either a success or failure, depending on whether a match is found [70].

Figure 36. Exterior interface of the R307 fingerprint module [70]

Courtesy of Hangzhou GROW

The utilized hardware interface is UART. The R307 uses serial interfaces and TTL logic

levels. Via the serial interface, the module may communicate with an MCU of 3.3 V or 5

V power. The hardware interface of the R307 fingerprint module is shown in Figure 35.

The module may be powered using either 3.3 V or 5 V (4.2-6 V); to use 3.3 V operation,

short the connection between the two contacts located next to the label “3.3 V” [42, 70].

The module has a working supply current of 50 mA (typical), or <75-80 mA. The module

may communicate with an MCU of 3.3 or 5 V via serial interface. To connect the module

to the MCU, the R307’s pin 3 (TXD) connects to the MCU’s receiving pin, and the R307’s

pin 4 (RXD) connects to the MCU’s transmitting pin [70]. We interfaced the R307 with

the ATMEGA328P, which operates on 5 V. A 5 V power supply was connected to the

R307.

5.1.7 Dispensing Mechanism

To facilitate the dispensing mechanism of the Medspencer, individual servo motors are

used to dispense medicine from each medicine vial. For our prototype, we utilized 5 servo

motors, which are accessed by the ATMEGA328P microcontroller via the CD74HC238M

demultiplexer shown in the next figure. Using a demultiplexer, the amount of servo motors

and medicine vials could be expanded in the future. The demultiplexer uses 3.3V power

supply and requires 3 address bits to select which motor to access [91]. A PWM signal is

70

sent to the demultiplexer and relayed to the correct motor, in order to dispense the

appropriate medicine.

Figure 37. CD74HC238 3-to-8 Demultiplexer [91]

Courtesy of Texas Instruments

We chose to use SG90 servo motors shown in the figure below. These little devices are

small enough to fit within the Medspencer enclosure. For the purpose of this project, we

created a filter that attaches to a motor and allows a pill to be dispensed when the motor is

rotated. By default this servo motor can rotate 180 degrees maximum [95]. The

ATMEGA328P microcontroller controls the servo motors using pulse width modulation

(PWM). The operating voltage of the SG90 servo motor is between 4.8V to 6V, and the

typical current draw is 220 mA. The LMR23615 step-down regulator was used to supply a

regulated 5V to the servo motors.

Figure 38. SG90 servo motor

The schematic for the dispensing mechanism is shown in the figure below. As the

schematic shows, 5V is supplied to each motor and 3.3V is supplied to the demultiplexer.

The ATMEGA328P sends 3 address bits and a PWM signal to the demultiplexer, which

relays the PWM signal to the motor at the correct address.

71

Figure 39. Dispensing mechanism schematic

5.1.8 Speaker

In order to notify the patient when it is time to take their dose of medicine, we utilized a

small speaker. When it is time for a scheduled dose, the speaker plays a simple sound to

alert the patient. The speaker we chose is the CMS-40504N-L152, a 2W, 4Ω speaker by

CUI, Inc., shown below. Its resonant frequency is 500 Hz [96]. A PWM signal is required

to sound the speaker, which is generated by the ATMEGA328P.

Figure 40. 2W, 4Ω speaker

72

The LM386 audio amplifier was utilized the amplify the PWM signal. This amplifier has

a programmable gain that can be set from 20-200 [97]. The schematic for the LM386 and

speaker is shown in the figure below.

Figure 41. Audio amplifier schematic

Leaving pins 1 and 8 unconnected results in the default gain of 20. The audio amplifier is

supplied 12V, regulated by the LM5009 switching regulator.

5.1.9 Power Supply

To power the Medspencer, we used standard U.S. domestic power. We purchased an AC

to DC adapter and a DC power jack to mount on the PCB. The AC adapter we utilized

supplies 20V and 3.25A. The DC plugs are inner positive and outer negative. The DC

power jack has three pins, as shown below in the figure below. Pin 1 is connected to

positive power, and pin 2 is connected to ground. Pin 3 can be connected to a battery. When

the plug is inserted, the connection between pins 3 and 2 breaks. We chose not to use this

backup power feature, so we left pin 3 unconnected grounded so it is permanently

connected to pin 2.

73

Figure 42. 3-pin DC power barrel connector [32]

Courtesy of Digi-Key

The AC adapter converts the AC power to a 20 V, 3.25 A DC output. This corresponds to

a power of 64 W, according to the relation P = I x V. However, each component used for

this project has different voltage and current ratings. We will use voltage regulators to scale

down the voltage, to avoid damaging any of our hardware components.

5.1.10 Power Regulation and Filtering

The main DC power supply for the device is 20V and 3.25A, after undergoing

transformation and AC-DC conversion. The power ratings of all the hardware components

used for this project are summarized in Table 7 below. To provide the correct voltages and

currents to each component, we must use voltage regulators to supply each power

requirement.

Table 7. Power Requirements

COMPONENT VSUPP (V) ISUPP (mA)

ATMEGA328P-PU 5 4

Raspberry Pi CM3L 3.3

1.8

250

250

Bidirectional Logic Level Converter 5

3.3

22

104031-0811 SD Card Reader 3.3 500

AT070TN90 LCD Display 3.3

10.4

10.0

16.0

-7.0

3.8

10

50

135

1

1

10

AR1021 Resistive Touch Screen

Controller

3.3 17

CD74HC238M Demultiplexer 3.3 50

SG90 Servo motors 5 220

LM386 Audio Amplifier 12 4

R307 Fingerprint Scanner 5 50

ESP-12F Wi-fi Module 3.3 80

74

We carefully considered the required input and output power for each component, and any

specific datasheet recommendations (such as whether we should use an LDO regulator,

such as for 3.3 and 1.8V power supplies for the processor). Then we chose appropriate

voltage regulators and designed the circuits around them. We used TI’s Webench Power

Designer as an aid for the power regulation design [98]. Webench helped us consider

efficiency, board size, and availability, helping us to choose regulators that fit our specs.

Webench also helped us decide how to cascade the regulator circuits. We made sure to

choose regulators with at least 80% efficiency, considering the input and output power for

each regulator. The voltage regulation devices we chose are summarized in Table 8 below.

Table 8. Voltage Regulation Devices

DEVICE VIN, MAX (V) VOUT (V) IOUT, MAX (A)

LP5912-3.3 LDO 6.5 3.3 0.5

LMR23615 regulator 36 5 1.5

LMR23610 regulator 36 3.8, 10 1

TPS62745 regulator 10 1.8 0.3

LM43601 regulator 36 7 1

ADM8660 inverter 7 -7 0.1

LM5165 regulator 65 16, 10.4 0.15

LM5009 regulator 95 12 0.15

Since we require 10 power regulation modules, we decided to place these on a second PCB.

The schematic in the figure below shows all the power regulators we utilized for our final

design. Some of the regulators are fixed value, some are adjustable, some programmable.

The required circuitry includes resistors to set the desired output voltage, decoupling

capacitors, and additional components for switching power supplies.

Figure 44 shows the final PCB layout for the voltage regulation PCB. It’s attached to our

main PCB with a ribbon cable, and receives power through a jack that can be plugged in

the wall. Schematic capture and PCB layout was done using Eagle [35].

75

Figure 43. Voltage regulation schematic

Figure 44. Voltage regulation PCB layout

76

The Pi CM3L requires 1.8V, which is supplied by the TPS62745 step-down converter. This

regulator’s output is programmable through its output voltage selection pins. It supplies up

to 300 mA [99]. The schematic is shown in Figure 45.

Figure 45. 1.8V regulation schematic

The LCD display requires -7V for the gate-off voltage. The LM43601 step-down voltage

converter regulates +7V. The adjustable regulator’s circuit was designed using the

following equation:

RFBB = VFB RFBT / (VOUT - VFB)

The LM43601 supplies up to 1 A [100]. The ADM8660 inverts the voltage from +7V to -

7V, and outputs up to 100 mA [101]. The schematic for the -7V supply is shown in Figure

46.

Figure 46. -7V regulation schematic

The LMR23610 simple switcher is used to supply 10V and 3.8V to the LCD display. To

adjust the output, the following design equation was used:

77

RFBT = (VOUT - Vref) RFBB / Vref

It can supply up to 1 A [102]. The schematics are shown in Figures 47 and 48.

Figure 47. 10V regulation schematic

Figure 48. 3.8V regulation schematic

The 5V power supply for the ATMEGA328P microcontroller and peripherals is supplied

by the LMR23615 synchronous step-down converter. The necessary design equation is:

RFBT = (VOUT-Vref) RFBB / Vref

Up to 1.5A can be supplied [103]. The schematic is shown in Figure 49.

78

Figure 49. 5V regulation schematic

The LM5165 synchronous buck converter is used to supply 16V and 10.4V to the LCD

display. The necessary design equation is:

RFB2 = VFBRFB1 / (VOUT - VFB)

It can supply up to 150 mA [104]. The schematics are shown in Figures 50 and 51.

Figure 50. 16V regulation schematic

79

Figure 51. 10.4V regulation schematic

The speaker amplifier circuit requires 12V, which is supplied by the LM5009 step-down

switching regulator. The design equation used is:

VOUT=VFB(R1+R2) / R2

It can supply up to 300 mA [105]. The schematic is shown in Figure 52.

Figure 52. 12V regulation schematic

5.2 Software Design

This section covers the software side of the Medspencer’s functionality, which is broken

down into two parts: the CM3L software, which contains the user interface, and the

ATMega software, which controls the peripherals with commands from the CM3L. Data

structures, LCD controls, timing systems, databases, human interaction, inter-chip

80

communication, peripheral control, and other aspects of the software are examined and

explained in detail. This chapter should result in a broad overview of every functionality

of the Medspencer’s software.

5.2.1 ATMega328P Software

The software of the ATMega328p consists of a main loop, two interrupt functions, and a

few buffers. After initialization, the software goes into the main loop, which reads

commands from the command buffer and executes them. If the command buffer is empty,

then the loop waits for the next command. When an I2C write event occurs, the bytes from

the transmission are saved to the command buffer. The first byte is the command, and if

there is a second byte, it is saved to the buffer as a parameter. When an I2C Read event

occurs, the next byte in the Return Buffer is transmitted to the master. If the Return buffer

is empty, a NO_DATA flag is transferred instead, telling the master that the data it's

looking for isn't ready yet. Once a command is read in the main loop, one of the four

functions is executed.

Figure 53. ATMega328P Software Diagram

To scan a fingerprint, the ATMega sends various instructions to the Fingerprint module

over a serial connection: capture an image, convert it to a model, and searching it against

previously saved models. The fingerprint module then sends back a packet of data

containing the model index number. Registering a fingerprint is similar: capture two

images of the same finger, create a model out of those, and store the model at the specified

index. To recap: the ATMega is receiving bytes from the I2C which tell it what to do, then

it sends commands to the fingerprint module to tell it what to do, and when data is returned

from the fingerprint module, it is send back to the I2C master where the GUI program is

running. The other two commands are simpler, as they don't involve another layer of

communication. The dispense command is accompanied by an index number. The servo-

motors are connected to the ATMega through a demultiplexer, so this number controls the

81

demux so the ATMega can be connected to the correct motor. The motors themselves are

controlled by a pulse width signal, which is generated by the ATMega. This signal tells the

motor to rotate fully counterclockwise, then back to where it began, to dispense a pill. The

final command the ATMega performs is to generate another pulse width signal to sound

the alarm. In the current iteration of the project, this signal simply consists of a few notes

played in sequence.

5.2.2 User Interface

The user interface is the primary way for users to interact with the system. Built on the

foundation of the LCD and touchscreen, the UI gives the user information, while also

providing a way to receive information in return. The user interface system is made up of

“frames”, segments of code that contain graphical and functional information. Each frame

contains a “schema”, code to construct the graphics of that frame, as well as “events”, code

that is triggered by specific occurrences on the frame.

Frames are triggered within the event codes of other frame. This calls the frame system to

open the new frame on top of the current one, running the schema code immediately and

loading the event code for running during the next frame cycle. Frames can have

parameters for input, like a string for a title, and output, like a reference to save a result to.

A frame’s schema need not overwrite the entire screen. For instance, a keyboard page may

only cover the bottom of the screen, leaving the top free to display. The approach to user

interface design using frame makes the software very modular, as any frame needed for a

specific purpose can be used wherever that purpose is needed.

Most frames has some return state in their event code, where their intent will be fulfilled

and the system will go back to the previous frame. For example, when viewing a patient’s

schedule, the administrator may wish to add a new medicine. Once that intent has been

recognized (presumably through an “Add Medicine” button on the patient’s frame), the

add_medicine frame will be called. This frame will pass the patient’s ID and a reference to

save the medicine’s ID into. Then, the new frame will create a new medicine, add it to the

list of medicines (thereby generating a new ID), add it to the patient’s list (using the passed-

in patient ID), and return to the previous frame once finished. The patient’s schedule should

now have a new medicine in it.

Since frames can call other frames, this creates a hierarchy of nested frame calls, allowing

for a user to always have the ability to navigate back to the root frame. This root frame is

the initial part of the system, as long no other frame leads to it. The root frame will be the

default “idle” state, waiting for a timer event or screen interaction. The timer event system

will be handled separately from the frame system.

