

FLORIDA SOLAR BEACH BUGGY CHALLENGE

Group 3

Cecilie Barreto, Drew Curry, and Grace Yoo

MOTIVATION

- Superimpose solar power and autonomous technologies
- Potentially provide a useful tool for future coastal research
- Reduce impact of beach vehicles on surrounding environment
- Promote interest and awareness of solar energy

OBJECTIVES & REQUIREMENTS

- Autonomously traverse a 10 mile stretch of beach from Daytona to Ponce Inlet (and return) within 8-hour time span.
- Capable of transporting one passenger (Max payload: 120 lbs.)
- Top allowable speed \rightarrow 3 mph
- Run completely on solar energy
- Do no harm to environment and beachgoers
- Detect and avoid both stationary and moving obstacles (e.g., rocks, docks, people, birds, turtles, etc.)

WORK DISTRIBUTION

Mechanical Engineering **Computer Science**

Electrical & Computer Engineering

MECHANICALTEAM

Responsibilities

- Aluminum apparatus
- Motor selection
- Wheel type/size
- Wattage calculations, maximum load required

COMPUTER SCIENCE TEAM

Responsibilities

- Navigational programming
- Decision processing
- GPS integration
- Stereo camera/image processing

WORK DISTRIBUTION

Cecilie Barreto Computer Engineering

- Interpretation of raw sensor data
- Power management research
- Indoor/outdoor affects on sensors
- Sensor configuration
- Communication between
 microcontrollers
- Overall autonomous system design
- Collaborate with CS team

Drew Curry Electrical Engineering

- Sensor research and selection
- Printed circuit board design
- Voltage regulator design
- Battery research and selection
- Charge controller research and selection
- Overall power distribution design
- Collaborate with ME team

Grace Yoo Computer Engineering

- Interpretation of raw sensor data
- Microcontroller/microchip research
- Communication between sensors and ATmega328P
- Communication between
 microcontrollers
- Overall autonomous system design
- Collaborate with CS team

OVERALL SYSTEM DIAGRAM

AUTONOMOUS SYSTEM DIAGRAM

SOFTWARE

• Python

- Raw data manipulation
- Microcontroller communication
- Arduino IDE
 - ATmega328P
- Robot Operating System (ROS)
 - Leading robotics software in industry
 - Supporting role

SENSORS

ULTRASONIC SENSORS

MB1260 XL-MaxSonar

- Indoor close range ultrasonic sensor
- Used for close range proximity sensing
- Dual sensor proximity sensing
- 7m range with marginal sensing angle
- Secondary forward detection sensors

ULTRASONIC SENSORS

MB 7051 XL-MaxSonar

- Outdoor Long range ultrasonic sensor
- Long range precise detection in front of the vehicle
- 10m narrow angle detection
- Used for distance detection
- Most important information to gather

PASSIVE INFRARED SENSORS

Parallax 28032 Wide Angle PIR sensor

- Close range Infrared sensor
- Used for close range proximity sensing on the flanks of the vehicle

STEREO CAMERA

- Computer science scope
- Main form of object detection
- Allows images to be captured and rendered instantly in 3D

POWER SYSTEM DIAGRAM

POWER SYSTEM DIAGRAM

SOLAR PANEL

Suntech[©] Solar Panel

- Maximum Usage: 235W
- Maximum Current Output: 7.79 Amps
- Voltage Output: 30.16V
- System will consume wattage from panel and battery simultaneously

LEAD ACID BATTERY

Duracell Ultra 12V SLA Sealed Lead Acid 50 AH battery

Lead-acid Rated Capacity

Lithium-ion Rated Capacity

QST 30 Amp PWM Smart Solar Charge Controller

MPPT charge controllers for optimal charging

PRINTED CIRCUIT BOARD (PCB)

PROTOTYPE

BUDGET

	Budget Build		Intermediate Build		Optimal Build	
Frame	Steel, 90-degree plates	\$500	Steel, rectangular tubing	\$700	Aluminum, round tubing, 3rd party welding	\$1,200
Suspension	Struts, coils	\$200	Struts, coils	\$200	Struts, coils	\$200
Tires	Basic Tires	\$60	Basic Beach Tires	\$120	Premium Beach Tires	\$350
Motors	2750 RPM Electric Motor	\$300	2750 RPM Electric Motor	\$300	2750 RPM Electric Motor	\$300
Sensors	Stereo camera, 7 sensors, GPS	\$300	2D LIDAR, Camera, 4 ultrasonic, GPS	\$1,400	3D LIDAR, HD Camera, 4 ultrasonic, GPS	\$3,000
Solar Panels	ECE Panels (Bulky)	Donated	Commercial Panels	\$700	Flexible Panels	\$1,000
Battery	50 Ahr Lead Acid	\$100	100 Ahr Lead Acid	\$250	100 Ahr Lithium Ion	\$1,000
Controllers	Raspberry Pi 3,ATMega 328PCB Circuit Board	\$250	Raspberry Pi 3,2 ATMega 328PCB Circuit Board	\$300	NVIDIA Jetson TX2, 2 ATMega 328PCB Circuit Board	\$1,000
Total Cost		\$1,710		\$3,970		\$8,05

PROGRESS

CONSTRAINTS

- Budgeting constraints:
 - ME/CS/ECE coordination
 - Indeterminate without testing
- Sensor Constraints
 - PIR reliability
 - Ultrasonic reliability
- Processing power constraints
 - ATmega328P vs Raspberry pi
- Environmental Constraints
 - Weather/Sunlight intensity
 - Terrain of beach
 - Safety

QUESTIONS?