
Joshua Dean, EE

Michael Graziano, EE Vanessa Pena, CE Gilbert Vieux, CE

Senior Design 1 Project Documentation

Auto FBO

University of Central Florida

College of Engineering and Computer Science

Dr. Lei Wei & Mr. Michael Young

Group 12

ii

Table of Contents

1. Executive Summary 1

2. Project Description 3

2.1 Project Justification and Motivation 3

2.2 Goals and Objectives 4

2.2.1 Weather Conditions Report 5

2.2.2 Transmit Radio Check 6

2.2.3 Printed Circuit Board Interface 6

2.2.4 Web Interface 6

2.3 Product Specifications 8

2.3.1 Engineering Specifications 8

2.3.2 Trade Off Matrix 9

3. Research 10

3.1 Existing Products 10

3.2 Main Control Unit 12

3.2.1 MCU Options and Selection 13

3.2.1.1 Raspberry Pi 3 Model B 13

3.2.1.2 Arduino Uno 13

3.2.1.3 MCU Selection 14

3.2.2 Communication Protocols 17

3.2.2.1 RX Signal 18

3.2.2.2 TX Signal 18

3.2.2.3 Carrier Detect 18

3.2.2.4 Push-to-Talk 18

3.2.2.5 Automatic Gain Control (AGC) 19

3.2.3 Language Options and Selection 19

3.2.3.1 MCU 19

3.2.4 Text-to-Voice Software 20

3.2.4.1 Requirements for The Text-to-Speech Software 21

3.2.4.2 Selecting the Text-to-Speech Software 22

iii

3.2.3 Voltage Regulator Options and Selections 24

3.2.3 Power Supply Options and Selections 25

3.2.4 Weather Sensor Options and Selections 28

3.2.4.1 Anemometer and Wind Vane 28

3.2.4.2 THD Sensors 28

3.2.4.3 Barometric Sensor 28

3.2.4.4 MS860702BA01 29

3.2.5 Operational Amplifier Options and Selections 32

3.3 VHF Aircraft Radio Selection 34

3.4 Termination of Unused Operational Amplifiers 34

3.5 Circuit Protection 36

3.4 Interfaces 37

3.3.1 To Radio 37

3.3.1.1 TX Audio 37

3.3.1.2 PTT 37

3.3.2 From Radio 37

3.3.2.1 RX Audio 37

3.3.2.2 Carrier Detect 38

3.3.3 From Microcomputer 38

3.3.3.1 PTT 38

3.3.3.2 TX Audio 38

3.3.4 To Microcomputer 38

3.3.4.1 I2C Bus 39

3.3.4.2 Carrier Detect 39

3.3.4 From Anemometer 39

3.5 Carrier Detect 40

3.2.5 Automatic Gain Control Voltage 40

4. Design Constraints and Standards 42

4.1 Standards 42

4.1.1 Registered Jack Standard 42

4.1.2 Radio Communication Phraseology and Techniques 44

4.1.3 METAR 45

iv

4.1.4 Traffic Advisory Practices Without Operating Control Towers 45

4.1.4 WAVE File 46

4.1.4 Pulse Code Modulation 47

4.2 Design Constraints 51

4.2.1 Time Constraints 51

4.2.2 Budget Constraints 51

5. Design 52

5.1 Power Supply Design 52

5.1.1 Voltage Regulation 53

5.1.1.1 3.3V Regulator 53

5.1.1.2 5V Regulator 54

5.1.1.3 15V Regulator 54

5.1.1.4 Overall Power Supply Design 54

5.2 Interface Board Design 55

5.2.1 PTT Circuit 56

5.2.2 Carrier Detect 57

5.2.3 Rx Buffer Audio Design 58

5.2.4 Tx Filter and Bias Audio Design 59

5.2.5 Anemometer and Wind Vane Design 61

5.2.5.1 Analog to Digital Converter 63

5.2.6 I2C Bus 63

5.2 Software Design 64

5.2.1 Main Logic Loop 65

5.2.2 Poll Weather Conditions 67

5.2.3 Counting Radio Clicks Process 70

5.2.4 Transmit Weather Conditions 71

5.2.5 Radio Communications Check Process 72

5.3 Communication with Interface Board 74

5.3.1 Pin Layout 74

5.3.2 SPI or I2C connection 75

5.3.3 ADS1015 Communication Logic 77

5.3.3.1 Background Information 77

v

5.2.3.2 ADS1015 Wiring 77

5.2.3.3 Programming the ADS1015 79

5.3.3.4 I2C Interface 79

5.4 Configuration Screen 80

5.5 Integration and Prototype 81

5.6 Web Server 81

5.6.1 Introduction to the Model View Controller Architecture 82

5.6.2 Django Web Framework 83

5.6.2.1 Django Rest 85

5.6.2.2 Celery 86

5.6.3 AngularJS Framework 87

5.6.4 SQLite Database 89

5.7 Master Schematic 91

6. Testing 92

6.1 Anemometer and Wind Vane Testing 92

6.2 PTT Testing Procedures 93

6.3 Audio Testing 94

6.4 Power Supply Testing 97

6.5 Software Design Testing 98

6.5.1 Anemometer Data from ADC 98

6.5.2 Temperature, Humidity, and Pressure Data 98

6.5.3 Weather Reporting 99

7. Management 101

7.1 Task List 101

7.2 Budget 104

7.3 Milestones 105

1

1. Executive Summary

When a pilot chooses to fly there are a few things that the pilot must know for certain.
Before a pilot takes off they should know that their microphone, radio, and headset are