Adding more than one medication to each patient will be an added feature for the future

Medspencer 2.0.

82

5.2.3 SQLite

The Medspencer’s chosen data storage solution is a SQL database engine called SQLite.

SQLite is an open-source, serverless database system that is linked into the program at

compile-time. Its resources are accessed through function calls instead of requests sent to

alternate threads. All data, as well as the tables referencing it, are saved in one cross-

platform file, which has an upper size limit of 140 terabytes, yet the library itself can be

compiled down to nearly 500 kB. For the Medspencer, the library will be linked into the

program code, while the database file itself will have to live onboard an SD card.

As the SQLite website stresses multiple times, most applications are served with the full

amalgamation file that can be compiled on any Windows or Unix system without changes.

However, highly tuned and specialized applications may wish to customize their

compilation, perhaps to change the multi-threading system, to reconfigure the memory

allocator, or to modify the virtual file system. Many of these changes can be done by giving

specific commands at compile-time.

Most applications of SQLite work fine in its default configuration, and even more should

be served by compile-time config options. However, if a serious rework is necessary, such

as porting the library to a new operating system, new code must be written. For proper

functionality, the application must provide a working multi-threading system, a working

memory allocation system, and a working virtual file system implementation. All of these

things can be provided in a single auxiliary C code file then linked with the full

amalgamation file to provide the application with a working SQLite build.

In conclusion, it is entirely within the realm of possibility to use an implementation of

SQLite in an embedded project. However, it may take extensive experimentation and

rewriting to get it to function.

After some new development and changes to previous device changes, it was concluded

that the Raspberry Pi compute module would be the best selected microcontroller which

runs on linux base software. Linux is compatible to Python IDE which can run in parallel

with SQLite to add, update, delete and select patient’s records. With this code the python

structure was created to build the frame system described in section 5.2.12.

5.2.4 Wi-Fi Communication

In the Wireless frequency inference network processor subsystem includes a dedicated

ARM MCU to completely offload the host MCU along with an 802.11 b/g/n radio,

baseband, and MAC with a powerful crypto engine for a fast, secure WLAN and Internet

connections with 256-bit encryption. The CC3220x devices support station, AP, and Wi-

Fi Direct modes. The device also supports WPA2 personal and enterprise security and WPS

2.0. The Wi-Fi network processor includes an embedded IPv6, IPv4 TCP/IP stack. [25]

The wireless frequency inference network processor subsystem has an enhances the

security capabilities available for development of IoT devices, while completely offloading

83

these activities from the MCU to the networking subsystem. There is also AES (WPA2-

PSK), TKIP (WPA-PSK) and WEP for personal standards.

In order to operate these feature and requirement the software that are requirement is the

SimpleLink™ Wi-Fi® Radio Testing Tool is a Windows-based software tool for RF

evaluation and testing of SimpleLink Wi-Fi CC3220 designs during development and

certification. The tool enables low-level radio testing capabilities by manually setting the

radio into transmit or receive modes. Using the tool requires familiarity and knowledge of

radio circuit theory and radio test methods. Created for the Internet of Things (IoT), the

SimpleLink Wi-Fi CC3220 family of devices includes on-chip Wi-Fi, Internet, and robust

security protocols with no prior Wi-Fi experience needed for faster development.

The Image Creator is a web application which is used to create a programming image; it

can also write the programming image into the SimpleLink CC3220 devices. The

programming image is a file which contains the SimpleLink device configurations and files

required for the operation of the device. For the SimpleLink CC3220 wireless

microcontroller, the Image Creator can also include the host application file. A new

SimpleLink device should first be programmed by a programming image. The image,

created by the Image Creator, can be programmed onto the device as part of the production

procedure or when in development stage.

And the CC3220 SDK contains drivers, many sample applications for Wi-Fi features and

Internet, as well as documentation needed to use the CC3220 Internet-on-a-chip solution.

This SDK can be used with TI’s MSP432P401R LaunchPad™ development kit, or with

the SimpleLink Studio, a PC tool that allows MCU development with CC3220. All sample

applications in the SDK are supported on TI’s MSP432P401R ultra-low-power MCUs with

Code Composer Studio™ IDE and TIRTOS. In addition, many of the applications support

IAR [25].

After further research and design changes, we decided to instead utilize the ESP-12F Wi-

fi module, which uses the ESP8266EX IoT chip by Espressif. Due to time constraints, this

section of the project could not be completed. However, on the python code there is a user

interface section so that the developers have access for future development.

5.2.5 Fingerprint Scanner

As mentioned before, the fingerprint module can facilitate 1:1 matching or 1:N matching.

For 1:N matching, or searching, the module will search the whole fingerprint library for a

matching fingerprint. The module will return either a success or failure. When enrolling a

new fingerprint, the user must enter their fingerprint two times. The system will then

process the two time fingerprint images, generate and store a template for the finger [70].

The fingerprint module has built-in nonvolatile flash memory, which holds the fingerprint

library and the notepad. The user’s notepad consists of 512 bytes (16 pages x 32 bytes) of

memory set aside in the flash, and it can be read and written to by the user. The fingerprint

template library is stored within the flash, and the library’s capacity is 1000 fingerprint

templates. Fingerprint templates are stored in sequential order. Users can access fingerprint

84

templates in the library by template number. An image buffer and two 512 byte character

file buffers are located in the RAM. The buffers store images, character files, and template

files. The image format is 256 x 288 pixels. The user can read and write to any of the

buffers. Contents of the buffers will be lost when the module is powered off [70, 79].

For the R307 fingerprint module, we will utilize UART communication protocols. The

serial communication is semi-duplex and asynchronous, with an adjustable Baud rate

(default 57600 bps). The transferring frame format is 10 bits, and consists of a low-level

starting bit, 8 bits of data (with the LSB transmitted first), and an ending bit [70].

At startup, the system checks whether a handshaking password is required. If the default

setting is active, then the module does not require password verification and will enter into

normal operation module. The password length is four bytes and the default value is 0FFH.

If the password was modified using SetPwd, then the handshaking password must be

verified before the module will enter into normal operation mode [70].

The system parameters can be modified or accessed with the instructions SetSysPara.

When parameters are modified, the new configuration is recorded into flash, so they system

will run with the new configuration at the next startup. To modify a parameter, specify the

Parameter number and then specify the modification. The Baud rate is controlled via

Parameter number 4, and can be an integer from N = 1–12; the corresponding Baud rate is

9600 x N bps. Parameter number 5 indicates the security level, and controls the matching

threshold value for fingerprint searching and matching. Parameter number 6 indicates the

data package length, and controls the max length of the transferring data package when

communicating with the MCU. Its value can be 0, 1, 2, or 3, corresponding to 32, 64, 128,

or 256 bytes. The system status register can be read using the instruction ReadSysPara to

view the current operation status of the module [70].

When communicating, the transferring and receiving of command/data/result are all

wrapped in a data package format, as shown in the figure below. Commands are sent from

the MCU to the fingerprint module, and the module acknowledges commands. Within the

data package, the Header is 2 bytes and it signifies the start of the package; it has a fixed

value of 0xEF01. Each module has an identifying address. The data package indicates the

address with Addr; the module only responds to data packages whose address item value

matches its identifying address. Addr’s size is 4 bytes, and the value can be modified by

the command SetAddr (default Addr value is 0xFFFFFFFF). The high byte is transferred

first. The Package identifier’s size is one byte, and it can signify the command packet

(value = 01H), data packet (value = 02H), acknowledge packet (value = 07H), or end of

data packet (value = 08H). The Package length’s size is 2 bytes, and it refers to the length

of the Package content plus Checksum; the maximum length is 256 bytes. The high byte is

transferred first. The Package content can hold commands, data (such as a fingerprint

character value or a fingerprint template), command parameters, or acknowledge result.

The Checksum is 2 bytes, and equals the arithmetic sum of the Package identifier, Package

length, and Package content. The high byte is transferred first. Command packages can be

sent from the MCU to the fingerprint module, and the module will send back an

acknowledge packet with a confirmation code and the returned parameter [70, 79].

85

Header

(2 bytes)

Addr

(4 bytes)

Package

Identifier

(1 byte)

Package

length

(2 bytes)

Package

content

(max 254 bytes)

Checksum

(2 bytes)

Figure 54. Data package format of R307 fingerprint module

Upon receipt of commands, the module will report the execution status and results to the

MCU through an acknowledge packet. The acknowledge packet includes a one byte

confirmation code, and may also include a returned parameter. There could also be a

following data packet [70].

The R30X series provides 23 instructions to realize fingerprint authentication functions.

However, the most important functions that we will utilize are: collecting a fingerprint

image; generating a character file from that image; generating a template for the character

file; store the template in the library; and searching the library [70, 79]. The package

formats for commands and acknowledgements for the basic instructions we will use are

summarized in Tables 9 and 10. The instructions are described in detail below.

In this paragraph, we discuss the relevant fingerprint processing instructions. The data

package formats for these instructions are summarized in Table 9. To collect the finger

image, we use the command GenImg. It involves detecting the finger, storing the detected

finger image in the Image buffer, and returning a confirmation code. The confirmation code

reports whether the finger collection was a success or failure, whether there was an error

when receiving package, or whether the module can’t detect the finger. If there is no finger,

then the module will indicate that it can’t detect a finger. To generate a character file from

an image, we will use the command Img2Tz. This command generates a character file from

the original finger image in the Image buffer and stores the file in character file buffer 1 or

2. The required input parameter is the buffer ID (1 B), which indicates the character file

buffer; the value can be 1h (buffer 1) or 2h (buffer 2). The returned confirmation code

indicates whether the character file generation is complete, there was an error receiving the

package, or whether it failed to generate a character file, due to the over-disorderly

fingerprint image; small size of fingerprint image; or lack of valid primary image.

RegModel is the instruction to generate a template. It combines the character file

information from character file buffers 1 and 2 to generate a template, which is then stored

back into the character file buffers. The returned confirmation code indicates whether the

operation was a success, there was an error receiving the package, or it failed to combine

the character files, because the character files do not belong to one finger. The Store

instruction is to store a template. This instruction stores the template in either character file

buffer 1 or 2 into the designated location in the fingerprint library. The input parameters

include the buffer ID (1 B) and page ID (2 B). Page ID indicates the fingerprint library

location, and the high byte is transferred first. The confirmation code indicates whether

storage was a success, there was an error receiving the package, the page ID location is

beyond the library’s size, or there was an error writing to memory. The instruction

LoadChar reads a template from the fingerprint library. This involves loading a template

from the specified location in the flash library into a character file buffer. The input

parameters are the buffer ID and page ID. The confirmation code indicates whether the

86

load was a success, there was an error when receiving package, error reading the template,

or page ID is beyond the library’s size. The instruction DeletChar is to delete a template.

The input parameters are page ID and N, which indicates the number of templates to be

deleted. The confirmation code indicates whether the deletion was a success, there was an

error receiving the package, or it failed to delete the templates. The instruction Empty is

used to empty the entire fingerprint library. The confirmation code indicates whether it was

a success, there was an error receiving the package, or it failed to clear the library. The

instruction Match carries out precise 1:1 matching of two fingerprint templates that are

held in the character file buffers. The return parameters include a confirmation code and a

matching score (2 B). The confirmation code indicates whether the templates match, there

was an error receiving the package, or the templates don’t match. The instruction Search

searches the fingerprint library. It searches the whole library for a template that matches

the template in character file buffer 1 or 2. The input parameters are buffer ID, Startpg (2

B, the start address to start searching), and Pagenum (2 B, searching numbers). The return

parameters are the confirmation code, matching score, and page ID (indicating the

matching template’s location). The confirmation code indicates whether a matching finger

was found, there was an error receiving the package, or no matching finger was found (the

page ID and matching score are both 0). Other available instructions include UpImage to

upload an image from the image buffer to the MCU; DownImage to download an image

from the MCU to the image buffer; UpChar to upload a template from a character file

buffer to the MCU; DownChar to download a template from the MCU to a character file

buffer; WriteNotepad for the MCU to write data to the notepad in module’s flash; and

ReadNotepad to read from the notepad in module’s flash [70].

