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1. Executive Summary 
 

When a pilot chooses to fly there are a few things that the pilot must know for certain. 
Before a pilot takes off they should know that their microphone, radio, and headset are 

operational. This is so that they can communicate with other pilots in the area to avoid 

deadly collisions and for communicating with Air Traffic Control at another airport soon 

after takeoff. This is absolutely necessary if a pilot is planning to fly IFR as they must 

establish communication with ATC starting on the ground or soon after becoming 
airborne.  Also, as they come into land, a key piece of information to know is the wind 

direction, wind speed, and gusts at the airport they are landing at. This is because pilots 

always need to land into a headwind to shorten their landing distance. And if a 

crosswind exists (and they usually do) the pilot needs to know so they can choose the 

best runway to land on. Other weather information such as temperature and the 

barometric pressure at the airport is also important so that pilots can set their altimeters 
and judge the density altitude.  

 
Usually Fixed Base Operators (FBO) are the ones to relay this information as well as 
other remarks about airport conditions to the pilots over the radio, but some airports do 

not have FBOs. Furthermore, most FBOs are not staffed 24 hours a day throughout the 

year. This creates a problem for the pilots who need that very information. One solution 

to try to mitigate this issue at such airports is a windsock. A windsock is a light and 

flexible cone of fabric mounted on a mast, usually somewhere along the airstrip of an 

airport. Windsocks let the pilots know some of the important weather readings, such as 

wind direction, but they are small and cannot be seen until the aircraft is very close to 

the airport. On the other hand, there are some automated systems currently on the 

market that perform task such as broadcasting weather conditions and transmit radio 

checks, but they are costly and not suited for smaller airports.  
 

The proposed project is a low-cost system that satisfies these two basic needs. This 

system needs to broadcast important weather information when prompted by pilots in 

the area. For example, when the system is prompted, the system will broadcast a 

weather report that includes the latest recorded wind direction and wind speed as well 

as gusts. This system also needs to perform a transmit radio check for any pilot that 

consists of recording the transmission from the pilot and playing it back so the pilot 

knows exactly how operational their equipment is. Therefore, this can be classified as 

an “Auto Fixed Base Operator” for small airports. This “Auto Fixed Base Operator” 

would act as a hub of communication for these small airports that do not have a 

dedicated FBO or weather station. This system would provide a source from which any 
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pilot can obtain crucial weather information or perform any radio communication checks 

they need prior to taking off and landing their aircrafts.  
 

Our goal is to use our technical experience to connect a weather station and VHF radio 
through an interface board to a microprocessor that can process all the necessary 

information. Using these components, we will build a system that can assist pilots in 

taking off, flying, and landing safely, all while being configurable and cost-effective. 
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2. Project Description 
 

This section describes the motivation, goals, objectives, and some of the key systems of 

this project to better understand its premise and the features it has. 

2.1 Project Justification and Motivation 

The vast majority of airports in the U.S. as well as other parts of the world are non-

towered airports. Many towered airports even have non-towered hours of operation, 

usually during night hours. When active, towered airports are held responsible to 

maintain safe, orderly, and expeditious flow of air traffic, as well as report accurate and 

real time weather observations. However, when pilots fly into and out of non-towered 

airports they are responsible to maintain good communications while operating in the 

local airspace as well as on the airport’s runways and taxiways. Also, the local weather 

at many non-towered airports is not automatically broadcasted over a local frequency 

and is usually found from another nearby airport’s weather report. 
 

One concern pilots face when preparing to fly out of a non-towered airport is how well 

their radio is working. It is vital for a pilot preparing their aircraft for flight to ensure that 

their communications systems are properly working. This is especially true for pilots 

flying under Instrument Flight Rules (IFR), as they must establish contact with air traffic 

control soon after becoming airborne. With no tower they can only perform a radio 

check if there are others on the local frequency, which is never guaranteed. 
 

The current local weather is also a concern for both pilots flying into and out of non-

towered airports. For pilots flying out of a non-towered airport getting the current local 

weather is usually done by looking up the weather, observing outside conditions, and 

collecting nearby airports weather reports. Pilots flying into a non-towered airport, 

however, do not have the luxury of looking up the current local weather from their plane. 
The best a pilot flying into a non-towered airport can do is to lookup the weather they 
will be traversing through beforehand, observe the windsock at the airport, remain 
conscious of weather conditions around the aircraft, and tune into nearby airport’s 

weather reporting stations. At a towered airports this complication is resolved with an 

Automatic Terminal Information Service (ATIS) or another equivalent system, which 
provides highly accurate and current weather as well as other remarks (obstructions 

near the runways, closed taxiways, other weather information, etc).  
 

In respect to weather, pilots are interested in elements such as the wind speed and 
direction, barometric pressure, temperature, and dew point surrounding the airport when 

preparing for a flight, taking off, and landing. Wind speed and direction are of the most 

concern for pilots, which dictates which runway pilots will use to take off and land. This 
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is because during the takeoff and landing phase it is desired to have as much wind 

flowing over the wings of the aircraft to increase both drag and lift. Barometric pressure 

is used to tune the aircraft’s altimeter, which indicates the altitude of the aircraft. Lastly, 

temperature and dew point are used to judge the density of the air and predict the 

visibility conditions. The temperature along with elevation gives pilots information on 

how well their aircraft will operate and if their aircraft is safe to operate in the air. The 

difference between temperature and dew point gives pilots information on the visibility 

surrounding the airport. This is used decide if an area’s airspace is under Visual Flight 

Rules (VFR) or Instrument Flight Rules (IFR). 
 

Our motivation for this project is to improve the safety of pilots and passengers at these 

smaller airports with no manned Field Base Operator (FBO). When pilots aren’t sure of 

weather conditions they do not know which runway to land on. The airports that don’t 

have a dedicated FBO usually don’t have the financial means to fund the expensive 

automatic weather systems on the market. Our system would become the model for a 

low-cost effective solution. 
 
The proposal for this project was brought by Professor Michael Young last summer to 

be completed by a senior design group at UCF. Unfortunately, the final product 

presented was undeployable and did not satisfy all of Professor Young’s needs. We 

seek to improve on the areas where the previous team fell short; expanding the weather 
capabilities of the weather reporting system and delivering a “no distortion added” 

communications check. 

2.2 Goals and Objectives 

The objective of this project is to build an easy to use, reliable, and efficient system for 
pilots to receive critical weather information and perform a communications check when 

flying into a non-towered airport. Our system will provide more information to pilots than 

a typical windsock which will give them the data they need to be able to take off and 

land safely. This system will be comparable to the existing Automatic Terminal 

Information Service (ATIS) and Automated Surface Observing System (ASOS) systems 
in place at larger airports so that pilots will already know what to expect and not have to 

learn a whole new protocol. 
 
The system will be able to recognize a mic click signal from the pilot and decide from 
the signal if the pilot is requesting weather condition information or a communications 

check. If the pilot is requesting weather information, the system will respond with an 

ATIS style broadcast with the wind speed, direction, visibility, temperature, humidity, 

and pressure. If the pilot is requesting a communications check, the system will respond 

with a message acknowledging the request and will record and playback the pilot’s 
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response so they can hear exactly how their message was received. The system will 

also respond with a power level to inform the pilot of their signal strength. 
 

A similar system was designed for a previous senior design project but that system did 

not meet all the requirements and was too complicated and cumbersome to deploy. 
Their audio playback for the communications check was not integrated into the PCB so 
to receive, save, and playback a pilot’s transmission, they had to use a separate USB 

interface on a computer. This affected the quality of the transmission but it also made 

the system much bulkier. To deploy their system, they needed room for the weather 

sensors, PCB and microcontroller, and a separate computer to process the audio. The 

idea behind the communications check was that it allows the pilot to make sure they can 
be heard by other pilots or air traffic control towers but this becomes ineffective when 

the playback is distorted. Their communications check failed because of that crucial 

factor. Inaccurate playback will cause the pilot to believe their transmissions are worse 

than they are so they will make unnecessary adjustments furthering the problem. 
 

Our system will differ from the previous senior design project in many key ways. We will 

be integrating all the components, aside from the weather sensors, onto one chip so 

that they system is contained and very easy to deploy. This will include a codec to 

receive, save, and playback a pilot’s communications check so that the playback is as 
accurate as possible and they pilot will also receive a quantified value for the quality of 

their transmission. In addition to this improved communications check, we will also be 

including more weather sensors and more robust logic to allow the pilots to get the most 
accurate weather information when they request it instead of clogging the line with 

repeated information. Instead of just reporting wind conditions, the system will also 

report temperature, humidity, and air pressure. These are all crucial measurements for 

pilots because it allows them to understand how the wind will affect their plane and what 

counter measures they will need to take. In addition to these changes, we are also 

simplifying the circuits immensely. The previous team added many unnecessary 

components and overcomplicated the circuitry so we started with an all new design and 

chose to incorporate and build off more out of the box components such as the codec. 
This way we are able to pull what we need from each component and combine the 

simplified circuitry into the PCB. 
 

2.2.1 Weather Conditions Report 

The weather conditions report is one of the main functions of the system. When the 

user/pilot keys the mic on their radio a specified number of times, the system should 

broadcast weather conditions. This weather conditions report should include wind 

speed accurate within ±2 knots, wind direction within ±5 degrees, temperature within ±3 

C, humidity within ±4%, and air pressure within ± 0.0591 inHg. It will also need to check 

if the channel is occupied and only broadcast the weather report when the channel is 
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unoccupied.  
 
Another feature of this function is to broadcast an updated weather report if the wind 

conditions change more than a specified amount. For example, if the system broadcast 

that winds are 5 knots at 120 degrees, and they change to 10 knots or 150 degrees, the 
system will broadcast the new wind conditions so that the pilot is always up to date with 

the most current and accurate conditions. 
 

This also touches on the Crosswind Alert the system will have. A crosswind is when 

winds blow near perpendicular to a runway, and this causes makes landing more 

difficult. Our system will detect when a crosswind exists and broadcast an alert. The 

system should also announce when a runway is “favorable” to land on. A pilot wants to 

land into headwind so the length of their landing is shorter. If the system detects winds 

are more than, say, 5 knots and they are in the direction of a runway, the system should 

announce that that runway is favorable to land on.  
 

2.2.2 Transmit Radio Check 

The second main function of our system is a Transmit Radio Check. Before a pilot takes 

off, they want to ensure that their mic, radio, and headset work so they can 

communicate with Air Traffic Control (ATC) and other pilots. Normally, the pilot would 

contact the Field Base Operator (FBO) and the FBO would respond with a radio check 

and wind conditions. Our system will be used at an airport without an FBO. When the 

user keys the mic a specified number of times, the system should prompt the user to 

perform a Transmit Radio Check. The system will record what the pilot transmits, and 

play it back exactly how it was heard. Then the system will announce the power level of 

the transmission. This way the pilot can verify their mic and radio are operating normally 

and that their signal strength is satisfactory. During this process, the system will verify 

that the channel is not occupied before transmitting the prompt or the recording. 
 

2.2.3 Printed Circuit Board Interface 

To interface the handheld radio and the microcomputer we will need to design and build 

custom circuitry and ultimately fabricate a Printed Circuit Board (PCB). This PCB will 

have all necessary inputs from the radio and convert them into usable signals for the 

microcomputer. The PCB will also have these power supplies. In turn, it will also create 

usable signals for the radio that come from the microcomputer. The weather sensors 

will also be connected to the PCB and accessed by the microcomputer. 
 

2.2.4 Web Interface 

The web interface is intended to provide an easily accessible graphical interface for the 

user. The interface would provide the user with valuable information concerning the 
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current weather conditions; this includes wind speed, wind direction, gust, and 

temperature. The interface would allow users to check the current conditions at the 

airport from anywhere and at any time. The system will also allow the admin user for the 

airport to switch the click pattern for requesting each task, like a communications check, 
to best fit their preference and to ensure the click pattern does not conflict with other 

systems already existing at the airport. The operator would need to switch the click 

pattern if the current click pattern interferes with any patterns already established at the 
specific airport because if not then pilots may not be able to perform necessary tasks 

like turn on runway lights.  
 

Our device will also host a local web server that will provide a graphical user interface 

that anyone can use to get information from the system. The user will be able to specify 

any parameter and adjust the system. For example, if the administrator for the system 

wants to change the number of clicks for the weather report, they will be able to change 

that from the interface. We also will show a graphic of the runway, a compass overlay, 

and the wind conditions so that the user can get a graphical representation of the 

current weather situation like what is shown in Figure 2.1. The user should be able to 

type in the IP address or a web address related to the IP of the microcomputer to 

access the web interface. This system will be opened using the port routing functions of 

our microcontroller to also allow access from outside of the local network, allowing the 

user to be able to get weather conditions from an outside location, i.e. their home or 

office.  

 

 Figure 2.1 General Block Diagram of Auto FBO 
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2.3 Product Specifications 

In this section we list out the specifications to which we believe our system should 
perform; touching first on the general system specifications such as system size and 
response time, next we outline exactly how the critical features of weather reporting and 

communications check should operate and their specifications. 
 

2.3.1 Engineering Specifications 
-- Response Time from Signal Receive: < 3 seconds 

-- Final Device Size: < 2 ft. on longest side  

-- Measurement Capabilities: Temperature, Humidity, Dew Point, Air Pressure, 
Wind Speed, Wind Direction 
-- The system shall have a web IP graphical interface from which the user can 

read the current winds and make parameter changes. 
-- The system shall not broadcast if the radio channel is occupied. 
-- The system shall operate on the airports UNICOM frequency.  

-- Upon receiving the designated cue for a weather report, the device shall return 
an automated weather message in a precise formatting specific to aviation 

procedures. 
-- The system shall update the pilot and broadcast the current wind conditions if 

they change such that they exceed the chosen parameters. 
-- The system shall announce crosswind and gust warnings if they are present. 
--The system shall announce a favorable runway if conditions fall within chosen 

parameters. 
-- Temperature Accuracy: ± 2 C 
-- Humidity Accuracy: ± 3% 
-- Wind Speed Accuracy: ± 2 kts or ± 5%, whichever is greater 
-- Wind Direction Accuracy: ± 10 degrees 

-- Barometric Pressure Accuracy: ±0.0591 inHg  

-- Upon receiving the designated radio cue for a communications check, the 
device shall record the pilot’s transmission and subsequently transmit the 

recording back with no added distortion to the pilot for verification. 
-- Following the playback of the recording the device shall transmit a message to 

the pilot detailing the received message’s power level. 
-- Maximum Recording Length: 15 seconds 
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2.3.2 Trade Off Matrix 

 

  
Implementation 

Time 
Temp. 

Accuracy 

Humidity 
Accuracy 

Wind 
Speed/Direction 

Accuracy 

Barometric 
Pressure 
Accuracy 

 
Dimensions 

  - + + +  - 

Good Sound 
Quality 

+ ↓↓ - - - - ↓ 

Ease of 
Installation/Setup 

+ ↑↑ - - - - ↑ 

Low Cost - ↑↑ ↓ ↓ ↓ ↓ ↓ 
Quick 

Responsiveness 
+ ↓↓ - - ↓ - - 

Multiple 
Measurements 

+ ↓↓ ↑↑ ↑↑ ↑↑ ↑↑ ↓↓ 

  < 23 weeks < ± 3 C < ± 4% < ± 2 knts.  

< ± 5 degrees 

< 0.0005 

inHg 

< 2 ft. on 

longest side 

 

↑↑ Strong Positive Correlation  ↑ Positive Correlation  ↓ Negative Correlation 

↓↓  Strong Negative Correlation  + Positive Polarity   -    Negative Polarity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

10 
 

3. Research 
 

This chapter describes existing products both commercially available and the previous 

Senior Design project for this system. Additionally, the chapter includes the research 

done for component selection, communication protocols, programming language 
selection, the various interfaces between components, and a discussion on power 

supplies. 

3.1 Existing Products 

Currently there are numerous options when it comes to autonomous or unmanned 

control tower like services. They typically provide pilots with necessary information like 

the weather conditions and radio checks similar to what our system will provide. 
However, these products usually provide way more services for the pilots like 

monitoring traffic in the surrounding airspace and relaying that information. In addition to 

the autonomous FBO’s, there is also the more traditional approach of having a 

dedicated FBO at the airport. While these systems share similarities in capabilities they 

also share a similarity that also happens to be their biggest flaw: having a high cost. 
Between initial system costs, installation or construction, and routine maintenance or 

operating; these factors can lead to quite the costly investment in the long run. For 

some airports, this is a completely justifiable cost, for other small airports this is not the 
case and will typically lead to the airport being unmanned and unavailable to provide 

critical information to any pilots.  

 

Figure 3.1.1 Potomac Aviation Micro Tower 
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The first similar product is the Potomac Aviation Micro Tower (Figure 3.1.1). The Micro 

Tower is an all-in-one system that operates on the area’s CTAF frequency (Usually 

UNICOM) and provides the same core services that our system will provide. The Micro 

Tower can broadcast weather conditions, altimetry, visibility, and runway advice. The 

Micro Tower can also perform the same communications check that our system will 
have by recording and playing back a pilot’s transmission and giving the power level of 

that received transmission.  
 

Where this system exceeds is its AI capabilities with all that information. For example, 

the Micro Tower can sit in the radio channel and detect when a new airplane enters the 

airspace, giving that pilot a greetings and introduction to using the system.  Another 

advantage of the Micro Tower is that it is completely solar powered, meaning it can be 

set up anywhere in the world and not have to rely on a power source. This leads to an 

incredibly easy user setup experience; only need two individuals and about a half of a 

day’s work to get the system up and running.  
 
However, airports like Orlando Apopka don’t necessarily need or can’t afford the 

multiple thousands of dollars cost of dedicated weather and broadcasting equipment. 
As mentioned earlier, the Micro Tower fails at being cost accessible for small airports. 
With a quoted price starting at $75,000, this puts the system in a budget range that is 

too much for an airport such as Orlando Apopka. 
 

 

Figure 3.1.2 Unmanned Control Tower 

Another similar solution is an unmanned control tower. This is not necessarily a buyable 
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product like the Micro Tower, but should still be considered as a method to compare 

similarities, usability, and the effectiveness of our system.  
 
These unmanned control towers have the eyes and ears of a standard control tower, 

with none of the personnel. On average, they can reach heights of 80-feet tall and 

house high-definition cameras that send the information back to controllers, stationed at 

a manned ATC Tower. The cameras are spread out to eliminate blind spots and in the 

future, can be equipped with infrared technology to operate at night or in bad weather.  
 
Overall these solutions again, far exceed the needs of a small airport such as the 
Orlando Apopka airport, and the price is similarly outlandish when you take into 

consideration that an airport like Orlando Apopka is mostly self-funded. The Orlando 

Apopka airport could not afford the expensive Micro Tower and wanted a similar product 

without the cost, which is why we are building this low-cost solution for them. 
 
Our solution will most importantly be low cost but it will also deliver the functionality that 

is critical to the safety and efficiency of unmanned airports. We will deliver a easy to use 

weather reporting system which when requested, inform pilots of the current wind 

speed, wind direction, temperature, humidity, and pressure. We will also deliver an 

incredibly accurate communication check system. This system will allow the pilot to 

request the system to record their transmission and then play it back so the pilot can 

hear exactly how they will sound to other pilots or air traffic control at other airports. 

3.2 Main Control Unit 

This section details the options that have been assessed for the main control unit of the 

system and why the specific system was selected. It also describes the communication 

protocols, how the various components of the system will communicate, and the 

language chosen to write the software for the system. 
  
The main control unit of a system receives and sends data that direct the operations of 

a computer’s processor. The MCU translates input information into control signals that 

are sent to and carried out by the central processor. Using the information obtained, the 

processor can then communicate accordingly with any attached external device. In our 

project’s case, our MCU receives digital signals (that are first converted by an ADC from 

analog signals) as input. The input information is then used by our program to output 

the related information back to the user. The MCU is necessary to communicate 

between devices providing multiple functions that allows its user to send, receive, and 

manipulate control signals from other computer devices.  
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3.2.1 MCU Options and Selection 

This section details the two microcontrollers we deliberated over, their specifications, 

strength, and ultimately the one we chose that best fitted our project specifications. The 

reason for choosing one microcontroller over the other is also due to their different 

coding environment and language. Additionally, we also decided to favor the 

microcontroller the members of our team are most accustomed to the Raspberry Pi. 
 