operational. This is so that they can communicate with other pilots in the area to avoid

deadly collisions and for communicating with Air Traffic Control at another airport soon

after takeoff. This is absolutely necessary if a pilot is planning to fly IFR as they must

establish communication with ATC starting on the ground or soon after becoming
airborne. Also, as they come into land, a key piece of information to know is the wind

direction, wind speed, and gusts at the airport they are landing at. This is because pilots

always need to land into a headwind to shorten their landing distance. And if a

crosswind exists (and they usually do) the pilot needs to know so they can choose the

best runway to land on. Other weather information such as temperature and the

barometric pressure at the airport is also important so that pilots can set their altimeters
and judge the density altitude.

Usually Fixed Base Operators (FBO) are the ones to relay this information as well as
other remarks about airport conditions to the pilots over the radio, but some airports do

not have FBOs. Furthermore, most FBOs are not staffed 24 hours a day throughout the

year. This creates a problem for the pilots who need that very information. One solution

to try to mitigate this issue at such airports is a windsock. A windsock is a light and

flexible cone of fabric mounted on a mast, usually somewhere along the airstrip of an

airport. Windsocks let the pilots know some of the important weather readings, such as

wind direction, but they are small and cannot be seen until the aircraft is very close to

the airport. On the other hand, there are some automated systems currently on the

market that perform task such as broadcasting weather conditions and transmit radio

checks, but they are costly and not suited for smaller airports.

The proposed project is a low-cost system that satisfies these two basic needs. This

system needs to broadcast important weather information when prompted by pilots in

the area. For example, when the system is prompted, the system will broadcast a

weather report that includes the latest recorded wind direction and wind speed as well

as gusts. This system also needs to perform a transmit radio check for any pilot that

consists of recording the transmission from the pilot and playing it back so the pilot

knows exactly how operational their equipment is. Therefore, this can be classified as

an “Auto Fixed Base Operator” for small airports. This “Auto Fixed Base Operator”

would act as a hub of communication for these small airports that do not have a

dedicated FBO or weather station. This system would provide a source from which any

2

pilot can obtain crucial weather information or perform any radio communication checks

they need prior to taking off and landing their aircrafts.

Our goal is to use our technical experience to connect a weather station and VHF radio
through an interface board to a microprocessor that can process all the necessary

information. Using these components, we will build a system that can assist pilots in

taking off, flying, and landing safely, all while being configurable and cost-effective.

3

2. Project Description

This section describes the motivation, goals, objectives, and some of the key systems of

this project to better understand its premise and the features it has.

2.1 Project Justification and Motivation

The vast majority of airports in the U.S. as well as other parts of the world are non-

towered airports. Many towered airports even have non-towered hours of operation,

usually during night hours. When active, towered airports are held responsible to

maintain safe, orderly, and expeditious flow of air traffic, as well as report accurate and

real time weather observations. However, when pilots fly into and out of non-towered

airports they are responsible to maintain good communications while operating in the

local airspace as well as on the airport’s runways and taxiways. Also, the local weather

at many non-towered airports is not automatically broadcasted over a local frequency

and is usually found from another nearby airport’s weather report.

One concern pilots face when preparing to fly out of a non-towered airport is how well

their radio is working. It is vital for a pilot preparing their aircraft for flight to ensure that

their communications systems are properly working. This is especially true for pilots

flying under Instrument Flight Rules (IFR), as they must establish contact with air traffic

control soon after becoming airborne. With no tower they can only perform a radio

check if there are others on the local frequency, which is never guaranteed.

The current local weather is also a concern for both pilots flying into and out of non-

towered airports. For pilots flying out of a non-towered airport getting the current local

weather is usually done by looking up the weather, observing outside conditions, and

collecting nearby airports weather reports. Pilots flying into a non-towered airport,

however, do not have the luxury of looking up the current local weather from their plane.
The best a pilot flying into a non-towered airport can do is to lookup the weather they
will be traversing through beforehand, observe the windsock at the airport, remain
conscious of weather conditions around the aircraft, and tune into nearby airport’s

weather reporting stations. At a towered airports this complication is resolved with an

Automatic Terminal Information Service (ATIS) or another equivalent system, which
provides highly accurate and current weather as well as other remarks (obstructions

near the runways, closed taxiways, other weather information, etc).

In respect to weather, pilots are interested in elements such as the wind speed and
direction, barometric pressure, temperature, and dew point surrounding the airport when

preparing for a flight, taking off, and landing. Wind speed and direction are of the most

concern for pilots, which dictates which runway pilots will use to take off and land. This

4

is because during the takeoff and landing phase it is desired to have as much wind

flowing over the wings of the aircraft to increase both drag and lift. Barometric pressure

is used to tune the aircraft’s altimeter, which indicates the altitude of the aircraft. Lastly,

temperature and dew point are used to judge the density of the air and predict the

visibility conditions. The temperature along with elevation gives pilots information on

how well their aircraft will operate and if their aircraft is safe to operate in the air. The

difference between temperature and dew point gives pilots information on the visibility

surrounding the airport. This is used decide if an area’s airspace is under Visual Flight

Rules (VFR) or Instrument Flight Rules (IFR).

