
Senior Design 2 Project Documentation

Auto FBO

University of Central Florida
College of Engineering and Computer Science

Dr. Lei Wei & Mr. Michael Young

Group 12

Joshua Dean, EE

Michael Graziano, EE Vanessa Pena, CE Gilbert Vieux, CE

ii

Table of Contents

1. Executive Summary 1

2. Project Description 3

2.1 Project Justification and Motivation 3

2.2 Goals and Objectives 5

2.2.1 Weather Conditions Report 6

2.2.2 Transmit Radio Check 6

2.2.3 Printed Circuit Board Interface 7

2.2.4 Web Interface 7

2.3 Product Specifications 8

2.3.1 Engineering Specifications 8

2.3.2 Trade Off Matrix 10

3. Research 11

3.1 Existing Products 11

3.1.1 Previous Senior Design Project 13

3.2 Main Control Unit 15

3.2.1 MCU Options and Selection 15

3.2.1.1 Raspberry Pi 3 Model B 15

3.2.1.2 Arduino Uno 16

3.2.1.3 MCU Selection 17

3.2.2 Communication Protocols 20

3.2.2.1 RX Signal 20

3.2.2.2 TX Signal 21

iii

3.2.2.3 Carrier Detect 21

3.2.2.4 Push-to-Talk 21

3.2.2.5 Automatic Gain Control (AGC) 22

3.2.3 Language Options and Selection 22

3.2.3.1 MCU 22

3.2.4 Text-to-Voice Software 23

3.2.4.1 Requirements for The Text-to-Speech Software 24

3.2.4.2 Selecting the Text-to-Speech Software 26

3.2.3 Voltage Regulator Options and Selections 27

3.2.3 AC to DC Power Supply Options and Selections 29

3.2.4 Weather Sensor Options and Selections 32

3.2.4.1 Anemometer and Wind Vane 32

3.2.4.2 THD Sensors 32

3.2.4.3 Barometric Sensor 33

3.2.4.4 MS860702BA01 33

3.2.5 Operational Amplifier Options and Selections 37

3.3 VHF Aircraft Radio Selection 39

3.4 Termination of Unused Operational Amplifiers 39

3.5 Circuit Protection 41

3.6 Interfaces 43

3.6.1 To Radio 43

3.6.1.1 TX Audio 43

3.6.1.2 PTT 43

3.6.2 From Radio 43

iv

3.6.2.1 RX Audio 43

3.6.2.2 Carrier Detect 44

3.6.3 From Microcomputer 44

3.6.3.1 PTT 44

3.6.3.2 TX Audio 44

3.6.4 To Microcomputer 44

3.6.4.1 I2C Bus 45

3.6.4.2 Carrier Detect 45

3.6.5 From Anemometer 45

3.7 Carrier Detect 46

3.7.1 Automatic Gain Control Voltage 46

4. Design Constraints and Standards 48

4.1 Standards 48

4.1.1 Registered Jack Standard 48

4.1.2 Radio Communication Phraseology and Techniques 50

4.1.3 METAR 51

4.1.4 Traffic Advisory Practices Without Operating Control Towers 52

4.1.5 WAVE File 52

4.1.6 Pulse Code Modulation 53

4.1.7 I2C Standard 53

4.1.8 Python Standards 55

4.1.9 Django Standards 58

4.2 Design Constraints 58

4.2.1 Time Constraints 58

v

4.2.2 Budget Constraints 59

5. Design 60

5.1 Power Supply Design 60

5.1.1 Voltage Regulation 61

5.1.1.1 3.3V Regulator 62

5.1.1.2 5V Regulator 62

5.1.1.3 15V Regulator 63

5.1.2 Overall Power Supply Design 63

5.2 Interface Board Design 64

5.2.1 PTT Circuit 65

5.2.2 Carrier Detect 66

5.2.3 RX Buffer Audio Design 67

5.2.4 TX Filter and Bias Audio Design 68

5.2.5 Anemometer and Wind Vane Design 70

5.2.5.1 Analog to Digital Converter 72

5.2.6 I2C Bus 72

5.3 Software Design 74

5.3.1 Main Logic Loop 74

5.3.2 Poll Weather Conditions 78

5.3.3 Counting Radio Clicks Process 82

5.3.4 Transmit Weather Conditions 85

5.3.5 Radio Communications Check Process 86

5.3.6 Initialization 87

5.4 Communication with Interface Board 88

vi

5.4.1 Pin Layout 88

5.4.2 SPI or I2C connection 88

5.4.3 ADS1015 Communication Logic 91

5.4.3.1 Background Information 91

5.4.3.2 ADS1015 Wiring 91

5.4.3.3 Programming the ADS1015 93

5.4.3.4 I2C Interface 93

5.5 Configuration Screen 94

5.6 Integration and Prototype 95

5.7 Web Server 96

5.7.1 Introduction to the Model View Controller Architecture 96

5.7.2 Django Web Framework 98

5.7.2.1 Django Rest 100

5.7.2.2 Celery 102

5.7.3 AngularJS Framework 103

5.7.4 SQLite Database 105

5.8 Master Schematic 107

6. Testing 108

6.1 Anemometer and Wind Vane Testing 108

6.2 PTT Testing Procedures 109

6.3 Audio Testing 110

6.4 Power Supply Testing 113

6.5 Software Design Testing 114

6.5.1 Anemometer Data from ADC 114

vii

6.5.2 Temperature, Humidity, and Pressure Data 115

6.5.3 Weather Reporting 115

6.5.4 ADS1015 ADC Channel 116

7. Management 117

7.1 Task List 117

7.2 Budget 120

7.3 Milestones 121

8. Appendix 122

8.1 Datasheets 122

8.1.1 Raspberry Pi 122

8.1.2 AWOS 122

8.1.3 UHF/VHF Range Calculations 122

8.1.4 ADS101x-Q1 122

8.1.5 Audio CODEC Proto 122

8.1.6 WM8731 CODEC 122

8.1.7 Low Drop Power Schottky Rectifier 122

8.1.8 TVS Diode Arrays 122

8.1.9 Low Noise Op Amp 122

8.1.10 Micropower Low Dropout Regulator 122

8.1.11 Positive Voltage Regulator 122

8.1.12 120W AC-DC Adaptor 122

8.1.13 Step Down Voltage Regulator 122

8.1.14 PD-40S 122

8.1.15 IC-A2 Maintenance Manual 123

viii

8.1.16 IC-A2 Owner’s Manual 123

8.1.17 Anemometer 123

8.1.18 MS8607-02BA01 123

8.2 Software 123

8.2.1 Raspberry Pi/ADC 123

8.2.2 SMBus 123

8.2.3 Raspberry Pi/I2C 123

8.2.4 PicoPi 123

8.2.5 Python Style Guide 123

1

1. Executive Summary

 Before a pilot takes off they should know that their microphone, radio, and headset are

operational. This is so that they can communicate with other pilots in the area to avoid

deadly collisions and for communicating with Air Traffic Control soon after takeoff. This is
necessary if a pilot is planning to fly IFR as they must establish communication with ATC

starting on the ground or soon after becoming airborne. Also, as they begin their take off
or come into land, a key piece of information is to know the wind direction, wind speed,

and gusts at the airport they are taking off or landing at. This is because pilots always
need to take off and land into as much as a headwind to increase the amount of wind

over the wings to generate lift, increase airspeed, and decrease groundspeed. Current
wind information is crucial especially if a crosswind exists, as the pilot needs to choose

the best runway to take off or land on. Other weather information such as temperature
and the barometric pressure at the airport is also important so that pilots can set their

altimeters and judge the density altitude as well as the visibility.

Usually an Automated Weather Observing System (ASOS) or an Automatic Terminal
Information Service (ATIS) and FBOs are the ones to relay this information as well as
other remarks about airport conditions to the pilots over the radio, but some airports do

not have a FBOs, ASOS, or ATIS. Furthermore, most FBOs are not staffed 24 hours a

day throughout the year. One solution to try to mitigate this issue at such airports is a
windsock, which is a light and flexible cone of fabric mounted on a mast, usually

somewhere along the airstrip of an airport. Windsocks let the pilots know some of the
important weather readings, such as wind direction, but they are small and cannot be

seen until the aircraft is very close to the airport. On the other hand, there are some
automated systems currently on the market that perform task such as broadcasting
weather conditions and transmit radio checks, but they are costly and not suited for

smaller airports.

The Automated Fixed Base Operator is a low-cost system that satisfies these two basic

needs. This system broadcasts important weather information when prompted by pilots

in the area. For example, when the system is prompted, the system will broadcast a
weather report that includes the latest recorded wind direction and wind speed as well as

gusts, temperature, dew point, density altitude, and airport remarks. This system also
performs a transmit radio check for any pilot that consists of recording the transmission
from the pilot and playing it back along with the power level so the pilot knows exactly

2

how operational their equipment is. Therefore, this system can be classified as an

Automated Fixed Base Operator for small airports. The Automated Fixed Base Operator
would act as a hub of communication for these small airports that do not have a dedicated
FBO or weather station, as well as FBOs and airports who wish to automate this service

fulltime. This system provides a source from which any pilot can obtain crucial weather
information or perform any radio communication checks they need prior to taking off and

landing their aircrafts.

Our goal in the design of this Auto FBO to connect a weather station and VHF radio
through an interface board to a microprocessor that can process all the necessary
information required to be comparable to modern ATIS and ASOS systems, as well as

preform quality radio communication checks. Using these components, we build a system
that can assist pilots in taking off, flying, and landing safely, while being configurable and

cost-effective.

3

2. Project Description

This section describes the motivation, goals, objectives, and some of the key systems of

this project to better understand its premise and the features it has. We also detail the
issues that this system solves, what causes those issues, and who would benefit most

from this system.

2.1 Project Justification and Motivation

The vast majority of airports in the U.S. as well as other parts of the world are non-

towered airports. Many towered airports even have non-towered hours of operation,

usually during night hours. Non-towered airports or hours of operation is when the air

traffic control tower (if there is one) is empty and not staffed. This means that there is no

one available for pilots to communicate with besides other pilots. It becomes the pilots
sole responsibility to be aware of the current weather conditions, whether or not their radio

is operational, and where other aircraft are located. When active, towered airports
assume those tasks and are held responsible to maintain safe, orderly, and expeditious

flow of air traffic, as well as report accurate and real time weather observations. However,
when pilots fly into and out of non-towered airports they are responsible to maintain good
communications while operating in the local airspace as well as on the airport’s runways

and taxiways. Also, the local weather at many non-towered airports is not automatically
broadcasted over a local frequency and is usually found from another nearby airport’s

weather report.

One concern pilots face when preparing to fly out of a non-towered airport is how well

their radio is working. It is vital for a pilot preparing their aircraft for flight to ensure that

their communications systems are properly working. This is especially true for pilots flying
under Instrument Flight Rules (IFR), as they must establish contact with air traffic control

soon after becoming airborne. With no tower they can only perform a radio check if there

are others on the local frequency, which is never guaranteed.

The current local weather is also a concern for both pilots flying into and out of non-

towered airports. For pilots flying out of a non-towered airport getting the current local
weather is usually done by looking up the weather, observing outside conditions, and

collecting nearby airports weather reports. Pilots flying into a non-towered airport,

however, do not have the luxury of looking up the current local weather from their plane.
The best a pilot flying into a non-towered airport can do is to lookup the weather they will
be traversing through beforehand, observe the windsock at the airport, remain conscious

4

of weather conditions around the aircraft, and tune into nearby airport’s weather reporting

stations. At a towered airports this complication is resolved with an Automatic Terminal
Information Service (ATIS) or another equivalent system, which provides highly accurate
and current weather as well as other remarks (obstructions near the runways, closed

taxiways, other weather information, etc).

In respect to weather, pilots are interested in elements such as the wind speed and
direction, barometric pressure, temperature, and dew point surrounding the airport when

preparing for a flight, taking off, and landing. Wind speed and direction are most important

for pilots, because they dictate which runway pilots will use to take off and land. This is
because during the takeoff and landing phase it is desired to have as much wind flowing

over the wings of the aircraft as possible to increase both drag and lift. Barometric

pressure is used to tune the aircraft’s altimeter, which indicates the altitude of the aircraft.
Lastly, temperature and dew point are used to judge the density of the air and predict the

visibility conditions. The temperature along with elevation gives pilots information on how

well their aircraft will operate and if their aircraft is safe to operate in the air. The difference
between temperature and dew point gives pilots information on the visibility surrounding

the airport. This is used decide if an area’s airspace is under Visual Flight Rules (VFR)

or Instrument Flight Rules (IFR).

Our motivation for this project is to improve the safety of pilots and passengers at these

smaller airports with no manned Field Base Operator (FBO). When pilots aren’t sure of
weather conditions they do not know which runway to land on and if they can’t be sure
their communications systems are operational, then they run the risk of missing important

communications or not being able to transmit their location or intention to other pilots.
The airports that don’t have a dedicated FBO usually don’t have the financial means to
fund the expensive automatic weather systems on the market which can run upwards of

thousands of dollars. Our system would become the new model for a cost-effective
solution and would give hundreds to thousands of airports around thee world access to a

previously unattainable lifesaving system.

The proposal for this project was brought by Professor Michael Young last summer to be

completed by a senior design group at UCF. Unfortunately, the final product they

presented was undeployable and did not satisfy all of Professor Young’s needs. We seek
to improve on the areas where the previous team fell short; expanding the weather
capabilities of the weather reporting system and delivering a “no distortion added”

communications check.

5

2.2 Goals and Objectives

The objective of this project is to build an easy to use, reliable, and efficient system for
pilots to receive critical weather information and perform a communications check when

flying into a non-towered airport. Our system will provide more information to pilots than
a typical windsock which will give them the data they need to be able to take off and land

safely. This system will be comparable to the existing Automatic Terminal Information
Service (ATIS) and Automated Surface Observing System (ASOS) systems in place at
larger airports so that pilots will already know what to expect and not have to learn a

whole new protocol.

The system will be able to recognize a mic click signal from the pilot and decide from the

signal if the pilot is requesting weather condition information or a communications check.
If the pilot is requesting weather information, the system will respond with an ATIS style

broadcast with the wind speed, direction, visibility, temperature, humidity, and pressure.
If the pilot is requesting a communications check, the system will respond with a message
acknowledging the request and will record and playback the pilot’s response so they can

hear exactly how their message was received. The system will also respond with a power

level to inform the pilot of their signal strength.

A similar system was designed for a previous senior design project but that system did

not meet all the requirements and was too complicated and cumbersome to deploy. Their
audio playback for the communications check was not integrated into the PCB so to
receive, save, and playback a pilot’s transmission, they had to use a separate USB

interface on a computer. This affected the quality of the transmission but it also made the

system much bulkier. To deploy their system, they needed room for the weather sensors,

PCB and microcontroller, and a separate computer to process the audio. The idea behind
the communications check was that it allows the pilot to make sure they can be heard by
other pilots or air traffic control towers but this becomes ineffective when the playback is

distorted. Their communications check failed because of that crucial factor. Inaccurate
playback will cause the pilot to believe their transmissions are worse than they are so

they will make unnecessary adjustments furthering the problem.

Our system will differ from the previous senior design project in many key ways. We will
be integrating all the components, aside from the weather sensors, onto one chip so that

they system is contained and very easy to deploy. This will include a codec to receive,
save, and playback a pilot’s communications check so that the playback is as accurate
as possible and they pilot will also receive a quantified value for the quality of their

transmission. In addition to this improved communications check, we will also be including

6

more weather sensors and more robust logic to allow the pilots to get the most accurate
weather information when they request it instead of clogging the line with repeated

information. Instead of just reporting wind conditions, the system will also report

temperature, humidity, and air pressure. These are all crucial measurements for pilots
because it allows them to understand how the wind will affect their plane and what counter

measures they will need to take. In addition to these changes, we are also simplifying the

circuits immensely. The previous team added many unnecessary components and
overcomplicated the circuitry so we started with an all new design and chose to

incorporate and build off more out of the box components such as the codec. This way
we are able to pull what we need from each component and combine the simplified

circuitry into the PCB.

2.2.1 Weather Conditions Report

The weather conditions report is one of the main functions of the system. When the
user/pilot keys the mic on their radio a specified number of times, the system should

broadcast weather conditions. This weather conditions report should include wind speed
accurate within ±2 knots, wind direction within ±5 degrees, temperature within ±3 C,

humidity within ±4%, and air pressure within ± 0.0591 inHg. It will also need to check if
the channel is occupied and only broadcast the weather report when the channel is

unoccupied.

Another feature of this function is to broadcast an updated weather report if the wind

conditions change more than a specified amount. For example, if the system broadcast
that winds are 5 knots at 120 degrees, and they change to 10 knots or 150 degrees, the
system will broadcast the new wind conditions so that the pilot is always up to date with

the most current and accurate conditions.

This also touches on the Crosswind Alert the system will have. A crosswind is when winds

blow near perpendicular to a runway, and this causes makes landing more difficult. Our

system will detect when a crosswind exists and broadcast an alert. The system should

also announce when a runway is “favorable” to land on. A pilot wants to land into

headwind so the length of their landing is shorter. If the system detects winds are more
than, say, 5 knots and they are in the direction of a runway, the system should announce

that that runway is favorable to land on.

2.2.2 Transmit Radio Check

The second main function of our system is a Transmit Radio Check. Before a pilot takes

7

off, they want to ensure that their mic, radio, and headset work so they can communicate

with Air Traffic Control (ATC) and other pilots. Normally, the pilot would contact the Field

Base Operator (FBO) and the FBO would respond with a radio check and wind conditions.
Our system will be used at an airport without an FBO. When the user keys the mic a
specified number of times, the system should prompt the user to perform a Transmit

Radio Check. The system will record what the pilot transmits, and play it back exactly

how it was heard. Then the system will announce the power level of the transmission.
This way the pilot can verify their mic and radio are operating normally and that their

signal strength is satisfactory. During this process, the system will verify that the channel

is not occupied before transmitting the prompt or the recording.

2.2.3 Printed Circuit Board Interface
To interface the handheld radio and the microcomputer we will need to design and build

custom circuitry and ultimately fabricate a Printed Circuit Board (PCB). This PCB will have
all necessary inputs from the radio and convert them into usable signals for the

microcomputer. The PCB will also have these power supplies. In turn, it will also create

usable signals for the radio that come from the microcomputer. The weather sensors will

also be connected to the PCB and accessed by the microcomputer.

2.2.4 Web Interface
The web interface is intended to provide an easily accessible graphical interface for the

user. The interface would provide the user with valuable information concerning the
current weather conditions; this includes wind speed, wind direction, gust, and

temperature. The interface would allow users to check the current conditions at the airport

from anywhere and at any time. The system will also allow the admin user for the airport
to switch the click pattern for requesting each task, like a communications check, to best
fit their preference and to ensure the click pattern does not conflict with other systems

already existing at the airport. The operator would need to switch the click pattern if the
current click pattern interferes with any patterns already established at the specific airport
because if not then pilots may not be able to perform necessary tasks like turn on runway

lights.

Our device will also host a local web server that will provide a graphical user interface

that anyone can use to get information from the system. The user will be able to specify

any parameter and adjust the system. For example, if the administrator for the system
wants to change the number of clicks for the weather report, they will be able to change

that from the interface. We also will show a graphic of the runway, a compass overlay,

8

and the wind conditions so that the user can get a graphical representation of the current

weather situation like what is shown in Figure 2.1. The user should be able to type in the
IP address or a web address related to the IP of the microcomputer to access the web

interface. This system will be opened using the port routing functions of our
microcontroller to also allow access from outside of the local network, allowing the user

to be able to get weather conditions from an outside location, i.e. their home or office.

 Figure 2.1 General Block Diagram of Auto FBO

2.3 Product Specifications

In this section, we list the specifications to which we believe our system should perform;
touching first on the general system specifications such as system size and response
time, next we outline exactly how the critical features of weather reporting and

communications check should operate and their specifications.

2.3.1 Engineering Specifications
-- Weather Reporting Capabilities: Temperature, Dew Point, Barometric

9

Pressure, Wind Speed, Wind Direction, Density Altitude
-- The system shall have a web IP graphical interface from which the user can

read the current winds and make parameter changes.
-- The system shall operate on the airports UNICOM frequency and shall not

broadcast if the radio channel is occupied.
-- Upon receiving the designated cue for a weather report, the device shall return
an automated weather message in a precise formatting specific to aviation

procedures.
-- The system shall update the pilot and broadcast the current wind conditions if

they change such that they exceed the chosen parameters.
-- The system shall announce crosswind and gust warnings if they are present.
--The system shall announce a favorable runway if conditions fall within chosen

parameters.
-- Upon receiving the designated radio cue for a communications check, the
device shall record the pilot’s transmission and subsequently transmit the

recording back with no added distortion to the pilot for verification.
-- Following the playback of the recording the device shall transmit a message to

the pilot detailing the received message’s power level.

Response Time < 3s
Temperature Accuracy ± 2°C

Humidity Accuracy ± 5%
Pressure Accuracy ± 0.12 inHg

Wind Direction Accuracy ± 5°
Wind Speed Accuracy ± 2 kts or ± 5%

Recording Length ≤ 15s
Power Level Accuracy ± 5 dBm
Playback Correlation < 0.9

10

2.3.2 Trade Off Matrix

Implementation

Time
Temp.

Accuracy

Humidity
Accuracy

Wind
Speed/Direction

Accuracy

Barometric
Pressure
Accuracy

Dimensions

 - + + + -
Good Sound

Quality + ↓↓ - - - - ↓

Ease of
Installation/Setup + ↑↑ - - - - ↑

Low Cost - ↑↑ ↓ ↓ ↓ ↓ ↓
Quick

Responsiveness + ↓↓ - - ↓ - -

Multiple
Measurements

+ ↓↓ ↑↑ ↑↑ ↑↑ ↑↑ ↓↓

 < 23 weeks < ± 3 C < ± 4% < ± 2 knts.
< ± 5 degrees

< 0.0005
inHg

< 2 ft. on
longest side

↑↑ Strong Positive Correlation ↑ Positive Correlation ↓ Negative Correlation

↓↓ Strong Negative Correlation + Positive Polarity - Negative Polarity

11

3. Research

This chapter describes existing products both commercially available and the previous

Senior Design project for this system. Additionally, the chapter includes the research
done for component selection, communication protocols, programming language
selection, the various interfaces between components, and a discussion on power

supplies.