3.2.1.1 Raspberry Pi 3 Model B 

 
Figure 3.2.1.1 Raspberry Pi 3 Model B Configuration 

 

The Raspberry Pi 3 Model B is a microcomputer equipped with a quad-core 64-bit ARM 

Cortex A53 running at 1.2 GHz with 1GB of LPDR2-900 SDRAM. This model contains 

2.4GHz 802.11n Wireless LAN, Bluetooth 4.1, and 10/100 Ethernet connection. 
Furthermore, this MCU includes an HDMI port, display interface (DSI), micro-SD card 

slot for storage, 4 USB ports, and a 3.5mm audio jack. The Raspberry Pi meshes best 

with the free operating system Raspbian. Raspbian is an optimized distribution of Linux 

tailored for the Pi. The system provides many packages and pre-compiled software that 

make the Pi versatile and easy to operate; yet, the Pi’s most powerful tool is its GPIO 

pins. With a total of 40 pins (26 GPIO pins with the rest being power, ground, or I2C 

pins), the Pi can communicate and interface tremendously well with external devices.  
 

3.2.1.2 Arduino Uno 

The Arduino Uno is a microcontroller that operates at 5V and runs at 16-MHz. The 

board is populated by fourteen digital input and output pins and six analog input pins.  
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Figure 3.2.1.2 Arduino Uno Configuration 

 

The Arduino Uno’s 8-bit AVR RISC-like microcontroller is called ATmega328P and 

provides 32 kB of flash memory with .5 KB used by the bootloader; it also provides 2-

KB of SRAM and 1 kB of EEPROM. Other features include the 32 general purpose 

registers, an SPI serial port, serial programmable USART; and most conveniently, an 

onboard 8 channel 10-bit A/D converter. The A/D converter is a required component for 

our project since the analog signals from the weather sensors need to be converted to 

digital signals. The digital signals can then be received and manipulated in order to 

accurately output the correct response for the weather conditions to the user. 
 

3.2.1.3 MCU Selection 

The Raspberry Pi was the clear winner for our project; the Pi was favored not only 
because of its specifications, but also because the team members had more experience 

with this specific microcomputer. We researched both microprocessors thoroughly 

before finalizing our decision; we chose the Pi because of its versatility, accessibility, 

and open-source libraries. One slight problem was that the Pi lacks an analog-to-digital 

converter which is needed to process the incoming analog signals from our sensors; on 
the other hand, the Arduino has a built-in A/D converter while the Pi isn’t naturally 
equipped with one; but, that did not really impact our decision as much because we 

made use of an external A/D converter paired with our MCU. Figure 3.2.1.3 illustrates 

the specification differences between the Raspberry Pi and Arduino Uno that are further 

discussed below. 
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One of the reasons we selected the Pi is because of its naturally optimized operating 

system called Raspbian. This Linux-like operating system is distributed with over 35,000 

packages and pre-compiled software bundle meant to improve the Pi. It also makes its 

overall installation process as well as interfacing with peripheral devices quite easy. The 

programming experience is made simpler by providing a graphical interface to the user. 
Raspbian is a fully-fledged Linux-based operating system used by the Pi (which in turn 
is basically a small computer) as stated above, but the Arduino Uno is only a 

microcontroller. Using the Raspberry Pi 3 as a basic Linux computer allows us to 

possibly set up a graphical interface in the future, while also providing us with a 

headless command setup now. The Arduino Uno still supports many functions required 

by our project. This includes the key function of receiving and converting inputs from 

sources such as a temperature sensor or anemometer using its built-in A/D converter. 
Unfortunately, it also does not support a multitude of specifications required by our 

project such as Wi-Fi access or python. 
 

The Arduino Uno does not provide the user with a variety of coding languages. IDLE’s 

are not compatible (as shown in figure 3.2.1.3) with Arduino; instead, the user is 

provided with specifically designed tools to setup and program the different Arduino 

models. The codes written on the board are known as sketches and are written in C++. 
This was one of the main deal breakers that pushed our decision towards the more 

favorable Raspberry Pi. We selected python as our coding language for the ability to 

interact with Django -a database framework that allows us to store data on the Pi. Also, 

python offers many packages to deal with analog signals which further narrowed down 

our choice of coding languages. 
 
Furthermore, the Raspberry Pi includes a faster processor (running at 2.4 GHz), multi-

tasking power (as opposed to Arduino’s focus on running one simple program), and it is 

an independent computer (Arduino Uno is not). The onboard Ethernet network card, the 

wireless capability, and the graphical interface provided by the Pi shows its superiority 

with software applications and usability. This graphical interface is an imperative 

requirement as our sponsor mentioned his desire to change some of the functionalities 
implemented by our project; such as, changing the current airport location easily or the 

click-pattern. Also, access to the internet via Wireless Lan or Ethernet connection is 

required to communicate to our web interface.   
 

Another feature on the Raspberry Pi 3 that contributed to its selection is the 2.4GHz 

802.11n wireless capabilities and the 10/100 Ethernet port. This allows us to easily 

install new software and packages directly from a webpage (as long as there’s an 

internet connection) and set up a local web server. One of the goals of this project is to 

have a web interface that the user can modify parameters from. Having the Ethernet 
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port lets the user plug in their computer and access a web interface we set up that’s run 

on the Raspberry Pi 3. 
 

Figure 3.2.1.3 Raspberry Pi Vs Arduino Uno Specs 

Component Raspberry Pi 3 Arduino Uno 

Model Model B R3 

Price Range $35 $22 

Dimensions 85 x 56 mm 74.8 x 53.3 mm 

CPU ARM Cortex A53 ATmega328P 

Clock Speed 900MHz 16MHz 

RAM 1GB 2KB 

Flash Micro-SD card 32KB 

EEPROM N/A 1KB 

Input Voltage 5V 7-12V 

Min Power 3.5W .3W 

GPIO Pins 26 14 

Analog Input N/A `8 10-bit 

I2C 2 2 

SPI 1 1 

Dev IDE IDLE Arduino Tool 

Wi-Fi 2.4GHz 802.11n N/A 

Ethernet 10/100 N/A 

USB Master 4 1 

Video Out HDMI, Composite N/A 

Audio Out HDMI, Analog N/A 
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The 26 GPIO pins on the Raspberry pi was more than enough to finalize our decision. 
One of the reasons we chose the Pi is because of all the available general purpose pins 

at its disposal. This variety of pins allows us to interface with our microcontroller and 

have several pins leftover for backup use. Since the Pi does not have a built-in analog-

to-digital converter, we needed to acquire an external ADC converter. We chose the 

ADS1015 ADC because it fitted our needs and provided more bit precision and power 

needed by our project. 
 

 

  Figure 3.2.1.3.2 ADS1015 external analog-to-digital converter 

 

The ADS1015 is an analog-to-digital converter that utilizes 12 bits of precision to 

accurately detail the analog signal collected from our sensors. The Pi’s accessibility, 

processing power, multi-tasking capability, and functionalities make it a perfect choice 

for our project. Also, the I2C bus pins of the Pi meshes quite perfectly with the with the 

analog-to-digital converter. The I2C interface also provides a neater wiring between the 

Pi, ADC, and sensors instead of the way the SPI is configured when wired with the 

Arduino Uno or the Pi.  
 

3.2.2 Communication Protocols 

The nature of VHF Radios in aircraft communication has become critical in the 
communication of information between traffic control towers and aircrafts all around the 

country. Radios have communication protocols that need to be addressed prior, during 
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and after communications. These protocols dictate who communicates, which signal 

propagates in the given frequency band and if your VHF will listen or transmit. These 

signals will need to be filtered and manipulated in such a way that the Raspberry Pi 3 
will be able to interpret them and use them to follow adequate protocol for 

communication. 
 

3.2.2.1 RX Signal 

The received signal from the IC-2A Radio will be sent to the interface board from the 

positive end of the volume potentiometer. This way we get a clear unattenuated audio 

signal from the radio. The importance of this signal is that it will allow the Raspberry Pi 3 

to record and save the pilot’s communications check audio. 
 

3.2.2.2 TX Signal 

The other function of our audio path is to transmit the audio signal from our Raspberry 

Pi. The TX signal is signal that is send out and carries the transmitted message. During 

transmission, the half-duplex system will by nature be unable to receive any kind of 

transmissions. 
 

3.2.2.3 Carrier Detect 

Carrier Detect, in communications, is present in the squelch circuit with the function of 
suppressing the audio output of a receiver in the absence of a higher amplitude and 

strong input audio signal. The squelch can be opened, allowing all audio signals 

entering the receiver tap to be heard. This circuit can be useful when attempting to hear 

weak or distant audio signals. Squelch operates alone on the detection of the strength 

of the signal; when a device is set to mute, there is no audio signal present. Knowing if 

there is a carrier detect present, at the squelch, will allow the MCU know when there an 

audio signal present. We will use the squelch voltage to register when “clicks” have 

been made by a pilot. 
 

3.2.2.4 Push-to-Talk 

PTT has been a standard of two-way radio communication for quite some time. The 

nature of half-duplex communication systems is that there must be some sort of signal 

flag to alert the transceiver that it is time to stop receiving and ready for transmission. 
The reason it is called push to talk is that the action required for this stage is top push 

the button on the microphone. What the button does is pull the PTT relay in the radio to 

ground, thus setting it into transmit mode. For the case of this system what will be done 

is that through one of the GPIO pins of the Raspberry Pi 3 and a PTT circuit in the 

interface board, the MCU will ground the relay and set the radio into transmit mode.  
 

Since the IC-2A VHF Aircraft radio is a half-duplex communication system it can only do 
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one of the two communication functions at a time. When the PTT is not grounded the 

KX 170B is in ‘Receive Mode” and can receive incoming audio signals. But when the 

PTT is grounded the radio switches to ‘Transmit Mode’. In this mode, the system cannot 

process any received audio and any communication to it is essentially lost. 
 

3.2.2.5 Automatic Gain Control (AGC) 

Automatic Gain Control is a closed loop-feedback circuit where a signal is fed into and 

it’s expected to maintain and regulate to certain level of amplification. This signal can be 

sound or radio frequency. The AGC can give us two different cases for output. The first 

case is if the level of the input signal is too low, the designed system will output an 

amplified signal to the desired level. The second case is if the input signal is too high, 

the designed system will output a lowered signal to the desired level as well. The 

purpose of this system is to maintain a constant level for the output signal giving a wider 

range of input signal levels. AGC is commonly used is radio receiving to help equalize 

the desired average volume due to different levels received in the strength of signals 

and fading of the same. One of the consequences of not using an AGC is seen in the 

relationship between the signal amplitude and the sound waveform – the amplitude of 

this signal is proportional to the radio signal amplitude. The information contained by the 

signal is carried by the changes of the amplitude of the carrier wave. If the circuit were 

not linear, the modulated signal could not be recovered with reasonable fidelity. 
However, the strength of the signal received will vary widely, depending on the power 

and distance of the transmitter, and signal path attenuation. Overall, the AGC circuit 

keeps the receiver's output level from fluctuating too much by detecting the overall 
strength of the signal and automatically adjusting the gain of the receiver to maintain the 

output level within an acceptable range. 
 

3.2.3 Language Options and Selection 

The MCU chosen also impacted our choice of programming language. This section 

describes the language chosen, why it was chosen, and how it will impact the system. 
3.2.3.1 MCU 

For the main control unit, or MCU, there are a few options as far as what language to 

choose. Since we are utilizing the Raspberry Pi 3 for the MCU the first priority, was 

making sure that the programming language that we selected was directly compatible 
with the Raspberry Pi and had libraries in which to access the multiple General Purpose 

Input and Output pins, or GPIO pins. Having a library for the Raspberry Pi’s GPIO pins 

allows us to not have to work from the ground up, and strictly focus on how we are 

going to program the GPIO pins specifically. This saves us a lot of time and effort that 

we don’t have to put into a lot of code that’s only purpose would be to allow us to 

access the pins.  
 

https://en.wikipedia.org/wiki/Fidelity
https://en.wikipedia.org/wiki/Transmitter
https://en.wikipedia.org/wiki/Attenuation
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For this design, we chose to go with Python as our programming language for the MCU. 
Using python solves the initial requirement of having a default library for interfacing with 

the Raspberry Pi’s GPIO pins through the RPI.GPIO library. This allows for basic 

reading and writing to the pins without having to create those initial functions ourselves.  
 
Another reason we chose python as our main language was because the Analog to 
Digital Converter, known as an ADC, that we are choosing has a python library that 
allow for easier reading and writing directly from the chip without having to do a lot of 

initial handshake messages and procedures to receive and send data over I2C. 
Because reading from most particular ADC’s can be complicated, as they have certain 
bit patterns in which are needed to configure and choose which of the devices’ functions 
are being used, it is nice to have an extra bit of encapsulation in which instead of 

building these bit patterns ourselves, we can simple call a read or write method. This 

not only shortens the amount of code written by us but again allows us to focus more on 
the actual implementation of our system rather than having to deal with a lot of 

headache simply reading from the ADC. This library is also open source so it is free to 

use and heavily supported by the community in case we run into any issues. 
 

Python was a good choice compared to other languages such as C as not only is it 

inherently Object-Oriented and allows for a more modular structure to our code. The 

Object-Oriented nature of Python allows us to create objects in which to delegate the 

functions of reading and writing to certain components and sensors. It will also allow us 

to create a “Weather” object to collect the current conditions to easily pass them to the 

main function which will create the audio to transmit to the pilot. This will simplify the 

code immensely and make it simple to add new weather reading as necessary. The 

Object-Oriented nature of Python also allows us to give control of certain components to 

certain objects and much more easily debug our code. Python is also a scripting 

language which makes it highly flexible in where and how it is implemented. This means 

that no matter how we structure the system and integrate the various other components 

(i.e. the HTTP server, DCHP server, etc.) the usage of our code can be kept relatively 

independent. This allows us more freedom to change certain modules and components 

in the system if we must and not have to overhaul our python scripts too much. In other 

languages like C, it can be much more difficult to configure the code with these different 

components, as it has to be recompiled and is only set to run a certain way. There is not 

a lot of flexibility there, which is ideally what we find to be valuable in the structure of 

this system. 
 

3.2.4 Text-to-Voice Software 

One of the most significant component to our system design is the Text to Speech 

software. This software style, abbreviated as TTS, is a form of speech synthesis   

created use a variety of text to fully automate and convert those text into spoken voice 
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output. It basically obtains all the weather and transmission data obtained from all our 

components sensors and creates a voiced broadcast that will be used to communicate 

that information. The user may simply also request a communications check which then 

does not make use of the TTS but instead creates a playback which records and 

rebroadcasts the previously transmitted information providing a power level to that 

transmission as well.  Both broadcasts are played over the radio channel and heard by 

the pilot after punching in the correct click pattern. In order to produce a clear and 

coherently pronounce the provided key words a few important requirements had to be 

met when selecting the correct text-to-speech software. The main priority is that the 

speech software we utilize would have to always keep providing the pilot with bullet 

clear and concise data at all times. The clearness must persist even when the speech 

modules is creates using the simple audible outputs over normal laptop speakers. This 

speakers’ signal usually run at different amplification and compression circuits which are 

then eventually finally broadcasted of the radio channel as radio waves.  

 

 Furthermore, during the process of processing the sensors data and recording 

and recommunicating the communications check data meant to be replayed to the pilot, 

our system is consistently synthesizing speech by concatenating sentences from a self-

provided database of prerecorded words. The voice response system is limited to the 

response it can provide base on this database of words predetermined for the system. 

In addition, throughout this process the system maybe heavily infected by a lot of 

interferences and might become disoriented before it is heard by the pilot failing the 

requirement of providing a clear and concise voiced-over message (with no noise) to 

any inputs selected by the pilot. And thus, it is really important to clear and clean the 

output as it suffers from many possible interferences. Another major important 

requirement for this speech software is that it provides a not too fast verbal response to 

a provided input as so to not mispronounce or cause the pilot to miss hear the 

information if the software answers in a faster tempo. We needed to find the correct 

voice that would response sophistically enough and articulate every word encountered. 

  

3.2.4.1 Requirements for The Text-to-Speech Software 
For our project, we also wanted to offer a language software that would provide 

multiple languages and allow the user to adjust different settings. These different 

settings would encompass allowing the user to program multiple languages, 

pronunciation, and also allow for customizing the speed of the output signal. As an 

output is non-acceptable if it is broadcasted too fast to hear or mispronounces certain 

words. In addition, we needed to research different software applications and allow our 

sponsor to listen and hand-picked the voice pronunciation that would best meet his 

pronunciation and aptitude requirement. The voice settings most also be appealing 
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enough to most other users’ intent on using this system in order to improves the user’s 

experience creating an ease of use with the system. The next requirement on the list is 

for the Text to Speech software to have the ability to easily save and store the output in 

a file. This can be utilized to test the system and log a history of all the inputs up to a 

certain point. This way, the system keeps track of a list of requested inputs and outputs 

in case the user wants to observe previous broadcasts.  

 

One last requirement, probably one of the most important, is that whichever of 

the multiple open sourced Text to Speech solutions we select must be accessible even 

without internet connection. If the system is placed within an area where a solid internet 

connection is unreliable it should still be able to output the voiced over information 

requested. In that case, we decided not to have a major part of the system be reliant on 

something as a strong internet connection in order to function properly. It is best if the 

software installed does not demand internet connection in order to service the user. 

Using the listed requirements above, we ran across a few good Text to Speech 

solutions. Among them is IVONA Text, this text to speech solution that supports both 

SSML 1.0 and 1.1 (as defined by speech synthesis markup languages standards). 

IVONA text provided by far the clearest and best voice out of all the other Text to 

Speech software we came across. It provided great functionalities and was highly 

configurable providing many configurations that allowed its user to set the nationality, 

language, gender, and even pronunciation method. At first, we we’re very ecstatic that 

we found such a system that provided so much customizability and we completely 

overlooked one of the requirements (actually describe as a major requirement) listed 

above. We needed a software system that would not require a reliable internet 

connection to function properly. Another apparent and incredibly further annoying issue 

that moved us away from this software is the other fact that it breaks yet again another 

requirement by not providing a possible way of easily saving the output of the file by 

default. Even worst when we realized we we’re looking at a software system that 

required a monthly payment service. We then added the requirement that the system 

must be free as our sponsor would definitely not wish to pay a periodic sum per month 

for this software. 

 

3.2.4.2 Selecting the Text-to-Speech Software 

Looking further for a free test to speech software, we came across the Festival TTS. We 

made sure that this was a possibility by first simply asking if it was free, open sourced, 

and mainly also compatible with a Linux system. The Festival TTS software is written in 

using C++ libraries and provide a general framework for building speech synthesis 

systems. It also includes various modules that offer full text to speech from a number of 

APIs. Festival TTS as of this moment is only bilingual providing an interpreter for 
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English and Spanish. This is purposely fine for our case as we only require a system 

that can work in English. Festival works well on Linus and is by far the most 

configurable system we found as it provided us with tons of different configurable 

voices. Furthermore, the online community created and uploaded a multitude of other 

language packs that can simply be imported into the system that are neatly 

documented. The harsh compatibility issue to one requirement that needs to be met to 

pair well with our system was that Festival was not as clear as we wanted nor provided 

an easily storable filesystem. Another set-back that causes keep researching and 

testing different text to speech software. 

 

 Finally, we came across the PICO TTS and hoped it would meet all of our 

specified requirements. The PICO TTS is a barebones and stripped down version of an 

abandoned text to speech project recently used in googles android products that was 

formerly named Google TTS. This software provided incomparable voice quality with a 

lot of support and documentation. The Google TTS was scrapped and switched into 

PICO which is a free open source, non-commercial product that boast of being an 

improvement over Festival, PICO, and FLITE (another TTS).  PICO is also open source 

(just like GOOGLE TTS used to be) and run quite perfectly on Linux and the Raspbian 

operating system of the Raspberry Pi. With Linux, the installation step is quite simple as 

we only need to call the commands using a terminal which facilitates the installation 

process by making it overly easy.  While there is not a ton of configuration for this 

system, it doesn’t require internet connection, is open source, and above all free. 

Furthermore, we finally settled on this choice because it also fulfilled all our other 

requirements. It provided a clear voice output and the file is easily store as a wav file. 

This system lacks the configurability of the other TTS’s mentioned above but at least 

still provides a way configure the actual voice over. The default gender which is set to a 

female voice and cannot be changed. This is also fine as our sponsor declared that he 

would prefer to have a female voice with a sort of clear accent. Thus, this is not an issue 

for our project it fits perfectly within the scope of what we wish to accomplish. It’s true 

that the PICO doesn’t provide much configurability in the voice department, but at least 

provides a good amount of different languages while also allowing the user to switch the 

pronunciation speed with different filters. This can be changed by editing the text that is 

being sent to the engine. The PICO TTS engine provides us with just enough 

configurability, it is free, and runs quite well on the Linux operating system without 

needing an internet connection. This system evidently meets all our requirements and 

was thus the clear winner for our project. 