Table 9. R307 Package Formats for Fingerprint Processing Instructions

Command

Name

Header

(2 B)

Module

address

(4 B)

Package

identifier

(1 B)

Package

length

(2 B)

Instruction/

Confirmation code

(1 B)

Param

Check

sum

(2 B)

GenImg 0xEF01 XXXX 01H (cmd) 03H 01H - 05H

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (success);

03H (failure);

01H (error);

02H (can’t detect)

- Sum

Img2Tz 0xEF01 XXXX 01H (cmd) 04H 02H Buffer ID:

1h (buff1);

2h (buff2)

Sum

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (complete);

01H (error);

06H/07H/15H (fail);

- Sum

RegModel 0xEF01 XXXX 01H (cmd) 03H 05H - 09H

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (success);

01H (error);

0aH (fail)

- Sum

87

Store 0xEF01 XXXX 01H (cmd) 06H 06H Buffer ID

Page ID

Sum

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (success);

01H (error);

0bH (bad pageID);

18H (error)

- Sum

LoadChar 0xEF01 XXXX 01H (cmd) 06H 07H Buffer ID

Page ID

Sum

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (success);

01H (error);

0cH (error);

0bH (bad pageID)

- Sum

DeletChar 0xEF01 XXXX 01H (cmd) 07H 0cH Page ID

N

Sum

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (success);

01H (error);

10H (fail)

- Sum

Empty 0xEF01 XXXX 01H (cmd) 03H 0dH - 0011H

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (success);

01H (error);

11H (fail)

- Sum

Match 0xEF01 XXXX 01H (cmd) 03H 03H - 07H

 0xEF01 XXXX 07H (ackn) 05H XXH:

00H (match);

01H (error);

08H (don’t match)

Matching

score

Sum

Search 0xEF01 XXXX 01H (cmd) 08H 04H Buffer ID

Startpg

Pagenum

Sum

 0xEF01 XXXX 07H (ackn) 07H XXH:

00H (found);

01H (error);

09H (not found)

PageID

Matching

score

Sum

There are several system-related instructions we may use, and the corresponding data

package formats are summarized in Table 10. To set and verify the module’s handshaking

password, the commands are VfyPwd and SetPwd. For our project, we probably won’t use

this function. SetAddr is used to set the module address. The input parameter is NewAddr

(4 B), which specifies the new module address. The confirmation code indicates whether

the operation is completed or there was an error. SetSysPara allows one to set the module’s

parameters. The input parameter is ParaNum (1 B, indicates the parameter number), and

contents (1 B, indicates new parameter value). The confirmation code indicates whether

the operation is completed, there was an error, or register number was invalid. Control

allows the user to specify whether the UART port I “on” or “off”. The input parameter is

Ctrl (1 B).

88

Table 10. R307 Package Formats for System-related Instructions

Command

Name

Header

(2 B)

Module

address (4

B)

Package

identifier

(1 B)

Package

length

(2 B)

Instruction/

Confirmation code

(1 B)

Param

Check

sum

(2 B)

SetAddr 0xEF01 XXXX

(Old)

01H (cmd) 07H 15H NewAddr Sum

 0xEF01 XXXX 07H (ackn) 07H XXH:

00H (complete);

01H (error)

- Sum

SetSys

Para

0xEF01 XXXX 01H (cmd) 05H 0eH ParaNum:

4/5/6

Contents

Sum

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (complete);

01H (error);

1aH (wrong reg)

- Sum

Control 0xEF01 XXXX 01H (cmd) 04H 17H Ctrl:

0 (off);

1 (on)

Sum

 0xEF01 XXXX 07H (ackn) 03H XXH:

00H (complete);

01H (error);

1dH (fail)

- Sum

5.2.6 Patient Identification & Adding/Removing a Patient

To maintain and management patient’s information or identity to the medication and

medication schedule, they data is stored in a database which will be easy access for the

MCU to process and transfer. In the requirements to use SQLite database is a 32 bit

processor or higher and an SD micro Card with about 4 GB or storage capacity. The

database will contain a unique identification alphanumeric sequence or in medical terms a

Chart number. This unique identification code number protects the patient’s information.

The database has a table for storing the medication name (band name not the generic name),

dosing, where would the medication be taken, how many times or at what time, and how

long will they be taking it. This database will also record and store the data so weekly will

send a report to the doctor by email.

The method to add a patient is to first turn on the device, the administrator or caretaker will

scan there fingerprint, given him or her access to add a new patient. In this section, the

caretaker will first enter in the chart number, the first and last name of the patient, the Date

of Birth of the patient, and cell phone of the patient.

The method to remove a patient is first the caretaker must be login to his or her account by

using their fingerprint. They will select the patient that they need to delete and push the

delete button.

89

5.2.7 Prescription Parameters and Schedules

From the conversation with Dr. Jacobs, the EMR (Electronic Medical Records) has a very

unique schedule system for the doctors, as shown below in Figure 55. This figure shows

that any user can select what is described on a prescription bottle into the Medspencer.

Figure 55. Schedule Selection Screen

The Figure 56 is a prescription label sample on a prescription bottle, and using the simple

guide in Figure 55 a caretaker or a reliable family member can select the exact directions

that the patient has been prescribed.

Figure 56. Sample prescription label

90

5.2.8 As-needed Medication Requests

In order to follow the as needed request or as needed for pain, specific requirement and

specification must be followed in the FDA and doctor’s recommended plans. However,

doctor’s do have a tendency to go off label to benefit the patient’s health. This is where the

benefit outweighs the risk even though the FDA states not to do so because of

complications and serious results.

5.2.9 Fixed-schedule Medicine Notifications and Requests

Once the medication has been assigned to the container, the user or caretaker will follow

the Prescription parameters and Schedule section to enter how many times, starting at what

time and how many pills to take a each moment. In the research, the Food and Drug

Administration standards varies between medications and dosage of the medications. They

state to take your medication at the same time every day, Tie taking your medications with

a daily routine like brushing your teeth or getting ready for bed. Before choosing mealtime

for your routine, check if your medication should be taken on a full or empty stomach, keep

a “medicine calendar” with your pill bottles and note each time you take a dose, Use a pill

container. Some types have sections for multiple doses at different times, such as morning,

lunch, evening, and night, when using a pill container, refill it at the same time each week.

For example, every Sunday morning after breakfast, purchase timer caps for your pill

bottles and set them to go off when your next dose is due. Some pill boxes also have timer

functions, when travelling, be certain to bring enough of your medication, plus a few days

extra, in case your return is delayed, if you’re flying, keep your medication in your carry-

on bag to avoid lost luggage. Temperatures inside the cargo hold could damage your

medication [85].

In the project the device would reduce the reminding but sounding alarms and other sounds

on when to take the medication, the display will show if the patient has taken the

medication or not. The alarm will sound off every 5 mins for 90 mins until the patient push

the button and the medication can be dispensed. If the patient does not press the button

after 90 mins the medication will not be dispense and will be recorded and send an email

to the doctor’s office.

The fixed schedule will be an increments of morning at 0800, lunch at 1200, evening at

1500, and night at 1900. However, these time will change depending on the sleep pattern

of the patient and their work schedule. If the patient request a medication the display will

advise them what is the medication that they are requesting. The database will contain the

information when the medication can be dispensed after a limited interval. The minimum

interval is an hour to 24 hours due to the medication complexity and chemical structure.

5.2.10 Rescheduling Doses

In the rescheduling dosing section, the caretaker will remove the container where the

medication is store to show the medical profession that the patient is taking or not taking

the medication and the weekly reports that are send to the office for the visit. If the medical

91

profession, decide to refill the medication they will need to take the container to the

pharmacist to get it replace and refill with the new medication or the old medication. Once

that process is done the caretaker will re-enter the direction of the same or new medication

in the slot where the container will be stored in. This will notify the pharmacist and

physician of the updated change and the slot is a clean and new slot.

5.2.11 Recording events in Schedule & Summary Reports

The Wi-fi module will submit a report every week showing the Chart number of the patient,

date of birth, medication name, taken at what time and date, and the amount taken at that

time and date. This report will automatic be send to the email of the office so when the

patient goes to the office visit they will not need to take more things them just themself and

any other problems.

In a side note, this report can be upload to the application of the caretaker to receive alerts

and problems that they need to monitor and inform the doctor or the office staff.

Due to the Wi-fi module not being completed this section of the project was also put on

hold for future development and configuration. However, the python code also has a

section on creating pdf when Medspencer 2.0 comes around.

5.2.12 Python Structure

The software of the Medspencer is broken into two parts: the software running on the

Raspberry Pi CM3L, and the software on the ATMega328P microcontroller. The CM3L

contains the code for the components that the user interacts with. It controls the display,

reacts to the touch screen. The ATMega328P manages the peripherals, meaning it controls

the servo motors, speaker, and fingerprint scanner. This means that the ATMega328P does

not react to user input on its own; it receives commands from the CM3L. This

communication between the two processors define the project functionality.

The most critical part of the CM3L software is the frame system. Each frame consists of

both a display object and event code. The display portion of a frame contains an

arrangement of text, buttons, and other interactable components for the touchscreen. The

event code is what reacts to user actions, and triggers changes in the system state, such as

sending a command to the ATMega328P or moving to a new frame.

The first frame that is loaded is the Time frame, which simply shows the time. This is the

beginning of the frame tree, where a user is presented with the opportunity to scan their

fingerprint. If the user is registered as a patient, they enter the Patient frame, and if they are

are recognized as an admin (or ‘caretaker’), they are taken to the administrator frame. If

their print is not recognized, they are refused entry. This process is shown in the next figure.

92

Figure 57. Fingerprint Frame

 After the user scans their fingerprint, the system identifies them and moves them to the

corresponding frame. In the Patient frame, the user will have access to their demographics,

which contains the user’s name, date of birth, address with zip code, phone number and

email. From here, the patient can select a medication to dispense.

If the medication is listed as “As Needed”, then it is available at any time. However, some

medications have a regulated dose, so they are only available according to a schedule. On

this page, patients can either choose a medicine to dispense, or return to the Time frame.

The structure of the Patient frame is shown below in the figure below.

93

Figure 58. Patient Frame

If a user’s fingerprint is registered as an administrator, they are taken to the Admin frame

upon scanning. In the Admin frame, as seen in the figure below, options exist for viewing

the admin’s and the patients’ demographics, much like the patient; the important difference

is that administrators are allowed to edit this information. Admins can view, update, add,

and delete patients, as well as the patients' demographics and medication prescriptions.

Administrators also manage prescribing doctors’ profiles. These profiles contain

demographic information, much like patient and admin profiles.

Figure 59. Administrator Frame

94

All user data is contained in an SQL relational database. This database maps patient,

administrator, and doctor data to the frame when it is opened, and it also contains the

fingerprint IDs of the patients and administrator. For every patient, the database will

contain a unique alphanumeric sequence; a chart number, in medical terms. This will be

used to identify and protect the patient's information. For every prescription, the database

will record the medication name (brand name, not generic), dosage, timing restrictions, and

number of doses.

95

6.0 Prototype Construction

This chapter details the first steps that have been taken to construct a prototype. Not much

has been purchased yet, and even less has been rigorously tested, but this is the roadmap

for how the Medspencer will eventually be assembled.

6.1 Parts Acquisition and Bill of Materials

The table below summarizes all of the prices for all of our hardware and electrical

components used in the final product; a more detailed budget table is in chapter 8. While

looking and comparing for the different necessary components, we noticed that there are a

wide variety of option and most of the time is the same product with different price or from

a different country. Discussing with the group, it is obvious that one goal is to save money

while getting the parts, but we have to consider if the provider and cost are worth the wait

because most of the cheaper components can take up to 15 business days, so when

considering time constraints it may be worth it to pay extra for shipping or for a different

vendor.

Table 11. Final Budget

COMPONENT COST DISTRIBUTOR

Display AT070TN90 $20.00 Alibaba

Microcontroller ATMEGA328P-PU $2.15 Mouser

Raspberry Pi CM3 Lite $25 ALLIED/Element14

Servo Motors SG90 x5 $8.85 Amazon

Touch panel $14.99 Alibaba

Fingerprint Reader R307 $9.90 AliExpress (HZGROW)

ESP-12F Wi-fi module $3.05 Banggood

Electrical components $50.11 Mouser

Voltage regulators $30.42 Mouser

PCBs $40.00 JLCPCB

Speaker $2.06 Mouser

Connectors/jacks $27.44 Mouser/ALLIED

RPI CM3L Dev Kit (R&D) $200 Element14

96

The total sum for the final budget was $440.92. However, $221.95 of that was pure research

and development costs for the CM3L development kit and the Arduino UNO. After

subtracting this sum, the manufacturing cost came out to be $218.97.

6.2 Printed Circuit Board

Our final design utilized two PCBs, as discussed previously in chapter 5. Our final PCBs

utilized small surface mount components to minimize board area. We utilized Eagle to

design out schematics and PCB layouts [35]. Eagle has many footprint libraries already

pre-installed but for purpose of our project, we needed to download more. We downloaded

footprint libraries from SnapEDA [107] and SamacSys [108].

The PCB vendor we chose was JLCPCB. They have a lead time of 6-7 days and charge $2-

5 for 10 PCBs and $18 for shipping [106]. For our various electrical components, we

mainly utilized Mouser, which has a short lead time depending on how much you pay for

shipping.

6.3 Prototype Constraints

Regarding the prototype, we have focused on separating the whole project in different

modules. As recommended by the tutors, divide and conquer, the key is to be sure that

every module works perfect independently. To understand how every module works in

essential, that way the complete device can easily be assembled. While running some tests,

we had to get different microprocessors that runs on different software.

Our first prototype was extremely limited. We are trying to accomplish that the dispenser

will be able to read any fingerprint and to dispense. For the fingerprint reader, we were

connecting it to an Arduino microprocessor and run it through its respective software. As

the Arduino has enough connection slots to connect more components, we attached a servo

motor to another port. We use the Arduino microprocessor because is easy to use and to

program, but this will not be used in the main project. The purpose of using a

microprocessor to run the first steps of the Medapencer is to use this connections as a

template for the future main board.