3.1 Existing Products

Currently there are numerous options when it comes to autonomous or unmanned control

tower like services. They typically provide pilots with necessary information like the

weather conditions and radio checks similar to what our system will provide. However,
these products usually provide way more services for the pilots like monitoring traffic in

the surrounding airspace and relaying that information. In addition to the autonomous
FBO’s, there is also the more traditional approach of having a dedicated FBO at the

airport. While these systems share similarities in capabilities they also share a similarity

that also happens to be their biggest flaw: having a high cost. Between initial system
costs, installation or construction, and routine maintenance or operating; these factors

can lead to quite the costly investment in the long run. For some airports, this is a
completely justifiable cost, for other small airports this is not the case and will typically
lead to the airport being unmanned and unavailable to provide critical information to any

pilots.

Figure 3.1.1 Potomac Aviation Micro Tower

12

The first similar product is the Potomac Aviation Micro Tower (Figure 3.1.1). The Micro
Tower is an all-in-one system that operates on the area’s CTAF frequency (Usually

UNICOM) and provides the same core services that our system will provide. The Micro

Tower can broadcast weather conditions, altimetry, visibility, and runway advice. The
Micro Tower can also perform the same communications check that our system will have
by recording and playing back a pilot’s transmission and giving the power level of that

received transmission.

Where this system exceeds is its AI capabilities with all that information. For example,
the Micro Tower can sit in the radio channel and detect when a new airplane enters the

airspace, giving that pilot a greetings and introduction to using the system. Another
advantage of the Micro Tower is that it is completely solar powered, meaning it can be

set up anywhere in the world and not have to rely on a power source. This leads to an
incredibly easy user setup experience; only need two individuals and about a half of a

day’s work to get the system up and running.

However, airports like Orlando Apopka don’t necessarily need or can’t afford the multiple

thousands of dollars cost of dedicated weather and broadcasting equipment. As

mentioned earlier, the Micro Tower fails at being cost accessible for small airports. With
a quoted price starting at $75,000, this puts the system in a budget range that is too much

for an airport such as Orlando Apopka.

Figure 3.1.2 Unmanned Control Tower

13

Another similar solution is an unmanned control tower. This is not necessarily a buyable
product like the Micro Tower, but should still be considered as a method to compare

similarities, usability, and the effectiveness of our system.

These unmanned control towers have the eyes and ears of a standard control tower, with

none of the personnel. On average, they can reach heights of 80-feet tall and house high-
definition cameras that send the information back to controllers, stationed at a manned

ATC Tower. The cameras are spread out to eliminate blind spots and in the future, can

be equipped with infrared technology to operate at night or in bad weather.

Overall these solutions again, far exceed the needs of a small airport such as the Orlando
Apopka airport, and the price is similarly outlandish when you take into consideration that

an airport like Orlando Apopka is mostly self-funded. The Orlando Apopka airport could
not afford the expensive Micro Tower and wanted a similar product without the cost, which

is why we are building this low-cost solution for them.

Our solution will most importantly be low cost but it will also deliver the functionality that

is critical to the safety and efficiency of unmanned airports. We will deliver a easy to use
weather reporting system which when requested, inform pilots of the current wind speed,

wind direction, temperature, humidity, and pressure. We will also deliver an incredibly

accurate communication check system. This system will allow the pilot to request the
system to record their transmission and then play it back so the pilot can hear exactly

how they will sound to other pilots or air traffic control at other airports.

3.1.1 Previous Senior Design Project
Since our advisor, Professor Michael Young, proposed this project last year for a senior

design team, we felt it was important to elaborate on the system they created.

Our project is loosely based on theirs being that the overall premise is the same but there
are many key differences which are attributed to their major downfalls and what Professor

Young expected from the system. Many of the requirements for the project are
requirements he set based on how the system would be use and how important certain

aspects would be.

He had two main concerns, audio and the weather playback. At the time of his proposal,
his airport was considering what their options were in regards to purchasing a weather

reporting system. They came across a few solutions including those listed above but they

were all incredibly expensive and over budget for this small airport. Young’s proposal was

14

to build a cost-efficient solution that could do both test radio communications and report

the current weather conditions.

Their main issue last year was with the audio playback. They attempted to design the
system themselves instead of using a CODEC which ultimately resulting in them

scrapping that circuitry and opting for a removeable media type solution. They found a
software package that was self-contained and could be quickly deployed so they installed
it on a flash drive and had the audio stream through their laptop and the flash drive instead

of back through the radio. If this wasn’t enough of an issue, the audio quality was also

subpar for Young’s standards. He wanted a virtually distortion free audio playback which

would allow the pilot to accurately hear how they sound to other pilots. Since we opted to
follow his advice and use a CODEC we had a much easier time manipulating and storing

the audio. Though we had issues with the CODEC we were ultimately able to record and
transmit audio through the aviation radio with minimal distortion and we were also able to
transmit a power level which gives the pilot quantitative information about the quality of

their transmission.

Another issue Mr. Young had with the previous project was the weather readings. The

previous team only reported wind speed and wind direction. Any pilot can get that

information from the wind sock at the end of the runway. What the pilot really needs is to
be able to combine the wind information with information on the current temperature,
pressure, and humidity, so they can have a better idea of the weather conditions

surrounding the aircraft.

To resolve this complaint from Mr. Young, we added an additional sensor with the ability

to read temperature, pressure, and humidity. This give the pilot a more complete picture
of what conditions around the aircraft are like and they allow the pilot to make quick

calculations and observations to help them take off or land their aircraft.

The previous team also did not take into consideration the real-life application and use of

this system. They failed to keep in mind practicality and circuit protection. Very little of
the circuitry they created was useable because we switched some of their key parts but

also because of the lack of conforming to industry standards. Forcing the user to have a
laptop available in order to process the audio is not a feasible solution and was not at all

what Professor Young had intended. He wanted something completely hand held and
designed in a way that the only thing that needed to be mounted was the anemometer

which would be attached to the roof our outside wall of the hangar. This way all of the

sensors could get the correct measurement.

15

3.2 Main Control Unit

This section details the options that have been assessed for the main control unit of the

system and why the specific system was selected. It also describes the communication
protocols, how the various components of the system will communicate, and the language

chosen to write the software for the system.

The main control unit of a system receives and sends data that direct the operations of a

computer’s processor. The MCU translates input information into control signals that are

sent to and carried out by the central processor. Using the information obtained, the

processor can then communicate accordingly with any attached external device. In our
project’s case, our MCU receives digital signals (that are first converted by an ADC from

analog signals) as input. The input information is then used by our program to output the

related information back to the user. The MCU is necessary to communicate between
devices providing multiple functions that allows its user to send, receive, and manipulate

control signals from other computer devices.

3.2.1 MCU Options and Selection
This section details the two microcontrollers we deliberated over, their specifications,

strength, and ultimately the one we chose that best fitted our project specifications. The
reason for choosing one microcontroller over the other is also due to their different coding

environment and language. Additionally, we also decided to favor the microcontroller the

members of our team are most accustomed to the Raspberry Pi.

3.2.1.1 Raspberry Pi 3 Model B

Figure 3.2.1.1 Raspberry Pi 3 Model B Configuration

16

The Raspberry Pi 3 Model B is a microcomputer equipped with a quad-core 64-bit ARM

Cortex A53 running at 1.2 GHz with 1GB of LPDR2-900 SDRAM. This model contains

2.4GHz 802.11n Wireless LAN, Bluetooth 4.1, and 10/100 Ethernet connection.
Furthermore, this MCU includes an HDMI port, display interface (DSI), micro-SD card slot

for storage, 4 USB ports, and a 3.5mm audio jack. The Raspberry Pi meshes best with

the free operating system Raspbian. Raspbian is an optimized distribution of Linux

tailored for the Pi. The system provides many packages and pre-compiled software that
make the Pi versatile and easy to operate; yet, the Pi’s most powerful tool is its GPIO

pins. With a total of 40 pins (26 GPIO pins with the rest being power, ground, or I2C pins),

the Pi can communicate and interface tremendously well with external devices.

3.2.1.2 Arduino Uno

The Arduino Uno is a microcontroller that operates at 5V and runs at 16-MHz. The board

is populated by fourteen digital input and output pins and six analog input pins.

Figure 3.2.1.2 Arduino Uno Configuration

The Arduino Uno’s 8-bit AVR RISC-like microcontroller is called ATmega328P and

provides 32 kB of flash memory with .5 KB used by the bootloader; it also provides 2-KB

of SRAM and 1 kB of EEPROM. Other features include the 32 general purpose registers,
an SPI serial port, serial programmable USART; and most conveniently, an onboard 8

channel 10-bit A/D converter. The A/D converter is a required component for our project

17

since the analog signals from the weather sensors need to be converted to digital signals.
The digital signals can then be received and manipulated in order to accurately output the

correct response for the weather conditions to the user.

3.2.1.3 MCU Selection

The Raspberry Pi was the clear winner for our project; the Pi was favored not only
because of its specifications, but also because the team members had more experience

with this specific microcomputer. We researched both microprocessors thoroughly before
finalizing our decision; we chose the Pi because of its versatility, accessibility, and open-

source libraries. One slight problem was that the Pi lacks an analog-to-digital converter
which is needed to process the incoming analog signals from our sensors; on the other
hand, the Arduino has a built-in A/D converter while the Pi isn’t naturally equipped with
one; but, that did not really impact our decision as much because we made use of an

external A/D converter paired with our MCU. Figure 3.2.1.3 illustrates the specification

differences between the Raspberry Pi and Arduino Uno that are further discussed below.

One of the reasons we selected the Pi is because of its naturally optimized operating

system called Raspbian. This Linux-like operating system is distributed with over 35,000

packages and pre-compiled software bundle meant to improve the Pi. It also makes its

overall installation process as well as interfacing with peripheral devices quite easy. The

programming experience is made simpler by providing a graphical interface to the user.
Raspbian is a fully-fledged Linux-based operating system used by the Pi (which in turn is
basically a small computer) as stated above, but the Arduino Uno is only a

microcontroller. Using the Raspberry Pi 3 as a basic Linux computer allows us to possibly
set up a graphical interface in the future, while also providing us with a headless command

setup now. The Arduino Uno still supports many functions required by our project. This
includes the key function of receiving and converting inputs from sources such as a

temperature sensor or anemometer using its built-in A/D converter. Unfortunately, it also
does not support a multitude of specifications required by our project such as Wi-Fi

access or python.

The Arduino Uno does not provide the user with a variety of coding languages. IDLE’s

are not compatible (as shown in figure 3.2.1.3) with Arduino; instead, the user is provided

with specifically designed tools to setup and program the different Arduino models. The

codes written on the board are known as sketches and are written in C++. This was one
of the main deal breakers that pushed our decision towards the more favorable Raspberry

Pi. We selected python as our coding language for the ability to interact with Django -a

18

database framework that allows us to store data on the Pi. Also, python offers many
packages to deal with analog signals which further narrowed down our choice of coding

languages.

Furthermore, the Raspberry Pi includes a faster processor (running at 2.4 GHz), multi-
tasking power (as opposed to Arduino’s focus on running one simple program), and it is

an independent computer (Arduino Uno is not). The onboard Ethernet network card, the
wireless capability, and the graphical interface provided by the Pi shows its superiority

with software applications and usability. This graphical interface is an imperative
requirement as our sponsor mentioned his desire to change some of the functionalities
implemented by our project; such as, changing the current airport location easily or the

click-pattern. Also, access to the internet via Wireless Lan or Ethernet connection is

required to communicate to our web interface.

Another feature on the Raspberry Pi 3 that contributed to its selection is the 2.4GHz

802.11n wireless capabilities and the 10/100 Ethernet port. This allows us to easily install
new software and packages directly from a webpage (as long as there’s an internet

connection) and set up a local web server. One of the goals of this project is to have a

web interface that the user can modify parameters from. Having the Ethernet port lets the
user plug in their computer and access a web interface we set up that’s run on the

Raspberry Pi 3.

Component Raspberry Pi 3 Arduino Uno

Model Model B R3

Price Range $35 $22

Dimensions 85 x 56 mm 74.8 x 53.3 mm

CPU ARM Cortex A53 ATmega328P

Clock Speed 900MHz 16MHz

RAM 1GB 2KB

Flash Micro-SD card 32KB

EEPROM N/A 1KB

19

Figure 3.2.1.3 Raspberry Pi Vs Arduino Uno Specs

The 26 GPIO pins on the Raspberry pi was more than enough to finalize our decision.
One of the reasons we chose the Pi is because of all the available general purpose pins

at its disposal. This variety of pins allows us to interface with our microcontroller and have

several pins leftover for backup use. Since the Pi does not have a built-in analog-to-digital

converter, we needed to acquire an external ADC converter. We chose the ADS1015
ADC because it fitted our needs and provided more bit precision and power needed by

our project.

Input Voltage 5V 7-12V

Min Power 3.5W .3W

GPIO Pins 26 14

Analog Input N/A `8 10-bit

I2C 2 2

SPI 1 1

Dev IDE IDLE Arduino Tool

Wi-Fi 2.4GHz 802.11n N/A

Ethernet 10/100 N/A

USB Master 4 1

Video Out HDMI, Composite N/A

Audio Out HDMI, Analog N/A

20

 Figure 3.2.1.3.2 ADS1015 external analog-to-digital converter

The ADS1015 is an analog-to-digital converter that utilizes 12 bits of precision to

accurately detail the analog signal collected from our sensors. The Pi’s accessibility,
processing power, multi-tasking capability, and functionalities make it a perfect choice for

our project. Also, the I2C bus pins of the Pi meshes quite perfectly with the with the

analog-to-digital converter. The I2C interface also provides a neater wiring between the
Pi, ADC, and sensors instead of the way the SPI is configured when wired with the

Arduino Uno or the Pi.

3.2.2 Communication Protocols
The nature of VHF Radios in aircraft communication has become critical in the
communication of information between traffic control towers and aircrafts all around the

country. Radios have communication protocols that need to be addressed prior, during

and after communications. These protocols dictate who communicates, which signal

propagates in the given frequency band and if your VHF will listen or transmit. These
signals will need to be filtered and manipulated in such a way that the Raspberry Pi 3 will

be able to interpret them and use them to follow adequate protocol for communication.

3.2.2.1 RX Signal
The received signal from the IC-2A Radio will be sent to the interface board from the

positive end of the volume potentiometer. This way we get a clear unattenuated audio

21

signal from the radio. The importance of this signal is that it will allow the Raspberry Pi 3

to record and save the pilot’s communications check audio.

3.2.2.2 TX Signal

The other function of our audio path is to transmit the audio signal from our Raspberry Pi.
The TX signal is signal that is send out and carries the transmitted message. During
transmission, the half-duplex system will by nature be unable to receive any kind of

transmissions.

3.2.2.3 Carrier Detect

Carrier Detect, in communications, is present in the squelch circuit with the function of
suppressing the audio output of a receiver in the absence of a higher amplitude and strong

input audio signal. The squelch can be opened, allowing all audio signals entering the

receiver tap to be heard. This circuit can be useful when attempting to hear weak or

distant audio signals. Squelch operates alone on the detection of the strength of the

signal; when a device is set to mute, there is no audio signal present. Knowing if there is
a carrier detect present, at the squelch, will allow the MCU know when there an audio

signal present. We will use the squelch voltage to register when “clicks” have been made

by a pilot.

3.2.2.4 Push-to-Talk

PTT has been a standard of two-way radio communication for quite some time. The
nature of half-duplex communication systems is that there must be some sort of signal

flag to alert the transceiver that it is time to stop receiving and ready for transmission. The
reason it is called push to talk is that the action required for this stage is top push the

button on the microphone. What the button does is pull the PTT relay in the radio to

ground, thus setting it into transmit mode. For the case of this system what will be done
is that through one of the GPIO pins of the Raspberry Pi 3 and a PTT circuit in the interface

board, the MCU will ground the relay and set the radio into transmit mode.

Since the IC-2A VHF Aircraft radio is a half-duplex communication system it can only do

one of the two communication functions at a time. When the PTT is not grounded the KX

170B is in ‘Receive Mode” and can receive incoming audio signals. But when the PTT is

grounded the radio switches to ‘Transmit Mode’. In this mode, the system cannot process

any received audio and any communication to it is essentially lost.

22

3.2.2.5 Automatic Gain Control (AGC)

Automatic Gain Control is a closed loop-feedback circuit where a signal is fed into and it’s

expected to maintain and regulate to certain level of amplification. This signal can be

sound or radio frequency. The AGC can give us two different cases for output. The first
case is if the level of the input signal is too low, the designed system will output an

amplified signal to the desired level. The second case is if the input signal is too high, the

designed system will output a lowered signal to the desired level as well. The purpose of
this system is to maintain a constant level for the output signal giving a wider range of

input signal levels. AGC is commonly used is radio receiving to help equalize the desired
average volume due to different levels received in the strength of signals and fading of

the same. One of the consequences of not using an AGC is seen in the relationship
between the signal amplitude and the sound waveform – the amplitude of this signal is

proportional to the radio signal amplitude. The information contained by the signal is

carried by the changes of the amplitude of the carrier wave. If the circuit were not linear,

the modulated signal could not be recovered with reasonable fidelity. However, the
strength of the signal received will vary widely, depending on the power and distance of

the transmitter, and signal path attenuation. Overall, the AGC circuit keeps the receiver's
output level from fluctuating too much by detecting the overall strength of the signal and
automatically adjusting the gain of the receiver to maintain the output level within an

acceptable range.

3.2.3 Language Options and Selection

The MCU chosen also impacted our choice of programming language. This section

describes the language chosen, why it was chosen, and how it will impact the system.
3.2.3.1 MCU

For the main control unit, or MCU, there are a few options as far as what language to

choose. Since we are utilizing the Raspberry Pi 3 for the MCU the first priority, was
making sure that the programming language that we selected was directly compatible
with the Raspberry Pi and had libraries in which to access the multiple General Purpose

Input and Output pins, or GPIO pins. Having a library for the Raspberry Pi’s GPIO pins
allows us to not have to work from the ground up, and strictly focus on how we are going

to program the GPIO pins specifically. This saves us a lot of time and effort that we don’t

have to put into a lot of code that’s only purpose would be to allow us to access the pins.

For this design, we chose to go with Python as our programming language for the MCU.
Using python solves the initial requirement of having a default library for interfacing with

the Raspberry Pi’s GPIO pins through the RPI.GPIO library. This allows for basic reading

23

and writing to the pins without having to create those initial functions ourselves.

Another reason we chose python as our main language was because the Analog to Digital
Converter, known as an ADC, that we are choosing has a python library that allow for
easier reading and writing directly from the chip without having to do a lot of initial

handshake messages and procedures to receive and send data over I2C. Because
reading from most particular ADC’s can be complicated, as they have certain bit patterns
in which are needed to configure and choose which of the devices’ functions are being
used, it is nice to have an extra bit of encapsulation in which instead of building these bit

patterns ourselves, we can simple call a read or write method. This not only shortens the
amount of code written by us but again allows us to focus more on the actual
implementation of our system rather than having to deal with a lot of headache simply

reading from the ADC. This library is also open source so it is free to use and heavily

supported by the community in case we run into any issues.

Python was a good choice compared to other languages such as C as not only is it

inherently Object-Oriented and allows for a more modular structure to our code. The
Object-Oriented nature of Python allows us to create objects in which to delegate the

functions of reading and writing to certain components and sensors. It will also allow us
to create a “Weather” object to collect the current conditions to easily pass them to the

main function which will create the audio to transmit to the pilot. This will simplify the code

immensely and make it simple to add new weather reading as necessary. The Object-
Oriented nature of Python also allows us to give control of certain components to certain

objects and much more easily debug our code. Python is also a scripting language which

makes it highly flexible in where and how it is implemented. This means that no matter

how we structure the system and integrate the various other components (i.e. the HTTP

server, DCHP server, etc.) the usage of our code can be kept relatively independent.
This allows us more freedom to change certain modules and components in the system

if we must and not have to overhaul our python scripts too much. In other languages like
C, it can be much more difficult to configure the code with these different components, as

it has to be recompiled and is only set to run a certain way. There is not a lot of flexibility

there, which is ideally what we find to be valuable in the structure of this system.

3.2.4 Text-to-Voice Software
One of the most significant component to our system design is the Text to Speech

software. This software style, abbreviated as TTS, is a form of speech synthesis created

use a variety of text to fully automate and convert those text into spoken voice output. It

24

basically obtains all the weather and transmission data obtained from all our components
sensors and creates a voiced broadcast that will be used to communicate that

information. The user may simply also request a communications check which then does

not make use of the TTS but instead creates a playback which records and rebroadcasts

the previously transmitted information providing a power level to that transmission as well.
Both broadcasts are played over the radio channel and heard by the pilot after punching

in the correct click pattern. In order to produce a clear and coherently pronounce the

provided key words a few important requirements had to be met when selecting the

correct text-to-speech software. The main priority is that the speech software we utilize

would have to always keep providing the pilot with bullet clear and concise data at all

times. The clearness must persist even when the speech modules is creates using the

simple audible outputs over normal laptop speakers. This speakers’ signal usually run at

different amplification and compression circuits which are then eventually finally

broadcasted of the radio channel as radio waves.

 Furthermore, during the process of processing the sensors data and recording and
recommunicating the communications check data meant to be replayed to the pilot, our
system is consistently synthesizing speech by concatenating sentences from a self-

provided database of prerecorded words. The voice response system is limited to the

response it can provide base on this database of words predetermined for the system. In

addition, throughout this process the system maybe heavily infected by a lot of
interferences and might become disoriented before it is heard by the pilot failing the
requirement of providing a clear and concise voiced-over message (with no noise) to any

inputs selected by the pilot. And thus, it is really important to clear and clean the output

as it suffers from many possible interferences. Another major important requirement for

this speech software is that it provides a not too fast verbal response to a provided input
as so to not mispronounce or cause the pilot to miss hear the information if the software

answers in a faster tempo. We needed to find the correct voice that would response

sophistically enough and articulate every word encountered.

