

FLORIDA SOLAR BEACH BUGGY CHALLENGE

Group 3

Cecilie Barreto, Drew Curry, and Grace Yoo

MOTIVATION

- Superimpose solar power and autonomous technologies
- Potentially provide a useful tool for future coastal research
- Reduce impact of beach vehicles on surrounding environment
- Promote interest and awareness of solar energy

OBJECTIVES & REQUIREMENTS

- Autonomously traverse a 10 mile stretch of beach from Daytona to Ponce Inlet (and return) within 8-hour time span.
- Capable of transporting one passenger (Max payload: 120 lbs.)
- Top allowable speed \rightarrow 3 mph
- Run completely on solar energy
- Do no harm to environment and beachgoers
- Detect and avoid both stationary and moving obstacles (e.g., rocks, docks, people, birds, turtles, etc.)

WORK DISTRIBUTION

Mechanical Engineering **Computer Science**

Electrical & Computer Engineering

MECHANICAL TEAM

Responsibilities

- Aluminum apparatus
- Motor selection
- Wheel type/size
- Wattage calculations, maximum load required

COMPUTER SCIENCE TEAM

Responsibilities

- Navigational programming
- Decision processing
- GPS integration
- Stereo camera/image processing

WORK DISTRIBUTION

Cecilie Barreto Computer Engineering

- Interpretation of raw sensor data
- Power management research
- Indoor/outdoor affects on sensors
- Communication between
 microcontrollers
- Overall autonomous system design
- PCB Design and parts selection
- Collaborate with CS team

Drew Curry Electrical Engineering

- Sensor research and selection
- Printed circuit board design
- Voltage regulator design
- Battery research and selection
- Charge controller research and selection
- Overall power distribution design
- Collaborate with ME team

Grace Yoo Computer Engineering

- Interpretation of raw sensor data
- Microcontroller/microchip research
- Communication between sensors and ATmega328P
- Communication between microcontrollers
- Overall autonomous system design
- Collaborate with CS team
- Soldering

AUTONOMOUS SYSTEM DIAGRAM

SOFTWARE

• Python

- Raw data manipulation
 - PySerial
- Microcontroller communication
- Arduino IDE
 - ATmega328P
- Robot Operating System (ROS)
 - Leading robotics software in industry
 - Supporting role

```
import serial
import time
import signal
portJOne = "1010"
portJTwo = "1110"
portJThree = "0110"
portJFour = "0010"
signalGo
                = True
                = True
startUp
leftFrontSensor = False
leftSensor
                = False
rightFrontSensor = False
rightSensor
                = False
```

serialSensors = serial.Serial('/dev/ttyACM0', 9600)
serialMotors = serial.Serial('/dev/ttyS0' , 9600, timeout = 10)

DSI8 PRKDI4

- Cost-effective
- Rated for outdoor use
- Voltage: I2V DC-I6V
- DC rated current: I0mA -250mA
- Detection Distance: 0.3 2.5m
- Working Temperature: -30 80 degrees Celsius
- Ultrasonic Frequency: 40KHz

DECODING SENSOR DATA

0 | | 0 0 | | 0 0 | 0 0 0 |

Distance recorded

Port read

3.1 meters

ATMEGA328P MICROCONTROLLER

- I6 MHz external oscillator crystal used as clock frequency generator
- Programmable using Arduino
 Uno IDE
- Manually bootloaded
- Can be used for more in future

FT232RL

- USB to serial UART interface
- Used to allow serial communication between ATMega328p and Raspberry Pi
- No external crystal required

POWER SYSTEM DIAGRAM

SOLAR PANEL

Suntech[©] Solar Panel

- Maximum Usage: 235W
- Maximum Current Output: 7.79 Amps
- Voltage Output: 30.16V
- System will consume wattage from panel and battery simultaneously

CHARGE CONTROLLER

- 20A Maximum Power Point Tracking (MPPT) solar charge controller
 - Finds the maximum power point on the I/V curve and tracks that point as sunlight conditions vary
- Based on Texas Instruments TIDA-00120
- More than 96% efficiency at full load in 12V and 24V systems

- MSP430F5132 Mixed Signal Microcontroller
 - Preferred MCU for charge controller
 - Ultra-low power consumption
 - Easily programmable

TLV704

- Low dropout voltage linear regulator
- Ideal power-management attachment to low-power microcontrollers
- Used to regulate power to MSP430

LM5019

- Constant On-Time Synchronous Buck Regulator
- Minimizes output load variation

SM72295

- Photovoltaic Full Bridge Driver
- Current sensing is provided by 2 amplifiers with externally programmable gain and filtering to
 - remove ripple current
 - provide average current DC information to the control circuit

PROTOTYPE

BUDGET

	Budget Build		Intermediate Build		Optimal Build	
Frame	Steel, 90-degree plates	\$500	Steel, rectangular tubing	\$700	Aluminum, round tubing, 3rd party welding	\$1,200
Suspension	Struts, coils	\$200	Struts, coils	\$200	Struts, coils	\$200
Tires	Basic Tires	\$60	Basic Beach Tires	\$120	Premium Beach Tires	\$350
Motors	2750 RPM Electric Motor	\$300	2750 RPM Electric Motor	\$300	2750 RPM Electric Motor	\$300
Sensors	Stereo camera, 7 sensors, GPS	\$300	2D LIDAR, Camera, 4 ultrasonic, GPS	\$1,400	3D LIDAR, HD Camera, 4 ultrasonic, GPS	\$3,000
Solar Panels	ECE Panels (Bulky)	Donated	Commercial Panels	\$700	Flexible Panels	\$1,000
Battery	50 Ahr Lead Acid	\$100	100 Ahr Lead Acid	\$250	100 Ahr Lithium Ion	\$1,000
Controllers	Raspberry Pi 3,ATMega 328PCB Circuit Board	\$250	Raspberry Pi 3, 2 ATMega 328PCB Circuit Board	\$300	NVIDIA Jetson TX2, 2 ATMega 328PCB Circuit Board	\$1,000
Total Cost		\$1,710		\$3,970		\$8,05

CONSTRAINTS

- Financial constraints:
 - Fair distribution across mechanical/CS/ECE scopes
- Sensor Constraints
 - PIR reliability
 - Ultrasonic reliability
- Processing power constraints
 - ATmega328P vs Raspberry pi
- Environmental Constraints
 - Weather conditions/Sunlight intensity
 - Terrain of beach
 - Safety concerns

QUESTIONS?