It is software concern to program the frequency of the servo motors. We have to assign

different ports to the different servo motors. For purpose of this project, the main board

will not have more than 6 servo motor connections. As the MedSpencer will have the

chance to interact with the patient through a touchscreen display, the main board will have

a data bus connection.

Before we build the box for the dispenser, we have to make sure that all modules and

components work fine. As it is mentioned in section 5.1.2, the measures for the box will

be 20”x10”x24”. Those measures are tentative because we may need more room for the

holders for the medication capsules and for the main PCB.

We have thought many ways how to dispense the medicine and how it will be the most

effective. After reviewing many other prototypes and also many patents that concern to our

97

project, the most simple way is to place one servo motor at the bottom of each medication

container that works as a filter.

One difference between this project and the existing products is the ability to display time,

patient’s name and type of medication dispensed. The Medspencer will count with a 7”

touchscreen display that enables not just see the information mentioned before, it will also

help the administrator to input new data or to edit the existing one. For the prototype, we

need only to display the patient’s information so as the time. An alert display will also be

programmed to show when the schedule medication matches the time.

6.4 Issues and Challenges

This section outlines various problems that the team faced during the prototyping phase of

Senior Design 2. Device problems fall into one of two categories: hardware or software.

6.4.1 Hardware Issues

Some of the general challenges we faced while assembling the hardware for this project

includes accidentally shorting connections. This could happen if wires touch when

prototyping on a breadboard, and if accidental bridges occur when soldering the PCB. We

took care to examine the hardware circuitry before providing power, to ensure this kind of

mistake did not occur.

Another challenge we faced was how to meet the numerous power requirements for our

LCD display, and how to narrow down which products would be best to use for our

applications. We used Webench as an aid for to help us choose the most efficient parts in

terms of power and board size, and to help us design the required circuitry. Webench was

extremely helpful in narrowing down which parts to use.

Another issue we faced with our first PCB revision: we realized the LCD backlight doesn’t

have any internal resistance, so we blew out the regulator for that 10V power supply. To

compensate for that, we checked the required voltage and current in the datasheet, and used

Ohm’s law to calculate the required resistance to limit that current [53].

A big challenge we faced with hardware was the need to update PCB schematics and

designs whenever we made a design change. The biggest design change we made during

Senior Design 2 was changing our processing unit choice from the PIC32MZ DA

microcontroller, to using the Pi CM3L in conjunction with the ATMEGA328P

microcontroller. This required extensive modifications and additions to the PCB

schematics and designs, and ordering new PCBs also takes time as JLCPCB has a lead time

of 6-7 days (which is actually a very short time when compared to other PCB vendors).

Because of the extensive changes and lead time, changing the hardware designs really

pushed out time constraints.

98

6.4.2 Software Issues

The original plan for this project was to use the PIC32MZ DA as our central processing

unit. The PIC32MZ DA utilizes the MPLAB Harmony Framework to program it. MPLAB

Harmony Framework had poor documentation, contained unfinished code and libraries,

and little online community or resources. Our solution was to switch over to the Pi. Then

we no longer needed PIC32 processing power, so used ATMEGA as the embedded

controller for peripherals.

We also had software issues when using I2C communication. The Pi CM3L was

programmed using Python. Initially, Python 3 was used to program the GUI (Graphical

User Interface). However, I2C communication is only supported in Python 2. This meant

we had to revert back to using Python 2 and rework the GUI.

99

7.0 Prototype Testing

This chapter discusses how we tested our various components during our prototyping

phase. This involved testing physical hardware components and circuits to ensure that we

use appropriate operating levels, and testing the designed software implementation. It is

important to test each component to ensure that the device will work properly and

accurately and none of the components will get damaged. Each component will be tested

individually to make sure that nothing is overlooked.

7.1 Hardware Testing

In this section, we detail the procedures that we used to test our various hardware

components for this Medspencer project. We tested to ensure that our design circuits and

interconnections are valid implementations. This involves making sure that the operating

current and voltage levels are appropriate. The operating current and voltage levels are

specified in the data sheets for each individual hardware component. The circuits we have

designed in order to connect our components to power supply and to each other are

specified in Chapter 5. We used the resources available at the electronics labs at the

University of Central Florida in order to assemble and test our components. Resources we

used for testing include DC voltage supply, digital multimeters, oscilloscopes,

breadboards, wires and through-hole components, and so on.

7.1.1 Breadboard and Development Board

In order to have a final PCB either designed or already manufactured, we first need to draw

a schematic specifying all its components. A rough circuitry drawn on paper can be the

first step of designing the project. The purpose of this step is to move from a schematic,

pass through breadboard implementation and to get a final PCB layout. This steps will help

us to simulate and get experimental values that may not be got during theoretical

calculations. To design on breadboard is an important procedure because we may encounter

glitches or unexpected situations like sudden drops of voltage or a component required

more voltage to power.

For the initial breadboard testing, we utilized development boards and breakout boards for

our processing units and for the Wi-fi module, and we purchased through-hole components

for the other electrical components we needed to test. To design the external circuitry, we

referenced the datasheets and online resources. Testing using the breadboards helped us

verify the functionality of the designed circuitry.

7.1.2 PCB Testing

This section goes into how we tested the PCB to ensure that each component should receive

the correct input voltage and current. This is important so as to ensure that the components

work to their product specifications, and to avoid damaging any of the components.

100

In order to test the PCB, we included test points in the PCB design. The test points allowed

us to verify whether each mounted piece is receiving the correct voltage and current levels.

To design a PCB test point, we placed an open connector hole with a positive and negative

terminal on the PCB. The test point sites dedicated pads where we put pin headers. Test

points provide the tester the ability to easily connect to locations where tests may be

needed. These are advantageous, as opposed to probing the solder locations. Solder

locations are not ideal for testing purposes due to their variable shape and contact surface.

For each test point, we verified whether the correct DC voltage and current levels are

passing through them. The desired levels depend on which component is supposed to be

supplied power. First, we checked that the circuit is receiving the correct voltage level. To

do so, we measured the voltage using a digital multimeter set to voltage range. In the case

that PCB testing shows voltage levels that are not desired, then troubleshooting may be

required. There may be insecure connections or soldering mistakes, or there could be some

components that have issues. This is assuming that the circuit layout was already tested

and verified on a breadboard, so that should not be the issue when it comes to PCB testing.

7.1.3 Testing Procedure

Running the tests for the Medspencer involved from testing of each of the components

individually with their own microcontroller (Arduino, MSP430) to assemble them together

in one customized PCB. As many of this components only required lines of codes and a

proper connection to the microcontroller, this was just the easy part of it. Many tutorials

are available on Youtube about how the connections should be made in order to run or

improve the performance of the component.

For a complete view of the design of the main PCB, the group had to identify the inputs of

the dispenser and how they will trigger the different procedures of it. One of the

Medspencer’s inputs is the fingerprint and it can trigger the patients procedure or the

administrator procedure. The first test to be done was that the fingerprint reader not just

only identifies but to store in the memory and assign a different roll. As the fingerprint is

a R307 model, it has a capacity for 1000 fingerprints, so there is plenty of memory for

patients, caretakers and administrators. The software section will describe with details the

codes used to store and assign roles for each one of the people involved.

For the servo motors, they were tested first individually on an Arduino microprocessor.

The code was not that complicated because with the proper library and understanding, it

can run with no problems. The servo motor SG90 came with three different size arms, but

for our purposes, we have to design our own filter.

Once the servos were tested, they were assigned to one individual port. It is a code concern

that each port will be assigned to each patient. While coding and assigning the patients to

each medication container the programmer should also consider the dosage of each specific

medication to each specific patient. That task can be accomplished by programming the

cycle. The prototype only runs from reading the fingerprint of any patient and that triggers

the servo motors. Later on the project was improved to recognize each fingerprint and only

run the assigned servo motors.

101

The main purpose for the touchscreen display is for the administrator to input the patients

data. The group considered to leave just a LED display and add a keyboard but that would

add more power consumption to the project. There are many options on the market and all

of them can be tested on an Arduino microcontroller, but this project will have its own

software.

For the software testing, the computer engineers need to run many times the software they

are creating with the components connected. Let us remember that the inputs for our

projects are time (got from the Wi-Fi module) and fingerprint, so the software should be

reading this components constantly. When the true event happens, time marches and

fingerprint matches, the program should redirect the voltage to the respective servo.

Once the software is tested and certified that runs properly, it should be coded to work with

a touchscreen display. The touchscreen display will only interact with the caretaker and the

administrator. The extensive coding for the touchscreen usage will be for the administrator

options because they are the ones who must enter the patients and medication info, set

alarms and set medication slots into the memory.

7.1.4 Microcontroller Testing

The testing of the processing units was done in three phases: unit testing, integration

testing, and system testing. Unit testing is done to ensure that each module of the project

works independently. Modules will have their own host of test cases, engineered to

rigorously test any expected input and output. Integration testing facilitates the

combination of modules into a functioning whole, ensuring that proper functionality occurs

at each step along the amalgamation process. Finally, system testing proves the complete

functionality of the system: does this system do what it is supposed to? This testing should

result in a complete product that is ready for the end user. There are two categories of

modules that need to be tested as they relate to the microcontroller: software functionality

and peripheral functionality.

Software functionality will be unit tested using software, obviously. This involves taking

the written software module, providing it with test inputs, and checking whether the results

meet expectations. If a particular code module does not give the expected results, then it is

obvious where the problem is. The large system operations, the main program loop, touch

system, page system, time event system, will have to be tested rigorously, as they are very

important. However, smaller code modules will also have to be tested. Each page will have

to be run to see if its contents resolve in the expected way. A number of different medicine

schedule configurations will have to be run through the time event system to see how they

react in that environment, to make sure a broad range of time events work properly. The

touch system is rather simple on the software side, but it still needs to be rigorously tested.

Peripheral functionality unit testing, as it relates to the microcontroller, is focused around

the interfaces between the microcontroller and the peripheral itself. Unit testing assumes

the peripheral works properly, and tests to see how the microcontroller works with those

inputs. Ensuring the software code interacts properly with the processing unit’s

102

communication interfaces is important so the microcontroller can interact with the

peripherals.

Once the unit testing finished, then the time for integration testing arrives. This is the

process where fully tested modules are combined into larger working wholes, and this

aggregation process must be tested at every step in the hierarchy.

Software module combinations are not much more difficult to test than their module

counterparts. However, these tests usually require more testing data, and more analysis, to

determine what the expected result would be. At this stage, the actual functionality of the

program is starting to take shape, and this means the results may be related to more than

just code considerations. At this stage, a page would be tested for how it relates to other

pages: what data is being given to a new page from its parent, what data is the parent

expecting to receive, how does the active page react to the touch system and the time event

system, etc. These sorts of considerations affect every part of the software system, as many

of these modules will have an effect on each other.

Table 12. Example integration test cases related to page interaction

Test Case

Summary

Prerequisites Test

Procedure

Test Data Expected

Result

Test

Environment

Page

creation

and data

passing

An active

page must

call a new

page and

pass it data.

Make the

current

page call a

new page,

and pass it

an integer

to display.

A test

integer.

The new

page will

display the

passed

integer.

Raspberry Pi

CM3L

Page

registering

touch

event

An active

page must

have an event

that triggers

from touch

data.

Touch data

must be set.

Run the

active page

and see if it

reacts to the

touch data.

A set of

coordinate

s to

represent a

touchscree

n event.

The touch

coordinates

will trigger a

specific page

event.

Raspberry Pi

CM3L

Page

registering

time event

An active

page must

have an event

that triggers

from a time

event.

A time event

must be set.

Run the

active page

and see if it

reacts to the

time event.

A time

event for

the active

page to

react to.

The time

event will

trigger a

specific page

event.

Raspberry Pi

CM3L

103

Integration testing the peripherals is where the real functionality starts to come together.

Once all the different connecting systems are assembled, then the peripherals can be slotted

into their appropriate spot in the system. The microcontroller constructs a command, which

is sent to the UART, which is transmitted to the fingerprint scanner. All of those

connections are being tested and solidified in this stage.

System testing is where the two categories of modules come together: does the software

run the hardware? Here, the testing team will be asking questions like “Can a patient check

their medicine level?” “What happens when a fingerprint isn’t recognized by the system?”

“Does the onscreen keyboard properly relay text to the box it was intended to?” These sorts

of tests not only check to see if the various modules work together, but if the product is in

a usable state.

Table 13. Example system test cases

Test Case

Summary

Prerequisites Test

Procedure

Test Data Expected

Result

Test

Environment

Patient

check

medicine

level

The database

must contain

a test patient

and test

medicine.

Using the

touchscreen,

the test patient

must navigate

to their

medicine page

and view its

status.

The level

of the

test

medicine

.

The

medicine's

status page

will display

the correct

level of

medicine

remaining.

Raspberry Pi

CM3L

Fingerprint

not

recognized

The

fingerprint

library must

be enabled,

but not

contain the

test

fingerprint.

The

unrecognized

finger must be

placed on the

fingerprint

scanner.

An

unrecogn

ized

fingerpri

nt.