3.2.4.1 Requirements for The Text-to-Speech Software

For our project, we also wanted to offer a language software that would provide

multiple languages and allow the user to adjust different settings. These different settings

would encompass allowing the user to program multiple languages, pronunciation, and

25

also allow for customizing the speed of the output signal. As an output is non-acceptable

if it is broadcasted too fast to hear or mispronounces certain words. In addition, we

needed to research different software applications and allow our sponsor to listen and
hand-picked the voice pronunciation that would best meet his pronunciation and aptitude

requirement. The voice settings most also be appealing enough to most other users’

intent on using this system in order to improves the user’s experience creating an ease

of use with the system. The next requirement on the list is for the Text to Speech software

to have the ability to easily save and store the output in a file. This can be utilized to test

the system and log a history of all the inputs up to a certain point. This way, the system

keeps track of a list of requested inputs and outputs in case the user wants to observe

previous broadcasts.

One last requirement, probably one of the most important, is that whichever of the

multiple open sourced Text to Speech solutions we select must be accessible even

without internet connection. If the system is placed within an area where a solid internet

connection is unreliable it should still be able to output the voiced over information

requested. In that case, we decided not to have a major part of the system be reliant on

something as a strong internet connection in order to function properly. It is best if the

software installed does not demand internet connection in order to service the user. Using

the listed requirements above, we ran across a few good Text to Speech solutions.
Among them is IVONA Text, this text to speech solution that supports both SSML 1.0 and

1.1 (as defined by speech synthesis markup languages standards). IVONA text provided

by far the clearest and best voice out of all the other Text to Speech software we came

across. It provided great functionalities and was highly configurable providing many

configurations that allowed its user to set the nationality, language, gender, and even

pronunciation method. At first, we we’re very ecstatic that we found such a system that

provided so much customizability and we completely overlooked one of the requirements

(actually describe as a major requirement) listed above. We needed a software system

that would not require a reliable internet connection to function properly. Another

apparent and incredibly further annoying issue that moved us away from this software is
the other fact that it breaks yet again another requirement by not providing a possible way

of easily saving the output of the file by default. Even worst when we realized we we’re

26

looking at a software system that required a monthly payment service. We then added

the requirement that the system must be free as our sponsor would definitely not wish to

pay a periodic sum per month for this software.

3.2.4.2 Selecting the Text-to-Speech Software

Looking further for a free test to speech software, we came across the Festival TTS. We

made sure that this was a possibility by first simply asking if it was free, open sourced,

and mainly also compatible with a Linux system. The Festival TTS software is written in

using C++ libraries and provide a general framework for building speech synthesis

systems. It also includes various modules that offer full text to speech from a number of

APIs. Festival TTS as of this moment is only bilingual providing an interpreter for English

and Spanish. This is purposely fine for our case as we only require a system that can

work in English. Festival works well on Linus and is by far the most configurable system

we found as it provided us with tons of different configurable voices. Furthermore, the

online community created and uploaded a multitude of other language packs that can

simply be imported into the system that are neatly documented. The harsh compatibility

issue to one requirement that needs to be met to pair well with our system was that

Festival was not as clear as we wanted nor provided an easily storable filesystem.
Another set-back that causes keep researching and testing different text to speech

software.

 Finally, we came across the PICO TTS and hoped it would meet all of our specified

requirements. The PICO TTS is a barebones and stripped down version of an abandoned

text to speech project recently used in googles android products that was formerly named

Google TTS. This software provided incomparable voice quality with a lot of support and

documentation. The Google TTS was scrapped and switched into PICO which is a free

open source, non-commercial product that boast of being an improvement over Festival,

PICO, and FLITE (another TTS). PICO is also open source (just like GOOGLE TTS used

to be) and run quite perfectly on Linux and the Raspbian operating system of the

Raspberry Pi. With Linux, the installation step is quite simple as we only need to call the

commands using a terminal which facilitates the installation process by making it overly

easy. While there is not a ton of configuration for this system, it doesn’t require internet

27

connection, is open source, and above all free. Furthermore, we finally settled on this

choice because it also fulfilled all our other requirements. It provided a clear voice output

and the file is easily store as a wav file. This system lacks the configurability of the other

TTS’s mentioned above but at least still provides a way configure the actual voice over.
The default gender which is set to a female voice and cannot be changed. This is also

fine as our sponsor declared that he would prefer to have a female voice with a sort of

clear accent. Thus, this is not an issue for our project it fits perfectly within the scope of

what we wish to accomplish. It’s true that the PICO doesn’t provide much configurability

in the voice department, but at least provides a good amount of different languages while

also allowing the user to switch the pronunciation speed with different filters. This can be

changed by editing the text that is being sent to the engine. The PICO TTS engine

provides us with just enough configurability, it is free, and runs quite well on the Linux

operating system without needing an internet connection. This system evidently meets

all our requirements and was thus the clear winner for our project.

3.2.3 Voltage Regulator Options and Selections

The power supply system of the Auto FBO needs three supply voltages of 3.3, 5, and

13.7 or 15 V. The 3.3 V supply will need to supply an estimated maximum current of 0.54

A, the 5 V supply 2.83 A, and the 15 V supply 1.44 A. All regulators under $10.00 were

considered to aid in the overall price of the Auto FBO system. The tables 3.2.3.1 –

3.2.3.3 below show a comparison of the final selection of regulators considered, with the

chosen regulators marked with a star after their part number.

The main parameters chosen to compare the candidate linear voltage regulators for the
regular system were the regulated voltage range, maximum current output, maximum

input voltage, maximum voltage dropout at the maximum current output, and price. The
regulated voltage range is the given voltage range that a regulator will have at its output,

at or near the maximum output current. The regulated voltage range is an important
parameter to consider because a wide regulated voltage range can cause unstable or
unforeseen effects on other components it is supplying, which usually have a minimum

and maximum supply voltage specification. Maximum current output was considered
since the power supply system must be dependable enough to deliver enough current to

all devices if they are demanding maximum current. The maximum input voltage and

28

maximum dropout voltage go hand-in-hand. The dropout voltage of a voltage regulator is
the smallest possible difference between the input voltage and output voltage for the

regulator to remain in its intended operating range. For example, a regulator with a 15 V
output and a 2 V dropout voltage rating will only output 15 V if the input voltage is above

17 V. If the input falls below 17 V the output of fail to regulate 15 V. The maximum input
voltage is important for all regulators because the 15 V regulators of this design will have

around a 2 V dropout voltage. Due to this, the maximum input voltage of any regulator to
be considered must be around 17 volts, however an input voltage greater than 17 volts

would be preferred to provide overhead. As demonstrated in the example above the lower

the maximum dropout voltage the more dependable a regulator it will be. Other
parameters such as the line regulation, load regulation, maximum quiescent current, and

operating temperature are used as well to decide which linear regulator to choose.
However, these parameters carried less weight than the formerly described parameters,

and we're only included for a more well-rounded comparison.

In choosing the 3 V linear regulator it was an obvious choice to choose the LT1129I-3.3
since its maximum input voltage is 30 volts and the other two regulators had only a 16 V

maximum input voltage. This regulator also met the maximum current output needed for

the regulator design. These qualifications along with its other specifications and price

gave merit to choose this regulator. The decision between picking a 15 V or 13.7 V

regulator was made when searching for a 13.7 V regulator. The only 13.7 regulator found
commercially available had suitable specifications, however, not many parts for left on

the market. The 15 V regulator was chosen for reliability of buying instead. Since each of
the candidate 15 V regulators had a maximum input voltage of 35 V, the L7815C regulator
was chosen since it had a lower maximum voltage drop out with enough maximum output

current with a tighter regulated voltage.

The main parameters chosen to compare the candidate switching voltage regulators were
the efficiency, maximum current output, maximum input voltage, voltage regulation,

switching frequency, switch resistance, and maximum Q current. Efficiency is highly
important to conserve power as the input voltage of the device will be 20V with a 5V

output voltage. Maximum current output was considered since the power supply system
must be dependable enough to deliver enough current to all devices if they are demanding

maximum current. Maximum input voltage was considered since the input voltage to the

regulator is set to be 20V. The voltage regulation is highly important as this regulator is

primarily supplying the RPI. The switching frequency and resistance were taken into
consideration since a higher switching frequency along with a low resistance would create

a tighter DC voltage rail with minimum voltage drop. The LM2676 was chosen because

29

of its maximum output current and price compared to the LM2670.

3.2.3 AC to DC Power Supply Options and Selections

The candidates for the central power supply were chosen to supply at least a maximum
current output of 5 A, the maximum demand of the design, and a supply voltage of 20 V,

as required for the voltage regulator system. This voltage and current was chosen to
prevent against dropout of the 15V linear voltage regulator and provide maximum current

demands of the design. Also, the power supply units were only chosen if their price for

one unit was under $60.00 Shown in table 3.2.3.4 are the power supply units considered
for the central power supply with their specifications as well as price, with the chosen unit

marked with a star after its part number.

The main parameters chosen to compare power supply to units where AC input voltage,

DC output voltage, maximum current output, efficiency, and price. Since the 15V linear
regulator was going to have the most power dissipation with a dropout voltage of 2V, a

supply voltage of 17–20 V was needed. This constraint narrowed the search or a power

supply unit vastly, especially considering price. The two considerations for the power

supply unit we're from the same company with similar design. The GST120A20-R7B
power supply unit was chosen since it had the cheapest price and the necessary

specifications.

30

Part No. Min-Max
Regulated

Voltage

Max
Current
Output

Max
Input

Voltage

Max Voltage
Dropout at

Max Current
Output

Line
Regulation

Max Load
Regulation

Max Q
Current

Operating

Temp.
Per
Unit
Price

 V A V - - - mA °C
TLV111

7I-33
3.168-

3.432

0.8 16 1.2 10 mV
(max)

15 mV
(Max)

15 -40-125 $0.85

LT1129I

-3.3*
3.250-

3.350

0.7 30 0.7 10 mV
(max)

30 mV
(Max)

.050 -40-125 $5.65

AMD715
0

±2% 0.8 16 1 ±0.01 % 1% 4.3 -40-125 $4.91

Table 3.2.3.1: 3.3 V Linear Regulator Comparison

Part No. Max
Efficiency

Max
Current
Output

Max
Input

Voltage

Min-Max
Regulated

Voltage

Frequency Switch
Resistance

Max Q
Current

Operating

Temp.
Per
Unit
Price

 % A V V kHz Ω mA °C
LM2676* 94 3 45 4.9 - 5.1 260 0.15 6 -40 -125 $4.90
LM2670 94 3 40 4.9 - 5.1 260 0.15 6 -40 -125 $6.00

LM53625 90 2.5 36 4.92 – 5.125 2100 0.13 0.16 -40 - 125 $3.70

Table 3.2.3.2: 5 V Switching Regulator Comparison

31

Table 3.2.3.3: 15 V Linear Regulator Comparison

Power Supply
Unit

Input
Voltage
(VAC)

Output
Voltage
(VDC)

Max Output
Current (A)

Efficiency Overload
Protection

Overvoltage
Protection

Output
Power

(W)

Operating
Temperature

(°C)

Per Unit
Price

GSM160B20
-R7B

80-264 20 8 92.5% 105-150% 105-135% 160 -30-70 $61.75

GST120A20-
R7B*

85-264 20 6 90% 105-160% 105-135% 120 -30-70 $41.68

Table 3.2.3.4: AC/DC Central Power Supply Unit Comparison

Part No. Min-Max
Regulated
Voltage (V)

Max
Current
Output

(A)

Max
Input

Voltage
(V)

Max
Voltage
Dropout
at Max
Current
Output

(V)

Line
Regulation

(mV)

Max Load
Regulation

(mV)

Max Q
Current

(mA)

Operating
Temperatu

re (°C)

Per
Unit
Price

L78S15C 14.25-

15.75

2 35 2.5 300 150 8 0-150 $0.84

L7815C* 14.4-15.6 1.5 35 2 150 100 6 -40-125 $0.61
LM340 14.25-

15.75

1.5 35 2 150 150 8.5 0-125 $1.51

32

3.2.4 Weather Sensor Options and Selections
In order to meet the specifications for the weather system it is necessary to select devices

that can measure wind direction and speed, temperature, dew point, and pressure. The
sensing of wind speed and direction is typically measured by an anemometer and wind

vane. There several types of these devices including cup, vane, hot-wire, laser doppler,

and ultrasonic anemometers. Temperature is measured by a thermometer which is also

used for the measurement of dew point which utilizes humidity and temperature. For our

weather reporting system, pressure will need to be reported as absolute pressure.
Current pressure sensing technology includes vizio resistive strain gauge, capacitive,

electromagnetic, and potentiometric. For the purposes of this design it was desirable to

choose weather sensors that would communicate in I2C.

3.2.4.1 Anemometer and Wind Vane

The anemometer and wind vane huge for the weather system is the Davis Instruments

7911 Anemometer. This device is used as it was given to this project free of charge by

our adviser. The 7911 Anemometer features 3 polycarbonate wind cups to measure wind

speed and a UV-resistant ABS plastic wind vane to measure wind direction. It comes with

a 40- foot long, 26 AWG cable that ends with an RJ-11 connector. It can measure wind

speeds up to 173 knots (200 mph) with a 1 knot resolution and a ±5% accuracy. It can
also measure wind direction from 0 degrees to 360 degrees with a 1-degree resolution

and a ±7% accuracy. The Davis Instruments 7911 Anemometer is also a component of
the Weather Monitor II and Weather Wizard III, both of which are complete weather

stations also manufactured by Davis Instruments.

3.2.4.2 THD Sensors

A comparison among the potential temperature, humidity, and dew point sensors are

shown in the tables below. Since dew point can be derived from temperature and humidity
measurements only temperature and humidity sensors are necessary for the weather

system. The main parameters used for comparison among the temperature sensors are
range, accuracy, resolution, long term stability, maximum response time, voltage supply,

maximum current use, operating temperature, and price. Similarly, the main parameters

used for humidity sensors mirror that of the temperature sensors. The chosen THD
(Temperature Humidity Dew Point) sensor is marked with a star in the tables below after

its part number.

33

3.2.4.3 Barometric Sensor

A comparison among the potential barometers are shown in tables below with the chosen

sensor marked with a star in the table below after its part number. Barometers were only
chosen if they only had a range of roughly 20-40 inHg, as this is slightly beyond the range

of atmospheric pressure around the world. The main parameters used for comparison

among the barometers are similar to that of the temperature and humidity sensors.

3.2.4.4 MS860702BA01

Among all the temperature, humidity, and pressure sensors the chosen device to cover

these measurements was the MS860702BA1. Not only was it chosen because it could
be used for temperature, humidity, and pressure measurements, but also its

specifications compared to the other parts. In terms of price, however, it is clearly a better

selection, especially if mass production of this system is to be implemented.

The MS8607 is the novel digital combination sensor of MEAS providing 3 environmental

physical measurements all-in-one: pressure, humidity and temperature (PHT). This
product is optimal for applications in which key requirements such as ultra low power

consumption, high PHT accuracy and compactness are critical. High pressure resolution
combined with high PHT linearity makes the MS8607 an ideal candidate for
environmental monitoring and altimeter in smart phones and tablet PC, as well as PHT

applications such as HVAC and weather stations. This new sensor module generation is
based on leading MEMS technologies and latest benefits from Measurement Specialties
proven experience and know-how in high volume manufacturing of sensor modules,

which has been widely used for over a decade.

Regarding its temperature measurements, the MS860702BA1 performs best among the

other parts in max response time and power consumption. Its temperature range is third

best, however, its range is more than adequate. The accuracy of the device is the worst

among the selected devices, but is sufficient enough for accurate weather reporting.
Resolution is among the best, along with its long-term stability. The humidity and pressure

specifications of the device is overall the best out of all the possible selections.

The MS8607 includes two sensors with distinctive MEMS technologies to measure

pressure, humidity and temperature. The first sensor is a piezo-resistive sensor providing

pressure and temperature. The second sensor is a capacitive type humidity sensor

providing relative humidity. Each sensor is interfaced to a ΔΣ ADC integrated

34

circuit for the digital conversion. The MS8607 converts both analog output voltages to a
24-bit digital value for the pressure and temperature measurements, and a 12-bit digital

value for the relative humidity measurement.

Another reason this sensor was selected was because it can be communicated with via

I2C. Since the anemometer uses the same communication protocol, it greatly simplifies

integration if both sensors run on the same protocol. The external microcontroller clocks

in the data through the input SCL (Serial CLock) and SDA (Serial DAta). Both sensors

respond on the same pin SDA which is bidirectional for the I2C bus interface. Two distinct
I2C addresses are used (one for pressure and temperature, the other for relative

humidity). The I2C address for pressure and temperature is 1110110, while the I2C

address for humidity is 1000000.

35

Part No. Range
(°C)

Accuracy
(°C)

Resolution
(°C)

Long Term
Stability
(°C/year)

Max
Response
Period (s)

Voltage
Supply

(V)

Max
Current

Use
(mA)

Operating
Temperature

(°C)

Per Unit
Price

DHT22 -40-80 ±0.5 0.1 N/A 2 3.3-6 2.5 -40-80 $9.95
HDC1080 -40-125 ±0.2 0.1 N/A 0.0064 2.7-5.5 7.2 -40-125 $4.65

SHT21 -40-125 ±0.3 0.01 < 0.02 5-30 2.1-3.6 0.330 -40-125 $6.62
MS8607-
02BA01*

-40-85 ±1 0.01 ±0.3 0.015 1.5-3.6 1.25 -40-85 $8.48

Table 3.2.4.1: Temperature Sensor Comparison

Part No. Range Accuracy Resolution Stability
(RH% /year)

Max
Response
Period (s)

Voltage
Supply (V)

Max
Current

Use (mA)

Operating
Temperature

(°C)

Per
Unit
Price

DHT22 0-100% 2-5% 0.1% ±0.5% 2 3.3-6 2.5 -40-80 $9.95
HDC1080 0-100% ±2% 0.1% ±0.25% 0.0065 2.7-5.5 7.2 -20-70 $4.65

SHT21 0-100% ±2% 0.04% <0.25% 8 2.1-3.6 0.330 -40-125 $6.62
MS8607-
02BA01*

0-100% ±3% 0.04% ±0.5% 0.015 1.5-3.6 1.25 -40-85 $8.48

Table 3.2.4.2: Humidity Sensor Comparison

Part No. Range (inHg) Accuracy
(inHg)

Resolution
(inHg)

Long Term
Stability

(inHg/year)

Max
Response
Period (s)

Voltage
Supply

(V)

Max
Current

(mA)

Operating
Temp (°C)

Per
Unit
Price

KP236N6
165

17.718-

48.7245

±0.2953 0.2953 N/A 0.010 4.5-5.5 10 -40-125 $6.80

MPL3155
A2

14.765-32.483 ±0.4 0.00044 ±0.295 0.512 3-5.5 2 -40-85 $9.95

36

MS8607-
02BA01*

0.2953-59.06 ±0.059 0.0005 ±0.0295 0.015 1.5-3.6 1.25 -40-85 $8.48

Table 3.2.4.3: Pressure Sensor Comparison

37

3.2.5 Operational Amplifier Options and Selections
The usage of operational amplifiers in the Auto FBO system will be exclusively for audio

signals. These signals have a bandwidth of roughly 0 to 20 kHz. A quality operational
amplifier will have the basic requirements of low noise, low total harmonic distortion

(THD), good response (slew rate), and low power. However, these are somewhat

conflicting requirements. Typically, lower power operational amplifiers with have poor

noise and THD specifications.

Table 3.2.5 compares the potential operational amplifiers used for the Auto FBO system.
For this comparison noise, slew rate, gain bandwidth product, total harmonic distortion,

supply voltage and current, CMRR, and price per unit are included. The main factors in

this comparison are noise, THD, and slew rate. During the recording and playback of the
voice communication check, our system strives to not change the incoming audio signal

in any way. Thus, low noise and THD is needed along with a good response rate. The
GDP, CMRR, and supply voltage and current are also important features to the

characterization of an operational amplifier, and were thus included. Cost is also of

concern as our goal is to produce a low-cost product. However, a higher performance

device will obviously cost a lot more.

The chosen operational amplifier was the NE5534A. It was determined that the needed

slew rate for audio signals up to 20 kHz was 0.377 µs/V. This was determined by the
equation SR = 2πfV where f is the maximum frequency of interest and V is the max

voltage. This slew rate was met by all the chosen candidate operational amplifiers, but

some overhead was preferable. The NE5524A also has a great noise figure even

comparable with the high performance OPA models. These factors along with its other

specifications and low price is why this operational amplifier was chosen.

38

Part
Number

Noise Slew Rate GBP THD+N Supply
Voltage

Supply
Current

CMRR Price Per
Unit

 nV/√Hz
(1kHz)

V/µs MHz % V mA dB

TL082 18 13 3 0.003 7-32 2.2 100 0.50
OPA2314 14 1.5 3 0.001 1.8-5.5 0.15 96 0.75
OPA2376 7.5 2 5.5 0.00027 2.2-5.5 0.76 90 1.20
NE5534A* 3.5 13 10 0.002 6-40 4 100 0.90
OPA209 2.2 6.4 18 0.000025 4.5-36 2.5 130 1.50

OPA1612 1.1 27 27 0.000015 4.5-36 3.6 120 5.00
LM4562 2.7 20 55 0.00003 5-34 4.8 120 3.00

LME49726 15 3.7 6.25 0.00008 2.5-5.5 0.18 98 0.80
NJM2060 10 4 10 0.01 8-36 2.25 90 0.43

LM833 4.5 7 16 0.002 10-36 2.05 100 0.40

Table 3.2.5: Operational Amplifier Comparison

39

3.3 VHF Aircraft Radio Selection

The ICOM IC-A2 is a compact, synthesizes, 5 W PEP, VHF handheld transceiver. The IC-A2

offers keyboard frequency selection with extremely good stability and frequency accuracy. Shown

in figure 3.5 below is the ICOM IC-A2.

 Figure 3.5 ICOM IC-A2

3.4 Termination of Unused Operational Amplifiers

When using a dual or quad operational amplifier device it is common to have an extra

operational amplifier stage left over that isn’t required by other circuits in the design. In

this case, it is critical to correctly terminate the device. By terminate, we mean to configure

the device in a manner that allows for it to operate in a stable and predictable manner.
The added benefits of proper termination are reduced susceptibility to noise, reduced

input power consumption, reduced power dissipation, and reduced exposure to EOS.