 

 

 



 

 

24 
 

3.2.3 Voltage Regulator Options and Selections 

The power supply system of the Auto FBO needs three supply voltages of 3.3, 5, and 

13.7 or 15 V. The 3.3 V supply will need to supply an estimated maximum current of 

0.56 A, the 5 V supply 2.6 A, and the 13.7 or 15 V supply 1.4 A. Both supply voltages of 

13.7 and 15 V are considered in this selection since 13.7 V regulators are rare and may 

not be suitable given their specifications. All regulators under $10.00 were considered 

to aid in the overall price of the Auto FBO system. The tables 3.2.3.1 – 3.2.3.3 below 

show a comparison of the final selection of regulators considered, with the chosen 

regulators marked with a star after their part number. 
 

The main parameters chosen to compare the candidate linear voltage regulators for the 
regular system were the regulated voltage range, maximum current output, maximum 

input voltage, maximum voltage dropout at the maximum current output, and price. The 

regulated voltage range is the given voltage range that a regulator will have at its 

output, at or near the maximum output current. The regulated voltage range is an 

important parameter to consider because a wide regulated voltage range can cause 
unstable or unforeseen effects on other components it is supplying, which usually have 

a minimum and maximum supply voltage specification. Maximum current output was 

considered since the power supply system must be dependable enough to deliver 

enough current to all devices if they are demanding maximum current. The maximum 

input voltage and maximum dropout voltage go hand-in-hand. The dropout voltage of a 

voltage regulator is the smallest possible difference between the input voltage and 

output voltage for the regulator to remain in its intended operating range. For example, 

a regulator with a 15 V output and a 2 V dropout voltage rating will only output 15 V if 

the input voltage is above 17 V. If the input falls below 17 V the output of fail to regulate 

15 V. The maximum input voltage is important for all regulators because the 15 V 

regulators of this design will have around a 2 V dropout voltage. Due to this, the 

maximum input voltage of any regulator to be considered must be around 17 volts, 

however an input voltage greater than 17 volts would be preferred to provide overhead. 
As demonstrated in the example above the lower the maximum dropout voltage the 

more dependable a regulator it will be. Other parameters such as the line regulation, 

load regulation, maximum quiescent current, and operating temperature are used as 

well to decide which linear regulator to choose. However, these parameters carried less 

weight than the formerly described parameters, and we're only included for a more well-

rounded comparison. 
 

In choosing the 3 V linear regulator it was an obvious choice to choose the LT1129I-3.3 

since its maximum input voltage is 30 volts and the other two regulators had only a 16 V 

maximum input voltage. This regulator also met the maximum current output needed for 

the regulator design. These qualifications along with its other specifications and price 
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gave merit to choose this regulator. The same situation was involved in choosing a 5 V 

regulator where the maximum input voltage of one gave more assurance than the other, 

while also meeting the maximum output current and other specifications. This led to the 

decision of the LD1085 being chosen. The decision between picking a 15 V or 13.7 V 

regulator was made when searching for a 13.7 V regulator. The only 13.7 regulator 

found commercially available had suitable specifications, however, not many parts for 

left on the market. The 15 V regulator was chosen for reliability of buying instead. Since 

each of the candidate 15 V regulators had a maximum input voltage of 35 V, the 
L7815C regulator was chosen since it had a lower maximum voltage drop out with 

enough maximum output current with a tighter regulated voltage. 
 

3.2.3 Power Supply Options and Selections 

The candidates for the central power supply were chosen to supply at least a maximum 

current output of 5.2 A, the maximum sum current output of the linear voltage 

regulators, and a supply voltage of 20 V, as required for the voltage regulator system. 
These voltage and currents are chosen to prevent against dropout of the linear voltage 

regulators and maximum current draws. Also, power supply units were only chosen if 

their price for one unit was under $60.00 Shown in table 3.2.3.4 are the power supply 

units considered for the central power supply with their specifications as well as price, 

with the chosen unit marked with a star after its part number.  
 

The main parameters chosen to compare power supply to units where AC input voltage, 

DC output voltage, maximum current output, efficiency, and price. Since the maximum 

input voltage of the chosen 5 V regulator was 20 V, a power supply unit 20 volts with 

needed. This constraint narrowed the search or a power supply unit vastly, especially 

considering price. The two considerations for the power supply unit we're from the same 

company with similar design. The GST120A20-R7B power supply unit was chosen 

since it had the cheapest price and the necessary specifications. 
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Part No. Min-Max 
Regulated 

Voltage  

Max 
Current 
Output  

Max 
Input 

Voltage  

Max Voltage 
Dropout at 

Max Current 
Output  

Line 
Regulation 

Max Load 
Regulation 

Max Q 
Current  

Operating 
Temp. 

Per 
Unit 
Price 

 V A V - - - mA °C  

TLV111
7I-33 

3.168-
3.432 

0.8 16 1.2 10 mV 
(max) 

15 mV 
(Max) 

15 -40-125 $0.85 

LT1129I
-3.3* 

3.250-
3.350 

0.7 30 0.7 10 mV 
(max) 

30 mV 
(Max) 

.050 -40-125 $5.65 

AMD715
0 

±2% 0.8 16 1 ±0.01 % 1% 4.3 -40-125 $4.91 

Table 3.2.3.1: 3.3 V Linear Regulator Comparison 
 

Part No. Min-Max 
Regulated 

Voltage  

Max 
Current 
Output  

Max 
Input 

Voltage  

Max Voltage 
Dropout at 

Max Current 
Output  

Line 
Regulation 

Max Load 
Regulation 

Max Q 
Current  

Operating 
Temp. 

Per 
Unit 
Price 

 V A V - - - mA °C  

 
LT323A
T#PBF 

4.85-5.15 3 20 N/A 10 mV 
(max) 

50 mV 20 0-125 $4.27 

NCP593
01DS50

R4G 

±2.5% 3 18 .5 ±0.5% 1% N/A -40-125 $2.64 

 
LD1085* 

4.9-5.1 3 30 1.5 10 mV 
(max) 

35 mV 10 -40-125 $1.51 

Table 3.2.3.2: 5 V Linear Regulator Comparison
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Table 3.2.3.3: 13.7 V and 15 V Linear Regulator Comparison 

 

 

Power Supply 
Unit 

Input 
Voltage 
(VAC) 

Output 
Voltage 
(VDC) 

Max Output 
Current (A) 

Efficiency  Overload 
Protection 

Overvoltage 
Protection 

Output 
Power 

(W) 

Operating 
Temperature 

(°C) 

Per Unit 
Price 

GSM160B20
-R7B 

80-264 20 8 92.5% 105-150% 105-135% 160 -30-70 $61.75 

GST120A20-
R7B* 

85-264 20 6 90% 105-160% 105-135% 120 -30-70 $41.68 

Table 3.2.3.4: Central Power Supply Unit Comparison

Voltage Part No. Min-Max 
Regulated 
Voltage (V) 

Max 
Current 
Output 

(A) 

Max 
Input 

Voltage 
(V) 

Max 
Voltage 
Dropout 
at Max 
Current 
Output 

(V) 

Line 
Regulation 

(mV) 

Max Load 
Regulation 

(mV) 

Max Q 
Current 

(mA) 

Operating 
Temperatu

re (°C) 

Per 
Unit 
Price 

15 V L78S15C 14.25-15.75 2 35 2.5 300  150  8 0-150 $0.84 

L7815C* 14.4-15.6 1.5 35 2 150  100  6 -40-125 $0.61 

LM340 14.25-15.75 1.5 35 2 150  150  8.5 0-125 $1.51 

13.7 V PB137A
CV 

13.43-13.97 1.5 40 2.6 150 100 8 0-150 $1.14 
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3.2.4 Weather Sensor Options and Selections 

In order to meet the specifications for the weather system it is necessary to select 
devices that can measure wind direction and speed, temperature, dew point, and 

pressure. The sensing of wind speed and direction is typically measured by an 

anemometer and wind vane. There several types of these devices including cup, vane, 

hot-wire, laser doppler, and ultrasonic anemometers. Temperature is measured by a 

thermometer which is also used for the measurement of dew point which utilizes 

humidity and temperature. For our weather reporting system, pressure will need to be 

reported as absolute pressure. Current pressure sensing technology includes vizio 

resistive strain gauge, capacitive, electromagnetic, and potentiometric. For the 

purposes of this design it was desirable to choose weather sensors that would 

communicate in I2C.  
 

3.2.4.1 Anemometer and Wind Vane 

The anemometer and wind vane huge for the weather system is the Davis Instruments 

7911 Anemometer. This device is used as it was given to this project free of charge by 

our adviser. The 7911 Anemometer features 3 polycarbonate wind cups to measure 

wind speed and a UV-resistant ABS plastic wind vane to measure wind direction. It 

comes with a 40- foot long, 26 AWG cable that ends with an RJ-11 connector. It can 

measure wind speeds up to 173 knots (200 mph) with a 1 knot resolution and a ±5% 

accuracy. It can also measure wind direction from 0 degrees to 360 degrees with a 1-

degree resolution and a ±7% accuracy. The Davis Instruments 7911 Anemometer is 

also a component of the Weather Monitor II and Weather Wizard III, both of which are 

complete weather stations also manufactured by Davis Instruments. 
 

3.2.4.2 THD Sensors 

A comparison among the potential temperature, humidity, and dew point sensors are 

shown in the tables below. Since dew point can be derived from temperature and 

humidity measurements only temperature and humidity sensors are necessary for the 

weather system. The main parameters used for comparison among the temperature 

sensors are range, accuracy, resolution, long term stability, maximum response time, 

voltage supply, maximum current use, operating temperature, and price. Similarly, the 

main parameters used for humidity sensors mirror that of the temperature sensors. The 

chosen THD (Temperature Humidity Dew Point) sensor is marked with a star in the 

tables below after its part number.  
 

3.2.4.3 Barometric Sensor 

A comparison among the potential barometers are shown in tables below with the 

chosen sensor marked with a star in the table below after its part number. Barometers 
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were only chosen if they only had a range of roughly 20-40 inHg, as this is slightly 

beyond the range of atmospheric pressure around the world. The main parameters 

used for comparison among the barometers are similar to that of the temperature and 

humidity sensors.  
 

3.2.4.4 MS860702BA01 

Among all the temperature, humidity, and pressure sensors the chosen device to cover 

these measurements was the MS860702BA1. Not only was it chosen because it could 

be used for temperature, humidity, and pressure measurements, but also its 

specifications compared to the other parts. In terms of price, however, it is clearly a 

better selection, especially if mass production of this system is to be implemented.  
 
The MS8607 is the novel digital combination sensor of MEAS providing 3 environmental 

physical measurements all-in-one: pressure, humidity and temperature (PHT). This 

product is optimal for applications in which key requirements such as ultra low power 

consumption, high PHT accuracy and compactness are critical. High pressure 

resolution combined with high PHT linearity makes the MS8607 an ideal candidate for 
environmental monitoring and altimeter in smart phones and tablet PC, as well as PHT 

applications such as HVAC and weather stations. This new sensor module generation 

is based on leading MEMS technologies and latest benefits from Measurement 
Specialties proven experience and know-how in high volume manufacturing of sensor 

modules, which has been widely used for over a decade. 
 

Regarding its temperature measurements, the MS860702BA1 performs best among the 

other parts in max response time and power consumption. Its temperature range is third 

best, however, its range is more than adequate. The accuracy of the device is the worst 

among the selected devices, but is sufficient enough for accurate weather reporting. 
Resolution is among the best, along with its long-term stability. The humidity and 

pressure specifications of the device is overall the best out of all the possible selections. 
 
The MS8607 includes two sensors with distinctive MEMS technologies to measure 

pressure, humidity and temperature. The first sensor is a piezo-resistive sensor 

providing pressure and temperature. The second sensor is a capacitive type humidity 

sensor providing relative humidity. Each sensor is interfaced to a ΔΣ ADC integrated 

circuit for the digital conversion. The MS8607 converts both analog output voltages to a 

24-bit digital value for the pressure and temperature measurements, and a 12-bit digital 

value for the relative humidity measurement. 
 

Another reason this sensor was selected was because it can be communicated with via 

I2C. Since the anemometer uses the same communication protocol, it greatly simplifies 

integration if both sensors run on the same protocol. The external microcontroller clocks 
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in the data through the input SCL (Serial CLock) and SDA (Serial DAta). Both sensors 

respond on the same pin SDA which is bidirectional for the I2C bus interface. Two 

distinct I2C addresses are used (one for pressure and temperature, the other for relative 

humidity). The I2C address for pressure and temperature is 1110110, while the I2C 

address for humidity is 1000000. 
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Part No. Range 
(°C) 

Accuracy 
(°C) 

Resolution 
(°C) 

Long Term 
Stability 
(°C/year) 

Max 
Response 
Period (s) 

Voltage 
Supply 

(V) 

Max 
Current 

Use 
(mA) 

Operating 
Temperature 

(°C) 

Per Unit 
Price 

DHT22 -40-80 ±0.5 0.1 N/A 2 3.3-6 2.5 -40-80 $9.95 

HDC1080 -40-125 ±0.2 0.1 N/A 0.0064 2.7-5.5 7.2 -40-125 $4.65 

SHT21 -40-125 ±0.3 0.01 < 0.02 5-30 2.1-3.6 0.330 -40-125 $6.62 

MS8607-
02BA01* 

-40-85 ±1 0.01 ±0.3 0.015 1.5-3.6 1.25 -40-85 $8.48 

Table 3.2.4.1: Temperature Sensor Comparison 

 

Part No. Range Accuracy Resolution Stability 
(RH% /year) 

Max 
Response 
Period (s) 

Voltage 
Supply (V) 

Max 
Current 

Use (mA) 

Operating 
Temperature 

(°C) 

Per 
Unit 
Price 

DHT22 0-100% 2-5% 0.1% ±0.5% 2 3.3-6 2.5 -40-80 $9.95 

HDC1080 0-100% ±2% 0.1% ±0.25% 0.0065 2.7-5.5 7.2 -20-70 $4.65 

SHT21 0-100% ±2% 0.04% <0.25% 8 2.1-3.6 0.330 -40-125 $6.62 

MS8607-
02BA01* 

0-100% ±3% 0.04% ±0.5% 0.015 1.5-3.6 1.25 -40-85 $8.48 

Table 3.2.4.2: Humidity Sensor Comparison 

 

Part No. Range (inHg) Accuracy 
(inHg) 

Resolution 
(inHg) 

Long Term 
Stability 

(inHg/year) 

Max 
Response 
Period (s) 

Voltage 
Supply 

(V) 

Max 
Current  

(mA) 

Operating 
Temp (°C) 

Per 
Unit 
Price 

KP236N6
165 

17.718-48.7245 ±0.2953 0.2953 N/A 0.010 4.5-5.5 10 -40-125 $6.80 

MPL3155
A2 

14.765-32.483 ±0.4 0.00044 ±0.295 0.512 3-5.5 2 -40-85 $9.95 

MS8607-
02BA01* 

0.2953-59.06 ±0.059 0.0005 ±0.0295 0.015 1.5-3.6 1.25 -40-85 $8.48 

Table 3.2.4.3: Pressure Sensor Comparison 
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3.2.5 Operational Amplifier Options and Selections 

The usage of operational amplifiers in the Auto FBO system will be exclusively for audio 

signals. These signals have a bandwidth of roughly 0 to 20 kHz. A quality operational 

amplifier will have the basic requirements of low noise, low total harmonic distortion 

(THD), good response (slew rate), and low power. However, these are somewhat 

conflicting requirements. Typically, lower power operational amplifiers with have poor 

noise and THD specifications.  
 

Table 3.2.5 compares the potential operational amplifiers used for the Auto FBO 

system. For this comparison noise, slew rate, gain bandwidth product, total harmonic 

distortion, supply voltage and current, CMRR, and price per unit are included. The main 

factors in this comparison are noise, THD, and slew rate. During the recording and 

playback of the voice communication check, our system strives to not change the 

incoming audio signal in any way. Thus, low noise and THD is needed along with a 

good response rate. The GDP, CMRR, and supply voltage and current are also 

important features to the characterization of an operational amplifier, and were thus 

included. Cost is also of concern as our goal is to produce a low-cost product. However, 

a higher performance device will obviously cost a lot more.  
 

The chosen operational amplifier was the NE5534A. It was determined that the needed 

slew rate for audio signals up to 20 kHz was 0.377 µs/V. This was determined by the 

equation SR = 2πfV where f is the maximum frequency of interest and V is the max 

voltage. This slew rate was met by all the chosen candidate operational amplifiers, but 

some overhead was preferable. The NE5524A also has a great noise figure even 

comparable with the high performance OPA models. These factors along with its other 

specifications and low price is why this operational amplifier was chosen.   
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Part 
Number 

Noise Slew Rate GBP THD+N Supply 
Voltage 

Supply 
Current 

CMRR Price Per 
Unit 

 nV/√Hz 
(1kHz) 

V/µs MHz % V mA dB  

TL082 18 13 3 0.003 7-32 2.2 100 0.50 

OPA2314 14 1.5 3 0.001 1.8-5.5 0.15 96 0.75 

OPA2376 7.5 2 5.5 0.00027 2.2-5.5 0.76 90 1.20 

NE5534A* 3.5 13 10 0.002 6-40 4 100 0.90 

OPA209 2.2 6.4 18 0.000025 4.5-36 2.5 130 1.50 

OPA1612 1.1 27 27 0.000015 4.5-36 3.6 120 5.00 

LM4562 2.7 20 55 0.00003 5-34 4.8 120 3.00 

LME49726 15 3.7 6.25 0.00008 2.5-5.5 0.18 98 0.80 

NJM2060 10 4 10 0.01 8-36 2.25 90 0.43 

LM833 4.5 7 16 0.002 10-36 2.05 100 0.40 

Table 3.2.5: Operational Amplifier Comparison
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3.3 VHF Aircraft Radio Selection 

The ICOM IC-A2 is a compact, synthesizes, 5 W PEP, VHF handheld transceiver. The IC-A2 

offers keyboard frequency selection with extremely good stability and frequency accuracy. 
Shown in figure 3.5 below is the ICOM IC-A2. 
 

 

 Figure 3.5 ICOM IC-A2 

3.4 Termination of Unused Operational Amplifiers  

When using a dual or quad operational amplifier device it is common to have an extra 

operational amplifier stage left over that isn’t required by other circuits in the design. In 

this case, it is critical to correctly terminate the device. By terminate, we mean to 

configure the device in a manner that allows for it to operate in a stable and predictable 

manner. The added benefits of proper termination are reduced susceptibility to noise, 

reduced input power consumption, reduced power dissipation, and reduced exposure to 

EOS.  
 

The understanding of an operational amplifiers specifications will aid in properly 

terminating a device. These specifications include input common-mode voltage range 
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and input differential voltage range. The input common-mode voltage range is the input 

rage for which a stable linear behavior is guaranteed. The input differential voltage 

range is the max voltage allowed between input pins. Exceeding this range can 

overstress the input stage. Concerning the output stage of the amplifier, the output 

stage can saturate when driven to either supply rail. When saturated to operational 

amplifier will consume more power than if it was not saturated. Since operational 

amplifiers have large open-loop gain, negative feedback is recommended to achieve a 

low, stable, and predictable behavior.   
 

Shown below in figures 3.4a and 3.4b are the proper configurations to terminate unused 

operational amplifiers. The overall goal is to keep the output voltage directly between 

the positive and negative supply rails. Both configurations make use of a voltage 

follower topography.  

 

Figure 3.4a: Single Supply Termination  

 

Figure 3.4b: Dual Supply Termination 
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3.5 Circuit Protection 

Transient Voltage Suppressors, TVS, are devices used to protect vulnerable circuits 
from electrical overstress such as that caused by electrostatic discharge, inductive load 

switching and induced lightning. Within the TVS, damaging voltage spikes are limited by 

clamping or avalanche action of a rugged silicon pn junction which reduces the 

amplitude of the transient to a nondestructive level. In a circuit, the TVS should be 

invisible until a transient appears. Electrical parameters such as breakdown 

voltage(VBR), standby (leakage) current (ID), and capacitance should have no effect on 

normal circuit performance. When used in circuit design TVS are put in parallel with 

loads as shown in figure 3.5.  
 

 One scenario where TVS can help protect electrical devices is lightning strikes. Even 

though a direct strike is clearly destructive, transients induced by lightning are not the 

result of a direct strike. When a lightning strike occurs, the event creates a magnetic 

field which can induce transients of large magnitude in nearby electrical cables. 
A cloud-to-cloud strike will affect not only overhead cables, but also buried cables. Even 

a strike 1 mile distant (1.6km) can generate 70 volts in electrical cables. 