The system

should

refuse the

unrecognize

d fingerprint

and tell the

user it is un-

recognized.

ATMEGA

328P with

fingerprint

reader

Keyboard

return text

properly

An active

page must

contain a call

to the

keyboard,

and then

must display

the return

text.

The active

page must

initiate the

call to the

keyboard, and

the test user

must enter in

a string of

characters and

return to the

active page.

A test

string to

enter on

the

keyboard

.

The test

string will

appear on

the page that

called the

keyboard.

Raspberry Pi

CM3L

104

The microcontroller testing will be occurring throughout much of the development process

of the Medspencer as modules are completed, then as whole systems are assembled.

Testing during development helps to keep things moving, and it also brings alert to

problems early so they can be fixed early in the development cycle.

7.1.5 Touchscreen Testing

The touchscreen begins with the user. The user’s finger, pen, or other pointing utensil

touches the screen, triggering an electrical connection between two conductive layers. The

electrodes on each side of each layer are wired to inputs and outputs on the microcontroller.

Each of these interfaces needs to be tested. Some basic tests will be done to the screen with

a multimeter while it is hooked up to a power supply, while more detailed tests are done

when the touchscreen is wired to the microcontroller.

The first test cases will be focused on the microcontroller itself, with a voltage difference

between the electrodes on one layer and a multimeter measuring the voltage on the other

layer. Some of these tests might include “How much does the voltage change between set

points?” “Does the voltage drop linearly across the entire screen, or are parts of the screen

more resistant?” “How much force is required on a touch to trigger an electrical

connection?” “How close to the source voltages does a touch at the edge of the screen

measure?” All of these tests are designed to improve the team’s knowledge about the

screen, and give a benchmark for later tests that involve the microcontroller itself.

With the assurance that the electrical properties of the screen are correct, the testing phase

can move on to integrating the touchscreen with the microcontroller. Simple test cases

would involve ensuring electrical continuity between screen and microcontroller, and

testing the microcontroller’s ADC detection. Once everything is properly hooked up, then

more complex tests can be performed. These new tests ask questions like “How quickly

can the software read a finger touch?” “How accurate are the generated coordinates in

relation to the touch location?” These tests depend not only on the electrical properties of

the touchscreen, but also the functionality of the microcontroller’s hardware, and the

efficiency of the software code.

105

Table 14. Test cases relating to electrical properties of the touchscreen

Test Case

Summary

Prerequisite

s

Test Procedure Test Data Test Environment

Voltage

change

between

points

A voltage

difference

between the

two

electrodes of

the

touchscreen'

s top layer.

Touch the screen

at the set

locations.

Measure the

voltage of the

bottom layer's

electrodes.

Set voltages

on the

electrodes.

Consistent

points on the

screen to

touch. Same

amount of

force with

each touch.

Touchscreen with

power supply

attached to top

layer and

multimeter

attached to bottom

layer.

Voltage rate

of change

A voltage

difference

between the

two

electrodes of

the

touchscreen'

s top layer.

Touch the screen

at a number of

equally spaced

points. Measure

the voltage of the

bottom layer's

electrodes.

Calculate the rate

of change of

voltage.

Set voltages

on the

electrodes.

Consistent

equally spaced

points on the

screen to

touch. Same

amount of

force with

each touch.

Touchscreen with

power supply

attached to top

layer and

multimeter

attached to bottom

layer.

Measuring

the margins

of the

touchscreen

A voltage

difference

between the

two

electrodes of

the

touchscreen'

s top layer.

While measuring

the voltage of the

bottom layer's

electrodes, see

how close to the

margins of the

screen a touch

will still make an

electrical

connection. Note

the voltage at

which it stops.

Compare margin

voltage with the

rail voltages.

Set voltages

on the

electrodes.

Same amount

of force with

each touch.

Touchscreen with

power supply

attached to top

layer and

multimeter

attached to bottom

layer.

As the hardware and software systems are designed, it is important to be constantly testing

new setups. This ensures that proper data has been gathered for further development, and

finds problems in finished components before other modules depend on them.

106

Table 15. Test cases relating to the software performance of the touchscreen

Test Case

Summary

Prerequisites Test Procedure Test Data Test

Environment

Electrical

continuity

between

touchscreen and

microcontroller

A touchscreen

and a

microcontroller

wired together.

Using a

multimeter,

test every

connection for

electrical

continuity and

excess

resistance.

A reasonable

resistance

threshold to be

under.

Touchscreen

wired to

Raspberry Pi

CM3L, tested

with a

multimeter.

Touch response

speed test

A touchscreen

and a

microcontroller

wired together,

with code to

measure

voltages with

the ADC.

Measure the

time it takes

for a touch on

the screen to

result in a

change in

status.

Consistent

points on the

screen to

touch.

Touchscreen

wired to

Raspberry Pi

CM3L.

Touch

coordinates

accuracy test

A touchscreen

and a

microcontroller

wired together,

with code to

draw a

crosshair at the

touch location.

Touch the

screen and see

where the

crosshair

appears.

A wide spread

of touch

locations to

test.

Touchscreen

wired to

Raspberry Pi

CM3L.

7.1.6 Display Testing

The display system involves two very different components: the microcontroller’s LCD

controller and the screen itself, along with the wires that connect them. However, it would

be difficult to test the LCD controller without an LCD to control, so testing will focus on

the display’s hardware first, then move on to the controller’s software.

The LCD chosen for this project has a number of different requirements: specific power

inputs, proper wiring designs, signal timing characteristics, etc. When designing the

circuits for the screen, consideration must be taken for these factors. Power obviously is

important, as too little would result in a non-functioning screen and too much would result

in a broken screen, so a good test case for the screen could be “The analog power circuit

will provide a voltage between 10.2 and 10.6 volts, and be able to source currents up to 50

mA.” Similar cases could be made for the other power inputs. It is important to remember

that some wires on this screen are designed to source power and some are data

communication lines. For instance, the screen has both a Power Ground pin and a Common

Voltage pin. In some applications, it can be very important to keep your signal and power

107

circuits separated to eliminate noise, so one good test could be “The power lines do not

create noise in the data lines.” These sorts of tests ensure that the circuits designed to power

and run this LCD will fulfill the requirements set forth in the datasheet and will result in

proper performance.

Once the LCD is wired up to a power source and to the microcontroller correctly, then it is

time to work with the LCD controller in code. One of the most important things that allows

the controller to properly communicate with the LCD is timing information. The LCD’s

datasheet has multiple pages containing very specific timing instructions, like how fast to

run the clock, how many pulses to have in between lines, when to trigger a new line or new

column, etc. So, a great test case would be “Does the LCD controller’s timing information

result in a perfectly displayed image?”

Table 16. Test cases relating to the LCD

Test Case

Summary

Prerequisites Test Procedure Test Data Test

Environment

Proper power

provided

A circuit has

been

constructed to

provide power

to the LCD.

Connect a

multimeter to the

power outputs of

the circuit.

Measure the

voltage output

and the max

current it

provides.

The output

voltage should

be between

10.2 and 10.6

V, and should

be able to

source current

up to 50 mA.

Constructed

power circuit

measured via

multimeter.

Noise

insulation

between

signal and

power lines

An LCD that is

hooked up to

power and data

lines.

While the screen

is running, use an

oscilloscope to

ensure there is no

cross-

contamination of

noise in the data

lines.

The data lines

should be

either 0 V or

3.6 V.

LCD wired to

power source

and

microcontroller

.

LCD

Controller

timing

An LCD that is

connected to

an LCD

controller.

The LCD

controller should

send the screen

image data. See

if the screen

displays the

image correctly.

A test image. LCD wired to

power source

and

microcontroller

.

108

7.1.7 Wi-Fi Module Testing

When starting to the configure a wireless frequency interference microcontroller, read from

the user guide on the essential commands and parameters for the ESP8266EX Wi-fi chip

[93]. Helpful resources to test the ESP-12F module with the ESP8266EX chip connected

to the Raspberry Pi were found on Github and Osh Lab [94]. Examples on how to code the

module with a Linux driver and on how to connect the hardware for the module were

provided on these websites.

7.1.8 Fingerprint Module Testing

The fingerprint module must be tested to ensure that it undergoes proper operation

according to the product specifications. The R307 fingerprint module may be powered

using either 3.3 V or 4.2-6 V. The working current should be around 50 mA. The module

may communicate with an MCU of 3.3 V or 5 V via UART.

To do the initial testing to verify the circuit design and user operation for the fingerprint

module, the circuit was built on a breadboard and verified. The design circuit was tested to

ensure that the output voltage and output current to the load match the desired values. The

output voltage levels of the MCU’s general input/output pins were tested to check that they

output the appropriate voltage level of 5 V. Once the circuit design is verified on the

breadboard, the circuit plan for the fingerprint module can be finalized for the PCB. Once

the PCB is received, the voltage and current levels will again be tested to ensure that

everything is connected properly and that the components all work properly.

Testing also involved sending basic commands from the MCU to the fingerprint module.

This allowed us to verify the functionality of the fingerprint module. The basic commands

used include system-related commands as well as fingerprint analysis related commands,

which include collecting a fingerprint image, enrolling a new fingerprint, and searching the

library for matching fingerprints. The instruction format is specified within the Software

Design section of Chapter 5.

7.1.9 Power Supply Testing

The objective of power supply testing is to test our method of power supply for the system,

and to test the power inputs going into each hardware component, in order to ensure that

safe voltage and safe current levels are applied to the system and each of its hardware

components.

Before we can test the overall power supply to the Medspencer system, we had to purchase

an AC-to-DC converter that can convert U.S. standard domestic power. We also purchased

a power jack that can be connected to our PCB. To test that the correct power is being

supplied to the system, we connected the AC-to-DC converter to the PCB via the power

jack. Then we measured the voltage supplied using a digital multimeter set to voltage

109

range. We ensured the voltage supply was 20V. We connected the multimeter to the PCB

through one of the designed PCB test points. This allowed us to check whether the correct

voltage is being supplied to the system.

We also needed to test the voltage and current levels being supplied to each individual

component, such as the fingerprint module, touchscreen display, servo motors, Wi-Fi

module, and speaker. Each component has specific circuits that were designed to convert

the power levels to appropriate operating levels. These circuits are displayed in the

Hardware Design section of Chapter 5. In order to test that the correct power level is

applied across a component, first the circuits were constructed on a breadboard to simulate

what the final implementation will look like. This physical test will require a breadboard

and a DC power supply, as well as a digital multimeter to make measurements. The output

of the circuit was tested using a digital multimeter set to voltage range, in order to ensure

that the correct voltage level will be applied across the component. Then the load was

connected on the breadboard. The voltage was applied and the current was measured with

the digital multimeter in order to test that there is an appropriate operating current. In the

case that measured voltage and current levels do not correspond to the desired levels, then

it is possible that the circuit design may need to be altered, or a component is not working

properly, or the connections are not secure. Troubleshooting may be required.

After the circuits were tested and verified on the breadboard, the PCB was designed using

Eagle and then printed. After the PCB was printed and obtained, we had to solder on

various components. The same tests were repeated utilizing the PCB test points in order to

ensure that the correct voltage and current levels will be applied to each component.

Utilizing the multiple test points on the PCB allowed us to reduce the total testing time for

the PCB. It also makes troubleshooting easier, as it takes less time to identify the integrated

circuit or component that has failed.

7.2 Software Testing

 In this section, tests are outlined to ensure the quality of the Medspencer’s software. These

tests are either simulated in the development environment, or run as code on the Raspberry

Pi compute module.

7.2.1 IDE Used

The environment used for testing the Python is Eclipse IDE Version Photon Release (4.8.0)

Build ID: 20180619-1200. Afterward, more software was downloaded and install called

PyDev for Eclipse and PyDev for Eclipse Developer Resources which contain the libraries

for basic python. Furthermore, the original Python 27, Python 37, and Python IDE which

is the Python Interpreters was installed for executing the python code.

110

7.2.2 Python Procedures, Simulation, and Physical Testing

In writing a code structure, the libraries are set at the top, global variables, follow by

creating database tables and sample patients, functions that will be used inside the frames

and then the “Home” frame or the initializing frame which create the layout of all the other

frames. Follow by the individual frames and the main function which starts the process to

open the initialize frame.

However, the structure of the frames will not allow the database to input data if there is no

data to be put in. So a dumpy patient was created in the database to allow the frames to be

created and run through. Once the frame to scan the user fingerprint is input the data will

change to the correct user and have access the necessity frames.

When simulating, each frame is for created and ran then adjusted and modified to follow

the structure that was planned. After the simple structure was made per section of frame, it

was later testing on the Raspberry Pi where it was discover the python3 works for Graphic

User Interface (GUI) but won’t work for communication using I2C or UART. However,

python2 can communication with I2C and UART but have a different coding for GUI. So

there was a try and exception clause create to run python3 and python2. So when it was

simulated in the eclipse it will work but when it was in raspberry pi it can still work.

An example of the first frame is the Fingerprint Frame show in Figure 60. Nevertheless,

the Home frame is the initialization frame but its purpose is to create a blueprint of the

frame system.