40

The understanding of an operational amplifiers specifications will aid in properly

terminating a device. These specifications include input common-mode voltage range

and input differential voltage range. The input common-mode voltage range is the input

rage for which a stable linear behavior is guaranteed. The input differential voltage range

is the max voltage allowed between input pins. Exceeding this range can overstress the

input stage. Concerning the output stage of the amplifier, the output stage can saturate

when driven to either supply rail. When saturated to operational amplifier will consume

more power than if it was not saturated. Since operational amplifiers have large open-
loop gain, negative feedback is recommended to achieve a low, stable, and predictable

behavior.

Shown below in figures 3.4a and 3.4b are the proper configurations to terminate unused

operational amplifiers. The overall goal is to keep the output voltage directly between the

positive and negative supply rails. Both configurations make use of a voltage follower

topography.

Figure 3.4a: Single Supply Termination

41

Figure 3.4b: Dual Supply Termination

3.5 Circuit Protection

Transient Voltage Suppressors, TVS, are devices used to protect vulnerable circuits from
electrical overstress such as that caused by electrostatic discharge, inductive load

switching and induced lightning. Within the TVS, damaging voltage spikes are limited by
clamping or avalanche action of a rugged silicon pn junction which reduces the amplitude

of the transient to a nondestructive level. In a circuit, the TVS should be invisible until a

transient appears. Electrical parameters such as breakdown voltage(VBR), standby
(leakage) current (ID), and capacitance should have no effect on normal circuit

performance. When used in circuit design TVS are put in parallel with loads as shown in

figure 3.5.

 One scenario where TVS can help protect electrical devices is lightning strikes. Even
though a direct strike is clearly destructive, transients induced by lightning are not the

result of a direct strike. When a lightning strike occurs, the event creates a magnetic field

which can induce transients of large magnitude in nearby electrical cables.
A cloud-to-cloud strike will affect not only overhead cables, but also buried cables. Even

a strike 1 mile distant (1.6km) can generate 70 volts in electrical cables.

42

Figure 3.5: TVS Application

43

3.6 Interfaces

This section details how the various components of the system will communicate with

each other. Given the nature of the system, there are many streams of data that need to
be accurately relayed from one component to another so the interfaces between them

are crucial.

3.6.1 To Radio
These are the signals the radio will transmit to the pilots so the audio coming to the radio

needs to be in a form that it can transmit and it cannot be distorted.

3.6.1.1 TX Audio

The transmission will be an analog audio output coming from the audio CODEC we will

implement on the interface board. This audio will be sent through a low pass filter to
remove any high frequency noise added from the raspberry pi before being sent to the

radio through voltage-follower circuit to remove any loading effect.

3.6.1.2 PTT

This PTT block will put the radio into transmit mode prior to audio being sent to it. The
purpose of this signal is to simulate the action that is pushing the mic button to talk over

the radio.

3.6.2 From Radio
Like the signals being used to be able to transmit through the IC-2A Radio, there is also

a need to analyze the signals coming from it. These signals will allow for the Raspberry
Pi 3 to analyze what is needed by the pilot at the other end, as well as allow the Raspberry

Pi to receive the actual audio from the pilot.

3.6.2.1 RX Audio

As previously mentioned the Raspberry Pi will need to be able to receive the audio being

transmitted by the pilot. This RX audio signal will be picked up from the top of the volume

potentiometer and run through the interface board. This is to prevent the volume setting

on the actual radio to affect the RX audio signal being transmitted to the interface board.
Once the audio signal is received on the interface board it will be sent to a unity gain
buffer and then sent to our codec chip which will amplify and digitize the signal into a

Pulse Code Modulated signal which can then be sent to our raspberry pi for recording.

44

3.6.2.2 Carrier Detect

The carrier detect in our system was identified from the main radio. The carrier detect
levels were obtained by connecting the radio, at the squelch circuit output, to the
oscilloscope and examining the output voltage when there is a radio signal detect present

and when there is no radio signal detect present. For our radio, we found that when there
is no carrier present our squelch voltage is 0 V, and when there is a strong enough signal

detected the squelch voltage jumps to 4.8 V.

3.6.3 From Microcomputer

The only two signals coming from our raspberry pi will be the PTT and TX audio signals.
These will be received by our IC-2A radio and utilized to broadcast back to the user on

the other end of the communication channel.

3.6.3.1 PTT
The start of the PTT line will be originated from one of the Raspberry Pi’s GPIO pins which
will be fed to our interface board which can then be pulled to ground to signal the radio to

begin transmission.

3.6.3.2 TX Audio

The audio will come out from the Raspberry Pi through Pulse Code Modulated lines that
will then be sent to the audio codec for decoding and transforming into an analog signal

that will be useful for the radio to receive.

3.6.4 To Microcomputer
These are the signals sent from the radio and weather sensors to the microcontroller for

processing. The weather sensors need to be easily accessible and the carrier signals

need to be real time and undistorted.

45

3.6.4.1 I2C Bus

 Figure 3.3.4 Typical I2C Configuration

All communication with peripheral devices will be interfaced over the I2C “I-squared-C”

bus that is able to individually address each device. A typical configuration is shown in

Figure 3.3.4. Currently the ADC (handling the wind speed/direction and AGC), the audio
codec communication, and the temperature/humidity/pressure sensor will use the I2C bus

to communicate with the Raspberry Pi. Currently, the Raspberry Pi will act as the Master

providing the clock for all devices configured to be slaves.

3.6.4.2 Carrier Detect

The squelch voltage will be handled on our interface board by using a comparator to

check and see if the voltage has risen above a set value. In this case our squelch, when

on, goes to 4.8 V which we will compare to a 3 V baseline. When the squelch turns on
the comparator will send a logical output of 1 to the Raspberry Pi where it can be

distinguished from the “off” reading of 0 volts.

3.6.5 From Anemometer
From the anemometer, we will be sending two signals one for the wind speed and one

for the wind direction. For the wind direction, we simply supply the anemometer with a 3
volt signal and the anemometer uses an internal potentiometer to range the voltage from

3 V – 0 V. Next, we send the wind speed line directly into the Raspberry Pi where it will

46

pulse low to indicate one rotation. The microcontroller will the determine how many clicks

occur in a given timeframe to determine the wind speed measurement in knots.

3.7 Carrier Detect

The consolidation between the Radio and Interface Board serves as the bridge to be able

to condition the carrier detect and identify when there will be transmission. Since we only
have two (2) levels for identification, a comparator is being used to compare and

determine which level, that indicates transmission or no transmission, is being received.

The comparator being used is the LM393 Dual Differential Comparator. The purpose of
this device is to compare two (2) voltage values, and output a digital signal indicating

which of the two is larger to the main control unit through a GPIO.

Figure 4.2.2 LM393

The differential comparator consists of a high gain differential amplifier. These devices
are commonly used in systems that measure and digitize analog signals such as analog

to digital converters, as well as relaxation oscillators. In our application, we compare the
received signal, carrier detect present or carrier detect not present, with a reference

voltage.

3.7.1 Automatic Gain Control Voltage
The AGC Voltage will be fed to our ADC where it will then be turned into a digital signal

useful by the Raspberry Pi to give Power Level Received readings back to the pilot.
Included in Figure 4.2.5.1 are the correlations we made between input signal strength

and AGC Voltage Levels. This will be used by the software as a lookup table to determine

what reading to give back to the pilot. The range of inputs (measured) for the amplitude
gain control from the radio are the following:

47

Figure 4.2.5.1

Signal Power
(dBm)

AGC Voltage
(V)

-120 3.43

-117 3.43

-114 3.43

-111 3.36

-108 3.115

-105 2.94

-102 2.745

-99 2.455

-96 2.315

-93 2.19

-90 2.045

-87 1.93

-84 1.84

-81 1.75

-78 1.66

-75 1.62

Signal Power
(dBm)

AGC Voltage
(V)

-72 1.59

-69 1.56

-66 1.54

-63 1.52

-60 1.49

-57 1.47

-54 1.45

-51 1.43

-48 1.40

-45 1.38

-42 1.36

-39 1.33

-36 1.32

-33 1.3

-30 1.28

48

4. Design Constraints and Standards

This chapter will define all the standards and any design constraints that apply to the Auto

FBO system.

4.1 Standards

This section describes relevant standards that apply to the Auto FBO system. Each of
these standards were used in order to keep the system as easy to set up and compatible

as possible. It would not have been efficient to design a system with standards that are

not well known or well supported.

4.1.1 Registered Jack Standard
A Registered Jack (RJ) is a standardized network interface for connecting data and signal

equipment, usually over a long distance. The RJ is defined in the international standard

for physical network interfaces. This standard includes specifications of physical

construction, writing, and signal semantics. The interfaces defined in the RJ standard
include RJ-11, RJ-14, RJ-21, RJ-45, and the RJ-48 connector types, as well as many

other types.

The most current version of the standard is TIA-968-A. This specification defines

the modular connection fully, but not the wiring. The wiring specification is instead

included in the standard T1.TR5-1999, "Network and Customer Installation Interface

Connector Wiring Configuration Catalog". With the addition of the publication of the TIA-

968-B standard, the connector specification has been moved to TIA-968-A.

Each registered jack type, such as RJ11, identifies both the physical connectors

and the wiring. Thus, an inspection of the connector type will not necessarily indicate the

type of wiring used in the cable. This is because the same connector can be used for a

multitude of wiring patterns. This has led many confusion among the industry and its

customers of what type of cable standard is actually being used in an application. For

example, the RJ11 connector is also used for the RJ14. Tale 4.1.1 below shows a few of

the officially recognized registered jacks with their connectors. Most registered jacks use
designation XPYC, where X is the number of positions on the connector and Y denotes

the number of conductors. For example, the RJ11 can use a 6P4C connector where there

49

are 6 positions and 4 conductor connections. The RJ11 6P4C connector is shown in

Figure 4.1.1a.

Code Connector Note

RJ11 6P2C Common usage in single telephone lines, 6P4C can also be used

RJ21X 50-pin micro ribbon Up to 25 lines

RJ45S 8P8C keyed One data line with programming resistor

RJ48C 8P4C Four-wire data line

 Table 4.1.1

Figure 4.1.1a

Typical wiring of registered jacks uses twisted pairs with separation of supply and data

lines with ground lines. These conventions were originally put in place to help create a

standard of wiring across the industry. The pinouts of the connectors of each registered
jack usually correlate to a specific function for a given application and are color

coordinated as shown in Figure 4.1.1b.

50

Figure 4.1.1b

4.1.2 Radio Communication Phraseology and Techniques
Many pilots fly in a noisy cockpit and are sometimes using their radio at extreme distances

between their transmitter and another receiver. For these situations, the FAA (Federal

Aviation Administration) clearly defines in their 7110.65W how radio communication

should be used by air traffic control. This order also governs weather reporting stations

that will be informing pilots visa radio. These radio communication techniques and

phraseology is put into place for the safety and efficiency of air traffic.

In general, when reporting numbers each number should be individually spoken.
However, the exception to this rule is when the reporting number is in the thousands.
Figures indicating hundreds and thousands in round number, as for ceiling heights, and
upper wind levels up to 9,900 shall be spoken in accordance with the following, 500

pronounced five hundred 3,500 pronounced three thousand five hundred. Numbers
above 9,900 shall be spoken by separating the digits preceding the word "thousand":
10,000 pronounced one zero thousand, 13,500 pronounced one three thousand five

hundred. Up to but not including 18,000 feet MSL (Mean Sea Level), state the separate

digits of the thousands plus the hundreds if appropriate. At and above 18,000 feet MSL
(FL180), state the words "flight level" followed by the separate digits of the flight level:

19,000 pronounced Flight Level One Niner-Zero.

All directions communicated over radio are to be of a magnetic reference and not a true

heading. Speed is to be reported in knots, and the word knots must be used after the

51

value of the speed has been spoken. The FAA also uses Coordinated Universal Time

(UTC) for all operations. The word "local" or the time zone equivalent shall be used to

denote local when local time is given during radio and telephone communications. The

term "Zulu" may be used to denote UTC. When individually speaking letters the phonetic

alphabet must be used. Overall, the goal of radio communication is to be as clear and

concise as possible.

Information Example
Message
Content

Non-Avionic
Pronunciation

Avionic Pronunciation

Time 1321 EST One - Twenty-One
PM

One-Seven-Two-One Zulu or
One-Tree-Two-One Local

0239 EST Two - Thirty-Two AM Zero-Seven-Tree-Niner Zulu
or Zero-Two-Tree-Niner

Local

Wind Speed 35 Knots Thirty-Five Knots Tree-Five Knots

Wind
Direction

90° True East or 90° Zero-Niner-Four Degrees

Thousands of
Feet

11,500 Feet Eleven Thousand
Five Hundred Feet

One-One Thousand Five
Hundred Feet

20,000 Feet Twenty Thousand
Feet

Flight Level Two-Zero-Zero

Table 4.1.2: Phraseology Examples

4.1.3 METAR

METAR is a weather reporting format that is highly used in aviation. It is the most common

format in the world for the transmission of observational weather data. This format has
be standardized by the International Civil Aviation Organization (ICAO), which allows it to

be standard throughout most of the world. A typical METAR will contain the ID of the
weather reporting station, time in day of month and Zulu time, wind direction and speed
(including gust), visibility, sky conditions, temperature, dew point, barometric pressure,

and remarks. This format is used when reporting weather information over radio as well.

52

4.1.4 Traffic Advisory Practices Without Operating Control Towers
The Traffic Advisory Practices at Airports Without Operating Control Towers defines our
project as an UNICOM system, under the guidelines that it is a “nongovernmental

air/ground communication station which may provide information at public use airports.”
In this standard is it stated that UNICOM stations can provide wind direction and wind
speed information to pilots upon request, regardless if the UNICOM station shares the

same operating frequency as the Common Traffic Advisory Frequency. This is important
because in small airports which our project is aimed towards, will operate in the CTAF

can commonly be assigned to a designated UNICOM frequency operating range. This is
ideal for a small airport as the small amount of air traffic can be managed by commercial
systems like our project, but in larger airport where the CTAF is different from the
UNICOM frequency this can present itself a challenge as the pilot would have to switch

between frequencies to communicate with the UNICOM system. This standard also calls
for communication with UNICOM stations of at least 10 miles from the airport the station

is in. This forces our system to be able to operate at such distances to comply with

standards.

4.1.5 WAVE File

We will be using the WAVE format standard for storing audio data. The WAVE file
standard was introduced as a joint standard from the IBM Corporation and the Microsoft

Corporation in the “Multimedia Programming Interface and Data Specifications 1.0”

standard document released in August of 1991. The WAVE file standard in particular was
introduced as a substandard of the RIFF, or the Resource Interchange File Format,

standard for storing multimedia. While old we chose this standard because it is the most
common form of uncompressed audio, and is recognized across all systems as well as

multiple audio centered programs. By using the WAVE format standard, we did not have

to commit to a certain form of audio compression standard. This will allow us to directly
interface with the raw audio data, as well as compress the data using any of form of audio

compression standard in the future if we feel we need to compress the data.

The WAVE file format standard organizes the data it stores using what the RIFF standard

defines as “chunks”. Each of these chunks, while having no particular set order to where

they are located within the file, contain their own specific sets of fields and parameters.
For the WAVE file format, the standards indicate that there are only three chunks that are
required for any WAVE file; these three chunks include: the Header chunk, the Format

chunk, and the Data Chunk. While there is no set order for these chunks, the adopted

standard is to write each of the chunks in the order they were introduced above. This
allows for readability, and the ability for programs to know where to look for certain

53

information without the need of including more header information about where data is

located. This reduces the file size and the speed in which the file can be processed. Two
optional chunks, the List chunk and the Info chunk, can be included in a WAVE file to

document the order in which the various chunks appear in the current WAVE file. These
two 10 chunks are usually place right after the Header Chunk and are only included for
compatibility with software that did not follow the suggested chunk order adopted by the

industry.

Each of the required chunks outline the basic needs of any multimedia player. The first is
Header Chunk which specifies the multimedia format standard used by the file as well as

the particular substandard of multimedia used. In the case of the WAVE format standard,
the RIFF standard for multimedia, and the WAVE substandard are always included in the

Header chunk. Along with these two fields the Header chunk contains the size (in bytes)

of the rest of the file. The next required chunk, the Format chunk, is uses to specify the

format in which the WAVE file was being recorded. Along with the standard chunk id and
chunk size that outlines which chunk is being read and how large the chunk is, these
fields are almost all variable and include the sampling rate, byte rate, number of channels,

and bit resolution used to record the audio data. The only other major field to note that is
included in the Format chunk is the Audio Format field which is used to specify what audio

recording standard is being used to record the data. Because we are using an Analog to
Digital converter to sample the audio we are recording, we will use the Pulse Code

Modulation, or PCM, standard or audio recording. Lastly the WAVE file format standard
requires the data chunk which is responsible for storing the raw audio data sampled in

the audio format specified in the Format Chunk. This data is encoded in two’s compliment

format and then stored in the Little-Endian format.

4.1.6 Pulse Code Modulation
We will be using the Pulse Code Modulation audio format standard for recording audio

data. This standard is used to digitally represent the analog audio data being recorded.
We chose to use the PCM standard for recording audio data, as it directly coincides with

how we will be receiving data from the analog to digital converter. The PCM standard
requires taking a sample of an analog audio signal and representing it using a decimal

number. Because most analog to digital converters use PCM to sample analog data, we

will also be using this format.

4.1.7 I2C Standard
The Inter-integrated Circuit (I2C) Protocol is a protocol intended to allow multiple “slave”

54

digital integrated circuits to communicate with one or more “master” chips. Like the Serial
Peripheral Interface (SPI), it is only intended for short distance communications within a

single device. Like Asynchronous Serial Interfaces, it only requires two signal wires to

exchange information. I2C is a protocol that was devolped by Philips Semiconductors in

1982 to be a simple bidirectional 2-wire bus for efficient inter-IC control. Only two bus

lines are required: a serial data line (SDA) and a serial clock line (SCL). Serial, 8-bit

oriented, bidirectional data transfers can be made at up to 100 kbit/s. Each device

connected to the bus is software addressable by a unique address. It a true multi-master

bus with included collision detection and arbitration to prevent data corruption. The I2C-
bus is now the world standard that is currently implemented in thousands of different ICs,

manufactured by many different companies.

I2C allows for simple, efficient communication between the sensors and the Raspberry Pi

which makes it a good choice for our system. It simplifies how the software will poll from
each sensor since the only thing that changes between weather sensors is the unique

address.

These are just some of the benefits. In addition, I2C-bus compatible ICs increase system
design flexibility by allowing simple construction of equipment variants and easy

upgrading to keep designs up-to-date. In this way, an entire family of equipment can be

developed around a basic model. Upgrades for new equipment, or enhanced-feature

models (that is, extended memory, remote control, etc.) can then be produced simply by

clipping the appropriate ICs onto the bus. If a larger ROM is needed, it is simply a matter

of selecting a microcontroller with a larger ROM from our comprehensive range. As new
ICs supersede older ones, it is easy to add new features to equipment or to increase its
performance by simply unclipping the outdated IC from the bus and clipping on its

successor.

Designers of microcontrollers are frequently under pressure to conserve output pins. The
I 2C protocol allows connection of a wide variety of peripherals without the need for

separate addressing or chip enable signals. Additionally, a microcontroller that includes
an I 2C interface is more successful in the marketplace due to the wide variety of existing

peripheral devices available.

The possibility of connecting more than one microcontroller to the I2C-bus means that

more than one master could try to initiate a data transfer at the same time. To avoid the
chaos that might ensue from such an event, an arbitration procedure has been

55

developed. This procedure relies on the wired-AND connection of all I2C interfaces to the

I2C-bus. If two or more masters try to put information onto the bus, the first to produce a

‘one’ when the other produces a ‘zero’ loses the arbitration. The clock signals during
arbitration are a synchronized combination of the clocks generated by the masters using
the wired-AND connection to the SCL line

Generation of clock signals on the I2C-bus is always the responsibility of master devices,

in this case, the Raspberry Pi. Each master generates its own clock signals when

transferring data on the bus. Bus clock signals from a master can only be altered when
they are stretched by a slow slave device holding down the clock line or by another master

when arbitration occurs.

4.1.8 Python Standards
Since Python is our language of choice, there are a few standards within the language
we need to adhere to so that the code compiles correctly and so that the code can be

maintained and is easily understandable. PEP8 is the style guide written by Python

Software Foundation which serves as the official documentation for the language.

The style guide helps enforce consistency. Consistency with this style guide is important.
Consistency within a project is more important because it makes the code easier to read

and thus easier to maintain. Consistency within one module or function is the most
important because this way the function will compile correctly and perform the task you

expect it too.

Continuation lines should align wrapped elements either vertically using Python's implicit

line joining inside parentheses, brackets and braces, or using a hanging indent. When
using a hanging indent there should be no arguments on the first line and further

indentation should be used to clearly distinguish itself as a continuation line. This is
important to keep in mind because as the code gets more complex or lengthy (like in the
case of the text to speech sections) the ability to wrap lines of code makes it much easier

to read. In addition, Python is very picky about indentation. New lines are specified by

indents instead of the semi-colon on the previous line like many other languages. In order
for the code to compile correctly, each line has to be indented the correct number of times

in order to match up with braces and conditional statements. This includes any wrapped

text.

When the conditional part of an if -statement is long enough to require that it be written

across multiple lines, the combination of a two character keyword (i.e. if), plus a single

56

space, plus an opening parenthesis creates a natural 4-space indent for the subsequent

lines of the multiline conditional. This can produce a visual conflict with the indented suite
of code nested inside the if -statement, which would also naturally be indented to 4

spaces. This takes no explicit position on how (or whether) to further visually distinguish

such conditional lines from the nested suite inside the if -statement. The closing
brace/bracket/parenthesis on multi-line constructs may either line up under the first non-

whitespace character of the last line of list. Again, it is crucial for any piece of Python

code to have the correct amount of spaces or indentations before each line. This was a
very important aspect of this system because it is easy to misalign text which would have

caused the system tests to fail.