Our motivation for this project is to improve the safety of pilots and passengers at these

smaller airports with no manned Field Base Operator (FBO). When pilots aren’t sure of

weather conditions they do not know which runway to land on. The airports that don’t

have a dedicated FBO usually don’t have the financial means to fund the expensive

automatic weather systems on the market. Our system would become the model for a

low-cost effective solution.

The proposal for this project was brought by Professor Michael Young last summer to

be completed by a senior design group at UCF. Unfortunately, the final product

presented was undeployable and did not satisfy all of Professor Young’s needs. We

seek to improve on the areas where the previous team fell short; expanding the weather
capabilities of the weather reporting system and delivering a “no distortion added”

communications check.

2.2 Goals and Objectives

The objective of this project is to build an easy to use, reliable, and efficient system for
pilots to receive critical weather information and perform a communications check when

flying into a non-towered airport. Our system will provide more information to pilots than

a typical windsock which will give them the data they need to be able to take off and

land safely. This system will be comparable to the existing Automatic Terminal

Information Service (ATIS) and Automated Surface Observing System (ASOS) systems
in place at larger airports so that pilots will already know what to expect and not have to

learn a whole new protocol.

The system will be able to recognize a mic click signal from the pilot and decide from
the signal if the pilot is requesting weather condition information or a communications

check. If the pilot is requesting weather information, the system will respond with an

ATIS style broadcast with the wind speed, direction, visibility, temperature, humidity,

and pressure. If the pilot is requesting a communications check, the system will respond

with a message acknowledging the request and will record and playback the pilot’s

5

response so they can hear exactly how their message was received. The system will

also respond with a power level to inform the pilot of their signal strength.

A similar system was designed for a previous senior design project but that system did

not meet all the requirements and was too complicated and cumbersome to deploy.
Their audio playback for the communications check was not integrated into the PCB so
to receive, save, and playback a pilot’s transmission, they had to use a separate USB

interface on a computer. This affected the quality of the transmission but it also made

the system much bulkier. To deploy their system, they needed room for the weather

sensors, PCB and microcontroller, and a separate computer to process the audio. The

idea behind the communications check was that it allows the pilot to make sure they can
be heard by other pilots or air traffic control towers but this becomes ineffective when

the playback is distorted. Their communications check failed because of that crucial

factor. Inaccurate playback will cause the pilot to believe their transmissions are worse

than they are so they will make unnecessary adjustments furthering the problem.

Our system will differ from the previous senior design project in many key ways. We will

be integrating all the components, aside from the weather sensors, onto one chip so

that they system is contained and very easy to deploy. This will include a codec to

receive, save, and playback a pilot’s communications check so that the playback is as
accurate as possible and they pilot will also receive a quantified value for the quality of

their transmission. In addition to this improved communications check, we will also be

including more weather sensors and more robust logic to allow the pilots to get the most
accurate weather information when they request it instead of clogging the line with

repeated information. Instead of just reporting wind conditions, the system will also

report temperature, humidity, and air pressure. These are all crucial measurements for

pilots because it allows them to understand how the wind will affect their plane and what

counter measures they will need to take. In addition to these changes, we are also

simplifying the circuits immensely. The previous team added many unnecessary

components and overcomplicated the circuitry so we started with an all new design and

chose to incorporate and build off more out of the box components such as the codec.
This way we are able to pull what we need from each component and combine the

simplified circuitry into the PCB.

2.2.1 Weather Conditions Report

The weather conditions report is one of the main functions of the system. When the

user/pilot keys the mic on their radio a specified number of times, the system should

broadcast weather conditions. This weather conditions report should include wind

speed accurate within ±2 knots, wind direction within ±5 degrees, temperature within ±3

C, humidity within ±4%, and air pressure within ± 0.0591 inHg. It will also need to check

if the channel is occupied and only broadcast the weather report when the channel is

6

unoccupied.

Another feature of this function is to broadcast an updated weather report if the wind

conditions change more than a specified amount. For example, if the system broadcast

that winds are 5 knots at 120 degrees, and they change to 10 knots or 150 degrees, the
system will broadcast the new wind conditions so that the pilot is always up to date with

the most current and accurate conditions.

This also touches on the Crosswind Alert the system will have. A crosswind is when

winds blow near perpendicular to a runway, and this causes makes landing more

difficult. Our system will detect when a crosswind exists and broadcast an alert. The

system should also announce when a runway is “favorable” to land on. A pilot wants to

land into headwind so the length of their landing is shorter. If the system detects winds

are more than, say, 5 knots and they are in the direction of a runway, the system should

announce that that runway is favorable to land on.

2.2.2 Transmit Radio Check

The second main function of our system is a Transmit Radio Check. Before a pilot takes

off, they want to ensure that their mic, radio, and headset work so they can

communicate with Air Traffic Control (ATC) and other pilots. Normally, the pilot would

contact the Field Base Operator (FBO) and the FBO would respond with a radio check

and wind conditions. Our system will be used at an airport without an FBO. When the

user keys the mic a specified number of times, the system should prompt the user to

perform a Transmit Radio Check. The system will record what the pilot transmits, and

play it back exactly how it was heard. Then the system will announce the power level of

the transmission. This way the pilot can verify their mic and radio are operating normally

and that their signal strength is satisfactory. During this process, the system will verify

that the channel is not occupied before transmitting the prompt or the recording.