Figure 60. Fingerprint Frame

When the patient scans their fingerprint the patient screen will pop-up the patient’s

demographics and medication linked to the servo motors shown in Figure 61.

111

Figure 61. Patient Screen

If the administrator or caretaker scans their fingerprint then a different set of information

comes on for them shown in Figure 62.

Figure 62. Administrator or Caretaker

112

7.2.3 ATMEGA328P Programming Procedures

To develop software for the ATMega328P, we used the Arduino development

environment. The Arduino environment consists of both hardware and software. The

hardware side is comprised of a development board, which features a ATMega328P socket,

pinouts for the chip, and a USB to Serial chip programmer. Software is written in the

Arduino IDE, which provides an interface for writing C-like code that can use the built-in

Arduino libraries. The Arduino development platform was designed for use by non-

engineers and hobbyists, so it simplifies and abstracts away some of the underlying

technical aspects of microcontroller development, but this does allow for faster and cheaper

development.

The basis of the ATMega328 software is a main functionality loop, and two rotating buffers

for incoming and outgoing I2C data. Development began on the main software loop, where

the peripherals are controlled. A library for the fingerprint scanner was used to send

commands to it over serial UART, so the challenge with that subsystem was related to

which commands to send and in what order, with an eye on reliability in case of

communication issues. Both the speaker and servos are sent signals from the ATMega328's

pulse width modulators, but the way they are controlled is different. To generate a tone on

the speaker, the frequency of the note desired is initialized in an array, then played for a

specific amount of time. WIth an array of note frequencies and note durations, the alarm

function simply plays all in order then returns. The dispense function transmits a pulse

width signal that varies from 0 degrees to 180 degrees and back again. The dispense

command also includes a byte that tells which motor to control, which is broken down into

its binary representation and used to tell the demux which output to enable. There were

problems with this, of course, but the Arduino IDE is easy to debug and resources are

plentiful. Basically, I did a thing, then if it didn't do the thing, I had to fix the thing, then it

did the thing.

Once this functionality was designed and working, then we moved on to the I2C

communication. There were a number of problems with the I2C communication throughout

this project, from hardware issues with wire crosstalk to software issues with timing.

However, the ability to send individual bytes from the Compute Module helped

development. After basic communication was established from the ATMega328 to the

CM3L, further steps were taken to make the system more resilient to communication

problems. Transmission buffers were added to ensure multiple communications would not

overlap each other and cause unintended functionality, and to allow the CM3L to retrieve

data for every command it sent. Once the I2C communication was added, a configuration

flag was added to allow the ATMega328 to function with a serial console to a computer,

or to read from the transmit buffer.

113

8.0 Administrative Content

This chapter details the administrative content to facilitate organizing and planning out the

Medspencer project. This includes sections such as a milestones discussion, division of

labor, and budget and finance discussion. The milestones discussion details the various

milestones we outlined for the completion of the Medspencer project. Breaking the project

down into smaller tasks made working on the project more manageable. We also set goals

for when each milestone should be completed. The division of labor section discusses

which members take responsibility for the various components of the project. The

individual costs for different components and the overall budget are also discussed.

Additionally, a section on project operation is included. This section functions as the

owner’s manual for the Medspencer product.

8.1 Milestone Discussion

Discussing the different approaches of how the project would be idealized and created, the

group has created a list of milestones with their respective dates to complete.

The initial report: Divide and Conquer was due January 28 and its content was a brief

description of the project including a table where describes the cost of all components. The

House of quality in which the project showed the relation of the market features with the

technical features and how they will be improved. That table showed that in order to expand

our project to handle more patients it will require the expansion of dimension and a more

powerful microprocessor for all information.

An interview with Dr. Fredesvinda Alvarez, our sponsor, was set to February 24 in order

to have a better understanding of this medical field and how our product can get into the

market and how it will impact with the improvements and updates discussed. That

interview set the confidence of the sponsor in our group. As the interview kept going and

all the questions and answers from both parts were discussed, there was also room for

suggestions that the group kindly considered knowing the limitation of time.

The table of contents was due March 20 and it gave us a broad view of what our research

should aim. The table of contents shows all the topics and sub-topics of the project. It can

be considered as a checklist of all the documentation needed and all the steps taken from

planning, research and development of the project. The fact that a topic, out of the group’s

area of expertise, is mentioned on the table of contents is a clear message that more of a

research there will be interviews.

A first draft was due for the Senior Design 1 document for April 9 with half of the final

120 pages to deliver. This is to show that all research and test was properly documented

and considered under the proper standards. As the project was divided into different

modules, both majors chose the topics to describe in a very detailed way. While

researching, different standards and previous work were found, so the project was

constantly evolving in order to get a better impact on the market. The research guided the

group through to a considerably large number of components that may work better than the

114

ones mentioned on the Divide and Conquer document. In here, the group is taking in

consideration the delivery time vs the effective work vs the cost of each component needed.

The final document was due April 26 and then a properly documented, researched and cited

project is expected. The 120 page document is not just limited to research and theory but to

test and a final schematic. The final schematic is the final diagram of how the project will

work and will include the final PCB connected through certain electronic components to

the different modules (fingerprint reader, servo motors, touchscreen display).

For the final presentation of the project the following semester Summer 2018, the project

was running properly without any help from a pre-assembled microcontroller and also with

a proper enclosure that get the attention of the judges. The final documentation by then

should be edited with all new tests and new data acquired while building the project. This

final document will have more explanation about how the different modules work for the

entire project but now using the experience of running the tests rather than theory.

For Summer 2018, the final critical design review presentation and project demonstration

took place on July 24. The 8 page conference paper was due a week prior. The corrected

120 page Senior Design document and website were due on August 30.

Table 17 shows the milestone chart for our Senior Design project. It includes milestones

for both Senior Design 1 and 2. It details the start and end dates for each milestone, and the

status of each milestone. As the Senior Design project was completed by the end of the

Senior Design 2 semester, each of the milestones is marked as completed.

115

Table 17. Milestone chart

Number Task Start End Status Responsible

Senior Design I

1 Ideas 1/15/2018 1/17/2018 Completed Group 6

2 Project Selection &

Role Assignments

1/15/2018 1/24/2018 Completed Group 6

3 Initial Document –

Divide & Conquer

1/18/2018 1/28/2018 Completed Group 6

4 Research with

Psychiatrist and

Pharmacist

2/3/2018 2/24/2018 Completed Group 6

5 Table of Contents 3/10/2018 3/20/2018 Completed Group 6

6 First Draft 3/15/2018 4/1/2018 Completed Group 6

7 Final Document 3/20/2018 4/26/2018 Completed Group 6

8 Schematics and

Dispenser design

4/1/2018 4/26/2018 Completed Group 6

9 Recording & Data

abstraction (Order and

test parts)

3/18/2018 4/26/2018 Completed Group 6

Senior Design II

10 Order & Test Parts 5/1/2018 5/15/2018 Completed Group 6

11 Design Prototype &

PCB Layout

5/15/2018 7/17/2018 Completed Group 6

12 Build Prototype 5/15/2018 6/15/2018 Completed Group 6

13 Testing & Redesign 6/15/2018 7/15/2018 Completed Group 6

14 Finalize Prototype 7/15/2018 7/24/2018 Completed Group 6

15 Final Report 7/15/2018 7/24/2018 Completed Group 6

16 Final Presentation 7/15/2018 7/24/2018 Completed Group 6

116

8.2 Division of Labor

The product is too broad that involves more than electrical and computer engineering. The

materials for the enclosure and the medication containers are topics for the chemical and

industrial engineers. As our group is made of two electrical engineers, one computer and

one double major, they focused on certain modules that concern their area of expertise.

For the electrical engineers, their area involves from the soldering standards to the

schematics. Everything that relates connections, components, digital diagrams are part of

the electrical duties. Regarding the standards, they are relevant when manufacturing the

main board and running the tests. For the computer engineers, their area involves

programming language standards and features for microprocessors. They have to consider

which microprocessor is powerful enough to handle the whole program and what

instructions take less cycles to run and make an effective program.

A flow chart is essential for both majors because it gives a very descriptive narration of the

sequence and conditions of the project. According to this “map” either electrical and

computer engineers can follow and have an idea of which components and lines of codes

to use. While looking for which components to get for the project, the electricals should

consider the power usage and input voltage. Having knowledge of that information, a more

precise and accurate schematic can be drawn in which all components are labeled and

calculations are close to practice measurements. The map can also help computer engineers

to improve the code and get a better time response.

The figure below shows us the main responsibilities of the project and it is divided

according to the major (electrical engineering, computer engineering) and also with a

distinctive color the mutual responsibilities. Those responsibilities are only the ones

considered before starting the project because when the project has started and the

assembly and programming begins, many other tasks should come up. That is why the

mutual responsibility of research is imperative. An extensive research within the field can

either clarify or question more project needs.

117

Figure 63. Division of labor

There may be some responsibilities that does not fall in anyone’s hands, like the PCB

printing, because we hired a company that will provide us three boards to avoid a higher

probability of glitches. In the event of glitching, breaking, losing or wasting the boards,

there are tutorials online that explain how to create a PCB with the proper tools and

equipment. In that case, the responsibility of creating a new PCB would fall upon the

electrical engineers. That would be the scenario and responsibilities if the purpose is to

avoid the waiting or to avoid the overspending. An overnight request will affect the

products price and also that would mean a lack of responsibility from the group part to the

sponsor.

When the time of assemble and program the project begins, each individual member should

be responsible of their own tools, computer software and computer good performance. It

may sound that it has nothing to do with the project but it is a good sign and a good review

to the sponsor that a prepared and organize team is taking care of a project that has the

potential to leave a mark in the industry. For instance, it is recommended that the group

should not rely on a single computer, but to share the documentation and have the same

access to software.

That the project is divided for a faster compliance, does not mean that the responsibilities

are individual, it means that every person is focusing more on a specific topic but also

helping to the partners.

The testing part can be considered as a play-around or get-to-know stage because all

members are testing each module and pushing them to the limits. For computer engineers,

they are changing codes, adding instruction, program in different languages, getting

translators from assembly language to high level language. For electrical engineers, the test

can be from making the servo motors to rotate and check all connections for each

component.

118

When running some tests for the main board, many glitches can show up and sometimes

the fastest solution is to hard-wire ports. While soldering, an excess of tin lead can create

a short circuit; meanwhile assembling all components together, the voltage given to one of

those may not be enough to power them up. The values for the voltages and power will be

different from the theoretical and sometimes the arrangements made on the schematic have

to redistributed while building the final product.

The table below shows how the responsibilities were split up and assigned to different team

members. P indicates primary responsibility, while S indicates secondary responsibility.

Putting a person in charge of each task ensured that someone would be checking up on that

task’s progress, even in other members pitched in to help complete it.

Table 18. Work Distribution

8.3 Budget and Finance Discussion

The project was financed by Dr. Fredesvinda Jacobs, head of Esperanza Behavioral Health

and Services in Orlando. As this project will have a good impact at the health industry, Dr.

Alvarez will predict that this project will have a good demand on years to come. As the

project did not exceed the cost of $450, the group paid for the testing and prototype stage

and the sponsor returned all investment when the final product was finished. Table 31

shows all the components necessary and researched throughout many websites. After

considering the reviews, the cost and the performance, the following were the parts chosen

to be part of the project.

119

Table 19. Updated Budget List

COMPONENT COST DISTRIBUTOR

Display AT070TN90 $20.00 Alibaba

Microcontroller ATMEGA328P-PU $2.15 Mouser

Raspberry Pi CM3 Lite $25 ALLIED/Element14

CM3L Conector $20 ALLIED

Servo Motors SG90 x5 $8.85 Amazon

Touchscreen $14.99 Alibaba

Fingerprint Reader R307 $9.90 AliExpress (HZGROW)

ESP-12F Wi-fi module $3.05 Banggood

Capacitors $25.05 Mouser

Resistors $19.01 Mouser

Inductors $3.18 Mouser

Diodes $0.80 Mouser

Voltage regulators $30.42 Mouser

PCBs $25.00 JLCPCB

Speaker $2.06 Mouser

SD card slot $1.75 Mouser

Amplifier LM386 $0.88 Mouser

Demultiplexer CD74HC238M $0.65 Mouser

DC power jack PJ-067B $2.50 Mouser

50p TTL interface connector $3.19 Mouser

BSS138 MOSFETs x2 $0.54 Mouser

RPI CM3L Dev Kit (R&D) $200 Element14

Arduino UNO R3 (R&D) $21.95 Amazon

TOTAL $440.92

120

The total cost was $440.92. Disregarding the development board prices, the manufacturing

cost was $218.97. The manufacturing cost was within our goal of less than $300. There are

many other elements that are not listed and were acquired on the run while building and

testing the prototype. The shipping costs are not included in this budget.

For the prototype building and testing, the group acquired the Arduino, the servo motors

and the fingerprint reader. Those were the cheaper components to get and also the ones for

which the tests were easy to run. The final PCB was purchased at the end of July 2018

because the schematics for it should run a perfect simulation. The component that cost

more is the microcontroller PIC32MZ because this is the responsible to run the whole

project with a very small time delay.