Spaces are the preferred indentation method and tabs should be used solely to remain

consistent with code that is already indented with tabs. Python 3 disallows mixing the use

of tabs and spaces for indentation. Python 2 code indented with a mixture of tabs and

spaces should be converted to using spaces exclusively. This is another language

specific issue that Python poses because it is such a finicky language.

When invoking the Python 2 command line interpreter with the -toption, it issues warnings

about code that illegally mixes tabs and spaces. When using -tt these warnings become

errors. These options are generally recommended because it allows us to verify the code

before deploying it.

Limit all lines to a maximum of 79 characters. For flowing long blocks of text with fewer

structural restrictions (docstrings or comments), the line length should be limited to 72

characters. Limiting the required editor window width makes it possible to have several

files open side-by-side, and works well when using code review tools that present the two

versions in adjacent columns. This helps with readability and allows faster debugging

which is very important for testing but also for maintenance. Just like any system, ours

will need to be periodically maintained to keep up with updating software and security

standards. This system should not be vulnerable to any external threats so to mitigate

that risk, the first step is for the code to be easily maintained.

The default wrapping in most tools disrupts the visual structure of the code, making it

more difficult to understand. The limits are chosen to avoid wrapping in editors with the

57

window width set to 80, even if the tool places a marker glyph in the final column when

wrapping lines. Some web based tools may not offer dynamic line wrapping at all. Some

teams strongly prefer a longer line length. For code maintained exclusively or primarily

by a team that can reach agreement on this issue, it is okay to increase the nominal line
length from 80 to 100 characters (effectively increasing the maximum length to 99

characters), provided that comments and docstrings are still wrapped at 72 characters.

The Python standard library is conservative and requires limiting lines to 79 characters

(and docstrings/comments to 72). The preferred way of wrapping long lines is by using

Python's implied line continuation inside parentheses, brackets and braces. Long lines

can be broken over multiple lines by wrapping expressions in parentheses. These should

be used in preference to using a backslash for line continuation.

Surround top-level function and class definitions with two blank lines. Method definitions

inside a class are surrounded by a single blank line. Extra blank lines may be used

(sparingly) to separate groups of related functions. Blank lines may be omitted between

a bunch of related one-liners (e.g. a set of dummy implementations). Use blank lines in

functions, sparingly, to indicate logical sections. Python accepts the control-L (i.e. ^L)

form feed character as whitespace; Many tools treat these characters as page separators,

so you may use them to separate pages of related sections of your file. Note, some

editors and web-based code viewers may not recognize control-L as a form feed and will

show another glyph in its place.

For Python 3.0 and beyond, the following policy is prescribed for the standard library
(see PEP 3131): All identifiers in the Python standard library MUST use ASCII-only
identifiers, and SHOULD use English words wherever feasible (in many cases,

abbreviations and technical terms are used which aren't English). In addition, string

literals and comments must also be in ASCII. The only exceptions are (a) test cases

testing the non-ASCII features, and (b) names of authors. Authors whose names are not

based on the latin alphabet MUST provide a latin transliteration of their names.

In order for this system to meet Python standards, they had to be taken into consideration

from the very beginning of the logic planning and writing process. These standards help
to make the code easily understandable and easily maintained which are crucial for any

58

system. All of the standards noted above were instrumental in making the code as easy
to read as possible in addition to ample comments detailing what each block of code is

meant to accomplish.

4.1.9 Django Standards
Django is a web framework that combines HTML, Python, and SQL to easily, quickly, and

efficiently create websites and databases with logic that can easily morph and scale. The
premise behind it is to increase turn around and allow projects to be created much more

quickly. The framework is consists of models, views, and templates. Models are the
format of the databases such as the column headers, types of data, and any data

constraints. Views are the logic for each webpage or function of the website/app.
Templates are the web page itself with the special markers specifying which sections of

code are actual HTML and which sections are Python and need to be interpreted.

The important standards of this framework that must be followed in our implementation
are the set up of the models, views, and templates, the special syntax denoting which
sections of code in the template are Django and need to be translated or executed from
Python to HTML, and the file structure so that Django knows where to look for certain

files.

It is important for the Django framework to be set up correctly on the machine that will run
it because there are many files that Django expects to exist in certain places so it is crucial

those conventions be followed.

4.2 Design Constraints

In this section, we will talk about the different realistic design constraints we will encounter

when tackling this project. We will discuss various things from time constraints, budget

constraints and other related real-world constraints we might encounter.

4.2.1 Time Constraints
This project will be a complete working product by the end of Senior Design II in Summer

2017. This creates a limited timeframe for the team to work with. The total time for this
project is about 28 weeks, and to develop, design, build, and test a system of this nature

will take diligence to complete in that amount of time. The plan was to have a working

prototype at week 11, at the end of Senior Design I. This in and of itself was a lofty goal

and requires teamwork and persistent hard work.

59

Due to the time constraints it was crucial for us to have a working task list that detailed

every aspect of the system and when it was to be completed by. Though some of the
tasks fell a bit behind, in the end it was possible to complete the system and have a

working finished project for the end of Senior Design II.

Like with any project, you are never truly finished. Though we were able to complete a
working version of the system, there is still room for improvement and the ultimate test is
whether Professor Michael Young decides it meets all of his requirements and if he

decides to deploy it in his hangar at the Orlando-Apopka airport.

4.2.2 Budget Constraints
The team is comprised of four college students with limited incomes, which limits the

solutions, but also provides motivation to make this as low-cost of a system as possible.
Our primary sponsor has provided us with $250 towards our project and that has been

set as the target cost for the entire system. If the need arises, the team can use up to

$500 before having to use personal funds. This provides us with a good financial base to
build our project on, but without having unlimited funds, the team will have to be mindful

of the limited budget.

This serves as a guarantee for a cost-effective solution which was achieved. The total

spent on this project was just over $700 which was due to ordering spare parts. Once

that total is broken down and itemized to the parts it took to complete one fully-

functioning system, we were well below our goal at around $400. The budget is detailed

further on in section 7.2 of this document with an itemized list of what was purchased

versus what was used to complete one working model of the system.

60

5. Design
This chapter covers both the hardware and software design of the Auto FBO system. The

hardware design is covered first followed by the software design.

5.1 Power Supply Design

Shown in table 5.1 are all the components used in the Auto FBO system along with their

needed supply voltages and max or recommended currents. A miscellaneous category
under the components has been considered in the design to account for more
components that will be potentially be incorporated, as well as those not listed that are

included in the actual design. The total max current demand of this design is estimated

to be 4.8 A, along with supply voltages of 3.3, 5, and 15 V.

Component(s) Supply Voltage (V) Max or Recommended
Current Supply (A)

Raspberry Pi 3B 5 2.5

Radio 11.04 -15.87 1

Operational Amplifiers 10 -18 0.05

Anemometer 3.3 0.005

THD Sensor 3.3 0.005

CODEC 3.3 0.200

ADC 3.3 0.001

Comparator 15 0.050

Miscellaneous N/A 1

Table 5.1: Power Supply Demands

Since current AC to DC power supply modules are relatively cheap and easily accessible,

an AC to DC power supply module will act as the central power supply unit. Branching
from this supply are voltage regulators to provide the necessary supply voltage rails

needed for the system. A block diagram of the power supply system is shown below. This

61

design approach is taken in respect to cost, efficiency, and voltage noise and ripple, as

well as simplicity of the design.

Most of the commercially available power supply units, which supply high power, are

switch mode power supplies. These supplies are highly efficient that can reach

efficiencies above 90%. Since all the power of the Auto FBO system will be transferred
through the central power supply unit and then distributed to the various regulators, it is

necessary that it be a switch mode power supply. However, switch mode power supplies

do present a high margin of voltage ripple and noise. The unwanted effects from the

central power supply will be dampened by the linear voltage regulators.

Figure 5.1: Power Supply Unit Block Diagram

5.1.1 Voltage Regulation
The usage of the linear voltage regulators are chosen not only to help block unwanted
characteristics of the switch mode central power supply unit, but also to provide the

necessary various voltages that the Auto FBO system requires. Linear regulators have
very low output voltage ripple because there are no elements switching on and off

frequently, and linear regulators can have very high bandwidth. Furthermore, linear
regulators are simple and easy to use, especially for low power applications with low

output current where thermal stress is not critical. These characteristics are critical to the
needs of this power supply for supplying power to communication and audio components

62

in this system and providing a simple design solution.

5.1.1.1 3.3V Regulator

Power is supplied to the input pin to the LT1129I. This power will be received from the

LM2676-5.0 switching voltage regulator to efficiently create a 3.3V rail by creating a lower

voltage drop across the device. This input voltage is acceptable for the regulator since it
has an absolute maximum input voltage rating of 30V and a low dropout voltage of 400

mV. According to the datasheet, “the input pin should be bypassed to ground if the device

is more than 6 inches away from the main input filter capacitor. A bypass capacitor in the

range of 1μF to 10μF is sufficient. The LT1129 is designed to withstand reverse voltages

on the input pin with respect to both ground and the output pin. In the case of a reversed
input, which can happen if a battery is plugged in backwards, the LT1129 will act as if

there is a diode in series with its input. There will be no reverse current flow into the

LT1129 and no reverse voltage will appear at the load. The device will protect both itself

and the load.” The output pin supplies power to the load, and is recommended to use an

output capacitor at the output to prevent oscillations. The minimum recommended value

is 3.3μF with an ESR of 2Ω or less. The shutdown pin, SHDN, is used to put the device

into shutdown if it is actively pulled low. According to the datasheet, “if the shutdown pin

is not used it can be left open circuit. The device will be active, output on, if the shutdown

pin is not connected.” The fixed voltage version of the LT1129I used for this design uses

the sense pin as an input to an internal error amplifier. The sense pin can be directly

connected to the output pin, or at the load if better regulation is needed.

5.1.1.2 5V Regulator

The input pin of the LM2676-5.0 is supplied power by the 20V central power unit to

regulate a fixed output voltage of 5V at the output pin. The input voltage of 20V from the
central power unit is acceptable since the device has an absolute maximum input voltage

of 45V. The output circuitry of this regulator was designed with guidance from the

LM2676-5.0 datasheet. The 100 µF capacitors are used to smooth the switched DC

output voltage and provide energy storage for peak supply demands. The 33 µH inductor
was chosen to efficiently store energy during the on-switch time and transfer its stored

energy during the off-switch time. The 1N5822 catch diode provides a current flow path

when during the off-switch time, when the current through the inductor continues to flow.
During this time, the diode is forward biased and clamps the switch output to a voltage

below ground. The efficiency of the supply is significantly impacted by the power loss in

63

the diode. During the on-switch time the diode is reversed biased. “The boost capacitor

creates a voltage used to overdrive the gate of the internal power MOSFET. This
improves efficiency by minimizing the on resistance of the switch and associated power

loss.”

5.1.1.3 15V Regulator

The input pin of both L7815 is supplied power by the 20 V central power unit to regulate

a fixed output voltage of 15V at the output pin. The input voltage of 20 V from the central

power unit is acceptable since the device has an absolute maximum input voltage of 35V.
According to the datasheet, “it is recommended that the regulator input be bypassed with
capacitor if the regulator is connected to the power supply filter with long lengths, or if the

output load capacitance is large. An input bypass capacitor should be selected to provide

good high frequency characteristics to insure stable operation under all load conditions.
A 0.33μF or larger tantalum, mylar or other capacitor having low internal impedance at

high frequencies should be chosen.”

5.1.2 Overall Power Supply Design

Shown in the figure below is the power supply design for the Auto FBO system. The

central power supply unit (CPSU) supplies 20V to all four linear voltage regulators. The

line to the regulators also contains shunt electrolytic capacitors. These capacitors are
included for several reasons including recommended application suggestions of the
datasheets, increased capacitance, low ESR, high frequency impedance, reliability,

redundancy, and peak current demands. The output of each regulator also includes shunt

electrolytic capacitors for the same reasons. KEMET 49X tantalum capacitors were used
for the input and output capacitors to aid in the design in respect to the characteristics

above.

64

Figure 5.1.1: Power Supply Design Schematic

5.2 Interface Board Design

The interface board will interpret all incoming and outgoing signals between the radio and

the Microprocessor. This will be handling the TX and RX signal conditioning, conversion

and amplification between the two systems. This will also push the PTT signal into the
radio for whenever a transmission is going to be sent out to the pilot requesting

information. Inputs will be received from directly tapping into the radio at specific solder

points or through the back pins of the IC-A2 VHF Aircraft radio. In this the communication
between the UNICOM programmable HUB, the Raspberry Pi 3, and the broadcasting

hardware, the IC-A2 VHF Aircraft radio.

65

5.2.1 PTT Circuit

Figure 5.2.1 PTT Circuit

To communicate to the Raspberry Pi 3’s intent to transmit a signal needs to be pushed

so the IC-A2 Radio in order to get it in a ‘Ready to Transmit’ state. This signal is going to
be generated by the Raspberry Pi 3’s GPIO pin and a DC power source for system

testing. This will require two inputs: one for system use and one for system

troubleshooting. The input from the Raspberry Pi 3’s GPIO pin will be for practical use,

thus the DC voltage source will be used for testing. During testing the GPIO pin will act
as a ground and part of the current will be sent through there and the rest will be sent to

the PTT input of the radio. This will allow the user to check if the circuit is bad or if there

has been a programming error in the Raspberry Pi 3 system. The intent of this circuit is

to simulate the PTT signal generated by the microphone interface in the radio. The idea
is to act grounded when not transmitting and to input a current when ready to transmit in

order to open the mic channel and set the IC-A2 in a ready to transmit mode.

The Push-To-Talk (PTT) circuit is going to be responsible for setting the IC-A2 radio into

transmit mode. This is done by using the GPIO pin in the Raspberry Pi 3’s pins as a 3.3V

source. This voltage being pushed through the NPN transistor, Q1, pulls the PTT relay

day to ground. The action of pulling the relay to ground results in the collapse of the

magnetic field around the inductor. This will send a large voltage back from the PTT relay

66

to the Q1 transistor. This is where the reverse biased diode will re-route that voltage to

ground, thus not burning the transistor. When it comes to testing the system switch, S1,

will have the 3.3V source from the interface board act as the Raspberry Pi 3’s GPIO input.
This will simulate the act of readying for transmit on the IC-A2. Though the design shows

the GPIOPIN power source as a 3.3V power source it must be noted that this is a pin

from the Raspberry Pi 3’s interface. This will act as a ground when being tested as the

system will be inactive, or turned off, when being tested. The circuit takes full advantage
of the Raspberry Pi 3’s architecture to reduce the number of components required to

achieve the same function. When using the Raspberry Pi 3’s GPIO as a ground its current

limits is around 16mA maximum current before burning the microprocessor. Therefore,
the current running from the interface board power supply is split using resistors R1 and

R2 above.

5.2.2 Carrier Detect
The consolidation between the Radio and Interface Board serves as the bridge to be able

to condition the carrier detect and identify when there will be transmission. Since we only
have two (2) levels for identification, a comparator is being used to compare and

determine which level, that indicates transmission or no transmission, is being received.

The comparator being used is the LM393 Dual Differential Comparator. The purpose of
this device is to compare two (2) voltage values, and output a digital signal indicating

which of the two is larger to the main control unit through a GPIO.

The differential comparator consists of a high gain differential amplifier. These devices
are commonly used in systems that measure and digitize analog signals such as analog

to digital converters, as well as relaxation oscillators. In our application, we compare the
received signal, carrier detect present or carrier detect not present, with a reference

voltage.

67

Figure 4.5 Comparator Circuit

The voltage measured for RX audio signal (CD) being present was 1.4V; meaning, when
compared to the reference voltage, 1V, the comparator will output a logical 1, allowing

the 3.3V become the output to the next stage of the circuit. Next stage of the circuit being

to a GPIO pin of the microcontroller. The voltage measured for RX audio signal (CD) not
present was 0V; meaning, when compared to the reference voltage, 1V, the comparator

will output a logical 0, this output will not allow the 3.3V become the output to the GPIO

pin. See image above.

𝑉0 = ቄ
0, 𝑉+ < 𝑉 −
1, 𝑉− ≥ 𝑉 −

The 1V for reference are achieved through a voltage divider circuit. The input (Vin-) is 5V

which is then divided through both resistors of 1k ohms and 250 ohms. The reference is

then then compared to the ground at the 1k ohms resistor. This will create a constant

output of 1V since the 5V is being provided by a voltage regulator.

5.2.3 RX Buffer Audio Design
While testing the radio with the CODEC it was found that the CODEC was severely
loading the radio when it was transmitting audio to the CODEC while the CODEC was

recording. To negate this problem a buffer was inserted between the audio signal coming

out of the radio and the input of the CODEC.

68

Figure 5.2.3: Rx Buffer Audio Design

5.2.4 TX Filter and Bias Audio Design
In transmitting audio out from the Raspberry Pi then to the CODEC we found that there

was high frequency noise being produced. This lead to the decision of a low pass filter

being needed. This was done by using a second order low pass Butterworth filter with a

cutoff frequency of 50 kHz. The Butterworth filter was chosen as it can provide a

maximally flat passband which is needed as to not alter the audio signal. The cutoff
frequency of 50 kHz was chosen since it is known that audio signals range from 0-20
kHz, and to ensure that as the passband started to drop off near the cutoff frequency it

would produce negligible difference between upper audio signals.

Since the filter design is a 2nd order Butterworth the denominator of the transfer

function is 𝑠2 + √2𝑠 + 1. This sets
ఠ0

ொ
= √2 with 𝑄 =

√2

2
. This Q value is desirable for this

design as to not create a rise in gain as the cutoff frequency is approached. Using

frequency scaling 𝑘 was set to 2π×50000 to set the cutoff frequency at 50 kHz. 𝐶′1was
set to 200 pF to set to 𝐶′2 100 pF so that these capacitors could be commercially bought

as these values are common. Solving for the magnitude scaling factor, 𝑘 sets 𝑅′ to

22.508 kΩ, which will be implemented with commercially available 47 kΩ and 43.2 kΩ

resistors in parallel.

69

𝐶′1 =
1

2√2

2
= 200 pF

𝐶′2 =
1

√2

2
= 100 pF

𝑅′ = 𝑘 = 22.508 kΩ = 43.2 kΩ || 47 kΩ

Before this filter is a decoupled inverting amplifier circuit network of unity gain which

sets an offset of 7.5 V since the operational amplifiers are set between 15 V and

ground. Without this network, the audio signal could potentially be cut off. The resistor
divider biasing technique is low in cost and keeps the op-amp's dc output voltage at
halfway between the supply voltage, however the operational amplifier's common mode

rejection still depends on the RC time constant formed by RA||RB and capacitor C2.
Using a C2 value that provides at least 10 times the RC time constant of the input RC

coupling network (R1/C1) will help insure a reasonable common-mode rejection ratio.
With 100 kΩ resistors for RA and RB, practical values of C2 can be kept small if the

circuit bandwidth is not too low. Depending on the supply voltage, typical values that
provide a reasonable compromise between increased supply current and increased

sensitivity to amplifier bias current, range from 100 kΩ for 15V or 12V single supplies.

Considering the characteristics of this decoupled inverting amplifier circuit network of
unity gain RA and RB were set to 100kΩ with R1=R2 to achieve unity gain as well as

minimize input bias current errors by keeping R2 one-half of RA. The input and output
capacitors are selected to be 40µF to achieve a low impedance for low frequency audio

signals. The bypass capacitor C2 was chosen to be 470 µF to help insure a reasonable

common-mode rejection ratio and unity gain.

Figure 5.2.4: Tx Filter Audio Design

70

5.2.5 Anemometer and Wind Vane Design
The Davis Instruments 7911 Anemometer uses a RJ11 4P4C as an interface to

communicate to external devices. This interface is composed of four wires connected to

specific components within the sensor as shown on the right side of figure 5.2.5.2. The

yellow wire is used to supply the 20 kΩ potentiometer. This potentiometer is also

connected to the green wire that is used to indicate the wind direction. The reed switch
is used to compute the wind speed and is connected to the black and red (ground)

wires.

Internally, both the potentiometer and reed switch are used to sense wind speed and

direction. Wind speed is measured by the opening and closing of the reed switch, which

is connected to ground. Each revolution of the anemometer wind cups caused the

switch to open and close. This action is implemented by a magnet coming in close

proximity to the switch as the cup mechanism is rotated. When the magnet is brought

into close proximity to the reed switch the internal leads close. Conversely, when the

magnet moves away from the reed switch the leads open. Wind direction is measured

by a circular 20 kΩ potentiometer. Depending on the direction of the fin, the wiper of the

potentiometer is moved. As shown in figure 5.2.5.1 this potentiometer has a “dead

zone” where the wiper makes no contact.

The design of our wind sensor interface compared to the previous group’s design
significantly reduces the amount of components, power, and provides more accurate

data. Their design included a BJT transistor, 6 resistors, and a LED, while our design

only uses 3 resistors and a LED. Their wind speed design used a transistor with
resistors to create a voltage controlled switch, which is not needed since the reed switch

in the instrument already performs this function. Not only does this use excess

components, but also uses more power with the same result. Their wind direction
design uses a voltage divider, which was also not needed as they could have only

supplied 3.3 V to the anemometer and used no divider. This division also neglects to

fully suppress the “dead zone” in the potentiometer.

71

Figure 5.2.5.1: Wind Potentiometer

Shown on the left side of figure 5.2.5.2 is the interface design for the Davis Instruments

7911 Anemometer. A 10 kΩ resistor is used after the reed switch to reduce the amount

of current through the reed switch when it closes to ground. The reed switch and the 10

kΩ resistor connected to 3.3 V provides an active low pulse from 3.3 to 0 V to the RPI

GPIO when the cups of the anemometer makes a revolution. The 20 kΩ is used in

conjunction with the wind direction potentiometer to fill in the “dead zone”. Once the
wiper of the potentiometer falls in the “dead zone” where no contact is being made the
20 kΩ resistor provides a transition between the wiper making contact on the 20 kΩ side

and the 0 kΩ side. The ADC will receive a voltage range of 0 to 3.3 V depending on the

wiper’s position. The LED is included to show that the wind sensor is receiving power

and is providing data to the RPI and ADC.

Figure 5.2.5.2: Anemometer Interface Design

72

5.2.5.1 Analog to Digital Converter

After the AGC voltage is received and conditioned it goes to the analog to digital

converter. The Analog to digital converter chosen was the ADS1015.

