Skylight Glass

Group 13

Ben Farris – CpE Paul Fedi – EE Blake Loeb – CpE William Tyback - CpE

Goals/Objectives

Problems: Blind Automation

- Heating/Cooling is very expensive
- Sunlight (not) entering the house makes things worse.
- Traditional blinds don't work with your AC system and still absorb heat
- Traditional blinds don't compensate for the light lost when they're shut
- Traditional lighting doesn't replicate the sun's color temperature
- Very important for circadian rhythm

SkyLight Glass

Specifications / Requirements

Component	Parameter	Design Specification	
Smart Film	Light Blocked 70%		
Bluetooth Module	Minimum Range	10 feet	
LEDs	Full Duty Cycle Brightness	1000 Lumens	
LEDs	Color Temperature	3000К-5000К	
Temperature Sensor	Accuracy	1 degree	
Light Sensor	Accuracy	10 Lumens	
Time (software)	Accuracy	10 seconds	

Features

Design and Hardware Implementation

- Decentralized design approach
 - We designed individual subsystems and then designed the architecture that integrated the subsystems into a coherent system
- Implementation: The team created a breadboard prototype for each subsystem and tested functionality individually
- Integration: Each subsystem was integrated into the overall system as a breadboard prototype to verify complete system functionality. This was used as a basis for the PCB design.

Smart Film Subsystem

Smart Film Market Research

Requirement: Visible light transmission < 30% when opaque **Smart Film Technologies**:

- 1. Electrochromic slow transition time
- Polymer Disperse Liquid Crystal (PDLC) fast transition, industry standard
- 3. Suspended Particle Device (SPD) few vendors sell film variant
- 4. Micro-blinds patented and not on the market currently

Smart Film Subsystem Components

Smart Film selected

Product Attributes	Smart Tint®	
<i>Light Transmittance (opaque state)</i>	4% ± 2%	
Switching Speed	50-100 ms	
Operational Temperature Range	-10° to 60° C	
Coefficient of Haze (transparent)	0.03 ± 0.01	
UV Absorption Index (opaque)	99%	
IR Absorption Index (opaque)	20% (regular) 90% (LV-NF)	
Solar Heat Gain Coefficient	0.71	
Energy Consumption (W/ft ²)	0.3-0.49	

LED Subsystem

LED Requirements

Requirements:

- 1) Illuminates a 10ft x 10ft room.
- 2) LED color temperature can vary between 3000K-5000K LED Products:
 - 1. LED bulbs meets the requirements but bulky and costly
 - 2. Surface Mounted Device LED strip, meets both requirements
 - 3. Chips on Board Maglite, will light the room but blind everyone

LED Color Temperature

3528 SMD LED strip (3.5 mm by 2.8 mm) demonstrating varying color temperature.

Feedback Subsystem

Light Sensor

Photoresistors

Photodiode

Phototransistor

Light Sensor

Part no: LTR-4206E

Resolution

• Can be varied by changing resistance

Easy of Use

• Output is easily accessible

Cost Effective

Temperature

Seasonal

• Adapt to conditions automatically

Efficiency

• Help improve energy consumption

Temperature

MCP9700T

- $\pm 2^{\circ}C$
- Surface Mount

LM75B

- $\pm 2^{\circ}C$
- Surface Mount

PIN 1, +Vs; PIN 2, VOUT; PIN 3, GND

Accuracy

• Precise for our needs $\pm 1^{\circ}C$ (+25°C)

Integration

• 3 pins allows simple integration.

Cost Effective

Microcontroller

TI CC3200

MSP430

ATMega₃₂8P

ATmega328P

Analog

• Feedback System (6 A/D Pins)

Digital

• Controlling LEDs (6 PWM Pins)

Digital

Communication (TX/RX)

Application

Welcome to SkyLíght Glass

<section-header><section-header><text><text><text><text><text><text>

Application

Bluetooth Communication

- Bluetooth module makes use of Serial Communication
- Communication happens via PCB
- Controls all major components
 - Major Features (I/O, LEDs, Alarm and Seasonal Modes, Manual/Auto)
 - Coincide with Application from Android Studio
- Range at 10 meters is fine for this project
- Will be embedded within the frame along with the rest of the components
- Difficulty with first Bluetooth module, possible shorted or burnt AGND
- For future applications a stronger Bluetooth module could be used for larger families moving from room to room.

Description	Spec
Baud Rate	9600
Range	10 meters
Frequency	2.4GHz
Voltage	3.3V

Bluetooth Integrated Prototype

Embedded Logic

Overall System Schematic

Hardware Challenges

LED Challenges

- Too Bright
- Unequal Duty Cycle causes flickering
- Limited BJT current gain requires a base resistor that limited brightness
- Capacitors needed to reduce MCU strain

PCB Challenges

- Initially clock forgotten and two nodes not on ground pour
- Sheer force on through hole components can connect to ground pour
- Power Supply tolerates less amperage than test battery

Administrative Content

Work Distribution

Task	Primary	Secondary	
LED Subsystem	Blake	Paul	
Power Subsystem	Blake	Paul	
Smart Film Subsystem	Paul	Blake	
Feedback Subsystem	William	Ben	
Application Software	Ben	William	
Embedded Software	Blake	William	
PCB Integration	Paul	Blake	
Software Integration	Ben	William	

Budget					
ltem	Quantity	Price/Unit	Projected Cost	Actual Cost	
Window Film	2	\$145.07	\$100.00	\$145.07	
Color Temp LED Strip	1	\$24.95	\$50.00	\$24.95	
Microcontroller Chip	3	\$5.05	\$1.00	\$15.14	
Voltage Regulators	5	\$1.19	\$1.50	\$5.95	
Relay for film control	2	\$3.39	\$30.00	\$6.79	
Power Supply (6o VAC)	1	\$0.00	\$0.00	\$0.00	
Power Supply (24VDC)	1	\$19.95	\$20.00	\$19.95	
Lux Sensor	3	\$0.43	\$6.00	\$1.49	
Bluetooth Module	1	\$7.99	\$10.00	\$7.99	
Polycarbonate Window	1	\$0.00	\$0.00	\$0.00	
Frame	1	\$29.17	\$35.00	\$40.17	
PCB Costs	3	\$23.35	\$150.00	\$70.05	
Temp Sensor	3	\$1.48	\$5.00	\$4.44	
Potentiometer	1	\$3.25	\$0.95	\$6.50	
Transistors	10	\$1.60	\$10.00	\$16.00	
Total	36		\$365.95	\$364.49	

Schedule Towards Completion

- **Ideal Schedule, approximate date for PCB shown
- Some padding added to dates for any extensive troubleshooting that may occur

SkyLight 2.0

- Multiple Integration and Communication
- Dimming Tint ability as an effect of the surroundings instead of using times and dates i.e. more dynamic
- Multi connect Bluetooth module
- Offer different color films
- LED features, adding music listening LEDs, or party mode

Questions/Comments?