2.2.3 Printed Circuit Board Interface

To interface the handheld radio and the microcomputer we will need to design and build

custom circuitry and ultimately fabricate a Printed Circuit Board (PCB). This PCB will

have all necessary inputs from the radio and convert them into usable signals for the

microcomputer. The PCB will also have these power supplies. In turn, it will also create

usable signals for the radio that come from the microcomputer. The weather sensors

will also be connected to the PCB and accessed by the microcomputer.

2.2.4 Web Interface

The web interface is intended to provide an easily accessible graphical interface for the

user. The interface would provide the user with valuable information concerning the

7

current weather conditions; this includes wind speed, wind direction, gust, and

temperature. The interface would allow users to check the current conditions at the

airport from anywhere and at any time. The system will also allow the admin user for the

airport to switch the click pattern for requesting each task, like a communications check,
to best fit their preference and to ensure the click pattern does not conflict with other

systems already existing at the airport. The operator would need to switch the click

pattern if the current click pattern interferes with any patterns already established at the
specific airport because if not then pilots may not be able to perform necessary tasks

like turn on runway lights.

Our device will also host a local web server that will provide a graphical user interface

that anyone can use to get information from the system. The user will be able to specify

any parameter and adjust the system. For example, if the administrator for the system

wants to change the number of clicks for the weather report, they will be able to change

that from the interface. We also will show a graphic of the runway, a compass overlay,

and the wind conditions so that the user can get a graphical representation of the

current weather situation like what is shown in Figure 2.1. The user should be able to

type in the IP address or a web address related to the IP of the microcomputer to

access the web interface. This system will be opened using the port routing functions of

our microcontroller to also allow access from outside of the local network, allowing the

user to be able to get weather conditions from an outside location, i.e. their home or

office.

 Figure 2.1 General Block Diagram of Auto FBO

8

2.3 Product Specifications

In this section we list out the specifications to which we believe our system should
perform; touching first on the general system specifications such as system size and
response time, next we outline exactly how the critical features of weather reporting and

communications check should operate and their specifications.

2.3.1 Engineering Specifications
-- Response Time from Signal Receive: < 3 seconds

-- Final Device Size: < 2 ft. on longest side

-- Measurement Capabilities: Temperature, Humidity, Dew Point, Air Pressure,
Wind Speed, Wind Direction
-- The system shall have a web IP graphical interface from which the user can

read the current winds and make parameter changes.
-- The system shall not broadcast if the radio channel is occupied.
-- The system shall operate on the airports UNICOM frequency.

-- Upon receiving the designated cue for a weather report, the device shall return
an automated weather message in a precise formatting specific to aviation

procedures.
-- The system shall update the pilot and broadcast the current wind conditions if

they change such that they exceed the chosen parameters.
-- The system shall announce crosswind and gust warnings if they are present.
--The system shall announce a favorable runway if conditions fall within chosen

parameters.
-- Temperature Accuracy: ± 2 C
-- Humidity Accuracy: ± 3%
-- Wind Speed Accuracy: ± 2 kts or ± 5%, whichever is greater
-- Wind Direction Accuracy: ± 10 degrees

-- Barometric Pressure Accuracy: ±0.0591 inHg

-- Upon receiving the designated radio cue for a communications check, the
device shall record the pilot’s transmission and subsequently transmit the

recording back with no added distortion to the pilot for verification.
-- Following the playback of the recording the device shall transmit a message to

the pilot detailing the received message’s power level.
-- Maximum Recording Length: 15 seconds

9

2.3.2 Trade Off Matrix

Implementation

Time
Temp.

Accuracy

Humidity
Accuracy

Wind
Speed/Direction

Accuracy

Barometric
Pressure
Accuracy

Dimensions

 - + + + -

Good Sound
Quality

+ ↓↓ - - - - ↓

Ease of
Installation/Setup

+ ↑↑ - - - - ↑

Low Cost - ↑↑ ↓ ↓ ↓ ↓ ↓
Quick

Responsiveness
+ ↓↓ - - ↓ - -

Multiple
Measurements

+ ↓↓ ↑↑ ↑↑ ↑↑ ↑↑ ↓↓

 < 23 weeks < ± 3 C < ± 4% < ± 2 knts.

< ± 5 degrees

< 0.0005

inHg

< 2 ft. on

longest side

↑↑ Strong Positive Correlation ↑ Positive Correlation ↓ Negative Correlation

↓↓ Strong Negative Correlation + Positive Polarity - Negative Polarity

10

3. Research

This chapter describes existing products both commercially available and the previous

Senior Design project for this system. Additionally, the chapter includes the research

done for component selection, communication protocols, programming language
selection, the various interfaces between components, and a discussion on power

supplies.