 

Figure 3.5: TVS Application 
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3.4 Interfaces 

This section details how the various components of the system will communicate with 

each other. Given the nature of the system, there are many streams of data that need to 

be accurately relayed from one component to another so the interfaces between them 

are crucial. 
 

3.3.1 To Radio 

These are the signals the radio will transmit to the pilots so the audio coming to the 

radio needs to be in a form that it can transmit and it cannot be distorted. 
 

3.3.1.1 TX Audio 

The transmission will be an analog audio output coming from the audio CODEC we will 

implement on the interface board. This audio will be sent through a low pass filter to 

remove any high frequency noise added from the raspberry pi before being sent to the 

radio through voltage-follower circuit to remove any loading effect.  
 

3.3.1.2 PTT 

This PTT block will put the radio into transmit mode prior to audio being sent to it. The 

purpose of this signal is to simulate the action that is pushing the mic button to talk over 

the radio.  
 

3.3.2 From Radio 

Like the signals being used to be able to transmit through the IC-2A Radio, there is also 

a need to analyze the signals coming from it. These signals will allow for the Raspberry 

Pi 3 to analyze what is needed by the pilot at the other end, as well as allow the 

Raspberry Pi to receive the actual audio from the pilot.  
 

3.3.2.1 RX Audio 

As previously mentioned the Raspberry Pi will need to be able to receive the audio 

being transmitted by the pilot. This RX audio signal will be picked up from the top of the 

volume potentiometer and run through the interface board. This is to prevent the volume 

setting on the actual radio to affect the RX audio signal being transmitted to the 

interface board. Once the audio signal is received on the interface board it will be sent 

to a unity gain buffer and then sent to our codec chip which will amplify and digitize the 
signal into a Pulse Code Modulated signal which can then be sent to our raspberry pi for 

recording.   
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3.3.2.2 Carrier Detect 

The carrier detect in our system was identified from the main radio. The carrier detect 

levels were obtained by connecting the radio, at the squelch circuit output, to the 
oscilloscope and examining the output voltage when there is a radio signal detect 

present and when there is no radio signal detect present. For our radio, we found that 

when there is no carrier present our squelch voltage is 0 V, and when there is a strong 

enough signal detected the squelch voltage jumps to 4.8 V. 
 

3.3.3 From Microcomputer 

The only two signals coming from our raspberry pi will be the PTT and TX audio signals. 
These will be received by our IC-2A radio and utilized to broadcast back to the user on 

the other end of the communication channel. 
 

3.3.3.1 PTT 

The start of the PTT line will be originated from one of the Raspberry Pi’s GPIO pins 
which will be fed to our interface board which can then be pulled to ground to signal the 

radio to begin transmission. 
 

3.3.3.2 TX Audio 

The audio will come out from the Raspberry Pi through Pulse Code Modulated lines that 
will then be sent to the audio codec for decoding and transforming into an analog signal 

that will be useful for the radio to receive.   
 

3.3.4 To Microcomputer 

These are the signals sent from the radio and weather sensors to the microcontroller for 

processing. The weather sensors need to be easily accessible and the carrier signals 

need to be real time and undistorted. 
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3.3.4.1 I2C Bus

 

 Figure 3.3.4 Typical I2C Configuration 

 

All communication with peripheral devices will be interfaced over the I2C “I-squared-C” 

bus that is able to individually address each device. A typical configuration is shown in 

Figure 3.3.4. Currently the ADC (handling the wind speed/direction and AGC), the audio 

codec communication, and the temperature/humidity/pressure sensor will use the I2C 

bus to communicate with the Raspberry Pi. Currently, the Raspberry Pi will act as the 

Master providing the clock for all devices configured to be slaves.  
 

3.3.4.2 Carrier Detect 

The squelch voltage will be handled on our interface board by using a comparator to 

check and see if the voltage has risen above a set value. In this case our squelch, when 

on, goes to 4.8 V which we will compare to a 3 V baseline. When the squelch turns on 

the comparator will send a logical output of 1 to the Raspberry Pi where it can be 

distinguished from the “off” reading of 0 volts. 
 

3.3.4 From Anemometer 

From the anemometer, we will be sending two signals one for the wind speed and one 

for the wind direction. For the wind direction, we simply supply the anemometer with a 3 

volt signal and the anemometer uses an internal potentiometer to range the voltage 

from 3 V – 0 V. Next, we send the wind speed line directly into the Raspberry Pi where 

it will pulse low to indicate one rotation. The microcontroller will the determine how 

many clicks occur in a given timeframe to determine the wind speed measurement in 

knots.  
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3.5 Carrier Detect 

The consolidation between the Radio and Interface Board serves as the bridge to be 

able to condition the carrier detect and identify when there will be transmission. Since 

we only have two (2) levels for identification, a comparator is being used to compare 
and determine which level, that indicates transmission or no transmission, is being 

received. 
 

The comparator being used is the LM393 Dual Differential Comparator. The purpose of 

this device is to compare two (2) voltage values, and output a digital signal indicating 

which of the two is larger to the main control unit through a GPIO. 
 

 

Figure 4.2.2 LM393 

The differential comparator consists of a high gain differential amplifier. These devices 

are commonly used in systems that measure and digitize analog signals such as analog 

to digital converters, as well as relaxation oscillators. In our application, we compare the 

received signal, carrier detect present or carrier detect not present, with a reference 

voltage. 

 
3.2.5 Automatic Gain Control Voltage 

The AGC Voltage will be fed to our ADC where it will then be turned into a digital signal 

useful by the Raspberry Pi to give Power Level Received readings back to the pilot. 
Included in Figure 4.2.5.1 are the correlations we made between input signal strength 

and AGC Voltage Levels. This will be used by the software as a lookup table to 

determine what reading to give back to the pilot. The range of inputs (measured) for the 

amplitude gain control from the radio are the following: 
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Figure 4.2.5.1 

 

 

 

Signal Power 
(dBm) 

AGC Voltage 
(V) 

-120 3.43 

-117 3.43 

-114 3.43 

-111 3.36 

-108 3.115 

-105 2.94 

-102 2.745 

-99 2.455 

-96 2.315 

-93 2.19 

-90 2.045 

-87 1.93 

-84 1.84 

-81 1.75 

-78 1.66 

-75 1.62 

Signal Power 
(dBm) 

AGC Voltage 
(V) 

-72 1.59 

-69 1.56 

-66 1.54 

-63 1.52 

-60 1.49 

-57 1.47 

-54 1.45 

-51 1.43 

-48 1.40 

-45 1.38 

-42 1.36 

-39 1.33 

-36 1.32 

-33 1.3 

-30 1.28 
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4. Design Constraints and Standards 
 

This chapter will define all the standards and any design constraints that apply to the 

Auto FBO system.  

4.1 Standards 

This section describes relevant standards that apply to the Auto FBO system. 
 

4.1.1 Registered Jack Standard 

A Registered Jack (RJ) is a standardized network interface for connecting data and 

signal equipment, usually over a long distance. The RJ is defined in the international 

standard for physical network interfaces. This standard includes specifications of 

physical construction, writing, and signal semantics. The interfaces defined in the RJ 

standard include RJ-11, RJ-14, RJ-21, RJ-45, and the RJ-48 connector types, as well 

as many other types.  
 

The most current version of the standard is TIA-968-A. This specification defines 

the modular connection fully, but not the wiring. The wiring specification is instead 

included in the standard T1.TR5-1999, "Network and Customer Installation Interface 

Connector Wiring Configuration Catalog". With the addition of the publication of the TIA-

968-B standard, the connector specification has been moved to TIA-968-A.  
 

Each registered jack type, such as RJ11, identifies both the physical connectors 

and the wiring. Thus, an inspection of the connector type will not necessarily indicate 

the type of wiring used in the cable. This is because the same connector can be used 

for a multitude of wiring patterns. This has led many confusion among the industry and 

its customers of what type of cable standard is actually being used in an application. For 

example, the RJ11 connector is also used for the RJ14. Tale 4.1.1 below shows a few 

of the officially recognized registered jacks with their connectors. Most registered jacks 

use designation XPYC, where X is the number of positions on the connector and Y 

denotes the number of conductors. For example, the RJ11 can use a 6P4C connector 

where there are 6 positions and 4 conductor connections. The RJ11 6P4C connector is 

shown in Figure 4.1.1a. 
 
 
 

 

Code Connector  Note 
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RJ11 6P2C Common usage in single telephone lines, 6P4C can also be used 

RJ21X 50-pin micro ribbon Up to 25 lines 

RJ45S 8P8C keyed One data line with programming resistor 

RJ48C 8P4C Four-wire data line 

 Table 4.1.1 

 

 
Figure 4.1.1a 

 

Typical wiring of registered jacks uses twisted pairs with separation of supply and data 

lines with ground lines. These conventions were originally put in place to help create a 

standard of wiring across the industry. The pinouts of the connectors of each registered 

jack usually correlate to a specific function for a given application and are color 

coordinated as shown in Figure 4.1.1b.  
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Figure 4.1.1b 

 

4.1.2 Radio Communication Phraseology and Techniques 

Many pilots fly in a noisy cockpit and are sometimes using their radio at extreme 

distances between their transmitter and another receiver.  For these situations, the FAA 

(Federal Aviation Administration) clearly defines in their 7110.65W how radio 

communication should be used by air traffic control. This order also governs weather 

reporting stations that will be informing pilots visa radio. These radio communication 

techniques and phraseology is put into place for the safety and efficiency of air traffic.  
 

In general, when reporting numbers each number should be individually spoken. 
However, the exception to this rule is when the reporting number is in the thousands. 
Figures indicating hundreds and thousands in round number, as for ceiling heights, and 
upper wind levels up to 9,900 shall be spoken in accordance with the following, 500 

pronounced five hundred 3,500 pronounced three thousand five hundred. Numbers 

above 9,900 shall be spoken by separating the digits preceding the word "thousand": 
10,000 pronounced one zero thousand, 13,500 pronounced one three thousand five 

hundred. Up to but not including 18,000 feet MSL (Mean Sea Level), state the separate 

digits of the thousands plus the hundreds if appropriate. At and above 18,000 feet MSL 

(FL180), state the words "flight level" followed by the separate digits of the flight level: 

19,000 pronounced Flight Level One Niner-Zero. 
 

All directions communicated over radio are to be of a magnetic reference and not a true 

heading. Speed is to be reported in knots, and the word knots must be used after the 

value of the speed has been spoken. The FAA also uses Coordinated Universal Time 

(UTC) for all operations. The word "local" or the time zone equivalent shall be used to 
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denote local when local time is given during radio and telephone communications. The 

term "Zulu" may be used to denote UTC. When individually speaking letters the 

phonetic alphabet must be used. Overall, the goal of radio communication is to be as 

clear and concise as possible. 
  

Information Example 
Message 
Content 

Non-Avionic 
Pronunciation 

Avionic Pronunciation 

Time 1321 EST One - Twenty-One 
PM 

One-Seven-Two-One Zulu or 
One-Tree-Two-One Local 

0239 EST Two - Thirty-Two AM Zero-Seven-Tree-Niner Zulu 
or Zero-Two-Tree-Niner 

Local 

Wind Speed 35 Knots Thirty-Five Knots Tree-Five Knots 

Wind 
Direction 

90° True East or 90° Zero-Niner-Four Degrees 

Thousands of 
Feet 

11,500 Feet Eleven Thousand 
Five Hundred Feet 

One-One Thousand Five 
Hundred Feet 

20,000 Feet Twenty Thousand 
Feet 

Flight Level Two-Zero-Zero 

Table 4.1.2: Phraseology Examples 

 

4.1.3 METAR 

METAR is a weather reporting format that is highly used in aviation. It is the most 

common format in the world for the transmission of observational weather data. This 

format has be standardized by the International Civil Aviation Organization (ICAO), 

which allows it to be standard throughout most of the world.  A typical METAR will 

contain the ID of the weather reporting station, time in day of month and Zulu time, wind 
direction and speed (including gust), visibility, sky conditions, temperature, dew point, 

barometric pressure, and remarks. This format is used when reporting weather 

information over radio as well.  
 

4.1.4 Traffic Advisory Practices Without Operating Control Towers 

The Traffic Advisory Practices at Airports Without Operating Control Towers defines our 
project as an UNICOM system, under the guidelines that it is a “nongovernmental 

air/ground communication station which may provide information at public use airports.” 
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In this standard is it stated that UNICOM stations can provide wind direction and wind 
speed information to pilots upon request, regardless if the UNICOM station shares the 

same operating frequency as the Common Traffic Advisory Frequency. This is 

important because in small airports which our project is aimed towards, will operate in 
the CTAF can commonly be assigned to a designated UNICOM frequency operating 

range. This is ideal for a small airport as the small amount of air traffic can be managed 

by commercial systems like our project, but in larger airport where the CTAF is different 
from the UNICOM frequency this can present itself a challenge as the pilot would have 

to switch between frequencies to communicate with the UNICOM system. This standard 

also calls for communication with UNICOM stations of at least 10 miles from the airport 

the station is in. This forces our system to be able to operate at such distances to 

comply with standards. 
 

4.1.4 WAVE File 

We will be using the WAVE format standard for storing audio data. The WAVE file 

standard was introduced as a joint standard from the IBM Corporation and the Microsoft 

Corporation in the “Multimedia Programming Interface and Data Specifications 1.0” 

standard document released in August of 1991. The WAVE file standard in particular 

was introduced as a substandard of the RIFF, or the Resource Interchange File Format, 

standard for storing multimedia. While old we chose this standard because it is the most 

common form of uncompressed audio, and is recognized across all systems as well as 

multiple audio centered programs. By using the WAVE format standard, we did not 

have to commit to a certain form of audio compression standard. This will allow us to 

directly interface with the raw audio data, as well as compress the data using any of 
form of audio compression standard in the future if we feel we need to compress the 

data. 
 
The WAVE file format standard organizes the data it stores using what the RIFF 

standard defines as “chunks”. Each of these chunks, while having no particular set 

order to where they are located within the file, contain their own specific sets of fields 

and parameters. For the WAVE file format, the standards indicate that there are only 

three chunks that are required for any WAVE file; these three chunks include: the 

Header chunk, the Format chunk, and the Data Chunk. While there is no set order for 

these chunks, the adopted standard is to write each of the chunks in the order they 

were introduced above. This allows for readability, and the ability for programs to know 

where to look for certain information without the need of including more header 

information about where data is located. This reduces the file size and the speed in 

which the file can be processed. Two optional chunks, the List chunk and the Info 

chunk, can be included in a WAVE file to document the order in which the various 

chunks appear in the current WAVE file. These two 10 chunks are usually place right 

after the Header Chunk and are only included for compatibility with software that did not 
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follow the suggested chunk order adopted by the industry. 
 

Each of the required chunks outline the basic needs of any multimedia player. The first 

is Header Chunk which specifies the multimedia format standard used by the file as well 

as the particular substandard of multimedia used. In the case of the WAVE format 

standard, the RIFF standard for multimedia, and the WAVE substandard are always 

included in the Header chunk. Along with these two fields the Header chunk contains 

the size (in bytes) of the rest of the file. The next required chunk, the Format chunk, is 

uses to specify the format in which the WAVE file was being recorded. Along with the 

standard chunk id and chunk size that outlines which chunk is being read and how large 
the chunk is, these fields are almost all variable and include the sampling rate, byte 

rate, number of channels, and bit resolution used to record the audio data. The only 

other major field to note that is included in the Format chunk is the Audio Format field 

which is used to specify what audio recording standard is being used to record the data. 
Because we are using an Analog to Digital converter to sample the audio we are 

recording, we will use the Pulse Code Modulation, or PCM, standard or audio recording. 
Lastly the WAVE file format standard requires the data chunk which is responsible for 

storing the raw audio data sampled in the audio format specified in the Format Chunk. 
This data is encoded in two’s compliment format and then stored in the Little-Endian 

format. 
 

4.1.4 Pulse Code Modulation 

We will be using the Pulse Code Modulation audio format standard for recording audio 

data. This standard is used to digitally represent the analog audio data being recorded. 
We chose to use the PCM standard for recording audio data, as it directly coincides with 

how we will be receiving data from the analog to digital converter. The PCM standard 

requires taking a sample of an analog audio signal and representing it using a decimal 

number. Because most analog to digital converters use PCM to sample analog data, we 

will be using this 

 

4.1.5 I2C Standard 

The Inter-integrated Circuit (I2C) Protocol is a protocol intended to allow multiple “slave” 

digital integrated circuits to communicate with one or more “master” chips. Like the 

Serial Peripheral Interface (SPI), it is only intended for short distance communications 

within a single device. Like Asynchronous Serial Interfaces, it only requires two signal 

wires to exchange information. I2C is a protocol that was devolped by Philips 

Semiconductors in 1982 to be a simple bidirectional 2-wire bus for efficient inter-IC 

control. Only two bus lines are required: a serial data line (SDA) and a serial clock line 

(SCL). Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100 

kbit/s. Each device connected to the bus is software addressable by a unique address. 
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It a true multi-master bus with included collision detection and arbitration to prevent data 

corruption. The I2C-bus is now the world standard that is currently implemented in 

thousands of different ICs, manufactured by many different companies. 
 
I2C allows for simple, efficient communication between the sensors and the Raspberry 

Pi which makes it a good choice for our system.  It simplifies how the software will poll 

from each sensor since the only thing that changes between weather sensors is the 

unique address. 
 

These are just some of the benefits. In addition, I2C-bus compatible ICs increase 

system design flexibility by allowing simple construction of equipment variants and easy 

upgrading to keep designs up-to-date. In this way, an entire family of equipment can be 

developed around a basic model. Upgrades for new equipment, or enhanced-feature 

models (that is, extended memory, remote control, etc.) can then be produced simply by 

clipping the appropriate ICs onto the bus. If a larger ROM is needed, it is simply a 

matter of selecting a microcontroller with a larger ROM from our comprehensive range. 
As new ICs supersede older ones, it is easy to add new features to equipment or to 
increase its performance by simply unclipping the outdated IC from the bus and clipping 

on its successor. 
 

Designers of microcontrollers are frequently under pressure to conserve output pins. 
The I 2C protocol allows connection of a wide variety of peripherals without the need for 

separate addressing or chip enable signals. Additionally, a microcontroller that includes 

an I 2C interface is more successful in the marketplace due to the wide variety of 

existing peripheral devices available. 
 
The possibility of connecting more than one microcontroller to the I2C-bus means that 

more than one master could try to initiate a data transfer at the same time. To avoid the 

chaos that might ensue from such an event, an arbitration procedure has been 

developed. This procedure relies on the wired-AND connection of all I2C interfaces to 

the I2C-bus. If two or more masters try to put information onto the bus, the first to 

produce a ‘one’ when the other produces a ‘zero’ loses the arbitration. The clock signals 

during arbitration are a synchronized combination of the clocks generated by the 
masters using the wired-AND connection to the SCL line 
 
Generation of clock signals on the I2C-bus is always the responsibility of master 

devices, in this case, the Raspberry Pi. Each master generates its own clock signals 

when transferring data on the bus. Bus clock signals from a master can only be altered 

when they are stretched by a slow slave device holding down the clock line or by 

another master when arbitration occurs. 
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4.1.6 Python Standards 

Since Python is our language of choice, there are a few standards within the language 
we need to adhere to so that the code compiles correctly and so that the code can be 

maintained and is easily understandable. PEP8 is the style guide written by Python 

Software Foundation which serves as the official documentation for the language.  
 

A style guide is about consistency. Consistency with this style guide is important. 
Consistency within a project is more important. Consistency within one module or 

function is the most important. 
 
Continuation lines should align wrapped elements either vertically using Python's 
implicit line joining inside parentheses, brackets and braces, or using a hanging 

indent [7] . When using a hanging indent the following should be considered; there 

should be no arguments on the first line and further indentation should be used to 

clearly distinguish itself as a continuation line. 
 
When the conditional part of an if -statement is long enough to require that it be written 
across multiple lines, it's worth noting that the combination of a two character keyword 

(i.e. if ), plus a single space, plus an opening parenthesis creates a natural 4-space 

indent for the subsequent lines of the multiline conditional. This can produce a visual 

conflict with the indented suite of code nested inside the if -statement, which would also 

naturally be indented to 4 spaces. This PEP takes no explicit position on how (or 

whether) to further visually distinguish such conditional lines from the nested suite 

inside the if -statement. The closing brace/bracket/parenthesis on multi-line constructs 

may either line up under the first non-whitespace character of the last line of list 
 
Spaces are the preferred indentation method and tabs should be used solely to remain 

consistent with code that is already indented with tabs. Python 3 disallows mixing the 

use of tabs and spaces for indentation. Python 2 code indented with a mixture of tabs 

and spaces should be converted to using spaces exclusively. 