Figure 4.2.5.1 ADS1015 Application Circuit

The purpose of the analog to digital converter (ADC) is to provide the microcontroller with
a digital number that is proportional to the magnitude of the signal, voltage or current,

sent from the AGC. The conversion of this signal involves some error parameter. The
higher the number of bits, resolution, available on the ADC, the more precise the

conversion can be. The ADS1015 allows a precision of 12 bits, this indicates the number

of discrete values it can produce over the range of analog values. An ADC is defined by

the bandwidth available, range of frequencies, and its signal to noise ratio.

5.2.6 I2C Bus
The ADS1015 converts the analog signal to digital signal with a precision range of 12

bits. The signal is then delivered to the Raspberry Pi through this I2C Bus. The I2C Bus
is able to communicate to a multitude of other peripheral devices (defined as “slaves”) by

assigning a unique address to each device. The Raspberry Pi is considered the “master”

73

device and retains the right to read and write to the incoming signals. The other devices
on the I2C bus, the slave constructs, require explicit permission from the Raspberry Pi in

order to read and write. The I2C bus can support well over 1000 devices using only two

lines -the SDA and SCL lines. For this reason, and also because it is less messy than the

SPI connection configuration with the GPIO pins, it works quite perfectly for our system.

For our system, the anemometer and the temperature/pressure/humidity sensor will

communicate with the Raspberry Pi through the I2C bus. They each have a unique
address on the bus which will all the software on the Pi to reach them individually to poll

for the current weather conditions.

5.2.7 PCB Design

Using Eagle, we were able to layout the PCB while taking into consideration a
number of design guidelines. For example, care has been taken to place all bypass caps
as close to the IC’s as possible; same goes for the feedback loops on our op-amps, all
feedback capacitors are placed as close as possible to the noninverting pin. Also, all
digital signals are segregated to the right side of the board and all analog signals to the
left of the board; this helps to limit digital noise interfering with the analog processing.
Included below is a picture of our final PCB design with the top layer in red and the bottom
layer in blue.

Figure 5.2.7 Final PCB Design

74

5.3 Software Design

This section details the software logic behind the system. This system is broken down

into two main programs, the main logic loop program and the weather polling program.
These two programs work together to detect carrier signals and respond to them. When
the pattern recognition function matches with the carrier detected click-pattern, the
system then decides on an action - whether to announce the current weather condition to

the user or proceed to a communications check. Said action is then performed in a timely
manner within a few seconds since the pilot would need to receive the requested current

wind conditions on his way to land. The program that collects the weather data is separate
from the main loop so that there is less of a delay in the carrier detect and so that the

weather measurements can be wrapped up neatly in an object. Creating a weather object
allows the program to easily pass the measurements back to the main loop so that it can

concatenate the audio file to stream back to the pilot.

As mentioned in Chapter 3 our software will be running solely on the Raspberry Pi in the

Python language. The code will utilize the Django framework for the database aspect of

the software. This will require a model for the database structure. This model will include

aspects of wind conditions that should be saved. These attributes include date and time,

wind direction, wind speed, variable wind conditions if detected, and wind gust if detected,

but this list can be expanded in the future.

The Django framework allows us to have a way to store previous weather information and
it allows us to easily create the web interface which will be used to remotely access the

weather conditions and for the administrator of the system to change certain parameters.

5.3.1 Main Logic Loop

This is the main loop for this system’s software. After the Raspberry Pi is powered on, it

will automatically launch the main program. After the main program is started, it will begin

an initialization process. This process includes starting the separate weather program

and making sure it is operational and responsive, then it will also start the webserver. The
separate weather program will poll the sensors for wind speed, direction, temperature,
humidity, and pressure and when called upon, it will return an object will the most current

values for each weather condition.

We chose to separate this into its own program because it allows the main program to

75

handle the carrier detect more efficiently, allows us to easily compute the wind speed and
direction values, and it will also allow us to set intervals for how often we want certain

weather conditions to be read or computed without overcomplicating the main loop. It will
be much more efficient to receive an object with all the weather readings in the main

program instead of having to poll each sensor when the information is requested. Polling
each sensor when the weather is requested would result in a delay of when the

synthesized audio would play back to the pilot. This is due to the nature of some of the

sensors and the measurements being read. In order to report wind speed and direction,
the values have to be calculated by recording values from the anemometer over a period

of time and then finding the average. In addition, the temperature/pressure/humidity

sensor has a delay of a couple of seconds while it takes its measurements.

After the initialization process, the main program will begin to listen for a carrier signal.
When a carrier signal is detected, the program will enter a function to count the clicks

which is described in detail in section 5.2.2 of this document. After the clicks are detected
and a decision is made as to whether the pilot is requesting the weather or a
communications check, the main loop will jump into either function and perform the

needed action. Both of these functions will be described in greater detail in the following

sections.

76

Figure 5.2.1 Main Logic Loop

77

Now that the software has counted the number of clicks, it will compare the pattern it has
found to the patterns needed to request the current weather conditions or a

communications check. If the clicks counted adhere to the pattern of two clicks followed
by a pause and then two more clicks, then the program will enter a function to transmit a

radio check which is described in detail in section 5.1.5 of this document. If the pattern
detected is two clicks followed by a pause and then three more clicks, then the program
will enter a function to transmit the current weather report which is described in detail in

section 5.1.4 of this document. If the clicks detected match neither pattern, then the

program will ignore the clicks and return to listening for a new carrier signal. This last bit

is important because the system needs to always look for a carrier signal. There is no
sense in continuing to try to detect a pattern if any one segment of the pattern is not within

the maximum and minimum parameters set in the count clicks function. The administrator
of the system for each airport will have the ability to change the maximum and minimum
parameters since they need to have the ability to change the click pattern to avoid system

conflicts.

In practice, our main logic loop worked out slightly different than we had originally

planned. We still had to define the values for the gap, dwell, and on times for the carrier
detect logic but we decided those should be modified by the administrator and coded
them in such a way that the values are pulled from the web interface and if there is no

value in the web interface, the program will operate with a default pattern.

Next, the main program calls the weather polling function to collect the current weather

conditions. These results are stored in an object which keeps all the readings from the

same point in time collected and makes them accessible by attribute name.

From there, we enter the carrier detect logic. Here, the code calls the carrier detect

function to try to find the correct pattern. It will listen and check the timing of each signal

against the dwell, on, and gap times previously mentioned. If the signal received does
not match up with the timing for the next phrase of the pattern, the carrier detect loop will

restart, ignore the previous signals, and start to listen for a new carrier signal. Once the
carrier detect function has found either the weather or transmission check pattern, it

returns to the main loop and enters the logic for either command.

For the transmit radio check, the program will record everything immediately following the

last carrier signal until the carrier signal disappears. Then the program will play back the

audio and compute a power level. This power level will be the signal from the ADC that
is received and then will be translated audibly to the pilot so they can understand their

78

signal strength.

For the weather reporting function, the audio recording begins with the current time, then
wind direction, wind speed, if there is a gust, temperature, dew point, altimeter, pressure,

and density altitude. Many of these values have to be computed from the readings we

receive from the weather sensors.

5.3.2 Poll Weather Conditions
The Poll Weather Conditions process is the side process which is started by the main

program during its initialization. This process will do all the communicating with the
weather sensors and will read and store their values into an object that the main program

will request whenever a weather request signal is detected. The program starts by
verifying that it can communicate with all the sensors and then it will reset all of its

temporary variables. Then it will enter the infinite loop where it polls and stores the

readings from each sensor. The temperature/pressure/humidity sensor will only be
accessed on a timer because the sample from that sensor has a slight delay and the

weather conditions it reads do not change very often.

First the program will read, calculate, and store the wind speed and then it will compare

the current wind speed to the last recorded wind speed. If the difference between the two

is greater than a designated threshold, the program will label it as a gust. It will only report

a gust in the weather object if the difference is detected more than once. To detect it

again, we have created a second flag called verifyGust. Once the first gust is detected
and the gust flag is set to true, the next time the difference between the current and last
readings is greater than the threshold, the program will enter a separate conditional to set

the verifyGust flag and report it to the weather object. After it has been reported, both

flags will be reset. Next the program will read and store the wind direction. DirCount is a

counter that lets us set the period we want to calculate the average wind direction over.
Once the counter equals that set value, we calculate the average wind direction using the

last set of recorded readings from the sensor and then reset the counter. This average is
the wind direction the process will store to the weather object which will be returned to

the main program to report to the pilot. If the counter does not equal the set value, then

we will increment the counter and continue to the temperature sensor.

Finally, the program will read and store the temperature, pressure and humidity but only

when the TempCount counter equals the set value for the designated time interval. This
interval will be much larger than the wind direction interval because the values for

79

temperature, pressure, and humidity will not change very often.

This process will run continually in the background while the main process listens for a

carrier signal. When the count clicks function from the main program returns a decision
to transmit weather conditions, the program will first call this function to collect the most

recent weather value.

There were many possible ways to set up this function for this system but ultimately, we
chose this more object-oriented approach because it makes the passing of the weather
information between functions easier and creates a structure that allows us to easily store

all the weather conditions for a particular period in time. This method also simplifies the
code immensely because instead of individualizing each weather measurement, we are
able to iterate through all of them with timers to pull new values from the sensors at certain

intervals. It was important to use timers for the weather measurements because some of
the measurements don’t change very often or have a significant delay from the sensor,
like temperature, and others require an interval to compute a value or average from, like

wind speed or direction.

The following figure is the logic diagram for the weather polling function that visualizes

the information described above. It shows the iteration through each of the weather
measurements, the check of their corresponding timers, and the resulting pull of new data

from the sensors. An important part of the logic in this program is the wind gust detection.
It is crucial for pilots to be able to be notified when there are wind gusts because there
are certain counter measures they must take in order to keep control of their aircraft and

to land safely. The way we have set up the logic for wind gust detection is very accurate
and it allows pilots to be confident in the weather condition reading they are receiving

from the system. Since we have set two flags that must both be true in order for a gust to
be reported, it allows the system to only report when there is a consistent gust instead of

a singular event. There is nothing we can do to notify the pilot of a singular gust but it is

important for them to know if the winds are particularly choppy near the runway. Another
important aspect of the weather polling program is how the wind speed and wind direction

are calculated. Wind direction is based off of a potentiometer with a dead zone at 0/360

degrees. This causes some difficulty with the logic since we have to perform an average

over a period of time. How do you take an average over a null value? To solve this
problem we decided the best way was to detect when winds are varying over the
deadzone then find the average and add 180 degrees to find what the adjusted average

should be.

The weather polling function itself is also a bit different than when we originally thought it

80

out. After setting up the weather object with the attribute names, we set each attribute as

the result of its corresponding function.

The function to calculate the wind speed stores the last five values from the anemometer

through the ADC. The anemometer calculates speed by counting rotations so by using
the number of rotations known for 1 mile per hour, we are able to count the number of

rotations and calculate what the value would be in knots. Next, we have to take any gusts

into account. To do this we compare the current value just calculated from the ADC and

the last value that was stored and compute the difference. If the difference is above a set
threshold then we verify the gust and set the corresponding flag to true so that when the

program audibly reports the weather, it also includes the gust.

81

Figure 5.2.2 Poll Weather Conditions

82

For wind direction, this function became a lot more complicated than anticipated. The

issue was with calculating the direction when the potentiometer passes over “0”. Here the
value from the ADC drops which keeps you from getting an accurate average if you simply

store the values and compute a basic average. To accurately calculate the wind direction,
we had to calculate the angle between individual measurements and find the average

and then convert to degrees.

Next, we have the function to verify that winds are indeed gusting. This is done by using
two Booleans and forcing both to be true before gusts will be included in the weather

report.

Lastly, the function to find the current temperature, pressure, and humidity, was exactly

as we had originally thought. Since all three measurements are from the same sensor,
all the program has to do is call each corresponding address on the ADC and store the

value. The translation to the correct units is done before the value gets audibly reported

back to the pilot.

5.3.3 Counting Radio Clicks Process

This process counts the number of times the pilot keys their radio and checks the duration
of each click or spacing to be sure the program is not picking up accidental clicks or the

wrong signals. This process is triggered whenever the main program encounters a click.
This process will then time the click, considered the “on” time, and if it falls between
specified maximum and minimum parameters, the program will move on to the “dwell”

time which is the spacing between clicks. It will continue to check each segment
according to the patterns we have designated for a communication check or weather
report until either a duration does not fall between the specified parameters or we don’t

receive the segment we were expecting. After the second click or “on”, the program will
time a “gap” instead of a “dwell” which has a longer duration in order to register a pause

between the first sequence of clicks and the second sequence of clicks. If this pause, or
any duration, does not fall between the specified parameters, the process will end, ignore

the accessed clicks, and will start over to listen for the next new click. Once either pattern
sequence is found, the program will decide and escape into the corresponding function

to report either a communication check or the weather.

This flow of logic, while not pleasant to walk through, was the most efficient way to access

clicks from the pilot. Instead of paying attention to and computing every click, we only

83

care about the ones that meet our criteria. This way, if there is any click in any sequence
that does not meet our criteria, we scratch the sequence and being to listen for the carrier

signal again. This reduces some of the background time that would be necessary to
access every click and it makes the system more responsive because it only pays

attention to the signals it requires.

84

Figure 5.2.3 Count Clicks Process

85

5.3.4 Transmit Weather Conditions

Figure 5.2.4 Transmit Weather Conditions

This process will start after the main function recognizes the click pattern for weather

reporting. From there, the main program will make a call to the weather polling process

to receive the current weather object. Then the program will separate each piece of the
object, collect all the voice files needed to synthesize each condition, and then

concatenate them into a single audio file. Once it has created the audio file for the current
weather conditions, it will check the transmission line to ensure that the playback does

not step on anyone. After it has checked that the line is clear, it will then broadcast the
current weather conditions for the airport including wind speed, wind direction, gusts,

temperature, pressure, and humidity. This process must be efficient so that there is not a
noticeable or substantial delay between the time that the pilot clicks their radio and the

time that the weather report starts to transmit.

86

5.3.5 Radio Communications Check Process

Figure 5.2.5 Radio Communications Check Process

This process will start after the main function recognizes the click pattern as the correct

pattern for a communications check. After it has made the decision to proceed with a
communications check, the program will check the transmission line to make sure no one

else is on the line. Once the line is clear, then it will transmit a prompt to the pilot which
will acknowledge their request for a communications check and ask them to proceed with

their transmission. As soon as the next carrier is detected, the program will begin
recording the audio transmitted and it will stop recording when the carrier is no longer

detected. As discussed earlier in this document, we will be using an audio codec which

will allow us to efficiently record audio directly into a WAV file to easily play back. This

reduces a lot of overhead since we do not have to create the WAV file manually. After
the carrier signal is no longer detected, the program will again check to make sure the

87

line is clear and then it will transmit the recorded audio file back to the pilot. After the

audio file the program will also announce a signal strength level based off the recording.
This will allow the pilot to get a better idea of the quality of their transmissions and allow

them to make adjustments as needed.

5.3.6 Initialization

Figure 5.2.6 Initialization

This is the Initialization process of the software. Once the system is powered on, this

process will be immediately called and executed. In this process there are three main

commands. First, the computer will reset all the variables in the main program. This
ensures there are no extraneous values left over from the last time the program was run

which could interfere with current readings or calculations and create extraneous results.
Next, the software will verify that it can communicate with both weather sensors. Finally,
it will initiate the never ending process of polling the weather data, which will gather and
record data from the anemometer and temperature, pressure, and humidity sensor and

is further explained in the previous sections. Lastly, the software will also start the web

88

server that will be running from the computer. From there, the software will return back to

the Main Loop.

5.4 Communication with Interface Board

5.4.1 Pin Layout
The communication between our interface board, temperature, and weather sensors are

directed by our MCU, the Raspberry Pi. The interface board, at its end, interprets all

incoming and outgoing signals between the VHF Aircraft radio and the microprocessor.
To receive and analyze the analog signals from the radio and weather sensors, the Pi
needed to be outfitted with an analog-to-digital converter -we chose the ADS1015 with

12-bit precision. The next step was to verify the best viable way we could connect the

ADC to the Pi. The options we researched included either using the SPI bus to connect

to Pi to MCP3008 or I2C bus connected to the ADS1015.

Another communication line required for our project is the connection between our system

and a web interface. The web interface is one of the ways that allow the user to change

the current airport location of the device. It provides the current weather condition to the

user using a graphical interface modelled as a compass.

The Raspberry Pi 3 Model B has 40 dedicated pins. The Pi’s documentation details each

available pin with their respective pin number. The table is also color coded to highlight

the specific use of every pin. Of the 40, 26 pins are general purpose input and output pins

(GPIO pins) while the rest are ground, power, and two other pins for additional functions.
The two other pins are for the I2C Bus that our team utilize to convert the analog data

procured from the sensors to digital signal. The rest of the GPIO pins are just used to

transmit and receive digital signals. They are used to communicate between the interface

board and Raspberry Pi.

5.4.2 SPI or I2C connection
The tables below differentiate the connections required between two possible ADC

sources we researched. This includes a connection between a MCP3008 (hardware and

software SPI connections) and the Pi and between the ADS1015 and the PI.

89

MCP3008 (Software SPI) Raspberry Pi 3

VDD 3.3V (Pin1)

VREF 3.3V (Pin 17)

AGND GND (any ground pin)

DGND GND (any ground pin)

CLK Any GPIO pins (pin 18 for example)

DOUT Any GPIO pins

DIN Any GPIO pins

CS/SHDN Any GPIO pins

MCP3008 (Hardware SPI) Raspberry Pi 3

VDD 3.3V (Pin1)

VREF 3.3V (Pin 17)

AGND GND (any ground pin)

DGND GND (any ground pin)

CLK SCLK (pin 23)

DOUT MISO (pin 21)

DIN MOSI (pin 19)

CS/SHDN CEO (pin 24)

ADS1015 Raspberry Pi 3

VDD 3.3V (Pin1)
GND GND (any ground pin)

SCL SCL (pin 5)

SDA SDA (pin 3)

90

The SPI connection (both software and hardware style configurations) requires more
physical connections than the I2C bus and creates additional problems when dealing with

noise. Problems also arose from the SPI’s asynchronous feature as it doesn’t guarantee

the same clock rate between connected devices. This can cause problems when two

system with different clocks attempt to communicate.

The inter-integrated Circuit (I2C) Protocol (also asynchronous) is the route we chose for

connecting our Pi to the external analog-to-digital converter. The I2C bus requires less

connection (only two lines) and allows us to communicate with multiple devices as

illustrated below. The two lines can support up to 1008 slave devices and allows more

than one master to communicate with all devices on the bus unlike the SPI connection.

Figure 5.3.2a SPI connected to multiple devices

91

Figure 5.3.2b I2C connected to multiple devices

5.4.3 ADS1015 Communication Logic

5.4.3.1 Background Information

We chose to use the ADS1015 for our analog-to-digital converter. This particular ADC is
supported with a variety of software libraries and interfaces that are open-sourced by

Adafruit Industries. The open-source libraries and interfaces provided made the overall
coding process easier because without these libraries we would have to start coding from

scratch. Creating a library would have resulted in a delay in our schedule for we would

have to create the functions required to read the analog signals. With the already
published libraries, we can skip this step and just call the function required to obtain our

data.

Another viable option for an external analog-to-digital converter is the MCP3008. The
MCP3008 is also supported by Adafruit Industries through a variety of software libraries

and interfaces. We ultimately chose the ADS1015 as our sponsor had mentioned its
versatility for obtaining precise analog to digital conversion as well as amplifying and

accurately processing extremely low signals.

5.4.3.2 ADS1015 Wiring

As mentioned earlier, the Raspberry Pi doesn’t have a built-in onboard analog-to-digital

converter like the Arduino Uno. We needed to find a compatible A/D converter with

enough power and precision. Our choice was split between two ADCs, the MCP3008 and
the ADS1015 -we chose the ADS1015 which uses the I2C bus as opposed to the MCP

3008’s SPI bus. The Pi is thus complimented by the ADS1015 external analog-to-digital
converter to process and convert analog readings from our sensors to digital signal; the

digital signal is then processed by the Pi to obtain and relay necessary information.

92

The ADS1015 is a 12-bit precision ADC that operates at 3300 samples/second and

interfaces via the I2C communication bus. A 12-bit precision allows for higher accuracy

when obtaining, for example, the exact degrees associated with the wind direction. This
chip contains 4 single-ended input channels, requires 2V to 5V to run, and includes a

programmable gain amplifier that provides up to x16 gain for small signals. The
programmable gain amplifier helps magnify and boost smaller signals to be able to read

them at higher precision.

 Figure 5.2.3.2 ADS1015 connected to the Raspberry Pi

The wiring between the Raspberry Pi 3 and the ADS1015 is shown above in figure

5.2.3.2. The I2C bus of the ADS1015 makes the wiring fairly simple with no extra step

required except on the software side. The ADS1015’s VDD is connected to the Pi’s 3.3V

(pin 1 in our case) as it requires a power source from the range of 2V to 5.5V. The ground
pin of the ADS1015 can be connected to any ground pins on the Pi; we connected ours

to the sixth GPIO pin on the Pi. The ADS1015’s SCL pin receives a clock signal from the

93

microcontroller and is connected to the I2C SCL dedicated pin on the Pi. The SCL pin is

the 5th pin on the Pi. This pin uses the clock signal provided by the microcontroller to

clock data from the SDA pin. Data obtained by the sensors is transmitted and received

through the SDA pin connected to pin 3 of the Raspberry Pi.

As mentioned before, the ADS1015 supports up to 4 single-ended input channel. This

includes input channel A0-A3. Single ended inputs only measure positive voltages but

provide twice as many inputs. On the other hand, there are two differential inputs used to

measure voltages (with the ability to also measure negative voltages). This analog input

is measured between two analog input channels A0 and A1 or A2 and A3. We did not
deal with negative voltages plus the increased immunity to electromagnetic noise
provided by the differential measurements was ideal for dealing with noise during our

testing procedures.