3.1 Existing Products

Currently there are numerous options when it comes to autonomous or unmanned

control tower like services. They typically provide pilots with necessary information like

the weather conditions and radio checks similar to what our system will provide.
However, these products usually provide way more services for the pilots like

monitoring traffic in the surrounding airspace and relaying that information. In addition to

the autonomous FBO’s, there is also the more traditional approach of having a

dedicated FBO at the airport. While these systems share similarities in capabilities they

also share a similarity that also happens to be their biggest flaw: having a high cost.
Between initial system costs, installation or construction, and routine maintenance or

operating; these factors can lead to quite the costly investment in the long run. For

some airports, this is a completely justifiable cost, for other small airports this is not the
case and will typically lead to the airport being unmanned and unavailable to provide

critical information to any pilots.

Figure 3.1.1 Potomac Aviation Micro Tower

11

The first similar product is the Potomac Aviation Micro Tower (Figure 3.1.1). The Micro

Tower is an all-in-one system that operates on the area’s CTAF frequency (Usually

UNICOM) and provides the same core services that our system will provide. The Micro

Tower can broadcast weather conditions, altimetry, visibility, and runway advice. The

Micro Tower can also perform the same communications check that our system will
have by recording and playing back a pilot’s transmission and giving the power level of

that received transmission.

Where this system exceeds is its AI capabilities with all that information. For example,

the Micro Tower can sit in the radio channel and detect when a new airplane enters the

airspace, giving that pilot a greetings and introduction to using the system. Another

advantage of the Micro Tower is that it is completely solar powered, meaning it can be

set up anywhere in the world and not have to rely on a power source. This leads to an

incredibly easy user setup experience; only need two individuals and about a half of a

day’s work to get the system up and running.

However, airports like Orlando Apopka don’t necessarily need or can’t afford the

multiple thousands of dollars cost of dedicated weather and broadcasting equipment.
As mentioned earlier, the Micro Tower fails at being cost accessible for small airports.
With a quoted price starting at $75,000, this puts the system in a budget range that is

too much for an airport such as Orlando Apopka.

Figure 3.1.2 Unmanned Control Tower

Another similar solution is an unmanned control tower. This is not necessarily a buyable

12

product like the Micro Tower, but should still be considered as a method to compare

similarities, usability, and the effectiveness of our system.

These unmanned control towers have the eyes and ears of a standard control tower,

with none of the personnel. On average, they can reach heights of 80-feet tall and

house high-definition cameras that send the information back to controllers, stationed at

a manned ATC Tower. The cameras are spread out to eliminate blind spots and in the

future, can be equipped with infrared technology to operate at night or in bad weather.

Overall these solutions again, far exceed the needs of a small airport such as the
Orlando Apopka airport, and the price is similarly outlandish when you take into

consideration that an airport like Orlando Apopka is mostly self-funded. The Orlando

Apopka airport could not afford the expensive Micro Tower and wanted a similar product

without the cost, which is why we are building this low-cost solution for them.

Our solution will most importantly be low cost but it will also deliver the functionality that

is critical to the safety and efficiency of unmanned airports. We will deliver a easy to use

weather reporting system which when requested, inform pilots of the current wind

speed, wind direction, temperature, humidity, and pressure. We will also deliver an

incredibly accurate communication check system. This system will allow the pilot to

request the system to record their transmission and then play it back so the pilot can

hear exactly how they will sound to other pilots or air traffic control at other airports.

3.2 Main Control Unit

This section details the options that have been assessed for the main control unit of the

system and why the specific system was selected. It also describes the communication

protocols, how the various components of the system will communicate, and the

language chosen to write the software for the system.

The main control unit of a system receives and sends data that direct the operations of

a computer’s processor. The MCU translates input information into control signals that

are sent to and carried out by the central processor. Using the information obtained, the

processor can then communicate accordingly with any attached external device. In our

project’s case, our MCU receives digital signals (that are first converted by an ADC from

analog signals) as input. The input information is then used by our program to output

the related information back to the user. The MCU is necessary to communicate

between devices providing multiple functions that allows its user to send, receive, and

manipulate control signals from other computer devices.

13

3.2.1 MCU Options and Selection

This section details the two microcontrollers we deliberated over, their specifications,

strength, and ultimately the one we chose that best fitted our project specifications. The

reason for choosing one microcontroller over the other is also due to their different

coding environment and language. Additionally, we also decided to favor the

microcontroller the members of our team are most accustomed to the Raspberry Pi.

3.2.1.1 Raspberry Pi 3 Model B

Figure 3.2.1.1 Raspberry Pi 3 Model B Configuration

The Raspberry Pi 3 Model B is a microcomputer equipped with a quad-core 64-bit ARM

Cortex A53 running at 1.2 GHz with 1GB of LPDR2-900 SDRAM. This model contains

2.4GHz 802.11n Wireless LAN, Bluetooth 4.1, and 10/100 Ethernet connection.
Furthermore, this MCU includes an HDMI port, display interface (DSI), micro-SD card

slot for storage, 4 USB ports, and a 3.5mm audio jack. The Raspberry Pi meshes best

with the free operating system Raspbian. Raspbian is an optimized distribution of Linux

tailored for the Pi. The system provides many packages and pre-compiled software that

make the Pi versatile and easy to operate; yet, the Pi’s most powerful tool is its GPIO

pins. With a total of 40 pins (26 GPIO pins with the rest being power, ground, or I2C

pins), the Pi can communicate and interface tremendously well with external devices.