When invoking the Python 2 command line interpreter with the -toption, it issues 

warnings about code that illegally mixes tabs and spaces. When using -tt these 

warnings become errors. These options are highly recommended! 

 

Limit all lines to a maximum of 79 characters. For flowing long blocks of text with fewer 

structural restrictions (docstrings or comments), the line length should be limited to 72 

characters. Limiting the required editor window width makes it possible to have several 

files open side-by-side, and works well when using code review tools that present the 

two versions in adjacent columns. 

https://www.python.org/dev/peps/pep-0008/#fn-hi
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The default wrapping in most tools disrupts the visual structure of the code, making it 

more difficult to understand. The limits are chosen to avoid wrapping in editors with the 

window width set to 80, even if the tool places a marker glyph in the final column when 

wrapping lines. Some web based tools may not offer dynamic line wrapping at all. 

Some teams strongly prefer a longer line length. For code maintained exclusively or 

primarily by a team that can reach agreement on this issue, it is okay to increase the 

nominal line length from 80 to 100 characters (effectively increasing the maximum 

length to 99 characters), provided that comments and docstrings are still wrapped at 72 

characters. 

The Python standard library is conservative and requires limiting lines to 79 characters 

(and docstrings/comments to 72). The preferred way of wrapping long lines is by using 

Python's implied line continuation inside parentheses, brackets and braces. Long lines 

can be broken over multiple lines by wrapping expressions in parentheses. These 

should be used in preference to using a backslash for line continuation. 

 

Surround top-level function and class definitions with two blank lines. Method definitions 

inside a class are surrounded by a single blank line. Extra blank lines may be used 

(sparingly) to separate groups of related functions. Blank lines may be omitted between 

a bunch of related one-liners (e.g. a set of dummy implementations). Use blank lines in 

functions, sparingly, to indicate logical sections. Python accepts the control-L (i.e. ^L) 

form feed character as whitespace; Many tools treat these characters as page 

separators, so you may use them to separate pages of related sections of your file. 

Note, some editors and web-based code viewers may not recognize control-L as a form 

feed and will show another glyph in its place. 

 

For Python 3.0 and beyond, the following policy is prescribed for the standard library 

(see PEP 3131 ): All identifiers in the Python standard library MUST use ASCII-only 
identifiers, and SHOULD use English words wherever feasible (in many cases, 

abbreviations and technical terms are used which aren't English). In addition, string 

literals and comments must also be in ASCII. The only exceptions are (a) test cases 

testing the non-ASCII features, and (b) names of authors. Authors whose names are 

not based on the latin alphabet MUST provide a latin transliteration of their names. 
 

https://www.python.org/dev/peps/pep-3131
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4.2 Design Constraints 

In this section, we will talk about the different realistic design constraints we will 

encounter when tackling this project. We will discuss various things from time 

constraints, budget constraints and other related real-world constraints we might 

encounter. 

 

4.2.1 Time Constraints 

This project will be a complete working product by the end of Senior Design II in 

Summer 2017. This creates a limited timeframe for the team to work with. The total time 

for this project is about 28 weeks, and to develop, design, build, and test a system of 

this nature will take diligence to complete in that amount of time. The plan is to have a 

working prototype at week 11, at the end of Senior Design I. This in and of itself is a 

lofty goal and requires teamwork and persistent hard work. 
 

4.2.2 Budget Constraints 

The team is comprised of four college students with limited incomes, which limits the 

solutions, but also provides motivation to make this as low-cost of a system as possible. 
Our primary sponsor has provided us with $250 towards our project and that has been 

set as the target cost for the entire system. If the need arises, the team can use up to 

$500 before having to use personal funds. This provides us with a good financial base 

to build our project on, but without having unlimited funds, the team will have to be 

mindful of the limited budget. 
  



 

 

52 
 

5. Design 
This chapter covers both the hardware and software design of the Auto FBO system. 
The hardware design is covered first followed by the software design.  

5.1 Power Supply Design 

The design of the power supply system for this project is done halfway through the 

project. Shown in table 5.1 are all the components thus far known to be used in the 

Auto FBO system along with their needed supply voltages and max or recommended 

currents.  In this case a miscellaneous category under the components has been 

considered in the design to account for more components that will be potentially be 

incorporated. The total max current demand of this design is estimated to be 5 A, along 

with supply voltages of 3.3, 5, and 15 V.  
 

Component(s) Supply Voltage (V) Max or Recommended 
Current Supply (A) 

Raspberry Pi 3 5  2.5  

Radio 13.8 (11.04-

15.87) 

1 

Operational Amplifiers 15 0.05 

Anemometer  3.3 0.005 

THD Sensor 3.3 0.005 

CODEC 3.3 0.200 

Miscellaneous  N/A 0.8 

Table 5.1: Power Supply Demands 

 

Since current power supply modules are relatively cheap and easily accessible, a power 

supply module will act as the central power supply unit. Branching from this supply are 

voltage regulators to provide the necessary supply voltage rails. A block diagram of the 

power supply system is shown below. This design approach is taken in respect to cost, 

efficiency, and voltage ripple, and simplicity of the design.  
 

Most of the off-the-shelf power supply units, which supply high power, are switch mode 

power supplies. These supplies are highly efficient that can reach efficiencies above 
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90% . Since all the power of the Auto FBO system will be transferred through the 

central power supply unit and then distributed to the various regulators, it is necessary 

that it be a switch mode power supply. However, switch mode power supplies do 

present a high margin of voltage ripple and noise. The unwanted effects from the 

central power supply will be dampened by the linear voltage regulators. 
 

 
Figure 5.1: Power Supply Unit Block Diagram 

 

5.1.1 Voltage Regulation 

The usage of the linear voltage regulators are chosen not only to help block unwanted 
characteristics of the switch mode central power supply unit, but also to provide the 

necessary various voltages that the Auto FBO system requires. Linear regulators have 

very low output voltage ripple because there are no elements switching on and off 

frequently, and linear regulators can have very high bandwidth. Furthermore, linear 

regulators are simple and easy to use, especially for low power applications with low 

output current where thermal stress is not critical. These characteristics are critical to 

the needs of this power supply for supplying power to communication and audio 

components in this system and providing a simple design solution. 
 

5.1.1.1 3.3V Regulator  

Power is supplied to the input pin to the LT1129I. This power will be received from the 

central power supply unit of 20 V. This input voltage is acceptable for the regulator 

since it has a absolute maximum input voltage rating of ±30 V. According to the 

datasheet, “the input pin should be bypassed to ground if the device is more than 6 

inches away from the main input filter capacitor. A bypass capacitor in the range of 1μF 

to 10μF is sufficient. The LT1129 is designed to withstand reverse voltages on the input 
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pin with respect to both ground and the output pin. In the case of a reversed input, 

which can happen if a battery is plugged in backwards, the LT1129 will act as if there is 

a diode in series with its input. There will be no reverse current flow into the LT1129 and 

no reverse voltage will appear at the load. The device will protect both itself and the 

load.” The output pin supplies power to the load, and is recommended to used an 

output capacitor at the output to prevent oscillations. The minimum recommended value 

is 3.3μF with an ESR of 2Ω or less. The shutdown pin, SHDN, is used to put the device 

into shutdown if it is actively pulled low. According to the datasheet, “ if the shutdown 

pin is not used it can be left open circuit. The device will be active, output on, if the 

shutdown pin is not connected.” The fixed voltage version of the LT1129I used for this 

design uses the sense pin as an input to an internal error amplifier. The sense pin can 

be directly connected to the output pin, or at the load if better regulation is needed.  
 

5.1.1.2 5V Regulator  

The input pin of the L7815 is supplied power by the 20 V central power unit to regulate a 

fixed output voltage of 15 V at the output pin. The input voltage of 20 V from the central 

power unit is acceptable since the device has an absolute maximum input voltage of 35 

V. According to the datasheet, “it is recommended that the regulator input be bypassed 

with capacitor if the regulator is connected to the power supply filter with long lengths, or 

if the output load capacitance is large. An input bypass capacitor should be selected to 

provide good high frequency characteristics to insure stable operation under all load 

conditions. A 0.33 μF or larger tantalum, mylar or other capacitor having low internal 

impedance at high frequencies should be chosen.” 
 

5.1.1.3 15V Regulator  

The input pin of the L7815C is supplied power by the 20 V central power unit to regulate 

a fixed output voltage of 15 V at the output pin. The input voltage of 20 V from the 

central power unit is acceptable since the device has an absolute maximum input 

voltage of 35 V. According to the datasheet, “it is recommended that the regulator input 

be bypassed with capacitor if the regulator is connected to the power supply filter with 

long lengths, or if the output load capacitance is large. An input bypass capacitor should 

be selected to provide good high frequency characteristics to insure stable operation 

under all load conditions. A 0.33μF or larger tantalum, mylar or other capacitor having 

low internal impedance at high frequencies should be chosen.”  
 

 

5.1.1.4 Overall Power Supply Design 

Shown in the figure below is the power supply design for the Auto FBO system. The 

central power supply unit (CPSU) supplies 20V to all three linear voltage regulators. 



 

 

55 
 

The line to the regulators also contains shunt electrolytic capacitors. These capacitors 

are included for several reasons including recommended application suggestions of the 
datasheets, increased capacitance, ESR, high frequency impedance, longer life, 

redundancy, and peak current demands. The output of each regulator also includes 

shunt electrolytic capacitors for the same reasons. 
 

 

Figure 5.1.1: Power Supply Design Schematic 

5.2 Interface Board Design 

The interface board will interpret all incoming and outgoing signals between the radio 

and the Microprocessor. This will be handling the TX and RX signal conditioning, 

conversion and amplification between the two systems. This will also push the PTT 

signal into the radio for whenever a transmission is going to be sent out to the pilot 

requesting information. Inputs will be received from directly tapping into the radio at 

specific solder points or through the back pins of the IC-A2 VHF Aircraft radio. In this 

the communication between the UNICOM programmable HUB, the Raspberry Pi 3, and 

the broadcasting hardware, the IC-A2 VHF Aircraft radio. 
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5.2.1 PTT Circuit  
 

 

Figure 5.2.1 PTT Circuit 

 

To communicate to the Raspberry Pi 3’s intent to transmit a signal needs to be pushed 

so the IC-A2 Radio in order to get it in a ‘Ready to Transmit’ state. This signal is going 

to be generated by the Raspberry Pi 3’s GPIO pin and a DC power source for system 

testing. This will require two inputs: one for system use and one for system 

troubleshooting. The input from the Raspberry Pi 3’s GPIO pin will be for practical use, 

thus the DC voltage source will be used for testing. During testing the GPIO pin will act 

as a ground and part of the current will be sent through there and the rest will be sent to 

the PTT input of the radio. This will allow the user to check if the circuit is bad or if there 

has been a programming error in the Raspberry Pi 3 system. The intent of this circuit is 

to simulate the PTT signal generated by the microphone interface in the radio. The idea 

is to act grounded when not transmitting and to input a current when ready to transmit in 

order to open the mic channel and set the IC-A2 in a ready to transmit mode. 
 
The Push-To-Talk (PTT) circuit is going to be responsible for setting the IC-A2 radio into 

transmit mode. This is done by using the GPIO pin in the Raspberry Pi 3’s pins as a 

3.3V source. This voltage being pushed through the NPN transistor, Q1, pulls the PTT 

relay day to ground. The action of pulling the relay to ground results in the collapse of 

the magnetic field around the inductor. This will send a large voltage back from the PTT 

relay to the Q1 transistor. This is where the reverse biased diode will re-route that 

voltage to ground, thus not burning the transistor. When it comes to testing the system 
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switch, S1, will have the 3.3V source from the interface board act as the Raspberry Pi 

3’s GPIO input. This will simulate the act of readying for transmit on the IC-A2. Though 

the design shows the GPIOPIN power source as a 3.3V power source it must be noted 

that this is a pin from the Raspberry Pi 3’s interface. This will act as a ground when 

being tested as the system will be inactive, or turned off, when being tested. The circuit 

takes full advantage of the Raspberry Pi 3’s architecture to reduce the number of 

components required to achieve the same function. When using the Raspberry Pi 3’s 

GPIO as a ground its current limits is around 16mA maximum current before burning the 

microprocessor. Therefore, the current running from the interface board power supply is 

split using resistors R1 and R2 above. 
 

5.2.2 Carrier Detect 

The consolidation between the Radio and Interface Board serves as the bridge to be 

able to condition the carrier detect and identify when there will be transmission. Since 

we only have two (2) levels for identification, a comparator is being used to compare 
and determine which level, that indicates transmission or no transmission, is being 

received. 
 

The comparator being used is the LM393 Dual Differential Comparator. The purpose of 

this device is to compare two (2) voltage values, and output a digital signal indicating 

which of the two is larger to the main control unit through a GPIO. 
 

The differential comparator consists of a high gain differential amplifier. These devices 

are commonly used in systems that measure and digitize analog signals such as analog 

to digital converters, as well as relaxation oscillators. In our application, we compare the 

received signal, carrier detect present or carrier detect not present, with a reference 

voltage. 
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Figure 4.5 Comparator Circuit 

The voltage measured for RX audio signal (CD) being present was 1.4V; meaning, 

when compared to the reference voltage, 1V, the comparator will output a logical 1, 

allowing the 3.3V become the output to the next stage of the circuit. Next stage of the 

circuit being to a GPIO pin of the microcontroller. The voltage measured for RX audio 

signal (CD) not present was 0V; meaning, when compared to the reference voltage, 1V, 

the comparator will output a logical 0, this output will not allow the 3.3V become the 

output to the GPIO pin. See image above. 
 

𝑉0 = {
0, 𝑉+ < 𝑉 −
1, 𝑉− ≥ 𝑉 −

 

 

The 1V for reference are achieved through a voltage divider circuit. The input (Vin-) is 

5V which is then divided through both resistors of 1k ohms and 250 ohms. The 

reference is then then compared to the ground at the 1k ohms resistor. This will create 

a constant output of 1V since the 5V is being provided by a voltage regulator. 
 

5.2.3 Rx Buffer Audio Design 

While testing the radio with the CODEC it was found that the CODEC was severely 
loading the radio when it was transmitting audio to the CODEC while the CODEC was 

recording. To negate this problem a buffer was inserted between the audio signal 

coming out of the radio and the input of the CODEC.  
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Figure 5.2.3: Rx Buffer Audio Design 

 

5.2.4 Tx Filter and Bias Audio Design 

In transmitting audio out from the Raspberry Pi then to the CODEC we found that there 

was high frequency noise being produced. This lead to the decision of a low pass filter 

being needed. This was done by using a second order low pass Butterworth filter with a 

cutoff frequency of 50 kHz. The Butterworth filter was chosen as it can provide a 

maximally flat passband which is needed as to not alter the audio signal. The cutoff 

frequency of 50 kHz was chosen since it is known that audio signals range from 0-20 
kHz, and to ensure that as the passband started to drop off near the cutoff frequency it 

would produce negligible difference between upper audio signals.  
 
Since the filter design is a 2nd order Butterworth the denominator of the transfer 

function is 𝑠2 + √2𝑠 + 1. This sets 
𝜔0

𝑄
= √2 with 𝑄 =

√2

2
. This Q value is desirable for this 

design as to not create a rise in gain as the cutoff frequency is approached. Using 

frequency scaling 𝑘𝑓 was set to 2π×50000 to set the cutoff frequency at 50 kHz. 𝐶′1was 

set to 200 pF to set to 𝐶′2 100 pF so that these capacitors could be commercially bought 

as these values are common. Solving for the magnitude scaling factor, 𝑘𝑚 sets 𝑅′ to 

22.508 kΩ, which will be implemented with commercially available 47 kΩ and 43.2 kΩ 

resistors in parallel.  
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𝐶′1 =
1

𝑘𝑚𝑘𝑓

2√2

2
= 200 pF 

𝐶′2 =
1

𝑘𝑚𝑘𝑓

√2

2
= 100 pF 

𝑅′ = 𝑘𝑚 = 22.508 kΩ = 43.2 kΩ || 47 kΩ 

 

Before this filter is a decoupled inverting amplifier circuit network of unity gain which 

sets an offset of 7.5 V since the operational amplifiers are set between 15 V and 

ground. Without this network, the audio signal could potentially be cut off. The resistor 

divider biasing technique is low in cost and keeps the op-amp's dc output voltage at 
halfway between the supply voltage, however the operational amplifier's common mode 

rejection still depends on the RC time constant formed by RA||RB and capacitor C2. 
Using a C2 value that provides at least 10 times the RC time constant of the input RC 

coupling network (R1/C1) will help insure a reasonable common-mode rejection ratio. 
With 100 kΩ resistors for RA and RB, practical values of C2 can be kept small if the 

circuit bandwidth is not too low. Depending on the supply voltage, typical values that 

provide a reasonable compromise between increased supply current and increased 

sensitivity to amplifier bias current, range from 100 kΩ for 15V or 12V single supplies. 
 

Considering the characteristics of this decoupled inverting amplifier circuit network of 
unity gain RA and RB were set to 100kΩ with R1=R2 to achieve unity gain as well as 

minimize input bias current errors by keeping R2 one-half of RA. The input and output 

capacitors are selected to be 40µF to achieve a low impedance for low frequency audio 

signals. The bypass capacitor C2 was chosen to be 470 µF to help insure a reasonable 

common-mode rejection ratio and unity gain. 

Figure 5.2.4: Tx Filter Audio Design  
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5.2.5 Anemometer and Wind Vane Design 

The Davis Instruments 7911 Anemometer uses a RJ11 4P4C as an interface to 

communicate to external devices. This interface is composed of four wires connected to 

specific components within the sensor as shown on the right side of figure 5.2.5.2. The 

yellow wire is used to supply the 20 kΩ potentiometer. This potentiometer is also 

connected to the green wire that is used to indicate the wind direction. The reed switch 

is used to compute the wind speed and is connected to the black and red (ground) 

wires.  
 
Internally, both the potentiometer and reed switch are used to sense wind speed and 

direction. Wind speed is measured by the opening and closing of the reed switch, which 

is connected to ground. Each revolution of the anemometer wind cups caused the 

switch to open and close. This action is implemented by a magnet coming in close 

proximity to the switch as the cup mechanism is rotated. When the magnet is brought 

into close proximity to the reed switch the internal leads close. Conversely, when the 

magnet moves away from the reed switch the leads open. Wind direction is measured 

by a circular 20 kΩ potentiometer. Depending on the direction of the fin, the wiper of the 

potentiometer is moved. As shown in figure 5.2.5.1 this potentiometer has a “dead 

zone” where the wiper makes no contact.  
 
The design of our wind sensor interface compared to the previous group’s design 
significantly reduces the amount of components, power, and provides more accurate 

data. Their design included a BJT transistor, 6 resistors, and a LED, while our design 

only uses 3 resistors and a LED. Their wind speed design used a transistor with 

resistors to create a voltage controlled switch, which is not needed since the reed switch 

in the instrument already performs this function. Not only does this use excess 

components, but also uses more power with the same result. Their wind direction 

design uses a voltage divider, which was also not needed as they could have only 

supplied 3.3 V to the anemometer and used no divider. This division also neglects to 

fully suppress the “dead zone” in the potentiometer.  
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Figure 5.2.5.1: Wind Potentiometer 

 

Shown on the left side of figure 5.2.5.2 is the interface design for the Davis Instruments 

7911 Anemometer. A 10 kΩ resistor is used after the reed switch to reduce the amount 

of current through the reed switch when it closes to ground. The reed switch and the 10 

kΩ resistor connected to 3.3 V provides an active low pulse from 3.3 to 0 V to the RPI 

GPIO when the cups of the anemometer makes a revolution. The 20 kΩ is used in 

conjunction with the wind direction potentiometer to fill in the “dead zone”. Once the 

wiper of the potentiometer falls in the “dead zone” where no contact is being made the 
20 kΩ resistor provides a transition between the wiper making contact on the 20 kΩ side 

and the 0 kΩ side. The ADC will receive a voltage range of 0 to 3.3 V depending on the 

wiper’s position. The LED is included to show that the wind sensor is receiving power 

and is providing data to the RPI and ADC.   

 

Figure 5.2.5.2: Anemometer Interface Design 
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5.2.5.1 Analog to Digital Converter  

After the AGC voltage is received and conditioned it goes to the analog to digital 

converter. The Analog to digital converter chosen was the ADS1015. 
 