5.4.3.3 Programming the ADS1015

In order for the Pi and ADS1015 to operate properly, we installed Adafruit Industries’
required libraries to allow the devices to communicate and ease the code development

process. We installed the Adafruit ADS1015 python library. This library allowed us to use
several commands like “read_adc_difference()” which reads the voltage difference

between channel 0 and 1. The function returns the signal difference between both
channels which will allows us to obtain the noise acquired from analog signal inputs from

our sensors.

The libraries provided us with many more functions and examples of singled-ended

analog to digital conversions as well as differential conversions. These methods allow us
to convert analog signals to digital signals as well as setting the gain of the on-board

programmable gain amplifier.

5.4.3.4 I2C Interface

Since the Raspberry Pi has dedicated I2C ports, The Raspberry Pi can communicate with
the ADS1015 via the I2C bus interface instead of its GPIO pins which is much more

preferable than a SPI connection (as illustrated in section 5.2.2). The I2C bus operates
between many devices; usually one device operates as the “master” while the others are

defined as the “slaves.” In our project’s case, the master is the Raspberry Pi and the slave

is the ADS1015 as well as any other devices connected on the bus. It is important to
mention that both master and slave constructs can read and write, but the slave

constructs can only do so with explicit permission from the microcontroller -the master.

94

The I2C bus operates based on two lines, the SDA and SCL. The SCL provides the clock
needed to clock the data received by the SDA line; the SDA line carries data between the

two devices. This data is transmitted in chunks of 8-bits on the bidirectional SDA line.
When transmitting, the SDA is either high or low, but requires the SCL to be low in order

to do so. A high SDA means the bit is 1 while low represents the bit as 0. This receives
and transmits data with the terminology that if the master sends file to the slave, then the
master drives the data line; else, if the master reads from the slave then the slave drives

the data line. The bus lines are idle when there is no communication happening between

the Raspberry Pi and the ADS1015. It’s worth mentioning that only the master can start

the communication between both devices.

For communications to start between the Raspberry Pi and ADS1015, the Pi must initiate
the communication to the ADS1015 or any other devices; the Pi then needs to provide an

address to detail which slave devices it wants to transmit to. This address is a unique 7-

bit address given to each device on the I2C bus. The unique I2C addresses are set by the

ADDR pin. The ADDR pin allows unique addresses to be selected for each slave device

connected to the microcontroller. A great debugging tool and check for potential errors is

the acknowledge bit that brings the SDA to a low. The acknowledge bit switches the SDA

to low confirming that the data was received.

The I2C interface provides a great communication line that transmits and receives data

between the microcontroller and other peripherals with minimum wiring. It functions

primarily on two lines, serial data (SDA) and serial clock (SCL) as mentioned above. One
of the reason it is better than SPI for our project is the I2C protocols that allow any number
of masters (microcontrollers) to be connected to any number of slaves (peripheral

devices/sensors). The SPI connection requires 3 wires: a SS, SCLK, and a bi-directional

MISO/MOSI line as well as one SS line per connected devices. Using the I2C bus, we
can communicate to any of the sensors and other devices by using the 7-bits unique slave

address assigned to each device with only two lines.

5.5 Configuration Screen

When the user connects to the Raspberry Pi’s Wi-Fi hotspot, the user will be able to

access the website hosted on the Pi. The main screen (Fig. 6.X on left) will display an
overlay of the runway at the airport with a compass rose and an arrow telling the user

what the current wind direction is. It will also display the current wind conditions in words

below as they would be broadcast to pilots. Towards the bottom of the screen the user

95

will see three links. One is titled “Archived Wind Data” and when clicked, will take the

user to a screen that shows past logged wind data for a specified length of time. Another
link is titled “Archived TX Checks” and when clicked, will take the user to a screen that

shows past logged TX check recordings for a specified length of time. The last is titled

“Change Parameters” and when clicked, will take the user to a screen (Fig. 6.X on right)
where they can change every aspect of the system including, but not limited to, runway

headings, carrier dwell time, and the number of clicks for functions.

5.6 Integration and Prototype

This section describes how the components are integrated and the breadboarding that

has been done to combine the components.

Here we have the RJ11 network hooked up to be able to measure both the pulses for the

wind speed as well as a voltage potential from the wind direction potentiometer.

96

 5.7 Web Server

The web interface is intended to provide an easily accessible graphical interface for the

user. The interface would provide the user with valuable information concerning the

current weather conditions; this includes wind speed, wind direction, gust, temperature,

pressure, and humidity. The interface would allow users to check the current conditions

anywhere at any time. The system will also allow the admin user for that airport to switch

the click pattern for requesting different tasks, like a communications check, to best fit
their preference; the administrator would also need to switch the click pattern if the current

click pattern interferes with any patterns already established at a specific airport. For

example, those conflicting patterns could be the queue to turn on the runway lights or for

other airport announcements or communications.

5.7.1 Introduction to the Model View Controller Architecture
Since we did not want to deal with the arduous process of creating and implementing a
big and complicated relational database we looked towards other more simple and

practical options. We decided that a web framework based on a Model View Controller

architecture would best meet our project’s needs. This type of web design is simplistic

and allows us to easily transfer data between the frontend of the system to its backend.
Focus would be set at the back end of the system meant for capturing the weather data,

passing, and formatting it into a relevant and easy to use database. We would then use

the data obtained from the backend and broadcast it back to the frontend without having

to deal with any of the complicated PHP scripts like PHP or MySQL. We would not need

to use any PHP scripts with a Model View Controller framework in order to send queries

back and forth to the database. This would further decrease the complexity of the

development process. An increase in performance would also be achieved because if

we’re using a Model View Controller architectural pattern, the system would not need to

load the page and recommunicate to the backend for the specified data every single time.
Thus, the increase in performance since that’s one function we do not have to repeat

over-and-over again.

This kind of architectural pattern further increases the performance of our system since

the data received is dynamically allocated to the class-based views structure. A view is a

97

callable that obtains a request and returns the appropriate response. The class-based-

views structure allows us to rapidly structure our views dynamically; they are saved and

can then be accessed and reused through inheritance and mixins. This is also an

alternative way of implementing views as Python objects instead of functions or methods.
The view class handles linking the view into the URLS, HTTP method dispatching, and

several other simple features like redirectView and templateView. This provides multiple

benefits as the codes related to any specific HTTP method can be utilized by separate

methods; not just through conditional branching access. This also increases ease of use

for our application because we can use multiple inheritance to pass down the object and

reuse its components. The Model View Controller increases performance, allows for more

efficient code reuse, and parallel development by decoupling its major components and

focusing on each separately and simultaneously.
As mentioned earlier, the team did not want to deal with the complicated structure and
code development associated with designing and implementing a needlessly big

relational database. As a relational database would not only be impractical but would also

cause major performance issues when operating with the Raspberry Pi. Instead we

decided to use a web framework based on the use of a Model View Controller

architectural pattern. This design model would allow us to parse and format the

information obtained via views and not through the use of complicated PHP scripts; in
other words, this would make obsolete the need to request and send multiple queries to

the database every single time data is required. In the Model View Controller architecture,

the controller component steers the entire system. The controller does this by handling

all requests and responses across the database. It sets up the database connection and

handles loading addons. It obtains and reads a setting file that feeds it the info regarding

what to load and set up. Furthermore, the controller component is provided an URL

configuration file that instructs it on the desired responses from an incoming request from

the browser. On the other hand, the model partition of the architecture captures the

required data the website needs and stores it into database tables. Fortunately, Python

provides extensive examples detailing exactly how this is done. Python classes (or

models) are emphasized and work quite well with the Django framework that tie into a

one-to-one ratio the database tables. Switching to another component, the view is the

user interface layer. It provides an automatic web admin interface for editing the models

98

using the python code.

This type of design steers and controls data more efficiently with less load capacity than

a regional database which is great and definitely meets our project’s requirement. A

regional database would just be too complex and would result in a decrease in
performance as it would request and acquire the desired data then parse that data to and

from the frontend and backend of the system repeatedly. The propose MVC architecture

is faster as we obtain the desired data and simply pass it using the model. Then we can

pass it to our views and allocate the database dynamically without any complicated

implementations of PHP scripts.

5.7.2 Django Web Framework

We researched a few Model View Controller frameworks and found Django. The Django

Web Framework is quite a robust and great selection for the backend of the system.
Django provides a fully functional backend web frame work with the admin view

application. It provides a concise and picture-perfect style with multiple features;

unfortunately, it does not provide a good template for the frontend application. We then

realized we could apply a different framework for the frontend and proceeded to look for
a compatible version which will be discussed in greater details later in the next

subsection. We chose the AngularJS for the frontend of the system, the parts visible to

the user like HTML, CSS, client-side JavaScript, because we didn’t want to deal with

creating our own template from scratch and wanted to avoid html coding. Since time was

of the essence, we looked for an already customized and optimized frontend template.
This made the frontend development quicker and allowed us to spend more time working

on the Django backend and customizing the views and database model. We researched

multiple frameworks as well as a few platforms that would support our project and best fit

our capabilities. We looked over AngularJS, JQuery, and ReactJS as viable options to

see which would work better with Django. We finally decided to use the AngularJS for the

front-end framework of our system.

With the Django MVC style framework, we are able to further simplify the coding
development process because we can write our code in an object-oriented manner and
use the framework to build our database table simultaneously in the background; this

99

framework abstracts a lot of the database behind models that are represented as python

objects. Each table database can be treated as an easily accessible object making it quite

useful because we are able to change the fields of that record with no big fuss. Its fields

are treated as general variables that are part of the object. Since the database is

abstracted, we can import the schema of our models directly into our views. We can then

basically treat the database records as if they were objects and insert them directly into

our html code. Another major reason that this method is useful, is the fact that we do not

have to write anything in SQL. We are able to use functions to obtain and apply the

specified fields of that object of our database in order to store, sort, and search through
the database; we can then sift through the data, update, and record the database without

having to worry about coding in SQL. This framework is definitely great for our project’s

purpose and meets its designed specifications; as mentioned previously, we can choose
any database we want for the backend and not have to change or worry about
compatibility issues with our models and any related issues to the frontend from using a

different framework for the backend. This web framework provides extra usability which

relieves the coding process as the user does not have to follow the complex steps when

dealing with HTML coding. Usually, we would have to create a client, discern the correct

SQL statement, and recommunicate to the backend system. Then it must wait for the

response to our request. Instead, this framework relieves and negates these steps as it

is more flexible and compound the user with the ability to use the frameworks custom
tags to preload the required data and make use of that database’s objects directly in the

HTML. Thus, this allows even more flexibility as we are able to change our database

based on our needs at any given time; as an example, if we decide we want a smaller,

faster, lighter, or more robust system.

The frameworks custom tags and filters, mentioned above, reduce the amount of coding

in HTML by allowing the user to utilize prebuilt functionalities in Django. Those functions

are designed to address the presentation logic needs of a variety of applications. The

custom filters are part of the python functions and take in one or two arguments unlike

the custom tags that require a number of arguments to return the correct result. These

template tags provide great usability. They are useful because we don’t have to write

multiple blocks of the same HTML code repeatedly. It also allows us to reduce delays

when processing the data received from the database by not having to continuously

100

reassign data to each block individually. Django also provides many other functions,

packages, and modules to further cope with the code development process for the

backend. Some of the functions have already been explained above while the modules

available for the Django framework like Django Rest and Celery are discussed below.

5.7.2.1 Django Rest

Django’s prevalent modules and packages include a variety of API creation framework

and other asset managers. Among these API creation toolkits, which are all reusable, is

the Django Rest, Django TastyPie, Piston, Django-Nap, and many others. Below is a

table providing a comparison between the listed toolkits.

 Rest TastyPie Piston Django-
Nap

Applications 202 88 69 1
Development
/status

Production
/stable

Beta Alpha unknown

Documentation Yes Yes N/A N/A
API key
authentication

Yes Yes No No

Serialization JSON
JSONP
HTML

…

JSON
JSONP
HTML

…

JSON
Django

JSON

Accept
Headers

Yes Yes No No

Browsable
Web APIS

Yes No No N/A

Figure 5.6.2.1 Table of different API creation toolkits

 After researching the different available API creation toolkits, we decided to use the

Django Rest framework for several reasons. This framework’s toolkit, as opposed to the

others listed in the table above, definitely has more support and flexibility than the other

API’s. It is supported by over 202 applications. It is also the most stable and is still in

production providing several continuous updates. The ability to code using this toolkit is

further increase for beginners because of the multitude of documentations available;

101

making it easier to learn, understand, and develop. Last but definitely not least, it provides

a web browsable API which further helps us with our development process paired with

the provided documentation. A web browsable API is a generated API that includes an

HTML version that allows for browsing and editing the API. The Django Rest framework

is a powerful, sophisticated, and flexible toolkit for building web APIs. It requires both

python and Django to function properly and provides support with a variety of packages.
We used the coreapi package for schema generation, the Django-filter for filtering

support, and Markdown to support the browsable API. We decided to pair this toolkit with

Django because of its easy to use and attractive web browsable version of the Django

API. Another major reason is the option of returning a raw JSON. JSON (JavaScript

Object Notation) is an easy to use lightweight data exchanger that works between a

browser and a server where the data can only be text. It allows us to convert any

JavaScript object into JSON and send JSON to a server.

The Django Rest framework provides a flexible and powerful model serialization and

displays data using standard function based views. With the built-in model serialization

for data formatting, we are able to compose powerful representations of our data that is

processed and delivered in a number of formats with a few lines of code. Rest is defined

as “Representational State Transfer” and allows us to take advantage of Django’s ability
to abstract away the database as objects; it also allows us to communicate data to the

frontend framework using web endpoints. As previously stated, we are able to provide

information to the frontend as a raw JSON which are objects that are used in JavaScript

as if we obtained it directly from Django. This is important and worth mentioning because

it allows us to parse our data to the frontend framework while putting less stress on the

frontend framework. The purpose of using two different framework is because this

process allows us to relieve stress on our Raspberry Pi allowing for faster performance

and not crashing when obtaining a great multitude of web requests. The simple fact that

the Django Framework does not provide a pre-built frontend template also affected our

decision to choose a different framework for the frontend portion. A prebuilt frontend

template would lessen the coding development process making it easier on the team

saving time and also removing the need to write the template from scratch. Fortunately,

AngularJS extensively meets the desired requirement for a pre-built frontend template.

102

5.7.2.2 Celery

Celery is a powerful, production ready asynchronous job queue that allows the user the

ability to run multiple python applications in the background. This would allow us to

asynchronously queue, schedule, and run functions written as tasks. This system meshes

perfectly with our other frameworks as it powers these applications and quickly responds

to user’s requests. It creates the asynchronous job queue and passes long running tasks

to the queue. We installed this asynchronous task queue for Django using Celery and

Redis. For this job queue application, it is worth mentioning that we were provided with

two major possibilities that would pair quite perfectly with the Django Celery Module.
These two major options are Redis and RabbitMQ. Both options are compatible with

Celery and are both default recommendations by Celery’s developers. RabbitMQ is a

fast, lightweight, and persistent job queue that exchanges data between processes,

applications, and servers. In this case between Celery, servers (Django), and possibly

other applications. It is a message broker and message brokers act as a middleman for

various applications and reduce loads and delivery time of web application servers. Since

tasks usually take a while to process, RabbitMQ or Redis can speed up this process as it

is the only job they are meant to perform -so it’s best to perform it extremely well.

As previously stated, RabbitMQ is actually faster and a more lightweight and persistent

job queue than Redis. But Redis is more robust and can serve as a key-value pair

dictionary that is stored in the system’s persistent memory. Redis also boasts the

potential for having multiple job queues clustered together as to increase performance.
The key-value pair dictionary would benefit us in case we found compatibility issues.
Furthermore, this process would help us because it would be better to avoid implementing
the python objects as read and write for the GPIO pins in order to govern the Django

framework and web server completely. The Redis Key Value Dictionary would allow us

to store all the different signals obtained from the external peripherals as the Redis key

value that would act as a standalone function. This process would provide much more

functionality and ease the testing and debugging process. The RabbitMQ software, as

mentioned earlier, is indeed faster, lighter, and more persistent than Redis; but, Redis
makes up for this shortcoming by providing more functionality that will help us link all the

various components attached to our system quite neatly.

103

Redis, as part of Celery, is used to broker messages between Celery and other

applications. Celery is a great choice for our system as it relieves stress on the Raspberry

Pi. As mentioned previously, Celery relieves pressure on the Raspberry Pi leaving the

software applications created to calculate, process, and output the parameter to take

most of the computation power.

5.7.3 AngularJS Framework
The AngularJS Framework is another Model View Controller that we decided to pair with

the Django Framework. The Django framework serves as the backend of our system

providing a multitude of functions and is quite robust. It is written in python and provides

framework custom tags to preload the required data and injects that databases objects

directly into the HTML. Django is facilitated by Django Rest as well as Celery.

The MVC framework of the AngularJS provides us the exact requirement we need for our

frontend with a focus on developing a single web page application. AngularJS is a

structural framework for dynamic web applications that lets the user use HTML templates.
It also provides an ease of use for the user by allowing the system to extend the HMTL’s

syntax detailing the application components clearly and concisely. This is an ideal mesh

with our Django framework working with the backend since all the bindings and

dependency injection eliminate much of the coding process. This framework is

compatible with most current server technology as the data binding and injection all occur

within the browser itself. AngularJS offers a better and much simpler format for designing

application and is fairly beginner friendly; as opposed to HTML’s complex and difficult

coding process. AngularJS uses JavaScript in order to teach the browser new syntax

after creating new HTML constructs -these constructs are called directives. With these

directives, users can break up a single page and separate it into multiple views. This is

done by obtaining data from our Django Rest API and storing the data as models. Utilizing

both the models and views acquired, the framework easily displays the information

requested by the user onto the screen.

AngularJS simplifies applications development process by creating a higher level of

abstraction. Using this method allows its user a much more needed control because we

104

can decouple the client side of an application from the server side allowing the

development of both sides to operate simultaneously in parallel to each other. It also

allows the system to be able to reuse both sides as needed. This in correlation to the

models working in conjunction with the views are all loaded at once. The system only

requests and pulls the information it requested as it needs it -and thus the data is

dynamically allocated like any Model View Controller architectural framework. This is

superb as it allows the AngularJS frontend the capability to obtain all the views from

Django (the backend) and combine them into one view. Then the browser can handle the

requests for exactly which view and information is currently being demanded. AngularJS

truly eases the development process by broadcasting any application easily using

services that are auto-injected into a chosen application. This would allow us to quickly

create and control the initialization of automated tests.

Utilizing both the Django framework (as the backend) and the AngularJS (as the

frontend), all the desired views are all already loaded at once on the client machine. Thus,

the system does not need to keep requesting a new view from the Raspberry Pi,

recommunicating to it and waiting to acquire its response. The browser is then

responsible for switching between the contents that it wants to display and those that it

wants to hide. This reduces considerably the traffic and computational load that the

Raspberry Pi would have initially observed. Instead, all the computational intensity is

transferred onto the client’s browser -which is perfectly fine. This works because the client

is usually placed on machines more suited for heavy and complex computations. We

have discussed the individual frontend and backend framework with the respective
packages we intend to use but still have not exactly explained which database engine we

intend to use. In the prevalent and fervent spirit of decreasing or completely removing the

computational load done by the Raspberry Pi, we used the Django framework. This

framework relieves the computational complexity of our system by abstracting away most

of the database. The database chosen is still a crucial factor and should definitely focus

on being light and fast to further fit our application creation theme. We fixated on the SQL

databases like PostgreSQL which provides an extensive number of unnecessary features

that our project does not require. SQLite on the other hand, just as the name suggests,

is a lighter SQL database that focuses more on speed, memory load, and portability.

105

5.7.4 SQLite Database
SQLite is a software library stored in a single file format that favors a light and faster

database engine as opposed to the heavy traditional database design. It is the most

widely used SQL database in the world. It’s software libraries implement a self-contained

and server-less transactional SQL database engine that facilitates incredible portability.
This is made apparent by its simple back up procedure that stores and saves files at

certain stages providing the system administrator with a variety of functionality. It provides

the administrator with the ability to back up and roll back the database in case it gets

compromised or corrupted. This database engine allows files to easily be copied and

transferred to completely different systems (as long that it is configured properly). This

provides the new system with a complete copy of the database. As mentioned, the

database’s design is incredibly light which means it takes less space than the other

traditional databases. Its small size offers many great advantages that for example allow

it to be paired particularly well with the Raspberry Pi. It also boasts of less memory

consumption, a great variety of application, and we almost forgot to mention that it is

completely free for use for any purposes -private or commercial.

SQLite is a compact library with less than 500KB space necessary to encompass all of

its related features. It is a zero-configuration database which means that it does not need

to be installed in order to be utilized -no server processes need to be configured. “The

system just works” as described by its developers; if the system happens to crash, nothing

needs to be done it will re-orientate itself into working order. The databases small size

propagates its speed allowing it to work at a very fast pace. Now these advantages we

listed are great and pair nicely with our system and the few disadvantages are barely

worth mentioning. One disadvantage of this system is the (basically) zero security

features it provides. As described above, this is not necessarily a drawback for our system

as no personal information is ever saved or even recorded by the system. The system’s

main priority is to obtain the different signals from our sensors and simply output the

correct weather conditions or establish a communications check.

Another possible issue that might arise with other systems is the fact that the database

can only allow one write action to happen at one given time. This is not a notable issue

106

for our system because our system only writes to the database for certain
circumstances in which data is being accessed and read from the various peripheral

devices connected to our system. After the analog signals (switched to digital) are

received, each request sent based on the information obtained can only be processed

one at a time. In other words, we do not need to worry about problems arising from

obtaining and writing multiple entries at the same time. Worst case scenario a queue

system would need to be implemented. Furthermore, this problem would only be an

issue if the system was being accessed by multiple users attempting to change the

configuration settings over via the user interface at the same time. A quick solution to

this is to only allow one user at a time to access the interface at any given point. The

simple fact that the Raspberry Pi will only be placed on a local and very small network
means that it would be inaccessible to the outside world further trumps the idea that

security would be a possible problem. In fact, the only form of security employed by our

system is the WPA encryption of the local network the system will be connected to. A

would-be assailant would need to have remote access to the Raspberry Pi’s DCHP

server to access the page and gain the ability to change the configuration settings. Or

else, they would need direct access to the Pi.