3.2.1.2 Arduino Uno

The Arduino Uno is a microcontroller that operates at 5V and runs at 16-MHz. The

board is populated by fourteen digital input and output pins and six analog input pins.

14

Figure 3.2.1.2 Arduino Uno Configuration

The Arduino Uno’s 8-bit AVR RISC-like microcontroller is called ATmega328P and

provides 32 kB of flash memory with .5 KB used by the bootloader; it also provides 2-

KB of SRAM and 1 kB of EEPROM. Other features include the 32 general purpose

registers, an SPI serial port, serial programmable USART; and most conveniently, an

onboard 8 channel 10-bit A/D converter. The A/D converter is a required component for

our project since the analog signals from the weather sensors need to be converted to

digital signals. The digital signals can then be received and manipulated in order to

accurately output the correct response for the weather conditions to the user.

3.2.1.3 MCU Selection

The Raspberry Pi was the clear winner for our project; the Pi was favored not only
because of its specifications, but also because the team members had more experience

with this specific microcomputer. We researched both microprocessors thoroughly

before finalizing our decision; we chose the Pi because of its versatility, accessibility,

and open-source libraries. One slight problem was that the Pi lacks an analog-to-digital

converter which is needed to process the incoming analog signals from our sensors; on
the other hand, the Arduino has a built-in A/D converter while the Pi isn’t naturally
equipped with one; but, that did not really impact our decision as much because we

made use of an external A/D converter paired with our MCU. Figure 3.2.1.3 illustrates

the specification differences between the Raspberry Pi and Arduino Uno that are further

discussed below.

15

One of the reasons we selected the Pi is because of its naturally optimized operating

system called Raspbian. This Linux-like operating system is distributed with over 35,000

packages and pre-compiled software bundle meant to improve the Pi. It also makes its

overall installation process as well as interfacing with peripheral devices quite easy. The

programming experience is made simpler by providing a graphical interface to the user.
Raspbian is a fully-fledged Linux-based operating system used by the Pi (which in turn
is basically a small computer) as stated above, but the Arduino Uno is only a

microcontroller. Using the Raspberry Pi 3 as a basic Linux computer allows us to

possibly set up a graphical interface in the future, while also providing us with a

headless command setup now. The Arduino Uno still supports many functions required

by our project. This includes the key function of receiving and converting inputs from

sources such as a temperature sensor or anemometer using its built-in A/D converter.
Unfortunately, it also does not support a multitude of specifications required by our

project such as Wi-Fi access or python.

The Arduino Uno does not provide the user with a variety of coding languages. IDLE’s

are not compatible (as shown in figure 3.2.1.3) with Arduino; instead, the user is

provided with specifically designed tools to setup and program the different Arduino

models. The codes written on the board are known as sketches and are written in C++.
This was one of the main deal breakers that pushed our decision towards the more

favorable Raspberry Pi. We selected python as our coding language for the ability to

interact with Django -a database framework that allows us to store data on the Pi. Also,

python offers many packages to deal with analog signals which further narrowed down

our choice of coding languages.

Furthermore, the Raspberry Pi includes a faster processor (running at 2.4 GHz), multi-

tasking power (as opposed to Arduino’s focus on running one simple program), and it is

an independent computer (Arduino Uno is not). The onboard Ethernet network card, the

wireless capability, and the graphical interface provided by the Pi shows its superiority

with software applications and usability. This graphical interface is an imperative

requirement as our sponsor mentioned his desire to change some of the functionalities
implemented by our project; such as, changing the current airport location easily or the

click-pattern. Also, access to the internet via Wireless Lan or Ethernet connection is

required to communicate to our web interface.

Another feature on the Raspberry Pi 3 that contributed to its selection is the 2.4GHz

802.11n wireless capabilities and the 10/100 Ethernet port. This allows us to easily

install new software and packages directly from a webpage (as long as there’s an

internet connection) and set up a local web server. One of the goals of this project is to

have a web interface that the user can modify parameters from. Having the Ethernet

16

port lets the user plug in their computer and access a web interface we set up that’s run

on the Raspberry Pi 3.

Figure 3.2.1.3 Raspberry Pi Vs Arduino Uno Specs

Component Raspberry Pi 3 Arduino Uno

Model Model B R3

Price Range $35 $22

Dimensions 85 x 56 mm 74.8 x 53.3 mm

CPU ARM Cortex A53 ATmega328P

Clock Speed 900MHz 16MHz

RAM 1GB 2KB

Flash Micro-SD card 32KB

EEPROM N/A 1KB

Input Voltage 5V 7-12V

Min Power 3.5W .3W

GPIO Pins 26 14

Analog Input N/A `8 10-bit

I2C 2 2

SPI 1 1

Dev IDE IDLE Arduino Tool

Wi-Fi 2.4GHz 802.11n N/A

Ethernet 10/100 N/A

USB Master 4 1

Video Out HDMI, Composite N/A

Audio Out HDMI, Analog N/A

17

The 26 GPIO pins on the Raspberry pi was more than enough to finalize our decision.
One of the reasons we chose the Pi is because of all the available general purpose pins

at its disposal. This variety of pins allows us to interface with our microcontroller and

have several pins leftover for backup use. Since the Pi does not have a built-in analog-

to-digital converter, we needed to acquire an external ADC converter. We chose the

ADS1015 ADC because it fitted our needs and provided more bit precision and power

needed by our project.