 

Figure 4.2.5.1 ADS1015 Application Circuit 

 

The purpose of the analog to digital converter (ADC) is to provide the microcontroller 
with a digital number that is proportional to the magnitude of the signal, voltage or 

current, sent from the AGC. The conversion of this signal involves some error 

parameter. The higher the number of bits, resolution, available on the ADC, the more 

precise the conversion can be. The ADS1015 allows a precision of 12 bits, this 

indicates the number of discrete values it can produce over the range of analog values. 
An ADC is defined by the bandwidth available, range of frequencies, and its signal to 

noise ratio. 
 

5.2.6 I2C Bus 

The ADS1015 converts the analog signal to digital signal with a precision range of 12 

bits. The signal is then delivered to the Raspberry Pi through this I2C Bus. The I2C Bus 
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is able to communicate to a multitude of other peripheral devices (defined as “slaves”) 

by assigning a unique address to each device. The Raspberry Pi is considered the 

“master” device and retains the right to read and write to the incoming signals. The 

other devices on the I2C bus, the slave constructs, require explicit permission from the 

Raspberry Pi in order to read and write. The I2C bus can support well over 1000 

devices using only two lines -the SDA and SCL lines. For this reason, and also because 

it is less messy than the SPI connection configuration with the GPIO pins, it works quite 

perfectly for our system. 
 
For our system, the anemometer and the temperature/pressure/humidity sensor will 

communicate with the Raspberry Pi through the I2C bus. They each have a unique 

address on the bus which will all the software on the Pi to reach them individually to poll 

for the current weather conditions. 

5.2 Software Design 

This section details the software logic behind the system. This system is broken down 

into 2 main programs, the main logic loop program and the weather polling program. 
These two programs work together to detect carrier signals and respond to them. When 

the pattern recognition function matches with the carrier detected click-pattern, the 
system then decides on an action - whether to announce the current weather condition 

to the user or proceed to a communications check. Said action is then performed in a 

timely manner within a few seconds since the pilot would need to receive the requested 

current wind conditions on his way to land. The program that collects the weather data 

is separate from the main loop so that there is less of a delay in the carrier detect and 

so that the weather measurements can be wrapped up neatly in an object. Creating a 

weather object allows the program to easily pass the measurements back to the main 

loop so that it can concatenate the audio file to stream back to the pilot. 
 

As mentioned in Chapter 3 our software will be running solely on the Raspberry Pi in the 

Python language. The code will utilize the Django framework for the database aspect of 

the software. This will require a model for the database structure. This model will 

include aspects of wind conditions that should be saved. These attributes include date 

and time, wind direction, wind speed, variable wind conditions if detected, and wind gust 

if detected, but this list can be expanded in the future 
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5.2.1 Main Logic Loop 

This is the main loop for this system’s software. After the Raspberry Pi is powered on, it 

will automatically launch the main program. After the main program is started, it will 

begin an initialization process. This process includes starting the separate weather 

program and making sure it is operational and responsive, then it will also start the 

webserver. The separate weather program will poll the sensors for wind speed, 

direction, temperature, humidity, and pressure and when called upon, it will return an 

object will the most current values for each weather condition.  
 
We chose to separate this into its own program because it allows the main program to 
handle the carrier detect more efficiently, allows us to easily compute the wind speed 
and direction values, and it will also allow us to set intervals for how often we want 
certain weather conditions to be read or computed without overcomplicating the main 

loop. It will be much more efficient to receive an object with all the weather readings in 

the main program instead of having to poll each sensor when the information is 

requested. Polling each sensor when the weather is requested would result in a delay 

of when the synthesized audio would play back to the pilot. This is due to the nature of 

some of the sensors and the measurements being read. In order to report wind speed 

and direction, the values have to be calculated by recording values from the 

anemometer over a period of time and then finding the average. In addition, the 

temperature/pressure/humidity sensor has a delay of a couple of seconds while it takes 

its measurements.  
 

After the initialization process, the main program will begin to listen for a carrier signal. 
When a carrier signal is detected, the program will enter a function to count the clicks 

which is described in detail in section 5.2.2 of this document. After the clicks are 

detected and a decision is made as to whether the pilot is requesting the weather or a 
communications check, the main loop will jump into either function and perform the 

needed action. Both of these functions will be described in greater detail in the following 

sections. 
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Figure 5.2.1 Main Logic Loop 
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Now that the software has counted the number of clicks, it will compare the pattern it 
has found to the patterns needed to request the current weather conditions or a 

communications check. If the clicks counted adhere to the pattern of two clicks followed 

by a pause and then two more clicks, then the program will enter a function to transmit a 

radio check which is described in detail in section 5.1.5 of this document. If the pattern 

detected is two clicks followed by a pause and then three more clicks, then the program 
will enter a function to transmit the current weather report which is described in detail in 

section 5.1.4 of this document. If the clicks detected match neither pattern, then the 

program will ignore the clicks and return to listening for a new carrier signal. This last bit 

is important because the system needs to always look for a carrier signal. There is no 

sense in continuing to try to detect a pattern if any one segment of the pattern is not 

within the maximum and minimum parameters set in the count clicks function. The 

administrator of the system for each airport will have the ability to change the maximum 
and minimum parameters since they need to have the ability to change the click pattern 

to avoid system conflicts. 
 

5.2.2 Poll Weather Conditions  

The Poll Weather Conditions process is the side process which is started by the main 

program during its initialization. This process will do all the communicating with the 

weather sensors and will read and store their values into an object that the main 

program will request whenever a weather request signal is detected. The program starts 

by verifying that it can communicate with all the sensors and then it will reset all of its 

temporary variables. Then it will enter the infinite loop where it polls and stores the 

readings from each sensor. The temperature/pressure/humidity sensor will only be 

accessed on a timer because the sample from that sensor has a slight delay and the 

weather conditions it reads do not change very often.  
 
First the program will read, calculate, and store the wind speed and then it will compare 

the current wind speed to the last recorded wind speed. If the difference between the 

two is greater than a designated threshold, the program will label it as a gust. It will only 

report a gust in the weather object if the difference is detected more than once. To 

detect it again, we have created a second flag called verifyGust. Once the first gust is 

detected and the gust flag is set to true, the next time the difference between the current 
and last readings is greater than the threshold, the program will enter a separate 

conditional to set the verifyGust flag and report it to the weather object. After it has been 

reported, both flags will be reset. Next the program will read and store the wind 

direction. DirCount is a counter that lets us set the period we want to calculate the 

average wind direction over. Once the counter equals that set value, we calculate the 

average wind direction using the last set of recorded readings from the sensor and then 

reset the counter. This average is the wind direction the process will store to the 
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weather object which will be returned to the main program to report to the pilot. If the 

counter does not equal the set value, then we will increment the counter and continue to 

the temperature sensor. 
 
Finally, the program will read and store the temperature, pressure and humidity but only 

when the TempCount counter equals the set value for the designated time interval. This 

interval will be much larger than the wind direction interval because the values for 

temperature, pressure, and humidity will not change very often. 
 
This process will run continually in the background while the main process listens for a 

carrier signal. When the count clicks function from the main program returns a decision 

to transmit weather conditions, the program will first call this function to collect the most 

recent weather value. 
 
There were many possible ways to set up this function for this system but ultimately, we 
chose this more object-oriented approach because it makes the passing of the weather 
information between functions easier and creates a structure that allows us to easily 

store all the weather conditions for a particular period in time. This method also 

simplifies the code immensely because instead of individualizing each weather 
measurement, we are able to iterate through all of them with timers to pull new values 

from the sensors at certain intervals. It was important to use timers for the weather 

measurements because some of the measurements don’t change very often or have a 
significant delay from the sensor, like temperature, and others require an interval to 

compute a value or average from, like wind speed or direction. 
 
The following figure is the logic diagram for the weather polling function that visualizes 

the information described above. It shows the iteration through each of the weather 

measurements, the check of their corresponding timers, and the resulting pull of new 

data from the sensors. 
 

An important part of the logic in this program is the wind gust detection. It is crucial for 

pilots to be able to be notified when there are wind gusts because there are certain 
counter measures they must take in order to keep control of their aircraft and to land 

safely. The way we have set up the logic for wind gust detection is very accurate and it 

allows pilots to be confident in the weather condition reading they are receiving from the 

system. Since we have set two flags that must both be true in order for a gust to be 

reported, it allows the system to only report when there is a consistent gust instead of a 

singular event. There is nothing we can do to notify the pilot of a singular gust but it is 

important for them to know if the winds are particularly choppy near the runway.  
 
Another important aspect of the weather polling program is how the wind speed and 

wind direction are calculated. Wind direction is based off of a potentiometer with a dead 
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zone at 0/360 degrees. This causes some difficulty with the logic since we have to 

perform an average over a period of time. How do you take an average over a null 

value? To solve this problem we decided the best way was to detect when winds are 
varying over the deadzone then find the average and add 180 degrees to find what the 

adjusted average should be.  

Figure 5.2.2 Poll Weather Conditions  
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5.2.3 Counting Radio Clicks Process 

Figure 5.2.3 Count Clicks Process 
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This process counts the number of times the pilot keys their radio and checks the 
duration of each click or spacing to be sure the program is not picking up accidental 

clicks or the wrong signals. This process is triggered whenever the main program 

encounters a click. This process will then time the click, considered the “on” time, and if 

it falls between specified maximum and minimum parameters, the program will move on 

to the “dwell” time which is the spacing between clicks. It will continue to check each 

segment according to the patterns we have designated for a communication check or 
weather report until either a duration does not fall between the specified parameters or 

we don’t receive the segment we were expecting. After the second click or “on”, the 

program will time a “gap” instead of a “dwell” which has a longer duration in order to 
register a pause between the first sequence of clicks and the second sequence of 

clicks. If this pause, or any duration, does not fall between the specified parameters, the 

process will end, ignore the accessed clicks, and will start over to listen for the next new 

click. Once either pattern sequence is found, the program will decide and escape into 

the corresponding function to report either a communication check or the weather. 
 

5.2.4 Transmit Weather Conditions 

Figure 5.2.4 Transmit Weather Conditions 
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This process will start after the main function recognizes the click pattern for weather 

reporting.  From there, the main program will make a call to the weather polling process 

to receive the current weather object. Then the program will separate each piece of the 

object, collect all the voice files needed to synthesize each condition, and then 

concatenate them into a single audio file. Once it has created the audio file for the 

current weather conditions, it will check the transmission line to ensure that the 

playback does not step on anyone. After it has checked that the line is clear, it will then 

broadcast the current weather conditions for the airport including wind speed, wind 

direction, gusts, temperature, pressure, and humidity. This process must be efficient so 

that there is not a noticeable or substantial delay between the time that the pilot clicks 

their radio and the time that the weather report starts to transmit. 
 

5.2.5 Radio Communications Check Process 

 

Figure 5.2.5 Radio Communications Check Process 
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This process will start after the main function recognizes the click pattern as the correct 

pattern for a communications check. After it has made the decision to proceed with a 

communications check, the program will check the transmission line to make sure no 

one else is on the line. Once the line is clear, then it will transmit a prompt to the pilot 

which will acknowledge their request for a communications check and ask them to 

proceed with their transmission. As soon as the next carrier is detected, the program 

will begin recording the audio transmitted and it will stop recording when the carrier is 

no longer detected. As discussed earlier in this document, we will be using an audio 

codec which will allow us to efficiently record audio directly into a WAV file to easily play 

back. This reduces a lot of overhead since we do not have to create the WAV file 

manually. After the carrier signal is no longer detected, the program will again check to 

make sure the line is clear and then it will transmit the recorded audio file back to the 

pilot. After the audio file the program will also announce a signal strength level based off 

the recording. This will allow the pilot to get a better idea of the quality of their 

transmissions and allow them to make adjustments as needed. 
 

5.2.6 Initialization 

 
Figure 5.2.6 Initialization 
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This is the Initialization process of the software. Once the system is powered on, this 

process will be immediately called and executed. In this process there are three main 

commands. First, the computer will reset all the variables in the main program. This 

ensures there are no extraneous values left over from the last time the program was run 

which could interfere with current readings or calculations. Next, the software will verify 

that it can communicate with both weather sensors. Finally, it will initiate the never 

ending process of polling the weather data, which will gather and record data from the 
anemometer and temperature, pressure, and humidity sensor and is further explained in 

the previous sections. Lastly, the software will also start the web server that will be 

running from the computer. From there, the software will return back to the Main Loop. 

5.3 Communication with Interface Board 

5.3.1 Pin Layout 

The communication between our interface board, temperature, and weather sensors are 

directed by our MCU, the Raspberry Pi. The interface board, at its end, interprets all 

incoming and outgoing signals between the VHF Aircraft radio and the microprocessor. 
To receive and analyze the analog signals from the radio and weather sensors, the Pi 
needed to be outfitted with an analog-to-digital converter -we chose the ADS1015 with 

12-bit precision. The next step was to verify the best viable way we could connect the 

ADC to the Pi. The options we researched included either using the SPI bus to connect 

to Pi to MCP3008 or I2C bus connected to the ADS1015. 
 

Another communication line required for our project is the connection between our 

system and a web interface. The web interface is one of the ways that allow the user to 

change the current airport location of the device. It provides the current weather 

condition to the user using a graphical interface modelled as a compass. 
 
 

The Raspberry Pi 3 Model B has 40 dedicated pins. The Pi’s documentation details 

each available pin with their respective pin number. The table is also color coded to 

highlight the specific use of every pin. Of the 40, 26 pins are general purpose input and 

output pins (GPIO pins) while the rest are ground, power, and two other pins for 

additional functions. The two other pins are for the I2C Bus that our team utilize to 

convert the analog data procured from the sensors to digital signal. The rest of the 

GPIO pins are just used to transmit and receive digital signals. They are used to 

communicate between the interface board and Raspberry Pi.   
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5.3.2 SPI or I2C connection 

The tables below differentiate the connections required between two possible ADC 

sources we researched. This includes a connection between a MCP3008 (hardware 

and software SPI connections) and the Pi and between the ADS1015 and the PI.  
 

MCP3008 (Software SPI) Raspberry Pi 3 

VDD 3.3V (Pin1) 

VREF 3.3V (Pin 17) 

AGND GND (any ground pin) 

DGND GND (any ground pin) 

CLK Any GPIO pins (pin 18 for example) 

DOUT Any GPIO pins 

DIN Any GPIO pins 

CS/SHDN Any GPIO pins 

  

MCP3008 (Hardware SPI) Raspberry Pi 3 

VDD 3.3V (Pin1) 

VREF 3.3V (Pin 17) 

AGND GND (any ground pin) 

DGND GND (any ground pin) 

CLK SCLK (pin 23) 

DOUT MISO (pin 21) 

DIN MOSI (pin 19) 

CS/SHDN CEO (pin 24) 
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ADS1015 Raspberry Pi 3 

VDD 3.3V (Pin1) 

GND GND (any ground pin) 

SCL SCL (pin 5) 

SDA SDA (pin 3) 

  

The SPI connection (both software and hardware style configurations) requires more 

physical connections than the I2C bus and creates additional problems when dealing 

with noise. Problems also arose from the SPI’s asynchronous feature as it doesn’t 

guarantee the same clock rate between connected devices. This can cause problems 

when two system with different clocks attempt to communicate. 

 

The inter-integrated Circuit (I2C) Protocol (also asynchronous) is the route we chose for 

connecting our Pi to the external analog-to-digital converter. The I2C bus requires less 

connection (only two lines) and allows us to communicate with multiple devices as 

illustrated below. The two lines can support up to 1008 slave devices and allows more 

than one master to communicate with all devices on the bus unlike the SPI connection.   

  

 
Figure 5.3.2a SPI connected to multiple devices 
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Figure 5.3.2b I2C connected to multiple devices 

 

5.3.3 ADS1015 Communication Logic 

5.3.3.1 Background Information 

We chose to use the ADS1015 for our analog-to-digital converter. This particular ADC is 

supported with a variety of software libraries and interfaces that are open-sourced by 

Adafruit Industries. The open-source libraries and interfaces provided made the overall 

coding process easier because without these libraries we would have to start coding 

from scratch. Creating a library would have resulted in a delay in our schedule for we 

would have to create the functions required to read the analog signals. With the already 

published libraries, we can skip this step and just call the function required to obtain our 

data. 
 

Another viable option for an external analog-to-digital converter is the MCP3008. The 

MCP3008 is also supported by Adafruit Industries through a variety of software libraries 

and interfaces. We ultimately chose the ADS1015 as our sponsor had mentioned its 

versatility for obtaining precise analog to digital conversion as well as amplifying and 

accurately processing extremely low signals.  
 

5.2.3.2 ADS1015 Wiring 

As mentioned earlier, the Raspberry Pi doesn’t have a built-in onboard analog-to-digital 

converter like the Arduino Uno. We needed to find a compatible A/D converter with 

enough power and precision. Our choice was split between two ADCs, the MCP3008 

and the ADS1015 -we chose the ADS1015 which uses the I2C bus as opposed to the 

MCP 3008’s SPI bus. The Pi is thus complimented by the ADS1015 external analog-to-

digital converter to process and convert analog readings from our sensors to digital 
signal; the digital signal is then processed by the Pi to obtain and relay necessary 

information. 
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The ADS1015 is a 12-bit precision ADC that operates at 3300 samples/second and 

interfaces via the I2C communication bus. A 12-bit precision allows for higher accuracy 

when obtaining, for example, the exact degrees associated with the wind direction. This 

chip contains 4 single-ended input channels, requires 2V to 5V to run, and includes a 

programmable gain amplifier that provides up to x16 gain for small signals. The 

programmable gain amplifier helps magnify and boost smaller signals to be able to read 

them at higher precision. 

 
   Figure 5.2.3.2 ADS1015 connected to the Raspberry Pi 

 

The wiring between the Raspberry Pi 3 and the ADS1015 is shown above in figure 

5.2.3.2. The I2C bus of the ADS1015 makes the wiring fairly simple with no extra step 

required except on the software side. The ADS1015’s VDD is connected to the Pi’s 

3.3V (pin 1 in our case) as it requires a power source from the range of 2V to 5.5V. The 

ground pin of the ADS1015 can be connected to any ground pins on the Pi; we 

connected ours to the sixth GPIO pin on the Pi. The ADS1015’s SCL pin receives a 

clock signal from the microcontroller and is connected to the I2C SCL dedicated pin on 

the Pi. The SCL pin is the 5th pin on the Pi. This pin uses the clock signal provided by 
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the microcontroller to clock data from the SDA pin. Data obtained by the sensors is 

transmitted and received through the SDA pin connected to pin 3 of the Raspberry Pi. 
 

As mentioned before, the ADS1015 supports up to 4 single-ended input channel. This 

includes input channel A0-A3. Single ended inputs only measure positive voltages but 

provide twice as many inputs. On the other hand, there are two differential inputs used 

to measure voltages (with the ability to also measure negative voltages). This analog 

input is measured between two analog input channels A0 and A1 or A2 and A3. We did 

not deal with negative voltages plus the increased immunity to electromagnetic noise 
provided by the differential measurements was ideal for dealing with noise during our 

testing procedures.  
 

5.2.3.3 Programming the ADS1015 

In order for the Pi and ADS1015 to operate properly, we installed Adafruit Industries’ 
required libraries to allow the devices to communicate and ease the code development 

process. We installed the Adafruit ADS1015 python library. This library allowed us to 

use several commands like “read_adc_difference()” which reads the voltage difference 

between channel 0 and 1. The function returns the signal difference between both 

channels which will allows us to obtain the noise acquired from analog signal inputs 

from our sensors. 
 
The libraries provided us with many more functions and examples of singled-ended 

analog to digital conversions as well as differential conversions. These methods allow 

us to convert analog signals to digital signals as well as setting the gain of the on-board 

programmable gain amplifier. 
 

5.3.3.4 I2C Interface 

Since the Raspberry Pi has dedicated I2C ports, The Raspberry Pi can communicate 
with the ADS1015 via the I2C bus interface instead of its GPIO pins which is much more 

preferable than a SPI connection (as illustrated in section 5.2.2). The I2C bus operates 

between many devices; usually one device operates as the “master” while the others 

are defined as the “slaves.” In our project’s case, the master is the Raspberry Pi and the 

slave is the ADS1015 as well as any other devices connected on the bus. It is important 

to mention that both master and slave constructs can read and write, but the slave 

constructs can only do so with explicit permission from the microcontroller -the master. 
 