Another benefit of SQLite is that it is the default database model included with Django.
Thus, with any Django installation, SQLite is the type of database that is automatically

implemented with the model’s page. This is very beneficial to us because of it’s

simplistic nature, added security benefits, and ease of use. Since it comes bundled with

Django, all we have to do is create the Django model based off of our Python weather
object and it will automatically create the database which we can then populate with

each weather reading.

107

5.8 Master Schematic

108

6. Testing
This section describes how the system and each component will be tested to ensure accuracy

and to make sure each requirement is met including sub systems. Testing is a crucial part of a

system’s development because it is necessary to make sure each requirement for the system is

met and that the system operates as expected and is reliable. Especially with a system like ours

that pilots will be depending on so that they can take off and land safely, it is important that the

system be reliable and accurate.

6.1 Anemometer and Wind Vane Testing

The testing of the anemometer and wind vane interface is easily done by measuring the

voltage level and waveform pulses at the output of its RJ11 jack. Facing the fin of the

wind vane as depicted in figure 6.1.1 should show a reading of 3.3 V on the green output

pin, this is the North configuration of the wind vane. The East, South, and West

configurations should result in 1.8 V, 1.97 V, and 2.6 V, respectively on the green output

pin of the wind vane that is connected to the ADC. These voltage levels were measured

from the prototype. The anemometer is tested by spinning the cups and measuring the

pulse waveform from the black output pin. This pulse is active low and should have a

width of 4.55 ms, shown in figure 6.1.2 below.

Figure 6.1.1: Wind Vane North Configuration

109

Figure 6.1.2: Anemometer Pulse

6.2 PTT Testing Procedures

Process Expected Outcome

Turn off the Raspberry Pi 3 microcomputer.

All signals going to the radio should be silent
and the Raspberry Pi 3 microcomputer

should be off.
Measure the voltage going into the KX 170B
Aircraft Radio pin 40 The voltage going in should be 0V

Press the button on the interface board
labeled “PTT Test”

The LED labeled “PTT” should light up when
the button is pressed

Measure the voltage going into the KX 170B
Aircraft Radio pin 40

The voltage going in should be ##V (still need

to test for actual value). There should be an
audible ‘click’ as the PTT voltage in the radio

gets pulled to ground.
Measure the voltage running through the
resistor to the Raspberry Pi 3 GPIO Pin It should be no larger than 1.2V

To test the Interface Board PTT Circuit, follow the testing procedure above.

110

6.3 Audio Testing

The audio buffer from the radio output to the input microphone of the CODEC can be
tested by applying a sinusoidal wave no more than 20 kHz and 3 V peak-to-peak at the
radio output (non-inverting input of operational amplifier) and measuring the output of the

operational amplifier. Both signals should be identical. This buffer was tested on the

prototype by a 3 kHz 2 V peak-to-peak sinusoidal signal, shown below.

Figure 6.3.1: Audio Buffer Testing

The Butterworth filter from the CODEC audio output to the radio audio input can be tested

by applying sinusoidal waves in a frequency sweep at no more than 3 V. The input should

be applied at the CODEC audio output with its bias before the DC block capacitor. The

output voltage should be measured at the radio audio input after the DC block capacitor.
The passband of the filter should result in little to no attenuation in the output voltage. At

50 kHz the gain of the filter should be -3 dB. From frequencies ranging from DC to around

10 kHz there should be negligible attenuation with 0 dB gain. Shown in that table below

are the measurements from the prototype filter accompanied with a few waveforms from

the measurements. This prototype was implemented with resistor values of 47 kΩ and 43

kΩ and capacitors measured to be 137 pF and 180pF, as they were provided by the on-

111

campus lab. Due to this, the measurements are slightly offset compared to the designed

filter, however its functionality is still sound even with component values different than the

design for its function.

Frequency (Hz) Gain (dB)
100 0
500 0

1000 0
5000 0

10000 -0.22
15000 -0.35
20000 -0.63
30000 -1.26
40000 -3.22
50000 -5.19

100000 -17.02

Table 6.3.1 Prototype Filter Response

112

Figure 6.3.2: Prototype Filter Response at 500 Hz

Figure 6.3.3: Prototype Filter Response at 5 kHz

113

Figure 6.3.4: Prototype Filter Response at 50 kHz

6.4 Power Supply Testing

Shown below in figure 6.4.1 is the pin configuration for the central power supply unit.
Measuring the voltage over pins 1/4 and 2/3 should result in a measurement of 20V.
There should be no more than 180 mV peak-to-peak ripple voltage. This power supply is

also equipped with a LED indicator which illuminates when the power supply is active.

Figure 6.4.1: Central Power Supply Pin Configuration

114

Each linear regulator can be easily tested in respect to its output voltage, dropout voltage,

and line regulation to ensure it is properly working. The output voltage should be tested

with an input voltage of 20 V and by measuring the output voltage. Dropout voltage can
be tested by monitoring the output voltage while the input voltage is lowered slowly from

20 V to where the linear regulator starts to drop outside its intended voltage range. The

input voltage where the drop starts is the dropout voltage. Lastly, the line regulation can
be measured by taking the difference in output voltages for two different input voltages

that are above the dropout voltage. Shown below in tables 6.5.1 and 6.5.2 are the testing
parameters for each regulator and the tested results done for our breadboard prototype

with no load.

Linear
Regulator

Min-Max Regulated
Output Voltage (V)

Maximum Dropout
Voltage (V)

Maximum Line
Regulation (mV)

LT1129IT-3.3 3.25-3.4 0.70 30

LD1085V50 4.9-5.1 1.5 10

L7815AB 14.4-15.6 2 150

Table 6.4.1: Linear Regulator Specifications

Linear

Regulator
Regulated Output

Voltage (V)
Dropout

Voltage (V)
Line Regulation

(mV)

LT1129IT-3.3 3.3013 0.128 1.22
LD1085V50 4.99153 0.844 2.03

L7815AB 15.132 0.83 97

Table 6.4.2: Prototype Testing Results

6.5 Software Design Testing

6.5.1 Anemometer Data from ADC
To test the anemometer data and the communication through the ADC, we will begin by
putting the anemometer outside and then we will verify that we are able to receive values
through the ADC to the Raspberry Pi and to verify that the value changes in real time

according to the current conditions. Next, we will verify accuracy by comparing the current

values from the anemometer to those collected by a separate instrument. After we have
verified that the Raspberry Pi can receive values from the anemometer and that they are

115

accurate, we will verify how the anemometer behaves within the weather polling function

and that the calculations done for wind speed and direction are accurate. To set up this
part of the test, we will leave the anemometer outside and collect values for a particular

time period. From those values, we will calculate by hand what the average speed and
wind direction should be and compare it to the result from the corresponding logic in the

weather polling function. Finally, once we have verified the Raspberry Pi can
communicate with the anemometer, the readings are accurate, and the calculations are
accurate, we will verify that those values are being stored correctly into the current

weather object through print statements and the debug functionality of our IDE.

6.5.2 Temperature, Humidity, and Pressure Data
To test the communication between the MS860702BA01 temperature, humidity, and
pressure sensor and the Raspberry Pi over the I2C bus, we will first individually poll the
sensor for each weather reading, and compare it to the values reported by a separate

weather reporting instrument to verify accuracy. After we have verified communication
between the sensor and the Raspberry Pi at a foundational level, we will test

communication through the weather polling function. We will do accomplish this by
verifying that the values are only read at the specific intervals set by the loops and that

the data is successfully stored in the current weather object. To do this, we will utilize
print statements and the debugging functions of our IDE so that we can verify when the
values are collected for each condition, how the value compares to current conditions

reported by another instrument, and that the values are stored correctly and accessible.
From here we will move onto testing how the weather is reported back to the pilot.

6.5.3 Weather Reporting
To test the weather reporting system, we will begin by testing the audio synthesis from
the weather data to make sure the audio is not choppy and the correct values are being

reported. After the audio has met our standards for quality and is consistently reporting
correctly the values the function has been given, then we will move on to test the inputs
to the function by making sure that any values that are received from the weather polling

function are accurately reported. After this has been verified, we will move on to test the

transmission.

We will begin testing the transmission by making sure the synthesized audio file can be

played back to the radio. After we are sure that the function can communicate with the

radio, we will verify how the system responds when the line is busy. We will make sure
the system detects traffic on the line and waits to transmit until after there are no carrier

signals detected.

116

6.5.4 ADS1015 ADC Channel
To test the ADS1015’s conversion of Analog signal to digital signal, after soldering the
header pins to the breadboard, we used the chips I2C protocols for transmitting the analog

readings. Fortunately, Adafruit Industries provides great documentations and excellent

open source python libraries. The functions of these libraries allowed us to read values

from the ADS1015 using the I2C bus. Before starting, we must connect the Raspberry Pi

with the ADC converter correctly. The table below shows how this connection is done.

ADS1015 Connection Test
VDD 3.3V (Pin1 of Pi)
GND GND (Any Ground Pin of Pi)
SCL SCL (Pin 5 of Pi)
SDA SDA (Pin 3 of Pi)
Channel A0 To Middle Pin of Variable Resistor

Table 6.5.4.1 Wiring Test for Raspberry Pi and ADS1015

We proceed by connecting the 3.3-volt pin of the Raspberry Pi (pin1) to the VDD pin of

the analog-to-digital converter. Then we connect the rest, the ground pin to any ground

pins of the PI and the SCL pin to pin 5 of the Pi. The SCL provides the clock for all the

peripheral devices when using the SDA connection. The SDA pin is connected to the 3rd

pin on the Pi. We then use a potentiometer which is essentially a variable resistor that is

used to test the ADS1015’s channel port. The middle pin of the variable resistor can then

be connected to any channels (we chose channel A0). After wiring the Raspberry Pi

correctly with the ADS1015 connected to a breadboard, we proceeded with the software

connection to the I2C bus. Before using the I2C bus it must be enabled on the Raspberry

Pi after which, a couple libraries need to be installed as documented in the Adafruit’s

website for the ADS1015. After which we are can turn the dial on the potentiometer which

changes the voltage coming into channel 0 of the ADS1015. The calculation and hard

parts are all done by the ADS1015 libraries making it and easy to receive and manipulate

the signals obtained by the analog sensors. An actual image of the wiring between the

Raspberry Pi and ADS1015 is provided in figure 6.5.4.2 below.

117

7. Management

7.1 Task List

TASK
Estimated

Completion Date

Person
Responsi

ble
Person
Backup Completed

Documents
Task List Initial Draft 2/17/2017 Michael Joshua Yes
Hardware Block Diagram 2/17/2017 Joshua Michael Yes
Software Block Diagram 2/17/2017 Vanessa Gilbert Yes
Divide 60p Senior Design 1 Document
Assignments 3/12/2017 Michael Team Yes
60p Senior Design 1 Document 3/30/2017 Michael Team Yes
Bill of Parts 7/10/2017 Michael Team Yes
100p Senior Design 1 Document 4/14/2017 Michael Team Yes
Final 120p Senior Design 1 Document 4/27/2017 Michael Team Yes

Radio
Research and Determine Radio for
Purchase 2/16/2017 Joshua Michael Yes
Purchase Radio 2/16/2017 Joshua Team Yes
Study Radio Schematic for Tieoff Locations 2/21/2017 Joshua Michael Yes
Confirm Locations of Critical Features in
Lab 2/24/2017 Joshua Michael Yes
Correlate AGC Voltage to 3dBm Increments 3/17/2017 Joshua Michael Yes
Determine Audio Tx Voltage Level Needed 3/17/2017 Joshua Michael Yes
Determine Ideal Squelch Setting &
Permanently Set Potetiometer 3/17/2017 Joshua Michael Yes
Design Audio Rx Input Circuit for
Appropriate Mic Biasing Level 3/17/2017 Michael Joshua Yes
Design PTT Circuit 3/17/2017 Michael Joshua Yes
Research and Determine Permanent
Connection 3/30/2017 Michael Joshua Yes
Purchase Cable/External Connectors 4/18/2017 Michael Joshua Yes
Modify Radio Case and Attach Connector 4/30/2017 Michael Joshua Yes

Carrier Detect
Research and Design Schematic
Using Comparator w/ Squelch
Voltage 3/24/2017 Joshua Michael Yes

118

Order Parts 4/14/2017 Joshua Team Yes
Breadboard and Confirm Operation 4/24/2017 Joshua Michael Yes

Weather Sensors
Determine What Measurements Will Be
Collected 2/21/2017 Joshua Michael Yes
Make Decision on Sensors for Purchase 2/28/2017 Michael Joshua Yes
Research and Decide on Interfacing for
Sensors 3/2/2017 Michael Joshua Yes
Design Annemometor Wind Speed
Interfacing Circuit 3/10/2017 Joshua Michael Yes
Design Annemometor Wind Direction
Interfacing Circuit 3/10/2017 Joshua Michael Yes
Buy Components for Breadboarding the
Interfacing Circuits 3/10/2017 Michael Team Yes
Correlate ADS1015 Sensor Data w/
Wind Speed + Direction 4/14/2017 Gilbert Vanessa Yes
Correlate MS8607 Sensor Data w/
Temp, Humidity, Pressure 4/14/2017 Vanessa Gilbert Yes
Decide on Enclosure & Connection for
MS8607 3/31/2017 Vanessa Michael Yes
Final Confirmation of Correct Operation 4/18/2017 Vanessa Michael Yes

Power Supply
Determine What Voltages are
Needed 3/17/2017 Joshua Gilbert Yes
Research and Design Voltage

Regulation from 13.8 V 3/24/2017 Joshua Michael Yes

Determine Interfacing for 13.8V
Tieoff 3/30/2017 Joshua Michael Yes
Order Parts 4/14/2017 Michael Team Yes
Breadboard and Confirm Operation 4/24/2017 Joshua Michael Yes

Interface Board
1st PCB Design 5/13/2017 Joshua Michael Yes
1st PCB Order 5/14/2017 Joshua Team Yes
1st PCB Test 5/29/2017 Michael Joshua Yes
2nd PCB Design 6/19/2017 Joshua Michael Yes
2nd PCB Order 6/21/2017 Joshua Team Yes
2nd PCB Test/Confirm Operation 7/5/2017 Michael Joshua Yes

Microcontroller
Research and Decide on MCU 3/2/2017 Gilbert Michael Yes

119

Research and Decide on Appropriate ADC 3/2/2017 Gilbert Michael Yes
Order MCU 3/2/2017 Gilbert Team Yes
Order ADC 3/2/2017 Gilbert Team Yes

Software
Decide on Operating System for
MCU 3/10/2017 Gilbert Vanessa Yes
Draft Word Bank for AWOS
Standard Reporting 3/17/2017 Joshua Gilbert Yes
Research and Decide on Voice
Library 3/17/2017 Gilbert Vanessa Yes
Create Comprehensive Logic
Diagram for Decision
Making/Operation 3/17/2017 Gilbert Vanessa Yes
Create Python Library for I2C w/
ADS1015 3/31/2017 Gilbert Vanessa Yes
Create Python Library for I2C w/
MS8607 3/31/2017 Vanessa Gilbert Yes
Enable Raspberry Pi for CODEC
Communication 3/31/2017 Michael Vanessa Yes
Write Function to Correlate AGC
Voltage to Received Signal Power 4/14/2017 Gilbert Vanessa Yes
Write Program for Weather
Measurement Logic 4/15/2017 Vanessa Gilbert Yes
Write Function for Audio Rx
Recording 4/16/2017 Gilbert Michael Yes
Write Function for Audio Tx to
CODEC (w/ PTT) 4/17/2017 Gilbert Michael Yes
Program Raspberry Pi for Main
Logic Tree 4/30/2017 Vanessa Gilbert Yes
Design Website Interface w/
Remote Access SD2 TBD Vanessa Gilbert Yes

Optional Mounting Case
Research and Decide Viability of 3D
Printing

Decide on Location for Printing
Create Model 3D Design with
known PCB Dimensions

Slice 3D Drawing

Print First Prototype

Make Revisions

120

7.2 Budget

Item Design
Quantity

Backup
Quantity

Engineering Justification and
Notes

Estimated
Expense

Anemometer 1 0 Wind speed and direction sensor.

Provided by Mr. Young.
$0.00

Barometer 1 0 Atmospheric pressure sensor $10.00
Hygro Thermometer 1 0 Temperature and humidity sensor $35.00

ADC 1 3 Receive analog data, convert analog to
digital data, process digital data $10.00

Raspberry Pi 3 1 1 Process pilot voice and commands,
provide data to website $60.00

Operational
Amplifiers

3 6 Audio conditioning $15.00

Comparator 1 3 Carrier detect $5.00
Diodes 1 4 University lab kit. $0.00

Transistors 10 10 Weather instrument signal processing
and audio conditioning $10.00

Linear Regulators 3 6 Convert 20 V power supply to lower
voltage for different stages $27.00

Other ICs N/A N/A For possible future use system $10.00
Ports/Headers N/A N/A Supply correct and secure connections $5.00

PCB + Labor 1 1 Fabricate PCB and install components $120.00
General Passive

Components
N/A N/A General resistors, inductors, capacitors

for various parts of design.
$10.00

Power Supply 1 1 Provide power for aviation radio and
system $30.00

Aviation Radio 1 0 Used to transmit and receive signals to
and from system to pilot $55.00

Total - - -- $402.00

Table 7.2: Budget Allocation

121

7.3 Milestones

Project Tasks Design Milestone Order Milestone Test Milestone
Final Design

Revision and Test
Milestone

Weather
Instruments N/A 02/28/2017 03/07/2017 04/18/2017

Weather
Instrument

Analog System
03/15/2017 03/17/2017 03/27/2017 04/18/2017

Power Supply
System 04/01/2017 4/03/2017 04/10/2017 04/18/2017

Audio System 03/15/2017 03/17/2017 3/27/2017 04/18/2017

µC/DSP/CPU N/A 02/28/2017 03/07/2017 04/18/2017

Webpage N/A 04/18/2017

Digital Weather
Reporting 03/22/2017 N/A 3/30/2017 04/18/2017

Digital
Communications

Check
03/18/2017 N/A 3/30/2017 04/18/2017

1st Prototype N/A N/A 05/03/2017 05/06/2017

1st PCB 05/13/2017 05/14/2017 N/A 05/29/2017

2nd Prototype 06/05/2017 06/06/2017 N/A 06/13/2017

2nd PCB 06/19/2017 06/21/2017 N/A 07/05/2017

60 Page SD1
Design Draft (15
Pages/Person)

N/A N/A N/A 3/31/2017

100 Page SD1
Design Draft (25
Pages/Person)

N/A N/A N/A 4/14/2017

Final 120 Page
SD1 Design Draft

(30 Pages/Person)
N/A N/A N/A 4/27/2017

Table 7.3; Milestones with Deadlines

122

8. Appendix

8.1 Datasheets

8.1.1 Raspberry Pi
 https://www.raspberrypi.org/documentation/hardware/computemodule/RPI-CM-

DATASHEET-V1_0.pdf

8.1.2 AWOS
http://www.coastalenvironmental.com/aviation-weather-stations.html

8.1.3 UHF/VHF Range Calculations
http://arundale.com/docs/ais/AppNote_UHF_VHF_Calc.pdf

8.1.4 ADS101x-Q1
http://www.ti.com/lit/ds/symlink/ads1013-q1.pdf

8.1.5 Audio CODEC Proto
https://download.mikroe.com/documents/add-on-boards/other/audio-and-voice/audio-
codec-proto/audio-codec-proto-manual-v100.pdf

8.1.6 WM8731 CODEC
http://www.cs.columbia.edu/~sedwards/classes/2008/4840/Wolfson-WM8731-audio-
CODEC.pdf

8.1.7 Low Drop Power Schottky Rectifier
http://www.st.com/content/ccc/resource/technical/document/datasheet/d8/3f/72/85/bc/90
/4e/f7/CD00001626.pdf/files/CD00001626.pdf/jcr:content/translations/en.CD00001626.p
df
8.1.8 TVS Diode Arrays
http://m.littelfuse.com/~/media/electronics/datasheets/tvs_diode_arrays/littelfuse_tvs_dio
de_array_sp4020_datasheet.pdf.pdf

8.1.9 Low Noise Op Amp
http://www.ti.com/lit/ds/symlink/sa5534a.pdf

8.1.10 Micropower Low Dropout Regulator
http://cds.linear.com/docs/en/datasheet/112935ff.pdf

8.1.11 Positive Voltage Regulator
http://www.st.com/content/ccc/resource/technical/document/datasheet/41/4f/b3/b0/12/d4
/47/88/CD00000444.pdf/files/CD00000444.pdf/jcr:content/translations/en.CD00000444.
pdf

8.1.12 120W AC-DC Adaptor
http://www.alliedelec.com/m/d/c6fd3490220d0ac225701a0cd2276943.pdf

8.1.13 Step Down Voltage Regulator
http://www.ti.com/lit/ds/symlink/lm2676.pdf

8.1.14 PD-40S

123

http://www.cui.com/product/resource/pd-40s.pdf

8.1.15 IC-A2 Maintenance Manual
http://www.repeater-builder.com/icom/pdfs/ic-a2-maint-man.pdf

8.1.16 IC-A2 Owner’s Manual
http://radiopics.com/1.%20Manuals/Icom/Icom-Air/Operation%20Manuals/Icom_IC-
A2%20(Owner%27s%20Manual).pdf

8.1.17 Anemometer
http://www.davisnet.com/product_documents/weather/spec_sheets/7911_SS.pdf

8.1.18 MS8607-02BA01
http://www.te.com/commerce/DocumentDelivery/DDEController?Action=showdoc&DocId
=Data+Sheet%7FMS8607-02BA01%7FB%7Fpdf%7FEnglish%7FENG_DS_MS8607-
02BA01_B.pdf%7FCAT-BLPS0018

8.2 Software

8.2.1 Raspberry Pi/ADC
https://learn.adafruit.com/raspberry-pi-analog-to-digital-converters/ads1015-slash-
ads1115
8.2.2 SMBus
https://pypi.python.org/pypi/smbus2/0.1.2

8.2.3 Raspberry Pi/I2C
http://www.raspberry-projects.com/pi/programming-in-python/i2c-programming-in-
python/using-the-i2c-interface-2
8.2.4 PicoPi

 https://github.com/DougGore/picopi

8.2.5 Python Style Guide
https://www.python.org/dev/peps/pep-0008/