 Figure 3.2.1.3.2 ADS1015 external analog-to-digital converter

The ADS1015 is an analog-to-digital converter that utilizes 12 bits of precision to

accurately detail the analog signal collected from our sensors. The Pi’s accessibility,

processing power, multi-tasking capability, and functionalities make it a perfect choice

for our project. Also, the I2C bus pins of the Pi meshes quite perfectly with the with the

analog-to-digital converter. The I2C interface also provides a neater wiring between the

Pi, ADC, and sensors instead of the way the SPI is configured when wired with the

Arduino Uno or the Pi.

3.2.2 Communication Protocols

The nature of VHF Radios in aircraft communication has become critical in the
communication of information between traffic control towers and aircrafts all around the

country. Radios have communication protocols that need to be addressed prior, during

18

and after communications. These protocols dictate who communicates, which signal

propagates in the given frequency band and if your VHF will listen or transmit. These

signals will need to be filtered and manipulated in such a way that the Raspberry Pi 3
will be able to interpret them and use them to follow adequate protocol for

communication.

3.2.2.1 RX Signal

The received signal from the IC-2A Radio will be sent to the interface board from the

positive end of the volume potentiometer. This way we get a clear unattenuated audio

signal from the radio. The importance of this signal is that it will allow the Raspberry Pi 3

to record and save the pilot’s communications check audio.

3.2.2.2 TX Signal

The other function of our audio path is to transmit the audio signal from our Raspberry

Pi. The TX signal is signal that is send out and carries the transmitted message. During

transmission, the half-duplex system will by nature be unable to receive any kind of

transmissions.

3.2.2.3 Carrier Detect

Carrier Detect, in communications, is present in the squelch circuit with the function of
suppressing the audio output of a receiver in the absence of a higher amplitude and

strong input audio signal. The squelch can be opened, allowing all audio signals

entering the receiver tap to be heard. This circuit can be useful when attempting to hear

weak or distant audio signals. Squelch operates alone on the detection of the strength

of the signal; when a device is set to mute, there is no audio signal present. Knowing if

there is a carrier detect present, at the squelch, will allow the MCU know when there an

audio signal present. We will use the squelch voltage to register when “clicks” have

been made by a pilot.

3.2.2.4 Push-to-Talk

PTT has been a standard of two-way radio communication for quite some time. The

nature of half-duplex communication systems is that there must be some sort of signal

flag to alert the transceiver that it is time to stop receiving and ready for transmission.
The reason it is called push to talk is that the action required for this stage is top push

the button on the microphone. What the button does is pull the PTT relay in the radio to

ground, thus setting it into transmit mode. For the case of this system what will be done

is that through one of the GPIO pins of the Raspberry Pi 3 and a PTT circuit in the

interface board, the MCU will ground the relay and set the radio into transmit mode.

Since the IC-2A VHF Aircraft radio is a half-duplex communication system it can only do

19

one of the two communication functions at a time. When the PTT is not grounded the

KX 170B is in ‘Receive Mode” and can receive incoming audio signals. But when the

PTT is grounded the radio switches to ‘Transmit Mode’. In this mode, the system cannot

process any received audio and any communication to it is essentially lost.

3.2.2.5 Automatic Gain Control (AGC)

Automatic Gain Control is a closed loop-feedback circuit where a signal is fed into and

it’s expected to maintain and regulate to certain level of amplification. This signal can be

sound or radio frequency. The AGC can give us two different cases for output. The first

case is if the level of the input signal is too low, the designed system will output an

amplified signal to the desired level. The second case is if the input signal is too high,

the designed system will output a lowered signal to the desired level as well. The

purpose of this system is to maintain a constant level for the output signal giving a wider

range of input signal levels. AGC is commonly used is radio receiving to help equalize

the desired average volume due to different levels received in the strength of signals

and fading of the same. One of the consequences of not using an AGC is seen in the

relationship between the signal amplitude and the sound waveform – the amplitude of

this signal is proportional to the radio signal amplitude. The information contained by the

signal is carried by the changes of the amplitude of the carrier wave. If the circuit were

not linear, the modulated signal could not be recovered with reasonable fidelity.
However, the strength of the signal received will vary widely, depending on the power

and distance of the transmitter, and signal path attenuation. Overall, the AGC circuit

keeps the receiver's output level from fluctuating too much by detecting the overall
strength of the signal and automatically adjusting the gain of the receiver to maintain the

output level within an acceptable range.

3.2.3 Language Options and Selection

The MCU chosen also impacted our choice of programming language. This section

describes the language chosen, why it was chosen, and how it will impact the system.
3.2.3.1 MCU

For the main control unit, or MCU, there are a few options as far as what language to

choose. Since we are utilizing the Raspberry Pi 3 for the MCU the first priority, was

making sure that the programming language that we selected was directly compatible
with the Raspberry Pi and had libraries in which to access the multiple General Purpose

Input and Output pins, or GPIO pins. Having a library for the Raspberry Pi’s GPIO pins

allows us to not have to work from the ground up, and strictly focus on how we are

going to program the GPIO pins specifically. This saves us a lot of time and effort that

we don’t have to put into a lot of code that’s only purpose would be to allow us to

access the pins.

https://en.wikipedia.org/wiki/Fidelity
https://en.wikipedia.org/wiki/Transmitter
https://en.wikipedia.org/wiki/Attenuation

20

For this design, we chose to go with Python as our programming language for the MCU.
Using python solves the initial requirement of having a default library for interfacing with

the Raspberry Pi’s GPIO pins through the RPI.GPIO library. This allows for basic

reading and writing to the pins without having to create those initial functions ourselves.