The I2C bus operates based on two lines, the SDA and SCL. The SCL provides the 

clock needed to clock the data received by the SDA line; the SDA line carries data 

between the two devices. This data is transmitted in chunks of 8-bits on the bidirectional 

SDA line. When transmitting, the SDA is either high or low, but requires the SCL to be 
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low in order to do so. A high SDA means the bit is 1 while low represents the bit as 0. 
This receives and transmits data with the terminology that if the master sends file to the 
slave, then the master drives the data line; else, if the master reads from the slave then 

the slave drives the data line. The bus lines are idle when there is no communication 

happening between the Raspberry Pi and the ADS1015. It’s worth mentioning that only 

the master can start the communication between both devices. 
 

For communications to start between the Raspberry Pi and ADS1015, the Pi must 
initiate the communication to the ADS1015 or any other devices; the Pi then needs to 

provide an address to detail which slave devices it wants to transmit to. This address is 

a unique 7-bit address given to each device on the I2C bus. The unique I2C addresses 

are set by the ADDR pin. The ADDR pin allows unique addresses to be selected for 

each slave device connected to the microcontroller. A great debugging tool and check 

for potential errors is the acknowledge bit that brings the SDA to a low. The 

acknowledge bit switches the SDA to low confirming that the data was received. 
 

The I2C interface provides a great communication line  that transmits and receives data 

between the microcontroller and other peripherals with minimum wiring. It functions 

primarily on two lines, serial data (SDA) and serial clock (SCL) as mentioned above. 
One of the reason it is better than SPI for our project is the I2C protocols that allow any 
number of masters (microcontrollers) to be connected to any number of slaves 

(peripheral devices/sensors). The SPI connection requires 3 wires: a SS, SCLK, and a 

bi-directional MISO/MOSI line as well as one SS line per connected devices. Using the 

I2C bus, we can communicate to any of the sensors and other devices by using the 7-

bits unique slave address assigned to each device with only two lines.  

5.4 Configuration Screen 

When the user connects to the Raspberry Pi’s Wi-Fi hotspot, the user will be able to 

access the website hosted on the Pi. The main screen (Fig. 6.X on left) will display an 

overlay of the runway at the airport with a compass rose and an arrow telling the user 

what the current wind direction is. It will also display the current wind conditions in 

words below as they would be broadcast to pilots. Towards the bottom of the screen the 

user will see three links. One is titled “Archived Wind Data” and when clicked, will take 

the user to a screen that shows past logged wind data for a specified length of time. 
Another link is titled “Archived TX Checks” and when clicked, will take the user to a 

screen that shows past logged TX check recordings for a specified length of time. The 

last is titled “Change Parameters” and when clicked, will take the user to a screen (Fig. 
6.X on right) where they can change every aspect of the system including, but not 

limited to, runway headings, carrier dwell time, and the number of clicks for functions.  
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5.5 Integration and Prototype 

This section describes how the components are integrated and the breadboarding that 

has been done to combine the components. 

 

 
 

Here we have the RJ11 network hooked up to be able to measure both the pulses for 

the wind speed as well as a voltage potential from the wind direction potentiometer. 

 5.6 Web Server 

The web interface is intended to provide an easily accessible graphical interface for the 

user. The interface would provide the user with valuable information concerning the 

current weather conditions; this includes wind speed, wind direction, gust, and 

temperature. The interface would allow users to check the current conditions anywhere 

at any time. The system will also allow the user to switch the click pattern for requesting 

different task, like a communications check, to best fit their preference; the operator 

would also need to switch the click pattern if the current click pattern interferes with any 

patterns already established at a specific airport.  
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5.6.1 Introduction to the Model View Controller Architecture 

Since we did not want to deal with the arduous process of creating and implementing a 

big and complicated relational database we looked towards other more simple and 

practical options. We decided that a web framework based on a Model View Controller 

would best meet our project’s needs. This type of web design is simplistic and allows us 

to easily transfer data between the frontend of the system to its backend. Focus would 

be set at the back end of the system meant for capturing the weather data, passing, and 

formatting it into a relevant and easy to use database. We would then use the data 

obtained from the backend and broadcast it back to the frontend without having to deal 

with any of the complicated PHP scripts like PHP or MySQL. We would not need to use 

any PHP scripts with a Model View Controller framework in order to send queries back 

and forth to the database. This would further decrease the complexity of the 

development process. An increase in performance would also be achieve because if 

we’re using a Model View Controller architectural pattern, the system would not need to 

load the page and recommunicate to the backend for the specified data every single 

time. Thus, the increase in performance since that’s one function we do not have to 

repeat over-and-over again. 

 

This kind of architectural pattern further increases the performance of our system since 

the data received is dynamically allocated to the class-based views structure. A view is 

a callable that obtains a request and returns and appropriate response. The class-

based-views structure allows us to rapidly structure our views dynamically; they are 

saved and can then be accessed and reused through inheritance and mixins. This is 

also an alternative way of implementing views as python objects instead of functions or 

methods. The view class handles linking the view into the URLS, HTTP method 

dispatching, and several other simple features like redirectView and templateView.  This 

provides multiple benefits as the codes related to any specific HTTP method can be 

utilized by separate methods; not just through conditional branching access. This also 

increases ease of use for our application because we can use multiple inheritance to 

pass down the object and reuse its components. The Model View Controller increases 

performance, allows for more efficient code reuse, and parallel development by 

decoupling its major components and focusing on each separately and simultaneously. 

As mentioned earlier, the team did not want to deal with the complicated structure and 

code development associated with designing and implementing a needlessly big 

relational database. As a relational database would not only be impractical but would 

also cause major performance issues when operating with the Raspberry Pi. Instead we 

decided to use a web framework based on the use of a Model View Controller 

architectural pattern. This design model would allow us to parse and format the 

information obtained via views and not through the use of complicated PHP scripts; in 
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other words, this would make obsolete the need to request and send multiple queries to 

the database every single time data is required. In the Model View Controller 

architecture, the controller component steers the entire system. The controller does this 

by handling all requests and responses across the database. It sets up the database 

connection and handles loading addons. It obtains and reads a setting file that feeds it 

the info regarding what to load and set up. Furthermore, the controller component is 

provided an URL configuration file that instructs it on the desired responses from an 

incoming request from the browser. On the other hand, the model partition of the 

architecture captures the required data the website needs and stores it into database 

tables. Fortunately, python provides extensive examples detailing exactly how this is 

done. Python classes (or models) are emphasized and work quite well with the Django 

framework that tie into a one-to-one ratio the database tables. Switching to another 

component, the view is the user interface layer. It provides an automatic web admin 

interface for editing the models using the python code. 

  

This type of design steers and controls data more efficiently with less load capacity than 

a regional database which is great and definitely meets our project’s requirement. A 

regional database would just be too complex and would result in a decrease in 

performance as it would request and acquire the desired data then parse that data to 

and from the frontend and backend of the system repeatedly. The propose MVC 

architecture is faster as we obtain the desired data and simply pass it using the model. 

Then we can pass it to our views and allocate the database dynamically without any 

complicated implementations of PHP scripts.  

 

5.6.2 Django Web Framework 

We researched a few Model View Controller framework and found Django. The Django 

Web Framework is quite a robust and great selection for the backend of the system. 

Django provides a fully functional backend web frame work with the admin view 

application. It provides a concise and picture-perfect style with multiple features; 

unfortunately, it does not provide a good template for the frontend application. We then 

realized we could apply a different framework for the frontend and proceeded to look for 

a compatible version which will be discussed in greater details later in the next 

subsection. We chose the AngularJS for the frontend of the system, the parts visible to 

the user like HTML, CSS, client-side JavaScript, because we didn’t want to deal with 

creating our own template from scratch and wanted to avoid html coding. The team did 

not have much experience with html coding and as time was a stringent factor we 

looked for an already customized and optimized frontend template. We researched 

multiple frameworks as well as a few platforms that would support our project and best 

fit our capabilities. We looked over AngularJS, JQuery, and ReactJS as viable options 
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to see which would work better with Django. We finally decided to use the AngularJS for 

the front-end framework of our system.  

 

With the Django MVC style framework, we are able to further simplify the coding 

development process because we can write our code in an object-oriented manner and 

use the framework to build our database table simultaneously in the background; this 

framework abstracts a lot of the database behind models that are represented as 

python objects. Each table database can be treated as an easily accessible object 

making it quite useful because we are able to change the fields of that record with no 

big fuss. Its fields are treated as general variables that are part of the object. Since the 

database is abstracted, we can import the schema of our models directly into our views. 

We can then basically treat the database records as if they were objects and insert 

them directly into our html code. Another major reason that this method is useful, is the 

fact that we do not have to write anything in SQL. We are able to use functions to obtain 

and apply the specified fields of that object of our database in order to store, sort, and 

search through the database; we can then sift through the data, update, and record the 

database without having to worry about coding in SQL. This framework is definitely 

great for our project’s purpose and meets its designed specifications; as mentioned 

previously, we can choose any database we want for the backend and not have to 

change or worry about compatibility issues with our models and any related issues to 

the frontend from using a different framework for the backend. This web framework 

provides extra usability which relieves the coding process as the user does not have to 

follow the complex steps when dealing with HTML coding. Usually, we would have to 

create a client, discern the correct SQL statement, and recommunicate to the backend 

system. Then it must wait for the response to our request. Instead, this framework 

relieves and negates these steps as it is more flexible and compound the user with the 

ability to use the frameworks custom tags to preload the required data and make use of 

that database’s objects directly in the HTML.  Thus, this allows even more flexibility as 

we are able to change our database based on our needs at any given time; as an 

example, if we decide we want a smaller, faster, lighter, or more robust system.  

 

The frameworks custom tags and filters, mentioned above, reduce the amount of coding 

in HTML by allowing the user to utilize prebuilt functionalities in Django. Those functions 

are designed to address the presentation logic needs of a variety of applications. The 

custom filters are part of the python functions and take in one or two arguments unlike 

the custom tags that require a number of arguments to return the correct result. These 

template tags provide great usability. They are useful because we don’t have to write 

multiple blocks of the same HTML code repeatedly. It also allows us to reduce delays 

when processing the data received from the database by not having to continuously 
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reassign data to each block individually. Django also provides many other functions, 

packages, and modules to further cope with the code development process for the 

backend. Some of the functions have already been explained above while the modules 

available for the Django framework like Django Rest and Celery are discussed below. 

 

5.6.2.1 Django Rest 

Django’s prevalent modules and packages include a variety of API creation framework 

and other asset managers. Among these API creation toolkits, which are all reusable, is 

the Django Rest, Django TastyPie, Piston, Django-Nap, and many others. Below is a 

table providing a comparison between the listed toolkits. 

 

 Rest TastyPie Piston Django-
Nap 

Applications 202 88 69 1 

Development 
/status 

Production 
/stable 

Beta Alpha unknown 

Documentation Yes Yes N/A N/A 

API key 
authentication 

Yes Yes No No 

Serialization JSON 
JSONP 
HTML 

… 

JSON 
JSONP 
HTML 

… 

JSON 
Django 

JSON 

Accept 
Headers 

Yes Yes No No 

Browsable 
Web APIS 

Yes No No N/A 

Figure 5.6.2.1 Table of different API creation toolkits 

 

 After researching the different available API creation toolkits, we decided to use the 

Django Rest framework for several reasons. This framework’s toolkit, as opposed to the 

others listed in the table above, definitely has more support and flexibility than the other 

API’s. It is supported by over 202 applications. It is also the most stable and is still in 

production providing several continuous updates. The ability to code using this toolkit is 

further increase for beginners because of the multitude of documentations available; 

making it easier to learn, understand, and develop. Last but definitely not least, it 

provides a web browsable API which further helps us with our development process 

paired with the provided documentation. A web browsable API is a generated API that 
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includes an HTML version that allows for browsing and editing the API. The Django 

Rest framework is a powerful, sophisticated, and flexible toolkit for building web APIs. It 

requires both python and Django to function properly and provides support with a 

variety of packages. We used the coreapi package for schema generation, the Django-

filter for filtering support, and Markdown to support the browsable API. We decided to 

pair this toolkit with Django because of its easy to use and attractive web browsable 

version of the Django API. Another major reason is the option of returning a raw JSON. 

JSON (JavaScript Object Notation) is an easy to use lightweight data exchanger that 

works between a browser and a server where the data can only be text. It allows us to 

convert any JavaScript object into JSON and send JSON to a server. 

  

The Django Rest framework provides a flexible and powerful model serialization and 

displays data using standard function based views. With the built-in model serialization 

for data formatting, we are able to compose powerful representations of our data that is 

processed and delivered in a number of formats with a few lines of code. Rest is defined 

as “Representational State Transfer” and allows us to take advantage of Django’s ability 

to abstract away the database as objects; it also allows us to communicate data to the 

frontend framework using web endpoints. As previously stated, we are able to provide 

information to the frontend as a raw JSON which are objects that are used in JavaScript 

as if we obtained it directly from Django. This is important and worth mentioning 

because it allows us to parse our data to the frontend framework while putting less 

stress on the frontend framework. The purpose of using two different framework is 

because this process allows us to relieve stress on our Raspberry Pi allowing for faster 

performance and not crashing when obtaining a great multitude of web requests. The 

simple fact that the Django Framework does not provide a pre-built frontend template 

also affected our decision to choose a different framework for the frontend portion. A 

prebuilt frontend template would lessen the coding development process making it 

easier on the team saving time and also removing the need to write the template from 

scratch. Fortunately, AngularJS extensively meets the desired requirement for a pre-

built frontend template. 

 

5.6.2.2 Celery 

Celery is a powerful, production ready asynchronous job queue that allows the user the 

ability to run multiple python applications in the background. This would allow us to 

asynchronously queue, schedule, and run functions written as tasks. This system 

meshes perfectly with our other frameworks as it powers these applications and quickly 

responds to user’s requests. It creates the asynchronous job queue and passes long 

running tasks to the queue. We installed this asynchronous task queue for Django using 

Celery and Redis. For this job queue application, it is worth mentioning that we were 
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provided with two major possibilities that would pair quite perfectly with the Django 

Celery Module. These two major options are Redis and RabbitMQ. Both options are 

compatible with Celery and are both default recommendations by Celery’s developers. 

RabbitMQ is a fast, lightweight, and persistent job queue that exchanges data between 

processes, applications, and servers. In this case between Celery, servers (Django), 

and possibly other applications. It is a message broker and message brokers act as a 

middleman for various applications and reduce loads and delivery time of web 

application servers. Since tasks usually take a while to process, RabbitMQ or Redis can 

speed up this process as it is the only job they are meant to perform -so it’s best to 

perform it extremely well. 

   

As previously stated, RabbitMQ is actually faster and a more lightweight and persistent 

job queue than Redis. But Redis is more robust and can serve as a key-value pair 

dictionary that is stored in the system’s persistent memory. Redis also boasts the 

potential for having multiple job queues clustered together as to increase performance. 

The key-value pair dictionary would benefit us in case we found compatibility issues. 

Furthermore, this process would help us because it would be better to avoid 

implementing the python objects as read and write for the GPIO pins in order to govern 

the Django framework and web server completely. The Redis Key Value Dictionary 

would allow us to store all the different signals obtained from the external peripherals as 

the Redis key value that would act as a standalone function. This process would provide 

much more functionality and ease the testing and debugging process. The RabbitMQ 

software, as mentioned earlier, is indeed faster, lighter, and more persistent than Redis; 

but, Redis makes up for this shortcoming by providing more functionality that will help 

us link all the various components attached to our system quite neatly.   

 

Redis, as part of Celery, is used to broker messages between Celery and other 

applications. Celery is a great choice for our system as it relieves stress on the 

Raspberry Pi. As mentioned previously, Celery relieves pressure on the Raspberry Pi 

leaving the software applications created to calculate, process, and output the 

parameter to take most of the computation power. 

 

5.6.3 AngularJS Framework 

The AngularJS Framework is another Model View Controller that we decided to pair 

with the Django Framework. The Django framework serves as the backend of our 

system providing a multitude of functions and is quite robust. It is written in python and 

provides framework custom tags to preload the required data and injects that databases 

objects directly into the HTML. Django is facilitated by Django Rest as well as Celery. 
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The MVC framework of the AngularJS provides us the exact requirement we need for 

our frontend with a focus on developing a single web page application. AngularJS is a 

structural framework for dynamic web applications that lets the user use HTML 

templates. It also provides an ease of use for the user by allowing the system to extend 

the HMTL’s syntax detailing the application components clearly and concisely. This is 

an ideal mesh with our Django framework working with the backend since all the 

bindings and dependency injection eliminate much of the coding process. This 

framework is compatible with most current server technology as the data binding and 

injection all occur within the browser itself. AngularJS offers a better and much simpler 

format for designing application and is fairly beginner friendly; as opposed to HTML’s 

complex and difficult coding process. AngularJS uses JavaScript in order to teach the 

browser new syntax after creating new HTML constructs -these constructs are called 

directives. With these directives, users can break up a single page and separate it into 

multiple views. This is done by obtaining data from our Django Rest API and storing the 

data as models. Utilizing both the models and views acquired, the framework easily 

displays the information requested by the user onto the screen.  

 

AngularJS simplifies applications development process by creating a higher level of 

abstraction. Using this method allows its user a much more needed control because we 

can decouple the client side of an application from the server side allowing the 

development of both sides to operate simultaneously in parallel to each other. It also 

allows the system to be able to reuse both sides as needed. This in correlation to the 

models working in conjunction with the views are all loaded at once. The system only 

requests and pulls the information it requested as it needs it -and thus the data is 

dynamically allocated like any Model View Controller architectural framework. This is 

superb as it allows the AngularJS frontend the capability to obtain all the views from 

Django (the backend) and combine them into one view. Then the browser can handle 

the requests for exactly which view and information is currently being demanded. 

AngularJS truly eases the development process by broadcasting any application easily 

using services that are auto-injected into a chosen application. This would allow us to 

quickly create and control the initialization of automated tests. 

 

Utilizing both the Django framework (as the backend) and the AngularJS (as the 

frontend), all the desired views are all already loaded at once on the client machine. 

Thus, the system does not need to keep requesting a new view from the Raspberry Pi, 

recommunicating to it and waiting to acquire its response. The browser is then 

responsible for switching between the contents that it wants to display and those that it 

wants to hide. This reduces considerably the traffic and computational load that the 

Raspberry Pi would have initially observed. Instead, all the computational intensity is 
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transferred onto the client’s browser -which is perfectly fine. This works because the 

client is usually placed on machines more suited for heavy and complex computations. 

We have discussed the individual frontend and backend framework with the respective 

packages we intend to use but still have not exactly explained which database engine 

we intend to use. In the prevalent and fervent spirit of decreasing or completely 

removing the computational load done by the Raspberry Pi, we used the Django 

framework. This framework relieves the computational complexity of our system by 

abstracting away most of the database. The database chosen is still a crucial factor and 

should definitely focus on being light and fast to further fit our application creation 

theme. We fixated on the SQL databases like PostgreSQL which provides an extensive 

number of unnecessary features that our project does not require. SQLite on the other 

hand, just as the name suggests, is a lighter SQL database that focuses more on 

speed, memory load, and portability. 

 

5.6.4 SQLite Database 

SQLite is a software library stored in a single file format that favors a light and faster 

database engine as opposed to the heavy traditional database design. It is the most 

widely used SQL database in the world. It’s software libraries implement a self-

contained and server-less transactional SQL database engine that facilitates incredible 

portability. This is made apparent by its simple back up procedure that stores and saves 

files at certain stages providing the system administrator with a variety of functionality. It 

provides the administrator with the ability to back up and roll back the database in case 

it gets compromised or corrupted. This database engine allows files to easily be copied 

and transferred to completely different systems (as long that it is configured properly). 

This provides the new system with a complete copy of the database. As mentioned, the 

database’s design is incredibly light which means it takes less space than the other 

traditional databases. Its small size offers many great advantages that for example 

allow it to be paired particularly well with the Raspberry Pi. It also boasts of less 

memory consumption, a great variety of application, and we almost forgot to mention 

that it is completely free for use for any purposes -private or commercial.  

 

SQLite is a compact library with less than 500KB space necessary to encompass all of 

its related features. It is a zero-configuration database which means that it does not 

need to be installed in order to be utilized -no server processes need to be configured. 

“The system just works” as described by its developers; if the system happens to crash, 

nothing needs to be done it will re-orientate itself into working order.  The databases 

small size propagates its speed allowing it to work at a very fast pace. Now these 

advantages we listed are great and pair nicely with our system and the few 

disadvantages are barely worth mentioning. One disadvantage of this system is the 
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(basically) zero security features it provides. As described above, this is not necessarily 

a drawback for our system as no personal information is ever saved or even recorded 

by the system. The system’s main priority is to obtain the different signals from our 

sensors and simply output the correct weather conditions or establish a communications 

check.  