As a group we have discussed during our meetings the prospective components and where

to get them for accommodate price. The necessary components can be get from aliexpress,

as mentioned on the Table 30, but with the restriction that they take at least 15 business

days to get to the United States from China and India. Even though the prices are

affordable, we still need to discuss if the components will be used or they can be replaced

or something else.

Another topic that involves financing but is different from sharing expenses, is how easy

can people get benefit from this project. Regarding to how the patient may get this sort of

service, an interview with Xavier Ortega, medical visitor from the company Prime-Care

Home-Care located in Saint Petersburg, that sends nurses, therapist and social workers to

visit patients, check for their compliance and report to the physician in charge. A key topic

mentioned during the interview was how these services are covered, they work with

Medicare, so the patient have to either pay as low as he or she can or nothing. This service

is pretty similar to what the final product is going to offer. Considering this company and

job, it gives us an idea that the product may be eligible for being covered by the insurances

companies and let it be introduced to the market.

8.4 Project Operation

The Medspencer is a home appliance to be used by multiple members of a household. There

are two types of users that may access the Medspencer: the administrator/caretaker, and

the patients. The Medspencer has a user-friendly GUI that utilizes a touch screen display,

and the options shown on the display are self-explanatory.

To use the Medspencer, first a user must scan their fingerprint. The Medspencer will then

identify the user as either the administrator or as a patient and will pull up the appropriate

account. (If the fingerprint is not recorded in the Medspencer database, then the user will

be denied access to the device.)

When the administrator accesses the Medspencer, they have the ability to add, delete, and

modify all of the patient accounts as well as the medications stored within the device.

Patient data they may modify or add includes the patient’s demographics (such as name,

fingerprint, address, etc.), contact info for the primary care provider, accessible

121

medications, and medication schedules. The administrator can also access the medication

containers to add, remove, or refill medications.

Once the patients and medication schedules are programmed into the Medspencer, the

Medspencer will sound an alarm whenever it is time for a patient to take a dose. When the

alarm sounds, the patient should approach the device and scan their fingerprint. Once the

fingerprint is scanned and the patient is identified, the patient’s account will pull up. The

patient may view their patient and medication data; however, they may not edit this data.

If it is time to take a scheduled dose of medication, then the Medspencer will dispense the

appropriate medication. The patient may also request any as-needed medications that are

prescribed to them. When a patient requests an as-needed medication, the Medspencer will

check whether enough time as passed since the last request; then it will dispense the

medication if it is safe to do so.

Whenever a patient takes a dose of medication, the Medspencer records the event in the

patient schedule. Every week, the records in the schedule are compiled into a Compliance

Report. The report is emailed to the primary care provider at the end of each week.

122

9.0 Conclusion

For our senior design project, we decided to create the Medspencer. The main goal of the

Medspencer is to increase medication compliance in patients, by providing automated

support and reminders at home. The Medspencer organizes the patient’s various

medications, schedules the doses, and reminds the patient when it is time to take a dose.

The Medspencer should also reschedule doses in the case of a missed dose and send reports

on the patient’s medication compliance to the PCP.

During our first semester of senior design, the team was tasked with designing the

Medspencer and planning its construction. The first step in this process was conducting

extensive research. We researched similar products on the market and met with medical

professionals in order to get a better idea of what patients and medical professionals need,

and what is currently available to them. This helped us solidify our overall goals for the

Medspencer and what features to include to best meet those goals. Then we researched

existing technologies that we could use to create the Medspencer. To do so, we considered

the features we want to include in the Medspencer and researched the different technologies

available in order to provide those features. Then we went into the design phase. This

involved figuring out the specs we need and choosing physical hardware components to

purchase that meet those specs. We planned the hardware and circuit design and the

interconnections between the MCU, power supply, and various hardware components. We

also planned the software design for the Medspencer system. Lastly, we laid out the

prototype construction plans and testing procedures we plan to go through as we verify our

designs to create the final Medspencer product.

During our second semester of senior design, the team had to actually construct the

Medspencer and present a working prototype by the end of the semester. The planning and

research we did in senior design 1 was helpful in providing a starting point for senior design

2. Initially, we bought the various hardware peripherals and components we needed to use

and tested them using breadboards, through-hole components, and testing components

(such as DC power supply, digital multimeters, and oscilloscopes) at the UCF electronics

labs. After testing and verifying the functionality of our hardware components and their

external circuitry, we designed the PCB schematics and board layouts using Eagle. After

further research, testing with the components and PCB, and several design choice changes,

the PCB schematics and board layouts were revised. By the end of July, the team presented

a critical design review and demonstration of the working prototype to a panel of faculty

judges. The team also corrected the 120 page senior design document and wrote an 8 page

conference paper, and constructed a website to document and showcase the Medspencer

project.

123

Appendix A: Citations

[1] “16-Bit PIC Microcontroller Peripheral Integration.” Microchip Technology,

Microchip Technology, May 2017,

ww1.microchip.com/downloads/en/DeviceDoc/30010109D.pdf

[2] “2N2102/2N2102A: NPN Silicon Transistor.” Central Semiconductor Corp., Central

Semiconductor Corp., www.mouser.com/datasheet/2/68/2n2102-42211.pdf

[3] “32-Bit PIC and SAM Microcontrollers Peripheral Integration.” Microchip

Technology, Microchip Technology, July 2017,

ww1.microchip.com/downloads/en/DeviceDoc/60001455c.pdf

[4] “3 Most Common PCB Assembly Defects.” Optimum Design Associates,

blog.optimumdesign.com/3-most-common-pcb-assembly-defects

[5] Arduino Tutorial: Using a Servo SG90 with Arduino. Dir. educ8s.tv. Perf. educ8s.tv.

2016. Youtube.

[6] Association Connecting Electronic Industries. Requirements and Acceptance for

Cable and Wire Harness Assemblies. Arlington Heights, Illinois, Mar. 2002.

[7] Association Connecting Electronics Industries. Rework, Modification, and Repair of

Electronics Assemblies. Bannockburn, Illinois, Nov. 2007.

[8] Association Connecting Electronics Industries. Acceptability of Printed Boards.

Northbrook, Nov. 1999. PDF.

[9] Association Connecting Electronics Industries. Acceptability Standard for

Manufacture Inspection and Testing of Electronic Enclosures. Bannockburn, Sept.

2013. PDF.

[10] Association Connecting Electronics Industries. Generic Standard on Printed Board

Design. Northbrook, Feb. 1998. PDF.

[11] Association Connecting Electronics Industries. Performance Test Methods and

Qualification Requirements for Surface Mount Solder Attachments. Bannockburn,

Jan. 2002. PDF.

[12] Association Connecting Electronics Industries. Requirements for Soldered Electrical

and Electronic Assemblies. Northbrook, Feb. 2012. PDF.

[13] Association Connecting Electronics Industries. Specification for Base Materials for

Rigid and Multilayer Printed Boards. Bannockburn, Dec. 1997. PDF.

[14] “AT070TN90 Specification.” Panelook, InnoLux Display Corporation, 2010, cdn-

shop.adafruit.com/datasheets/AT070TN90.pdf

[15] “Automated Medication Dispensers.” MedReady Inc., MedReady Inc., 2014,

www.medreadyinc.net

[16] “Automated Medication Dispensing Service.” Philips Lifeline, Philips, 2016,

https://www.lifeline.philips.com/pill-dispenser/health-mdp.html

[17] “Automatic Pill Dispensers.” e-Pill Medication Reminders, e-Pill, LLC, 2018,

www.epill.com/dispenser.html

[18] “Basics of SPI Communication Protocol.” Circuit Basics,

www.circuitbasics.com/basics-of-the-spi-communication-protocol

[19] “Basics of the I2C Communication Protocol.” Circuit Basics,

www.circuitbasics.com/basics-of-the-i2c-communication-protocol

[20] “Basics of UART Communication.” Circuit Basics, www.circuitbasics.com/basics-

uart-communication/

124

[21] Boxall, Alistair B.A. “The Environmental Side Effects of Medication.” US National

Library of Medicine, 5 Dec. 2014,

www.ncbi.nlm.nih.gov/pmc/articles/PMC1299201/

[22] Brown, Marie T, and Jennifer K Bussell. “Medication Adherence: WHO

Cares?” Mayo Clinic Proceedings, Apr. 2011. US National Library of Medicine,

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3068890/

[23] “Brushless DC Motors vs. Servo Motors vs. Inverters.” Oriental Motor, ORIENTAL

MOTOR USA CORP., 2017, www.orientalmotor.com/brushless-dc-motors-gear-

motors/technology/brushless-dc-motors-servo-motors-inverter.html

[24] Camara, Carmen, et al. “Security and Privacy Issues in Implantable Medical Devices:

A Comprehensive Survey.” ScienceDirect, June 2015,

www.sciencedirect.com/science/article/pii/S153204641500074X

[25] “CC3220 SimpleLink Wi-Fi and IoT Solution a Single-Chip Wireless MCU Getting

Started Guide.” Dec. 2017. PDF File.

[26] “CC3220 SimpleLink Wi-Fi LaunchPad Development kit Hardware.” January 2018.

PDF File.

[27] “CC3220 SimpleLink Wi-Fi Wireless and Internet-of-Things Solution, a Single-

Chip.” Dec. 5, 2017. PDF file.

[28] “CC3220 SimpleLink Wi-Fi Wireless and Internet-of-Things Solution, a Single-Chip

Wireless MCU.” Feb. 2017. PDF File.

[29] “Clear Polycarbonate Tubing, 5/8’ ID, 3/4’ OD, 1/16’ Wall, 3' Length.” Amazon,

www.Amazon.com/dp/B000OMJ50K/ref=nav_timeline_asin?_encoding=UTF8&ps

c=1

[30] “Comparison: Automated Medication Dispensers.” The Senior List, The Senior List,

LLC, 18 Sept. 2017, www.theseniorlist.com/2017/09/automated-medication-

dispensers/

[31] Cua, Yvette M, and Sunil Kripalani. “Medication Use in the Transition from Hospital

to Home.” US National Library of Medicine, 19 Feb. 2013,

www.ncbi.nlm.nih.gov/pmc/articles/PMC3575742/

[32] “CUI Inc. PJ-002B.” Digi-Key Electronics, 2018, www.digikey.sg/product-

detail/en/cui-inc/PJ-002B/CP-002B-ND/96965

[33] “Custom Builds Of SQLite or Porting SQLite To New Operating Systems.” SQLite,

sqlite.org/custombuild.html

[34] “DI-IPSC-81433A, SOFTWARE REQUIREMENTS

SPECIFICATION.” EverySpec, NAVY/EC, Dec. 1999, everyspec.com/DATA-

ITEM-DESC-DIDs/DI-IPSC/DI-IPSC-81433A_3709/

[35] “Eagle.” Eagle: PCB Design Made Easy, 9.0.0, Autodesk, 2018,

www.autodesk.com/products/eagle/overview

[36] Eidson, John. “IEEE-1588 Standard for a Precision Clock.” Agilent Technologies,

IEEE, Oct. 2005, www.nist.gov/sites/default/files/documents/el/isd/ieee/tutorial-

basic.pdf

[37] “Electronics II Laboratory Manual.” Department of Electrical & Computer

Engineering, University of Central Florida, Jan. 2012,

http://www.ece.ucf.edu/files/labs/EEL%204309%20Jan%202012.pdf

[38] “e-Pill Med-O-Wheel SMART Portable Automatic Pill Dispenser.” e-Pill

Medication Reminders, e-Pill, LLC, 2018, www.epill.com/medowheelsmart.html

125

[39] “Fans Clogged by Dirt.” Dirty Computer, Feb. 2012,

http://www.dirtycomputer.com/?p=21

[40] “FDA Drug Safety Communication: Revised Recommendations for Celexa

(Citalopram Hydrobromide) Related to a Potential Risk of Abnormal Heart Rhythms

with High Doses.” U.S. Food & Drug Administration, 24 Aug. 2011,

www.fda.gov/Drugs/DrugSafety/ucm297391.htm

[41] “FH12 Series Datasheet.” Hirose Electric Co., Ltd, Apr. 2018,

www.hirose.com/product/en/download_file/key_name/FH12/category/Catalog/doc_

file_id/31648/

[42] “Finger Print Sensor R307 (New R305).” Sunrom Electronics/Technologies, Sunrom

Electronics & Sunrom Technologies, 2018, www.sunrom.com/p/finger-print-sensor-

r307-new-r305

[43] “FX10 Series Datasheet.” Hirose Electric Co., Ltd, Apr. 2018,

www.hirose.com/product/en/download_file/key_name/FX10/category/Catalog/doc_

file_id/31650/

[44] Generation Robots, Generation Robots, generationrobots.com:

https://www.generationrobots.com/en/402044-esp8266-Wi-Fi-serial-module.html

[45] Getting Started with the Fingerprint Sensor. Dir. Adafruit Industries. Perf. Adafruit

Industries. 2012. Youtube.