 

Another possible issue that might arise with other systems is the fact that the database 

can only allow one write action to happen at one given time. This is not a notable issue 

for our system because our system only writes to the database for certain 

circumstances in which data is being accessed and read from the various peripheral 

devices connected to our system. After the analog signals (switched to digital) are 

received, each request sent based on the information obtained can only be processed 

one at a time. In other words, we do not need to worry about problems arising from 

obtaining and writing multiple entries at the same time. Worst case scenario a queue 

system would need to be implemented. Furthermore, this problem would only be an 

issue if the system was being accessed by multiple users attempting to change the 

configuration settings over via the user interface at the same time. A quick solution to 

this is to only allow one user at a time to access the interface at any given point. The 

simple fact that the Raspberry Pi will only be placed on a local and very small network 

means that it would be inaccessible to the outside world further trumps the idea that 

security would be a possible problem. In fact, the only form of security employed by our 

system is the WPA encryption of the local network the system will be connected to. A 

would-be assailant would need to have remote access to the Raspberry Pi’s DCHP 

server to access the page and gain the ability to change the configuration settings. Or 

else, they would need direct access to the Pi. 
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5.7 Master Schematic  
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6. Testing 
This section describes how the system and each component will be tested to ensure accuracy 

and to make sure each requirement is met including sub systems. Testing is a crucial part of a 

system’s development because it is necessary to make sure each requirement for the system is 

met and that the system operates as expected and is reliable. Especially with a system like ours 

that pilots will be depending on so that they can take off and land safely, it is important that the 

system be reliable and accurate. 

6.1 Anemometer and Wind Vane Testing 

The testing of the anemometer and wind vane interface is easily done by measuring the 

voltage level and waveform pulses at the output of its RJ11 jack. Facing the fin of the 

wind vane as depicted in figure 6.1.1 should show a reading of 3.3 V on the green 

output pin, this is the North configuration of the wind vane. The East, South, and West 

configurations should result in 1.8 V, 1.97 V, and 2.6 V, respectively on the green 

output pin of the wind vane that is connected to the ADC. These voltage levels were 

measured from the prototype. The anemometer is tested by spinning the cups and 

measuring the pulse waveform from the black output pin. This pulse is active low and 

should have a width of 4.55 ms, shown in figure 6.1.2 below. 
 

 

Figure 6.1.1: Wind Vane North Configuration 
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Figure 6.1.2: Anemometer Pulse  

6.2 PTT Testing Procedures  

Process Expected Outcome 

Turn off the Raspberry Pi 3 microcomputer.  
All signals going to the radio should be silent 
and the Raspberry Pi 3 microcomputer 

should be off.  
Measure the voltage going into the KX 170B 
Aircraft Radio pin 40  

The voltage going in should be 0V 

Press the button on the interface board 
labeled “PTT Test”  

The LED labeled “PTT” should light up when 
the button is pressed  

Measure the voltage going into the KX 170B 
Aircraft Radio pin 40 

The voltage going in should be ##V (still need 

to test for actual value). There should be an 

audible ‘click’ as the PTT voltage in the radio 

gets pulled to ground. 
Measure the voltage running through the 
resistor to the Raspberry Pi 3 GPIO Pin 

It should be no larger than 1.2V  

To test the Interface Board PTT Circuit, follow the testing procedure above. 
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6.3 Audio Testing  

The audio buffer from the radio output to the input microphone of the CODEC can be 
tested by applying a sinusoidal wave no more than 20 kHz and 3 V peak-to-peak at the 
radio output (non-inverting input of operational amplifier) and measuring the output of 

the operational amplifier. Both signals should be identical. This buffer was tested on the 

prototype by a 3 kHz 2 V peak-to-peak sinusoidal signal, shown below. 
 

 

Figure 6.3.1: Audio Buffer Testing 

 

The Butterworth filter from the CODEC audio output to the radio audio input can be 

tested by applying sinusoidal waves in a frequency sweep at no more than 3 V. The 

input should be applied at the CODEC audio output with its bias before the DC block 

capacitor. The output voltage should be measured at the radio audio input after the DC 

block capacitor. The passband of the filter should result in little to no attenuation in the 

output voltage. At 50 kHz the gain of the filter should be -3 dB. From frequencies 

ranging from DC to around 10 kHz there should be negligible attenuation with 0 dB gain. 

Shown in that table below are the measurements from the prototype filter accompanied 

with a few waveforms from the measurements. This prototype was implemented with 

resistor values of 47 kΩ and 43 kΩ and capacitors measured to be 137 pF and 180pF, 

as they were provided by the on-campus lab. Due to this, the measurements are slightly 

offset compared to the designed filter, however its functionality is still sound even with 

component values different than the design for its function. 
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Frequency (Hz) Gain (dB) 

100 0 

500 0 

1000 0 

5000 0 

10000 -0.22 

15000 -0.35 

20000 -0.63 

30000 -1.26 

40000 -3.22 

50000 -5.19 

100000 -17.02 

Table 6.3.1 Prototype Filter Response 

 

 
Figure 6.3.2: Prototype Filter Response at 500 Hz 
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Figure 6.3.3: Prototype Filter Response at 5 kHz 

 
Figure 6.3.4: Prototype Filter Response at 50 kHz 
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6.4 Power Supply Testing 

Shown below in figure 6.4.1 is the pin configuration for the central power supply unit. 
Measuring the voltage over pins 1/4 and 2/3 should result in a measurement of 20V. 
There should be no more than 180 mV peak-to-peak ripple voltage. This power supply 

is also equipped with a LED indicator which illuminates when the power supply is 

active.    
 

 
Figure 6.4.1: Central Power Supply Pin Configuration 

 

Each linear regulator can be easily tested in respect to its output voltage, dropout 

voltage, and line regulation to ensure it is properly working. The output voltage should 

be tested with an input voltage of 20 V and by measuring the output voltage. Dropout 

voltage can be tested by monitoring the output voltage while the input voltage is lowered 
slowly from 20 V to where the linear regulator starts to drop outside its intended voltage 

range. The input voltage where the drop starts is the dropout voltage. Lastly, the line 

regulation can be measured by taking the difference in output voltages for two different 

input voltages that are above the dropout voltage. Shown below in tables 6.5.1 and 

6.5.2 are the testing parameters for each regulator and the tested results done for our 

breadboard prototype with no load.  
 

Linear 
Regulator 

Min-Max Regulated 
Output Voltage (V) 

Maximum Dropout 
Voltage (V) 

Maximum Line 
Regulation (mV) 

LT1129IT-3.3 3.25-3.4 0.70 30 

LD1085V50 4.9-5.1 1.5 10 

L7815AB 14.4-15.6 2 150 

Table 6.4.1: Linear Regulator Specifications 
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Linear 
Regulator 

Regulated Output 
Voltage (V) 

Dropout 
Voltage (V) 

Line Regulation 
(mV) 

LT1129IT-3.3 3.3013 0.128 1.22 

LD1085V50 4.99153 0.844 2.03 

L7815AB 15.132 0.83 97 

Table 6.4.2: Prototype Testing Results 

6.5 Software Design Testing 

6.5.1 Anemometer Data from ADC 

To test the anemometer data and the communication through the ADC, we will begin by 
putting the anemometer outside and then we will verify that we are able to receive 
values through the ADC to the Raspberry Pi and to verify that the value changes in real 

time according to the current conditions. Next, we will verify accuracy by comparing the 

current values from the anemometer to those collected by a separate instrument. After 

we have verified that the Raspberry Pi can receive values from the anemometer and 
that they are accurate, we will verify how the anemometer behaves within the weather 
polling function and that the calculations done for wind speed and direction are 

accurate. To set up this part of the test, we will leave the anemometer outside and 

collect values for a particular time period. From those values, we will calculate by hand 

what the average speed and wind direction should be and compare it to the result from 

the corresponding logic in the weather polling function. Finally, once we have verified 

the Raspberry Pi can communicate with the anemometer, the readings are accurate, 
and the calculations are accurate, we will verify that those values are being stored 
correctly into the current weather object through print statements and the debug 

functionality of our IDE.  
 

6.5.2 Temperature, Humidity, and Pressure Data 

To test the communication between the MS860702BA01 temperature, humidity, and 
pressure sensor and the Raspberry Pi over the I2C bus, we will first individually poll the 
sensor for each weather reading, and compare it to the values reported by a separate 

weather reporting instrument to verify accuracy. After we have verified communication 

between the sensor and the Raspberry Pi at a foundational level, we will test 

communication through the weather polling function. We will do accomplish this by 

verifying that the values are only read at the specific intervals set by the loops and that 

the data is successfully stored in the current weather object. To do this, we will utilize 

print statements and the debugging functions of our IDE so that we can verify when the 
values are collected for each condition, how the value compares to current conditions 

reported by another instrument, and that the values are stored correctly and accessible. 
From here we will move onto testing how the weather is reported back to the pilot. 
 



 

 

99 
 

 

6.5.3 Weather Reporting 

To test the weather reporting system, we will begin by testing the audio synthesis from 
the weather data to make sure the audio is not choppy and the correct values are being 

reported. After the audio has met our standards for quality and is consistently reporting 

correctly the values the function has been given, then we will move on to test the inputs 
to the function by making sure that any values that are received from the weather 

polling function are accurately reported. After this has been verified, we will move on to 

test the transmission. 
 
We will begin testing the transmission by making sure the synthesized audio file can be 

played back to the radio. After we are sure that the function can communicate with the 

radio, we will verify how the system responds when the line is busy. We will make sure 

the system detects traffic on the line and waits to transmit until after there are no carrier 

signals detected.  
 

6.5.4 ADS1015 ADC Channel  

To test the ADS1015’s conversion of Analog signal to digital signal, after soldering the 

header pins to the breadboard, we used the chips I2C protocols for transmitting the 

analog readings. Fortunately, Adafruit Industries provides great documentations and 

excellent open source python libraries. The functions of these libraries allowed us to 

read values from the ADS1015 using the I2C bus. Before starting, we must connect the 

Raspberry Pi with the ADC converter correctly. The table below shows how this 

connection is done. 

 

ADS1015 Connection Test 

VDD 3.3V (Pin1 of Pi) 

GND GND (Any Ground Pin of Pi) 

SCL SCL (Pin 5 of Pi) 

SDA SDA (Pin 3 of Pi) 

Channel A0 To Middle Pin of Variable Resistor 

Table 6.5.4.1 Wiring Test for Raspberry Pi and ADS1015 

 

We proceed by connecting the 3.3-volt pin of the Raspberry Pi (pin1) to the VDD pin of 

the analog-to-digital converter. Then we connect the rest, the ground pin to any ground 

pins of the PI and the SCL pin to pin 5 of the Pi. The SCL provides the clock for all the 

peripheral devices when using the SDA connection. The SDA pin is connected to the 3rd 

pin on the Pi. We then use a potentiometer which is essentially a variable resistor that is 

used to test the ADS1015’s channel port. The middle pin of the variable resistor can 

then be connected to any channels (we chose channel A0). 
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After wiring the Raspberry Pi correctly with the ADS1015 connected to a breadboard, 

we proceeded with the software connection to the I2C bus. Before using the I2C bus it 

must be enabled on the Raspberry Pi after which, a couple libraries need to be installed 

as documented in the Adafruit’s website for the ADS1015.  After which we are can turn 

the dial on the potentiometer which changes the voltage coming into channel 0 of the 

ADS1015. The calculation and hard parts are all done by the ADS1015 libraries making 

it and easy to receive and manipulate the signals obtained by the analog sensors. An 

actual image of the wiring between the Raspberry Pi and ADS1015 is provided in figure 

6.5.4.2 below.  
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7. Management 

7.1 Task List 

     

TASK 
Estimated  

Completion Date 

Person 
Responsi

ble 
Person 
Backup Completed 

Documents         

Task List Initial Draft 2/17/2017 Michael Joshua Yes 

Hardware Block Diagram 2/17/2017 Joshua Michael Yes 

Software Block Diagram 2/17/2017 Vanessa Gilbert Yes 
Divide 60p Senior Design 1 Document 
Assignments 3/12/2017 Michael Team No 

60p Senior Design 1 Document 3/30/2017 Michael Team No 

Bill of Parts 7/10/2017 Michael Team In Progress 

100p Senior Design 1 Document 4/14/2017 Michael Team No 

Final 120p Senior Design 1 Document 4/27/2017 Michael Team No 

     

Radio          
Research and Determine Radio for 
Purchase 2/16/2017 Joshua Michael Yes 

Purchase Radio 2/16/2017 Joshua Team Yes 

Study Radio Schematic for Tieoff Locations 2/21/2017 Joshua Michael Yes 
Confirm Locations of Critical Features in 
Lab 2/24/2017 Joshua Michael Yes 
Correlate AGC Voltage to 3dBm 
Increments 3/17/2017 Joshua Michael In Progress 

Determine Audio Tx Voltage Level Needed 3/17/2017 Joshua Michael No 
Determine Ideal Squelch Setting & 
Permanently Set Potetiometer 3/17/2017 Joshua Michael In Progress 
Design Audio Rx Input Circuit for 
Appropriate Mic Biasing Level 3/17/2017 Michael Joshua In Progress 

Design PTT Circuit 3/17/2017 Michael Joshua Yes 
Research and Determine Permanent 
Connection 3/30/2017 Michael Joshua In Progress 

Purchase Cable/External Connectors  4/18/2017 Michael Joshua No 

Modify Radio Case and Attach Connector 4/30/2017 Michael Joshua No 

     

Carrier Detect         

Research and Design Schematic 
Using Comparator w/ Squelch 
Voltage 3/24/2017 Joshua Michael No 
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Order Parts 4/14/2017 Joshua Team No 

Breadboard and Confirm Operation 4/24/2017 Joshua Michael No 

     

Weather Sensors         
Determine What Measurements Will Be 
Collected 2/21/2017 Joshua Michael Yes 

Make Decision on Sensors for Purchase 2/28/2017 Michael Joshua Yes 
Research and Decide on Interfacing for 
Sensors 3/2/2017 Michael Joshua Yes 
Design Annemometor Wind Speed 
Interfacing Circuit 3/10/2017 Joshua Michael Yes 
Design Annemometor Wind Direction 
Interfacing Circuit 3/10/2017 Joshua Michael Yes 
Buy Components for Breadboarding the 
Interfacing Circuits 3/10/2017 Michael Team No 

Correlate ADS1015 Sensor Data w/ 
Wind Speed + Direction 4/14/2017 Gilbert Vanessa No 

Correlate MS8607 Sensor Data w/ 
Temp, Humidity, Pressure 4/14/2017 Vanessa Gilbert No 
Decide on Enclosure & Connection for 
MS8607 3/31/2017 Vanessa Michael No 

Final Confirmation of Correct Operation 4/18/2017 Vanessa Michael No 

     

Power Supply         

Determine What Voltages are 
Needed 3/17/2017 Joshua Gilbert In Progress 

Research and Design Voltage 

Regulation from 13.8 V 3/24/2017 Joshua Michael No 

Determine Interfacing for 13.8V 

Tieoff 3/30/2017 Joshua Michael In Progress 

Order Parts 4/14/2017 Michael Team No 

Breadboard and Confirm Operation 4/24/2017 Joshua Michael No 

     

Interface Board         

1st PCB Design 5/13/2017 Joshua Michael No 

1st PCB Order 5/14/2017 Joshua Team No 

1st PCB Test 5/29/2017 Michael Joshua No 

2nd PCB Design 6/19/2017 Joshua Michael No 

2nd PCB Order 6/21/2017 Joshua Team No 

2nd PCB Test/Confirm Operation 7/5/2017 Michael Joshua No 

     

Microcontroller         

Research and Decide on MCU 3/2/2017 Gilbert Michael Yes 
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Research and Decide on Appropriate ADC 3/2/2017 Gilbert Michael Yes 

Order MCU 3/2/2017 Gilbert Team Yes 

Order ADC 3/2/2017 Gilbert Team Yes 

     

Software         

Decide on Operating System for 
MCU 3/10/2017 Gilbert Vanessa Yes 

Draft Word Bank for AWOS 
Standard Reporting 3/17/2017 Joshua Gilbert No 

Research and Decide on Voice 
Library  3/17/2017 Gilbert Vanessa In Progress 

Create Comprehensive Logic 
Diagram for Decision 
Making/Operation 3/17/2017 Gilbert Vanessa No 

Create Python Library for I2C  w/ 
ADS1015 3/31/2017 Gilbert Vanessa No 

Create Python Library for I2C  w/ 
MS8607 3/31/2017 Vanessa Gilbert No 

Enable Raspberry Pi for CODEC 
Communication 3/31/2017 Michael Vanessa Yes 

Write Function to Correlate AGC 
Voltage to Received Signal Power 4/14/2017 Gilbert Vanessa No 

Write Program for Weather 
Measurement Logic 4/15/2017 Vanessa Gilbert No 

Write Function for Audio Rx 
Recording 4/16/2017 Gilbert Michael No 

Write Function for Audio Tx to 
CODEC (w/ PTT) 4/17/2017 Gilbert Michael No 

Program Raspberry Pi for Main 
Logic Tree  4/30/2017 Vanessa Gilbert No 

Design Website Interface w/ 
Remote Access SD2 TBD Vanessa Gilbert No 

     

Optional Mounting Case         

Research and Decide Viability of 3D 
Printing     

Decide on Location for Printing     

Create Model 3D Design with 
known PCB Dimensions     

Slice 3D Drawing     

Print First Prototype     

Make Revisions     
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7.2 Budget 

 

Item Design 
Quantity 

Backup 
Quantity 

Engineering Justification and 
Notes 

Estimated 
Expense 

Anemometer 1 0 Wind speed and direction sensor. 

Provided by Mr. Young. 
$0.00 

Barometer 1 0 Atmospheric pressure sensor $10.00 

Hygro Thermometer 1 0 Temperature and humidity sensor  $35.00 

ADC 1 3 Receive analog data, convert analog to 
digital data, process digital data 

$10.00 

Raspberry Pi 3 1 1 Process pilot voice and commands, 
provide data to website 

$60.00 

Operational 
Amplifiers 

3 6 Audio conditioning $15.00 

Comparator 1 3 Carrier detect  $5.00 

Diodes 1 4 University lab kit. $0.00 

Transistors 10 10 Weather instrument signal processing 
and audio conditioning  

$10.00 

Linear Regulators 3 6 Convert 20 V power supply to lower 
voltage for different stages 

$27.00 

Other ICs N/A N/A For possible future use system $10.00 

Ports/Headers N/A N/A Supply correct and secure connections $5.00 

PCB + Labor 1 1 Fabricate PCB and install components  $120.00 

General Passive 
Components  

N/A N/A General resistors, inductors, capacitors 

for various parts of design.  
$10.00 

Power Supply  1 1 Provide power for aviation radio and 
system 

$30.00 

Aviation Radio 1 0 Used to transmit and receive signals to 
and from system to pilot  

$55.00 

Total - - -- $402.00 

Table 7.2: Budget Allocation 
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7.3 Milestones 

Project Tasks Design Milestone Order Milestone Test Milestone 
Final Design 

Revision and Test 
Milestone 

Weather 
Instruments 

N/A 02/28/2017 03/07/2017 04/18/2017 

Weather 
Instrument Analog 

System 
03/15/2017 03/17/2017 03/27/2017 04/18/2017 

Power Supply 
System 

04/01/2017 4/03/2017 04/10/2017 04/18/2017 

Audio System 03/15/2017 03/17/2017 3/27/2017 04/18/2017 

µC/DSP/CPU N/A 02/28/2017 03/07/2017 04/18/2017 

Webpage  N/A  04/18/2017 

Digital Weather 
Reporting 

03/22/2017 N/A 3/30/2017 04/18/2017 

Digital 
Communications 

Check 
03/18/2017 N/A 3/30/2017 04/18/2017 

1st Prototype N/A N/A 05/03/2017 05/06/2017 

1st PCB 05/13/2017 05/14/2017 N/A 05/29/2017 

2nd Prototype 06/05/2017 06/06/2017 N/A 06/13/2017 

2nd PCB 06/19/2017 06/21/2017 N/A 07/05/2017 

60 Page SD1 
Design Draft (15 
Pages/Person) 

N/A N/A N/A 3/31/2017 

100 Page SD1 
Design Draft (25 
Pages/Person) 

N/A N/A N/A 4/14/2017 

Final 120 Page 
SD1 Design Draft 

(30 Pages/Person) 
N/A N/A N/A 4/27/2017 

Table 7.3; Milestones with Deadlines 