[46] “Graphical and Segmented Display Solutions.” Microchip Technology, Mar. 2018,

ww1.microchip.com/downloads/en/DeviceDoc/00001699C.pdf

[47] Harris, Tom. “How Fingerprint Scanners Work.” HowStuffWorks, InfoSpace

Holdings, LLC, Sept. 2002, computer.howstuffworks.com/fingerprint-scanner2.htm

[48] Hedegaard, Holly, et al. “Drug Overdose Deaths in the United States, 1999–

2016.” Centers for Disease Control and Prevention, US Department of Health and

Services, Dec. 2017, www.cdc.gov/nchs/products/databriefs/db294.htm

[49] “How Do Piezoelectric Buzzers Work?” Quora, 2018, www.quora.com/How-do-

piezoelectric-buzzers-work

[50] “IEEE Approves Standards for Data Encryption,” IEEE Standards Association,

IEEE, Dec. 2007,

https://web.archive.org/web/20080203190557/http://standards.ieee.org/announceme

nts/StdsForEncryption.html

[51] “IEEE Standard for Software and System Test Documentation.” IEEE Xplore, IEEE,

July 2008, ieeexplore.ieee.org/document/4578383/

[52] “IEEE Standard for Information Technology-Systems Design-Software Design

Descriptions.” IEEE Xplore, IEEE, July 2009,

ieeexplore.ieee.org/document/5167255/

[53] “INNOLUX AT070TN94 7.0 Inch TFT-LCD Panel.” Amazon, Innolux,

www.Amazon.com/INNOLUX-AT070TN94-inch-TFT-LCD-

Panel/dp/B0107O964E/ref=sr_1_3?ie=UTF8&qid=1524795809&sr=8-

3&keywords=AT070TN94

[54] Intel. (2009, January). IEEE std 1149.x and software debug. United States.

[55] “ISO/IEEE 11073-10424:2016/Cor 1:2018 .” International Organization for

Standardization, ISO, Jan. 2018, www.iso.org/standard/74911.html

[56] Jayant. “Small Loudspeaker for Computer or Cell Phone.” Circuit Digest,

circuitdigest.com/electronic-circuits/small-loudspeaker-circuit-diagram

126

[57] “Jboss.org.” Community Documentation, 25 Apr. 2018,

docs.jboss.org/jbossas/docs/Server_Configuration_Guide/4/html/J2EE_Declarative

_Security_Overview-Enabling_Declarative_Security_in_JBoss.html

[58] “JST - PH2.0 Interface Stereo Enclosed Speaker (2 PCS), 3 W, 8 Ohm. Applied to

All Kinds of Audio Production, Raspberry Pi and Arduino DIY Projects.” Amazon,

Amazon, www.Amazon.com/JST-Interface-Production-Raspberry-

Projects/Dp/B0738NLFTG/Ref=sr_1_1?Ie=UTF8&Qid=1524793024&Sr=8-

1&Keywords=CQRANQI0007US

[59] Lady Ada. “Transformer-Based AC/DC Converters.” Adafruit, Adafruit, 27 Dec.

2017, learn.adafruit.com/power-supplies/transformer-based-ac-dc-converters

[60] “Livi Features.” Livi, PharmRight Corporation & Livi, 2018,

liviathome.com/features

[61] “LM78XX/LM78XXA: 3-Terminal 1 A Positive Voltage Regulator.” Fairchild,

Fairchild Semiconductor Corporation, Sept. 2014,

www.mouser.com/ds/2/149/LM7812-461970.pdf

[62] “Loudspeaker.” Wikipedia, Wikimedia Foundation, Apr. 2018,

en.wikipedia.org/wiki/Loudspeaker

[63] “Medication Adherence - Taking Your Meds as Directed.” American Heart

Association, American Heart Association, Sept. 2016,

www.heart.org/HEARTORG/Conditions/More/ConsumerHealthCare/Medication-

Adherence---Taking-Your-Meds-as-

Directed_UCM_453329_Article.jsp#.WuFemYjwbIU

[64] “MPLAB Harmony Help.” Microchip Technology, Nov. 2016,

ww1.microchip.com/downloads/en/DeviceDoc/MPLAB Harmony Help_v202.pdf

[65] Orenda. “Introduction to Simplex, Half Duplex and Full Duplex.” Medium, July

2016, medium.com/@fiberstoreorenda/introduction-to-simplex-half-duplex-and-

full-duplex-fbda8d591e3a

[66] “Passive Radiator (Speaker).” Wikipedia, Wikimedia Foundation, Feb. 2018,

en.wikipedia.org/wiki/Passive_radiator_(speaker)

[67] “PIC32MZ DA Family Starter Kit User’s Guide.” Microchip Technology, Apr. 2017,

ww1.microchip.com/downloads/en/DeviceDoc/70005311A.pdf

[68] “PIC32MZ Graphics (DA) Family Datasheet.” Microchip Technology, Oct. 2017,

ww1.microchip.com/downloads/en/DeviceDoc/60001361F.pdf

[69] “Piezoelectricity.” Wikipedia, Wikimedia Foundation, Apr. 2018,

en.wikipedia.org/wiki/Piezoelectricity

[70] “R307 Fingerprint Module User Manual.” Hangzhou Grow Technology Co., Ltd.,

Feb. 2011, https://www.dropbox.com/sh/orprmb3bgb6lqb6/AACpiIXOF91R7-

RQ9OkD4JXha?dl=0

[71] “REG1117/REG1117A: 800mA And 1A Low Dropout Positive Regulator.” Burr-

Brown Products, Texas Instruments, July 2004,

www.ti.com/lit/ds/symlink/reg1117.pdf

[72] Saarni SI, Gylling HA. Evidence based medicine guidelines: a solution to rationing

or politics disguised as science? Journal of Medical Ethics 2004;30:171-175.

[73] Sabaté, Eduardo, editor. Adherence to Long-Term Therapies: Evidence for Action.

World Health Organization, 2003,

http://www.who.int/chp/knowledge/publications/adherence_full_report.pdf

127

[74] “Section 22. 12-Bit High-Speed Successive Approximation Register (SAR) Analog-

to-Digital Converter (ADC).” Microchip Technology, Oct. 2017,

ww1.microchip.com/downloads/en/DeviceDoc/60001344D.pdf

[75] “Section 54. Graphics LCD (GLCD) Controller.” Microchip Technology, July 2017,

ww1.microchip.com/downloads/en/DeviceDoc/54_GLCD_60001379A.pdf

[76] Services, U.S. Department of Health and Human. Guidance for Industry Container

Closure Systems for Packaging. Rockville: Food and Drug Administration, 1999.

[77] “SimpleLink™ CC3120, CC3220 Wi-Fi® Internet-on-a-Chip™ Solution Built-In

Security Features.” Mar. 2017, pp. 1–32., www.ti.com/lit/an/swra509a/swra509a.pdf

[78] “SimpleLink™ Wi-Fi® and Internet of Things CC3220 Programmer's Guide.”

Manual, Feb. 2017, pp. 1–53., www.ti.com/lit/ug/swru464/swru464.pdf

[79] Singh, Ganeev. “Fingerprint Detection Using Microcontroller.” EngineersGarage,

2012, www.engineersgarage.com/contribution/fingerprint-detection-using-

microcontroller

[80] “Technical Considerations for Additive Manufactured Medical Devices, Guidance

for Industry and Food and Drug Administration Staff.” December 5, 2017. PDF file.

[81] Thakkar, Danny. “Understanding Biometric Identification with Optical Fingerprint

Scanners.” Bayometric, Bayometric, 2016, www.bayometric.com/biometric-

identification-optical-fingerprint-scanners/

[82] “The Difference Between an Illegal and a Controlled Substance.” Foundation

Recovery Network, 24 Apr. 2018, www.foundationsrecoverynetwork.com/the-

difference-between-an-illegal-and-a-controlled-substance/

[83] “Title 21 Code of Federal Regulations: Part 1304 - Records and Reports of

Registrants.” Diversion Control Division, US Department of Justice, July 2003,

www.deadiversion.usdoj.gov/21cfr/cfr/1304/1304_11.htm

[84] “VSP-PTD-N: Technical Data Sheet.” Vandal Stop Products, Atlas American,

hotelsinzanzibar.co/mla-format-works-cited-scarlet-letter/mla-format-works-cited-

scarlet-letter-best-of-mla-format-citation-scarlet-letter-fresh-mla-format-samples/

[85] “Why You Need to Take Your Medications as Prescribed or Instructed.” U.S. Food

& Drug Administration, 16 Feb. 2016,

www.fda.gov/Drugs/ResourcesForYou/SpecialFeatures/ucm485545.htm

[86] “Ybee 10x Pcs SG90 Micro Servo Motor Mini SG90 9g Servo For RC Helicopter

Airplane Car Boat Robot Controls.” Amazon, www.Amazon.com/Ybee-Micro-

Helicopter-Airplane-

controls/dp/B06WRS7PG8/ref=sr_1_2_sspa?ie=UTF8&qid=1524787921&sr=8-2-

spons&keywords=SG90&psc=1

[87] Zullig, Leah L. “Engaging Patients to Optimize Medication Adherence.” NEJM

Catalyst, NEJM Group, May 2017, catalyst.nejm.org/optimize-patients-medication-

adherence/

[88] “ATMEGA328/P Datasheet.” Atmel, Nov. 2016,

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-42735-8-bit-AVR-

Microcontroller-ATmega328-328P_Datasheet.pdf

[89] “Compute Module Datasheet.” Release 2. Raspberry Pi (Trading) Ltd., June 2018,

https://www.raspberrypi.org/documentation/hardware/computemodule/datasheets/r

pi_DATA_CM_2p0.pdf

128

[90] “AR1000 Series Resistive Touch Screen Controller [Datasheet].” Microchip, 2016,

http://ww1.microchip.com/downloads/en/DeviceDoc/40001393C.pdf

[91] “CD74HC238 High-Speed CMOS Logic 3- to 8-Line Decoder [Datasheet].” Texas

Instruments, Aug. 2004, http://www.ti.com/lit/ds/symlink/cd74hc238.pdf

[92] “I2C bi-directional level shifter.” ARDUINO, 2018,

https://playground.arduino.cc/Main/I2CBi-directionalLevelShifter

[93] “ESP8266EX Datasheet.” Version 5.7. Espressif, Nov. 2017,

https://www.mouser.com/pdfdocs/Espressif_ESP8266EX_Datasheet.pdf

[94] J. Burkett. “ESP8266 Raspberry Pi GPIO Wifi.” Osh Lab, May 2016,

https://oshlab.com/esp8266-raspberry-pi-gpio-wifi/

[95] “Servo Motor SG90 Datasheet.” Tower Pro,

http://www.ee.ic.ac.uk/pcheung/teaching/DE1_EE/stores/sg90_datasheet.pdf

[96] “Model: CMS-40504N-L152; Description: Speaker [Datasheet].” CUI, Inc., June

2016, https://www.mouser.com/datasheet/2/670/cms-40504n-l152-1311451.pdf

[97] “LM386 Low Voltage Audio Power Amplifier [Datasheet].” Texas Instruments, May

2017, http://www.ti.com/lit/ds/symlink/lm386.pdf

[98] “WEBENCH Power Designer.” Texas Instruments, 2018, http://www.ti.com/tools-

software/design-center/webench-power-designer.html

[99] “TPS62745 Dual-cell Ultra Low IQ Step Down Converter for Low Power Wireless

Applications [Datasheet].” Texas Instruments, June 2015,

http://www.ti.com/lit/ds/symlink/tps62745.pdf

[100] “LM43601 3.5-V to 36-V, 1-A Synchronous Step-Down Voltage Converter

[Datasheet]” Texas Instruments, Jan. 2018,

http://www.ti.com/lit/ds/symlink/lm43601.pdf

[101] “ADM660/ADM8660 [Datasheet].” Rev. C. Analog Devices, 2011,

http://www.analog.com/media/en/technical-documentation/data-

sheets/ADM660_8660.pdf

[102] “LMR23610 SIMPLE SWITCHER® 36-V, 1-A Synchronous Step-Down Converter

[Datasheet].” Texas Instruments, Feb. 2018,

http://www.ti.com/lit/ds/symlink/lmr23610.pdf

[103] “LMR23615 SIMPLE SWITCHER® 36-V, 1.5-A Synchronous Step-Down

Converter [Datasheet].” Texas Instruments, Feb. 2018,

http://www.ti.com/lit/ds/symlink/lmr23615.pdf

[104] “LM5165 3-V to 65-V Input, 150-mA Synchronous Buck Converter With Ultra-Low

IQ [Datasheet].” Texas Instruments, July 2017,

http://www.ti.com/lit/ds/symlink/lm5165.pdf

[105] “LM5009A 100-V, 150-mA Constant ON-Time Buck Switching Regulator

[Datasheet].” Texas Instruments, Sept. 2016,

http://www.ti.com/lit/ds/symlink/lm5009a.pdf

[106] “JLCPCB.” Shenzhen JLC Electronics Co., Ltd., 2018, https://jlcpcb.com/

[107] “SnapEDA.” SnapEDA, 2018, https://www.snapeda.com/home/

[108] “Electronic Component Search Engine.” SamacSys, 2018,

https://componentsearchengine.com/index.html

129

Appendix B: Copyright Permissions

Microchip

Texas Instruments

Circuit Basics

130

e-pill

Digi-key

131

US Department of Health & Human Services

Circuit Digest