Another reason we chose python as our main language was because the Analog to
Digital Converter, known as an ADC, that we are choosing has a python library that
allow for easier reading and writing directly from the chip without having to do a lot of

initial handshake messages and procedures to receive and send data over I2C.
Because reading from most particular ADC’s can be complicated, as they have certain
bit patterns in which are needed to configure and choose which of the devices’ functions
are being used, it is nice to have an extra bit of encapsulation in which instead of

building these bit patterns ourselves, we can simple call a read or write method. This

not only shortens the amount of code written by us but again allows us to focus more on
the actual implementation of our system rather than having to deal with a lot of

headache simply reading from the ADC. This library is also open source so it is free to

use and heavily supported by the community in case we run into any issues.

Python was a good choice compared to other languages such as C as not only is it

inherently Object-Oriented and allows for a more modular structure to our code. The

Object-Oriented nature of Python allows us to create objects in which to delegate the

functions of reading and writing to certain components and sensors. It will also allow us

to create a “Weather” object to collect the current conditions to easily pass them to the

main function which will create the audio to transmit to the pilot. This will simplify the

code immensely and make it simple to add new weather reading as necessary. The

Object-Oriented nature of Python also allows us to give control of certain components to

certain objects and much more easily debug our code. Python is also a scripting

language which makes it highly flexible in where and how it is implemented. This means

that no matter how we structure the system and integrate the various other components

(i.e. the HTTP server, DCHP server, etc.) the usage of our code can be kept relatively

independent. This allows us more freedom to change certain modules and components

in the system if we must and not have to overhaul our python scripts too much. In other

languages like C, it can be much more difficult to configure the code with these different

components, as it has to be recompiled and is only set to run a certain way. There is not

a lot of flexibility there, which is ideally what we find to be valuable in the structure of

this system.

3.2.4 Text-to-Voice Software

One of the most significant component to our system design is the Text to Speech

software. This software style, abbreviated as TTS, is a form of speech synthesis

created use a variety of text to fully automate and convert those text into spoken voice

21

output. It basically obtains all the weather and transmission data obtained from all our

components sensors and creates a voiced broadcast that will be used to communicate

that information. The user may simply also request a communications check which then

does not make use of the TTS but instead creates a playback which records and

rebroadcasts the previously transmitted information providing a power level to that

transmission as well. Both broadcasts are played over the radio channel and heard by

the pilot after punching in the correct click pattern. In order to produce a clear and

coherently pronounce the provided key words a few important requirements had to be

met when selecting the correct text-to-speech software. The main priority is that the

speech software we utilize would have to always keep providing the pilot with bullet

clear and concise data at all times. The clearness must persist even when the speech

modules is creates using the simple audible outputs over normal laptop speakers. This

speakers’ signal usually run at different amplification and compression circuits which are

then eventually finally broadcasted of the radio channel as radio waves.

 Furthermore, during the process of processing the sensors data and recording

and recommunicating the communications check data meant to be replayed to the pilot,

our system is consistently synthesizing speech by concatenating sentences from a self-

provided database of prerecorded words. The voice response system is limited to the

response it can provide base on this database of words predetermined for the system.

In addition, throughout this process the system maybe heavily infected by a lot of

interferences and might become disoriented before it is heard by the pilot failing the

requirement of providing a clear and concise voiced-over message (with no noise) to

any inputs selected by the pilot. And thus, it is really important to clear and clean the

output as it suffers from many possible interferences. Another major important

requirement for this speech software is that it provides a not too fast verbal response to

a provided input as so to not mispronounce or cause the pilot to miss hear the

information if the software answers in a faster tempo. We needed to find the correct

voice that would response sophistically enough and articulate every word encountered.

3.2.4.1 Requirements for The Text-to-Speech Software
For our project, we also wanted to offer a language software that would provide

multiple languages and allow the user to adjust different settings. These different

settings would encompass allowing the user to program multiple languages,

pronunciation, and also allow for customizing the speed of the output signal. As an

output is non-acceptable if it is broadcasted too fast to hear or mispronounces certain

words. In addition, we needed to research different software applications and allow our

sponsor to listen and hand-picked the voice pronunciation that would best meet his

pronunciation and aptitude requirement. The voice settings most also be appealing

22

enough to most other users’ intent on using this system in order to improves the user’s

experience creating an ease of use with the system. The next requirement on the list is

for the Text to Speech software to have the ability to easily save and store the output in

a file. This can be utilized to test the system and log a history of all the inputs up to a

certain point. This way, the system keeps track of a list of requested inputs and outputs

in case the user wants to observe previous broadcasts.

One last requirement, probably one of the most important, is that whichever of

the multiple open sourced Text to Speech solutions we select must be accessible even

without internet connection. If the system is placed within an area where a solid internet

connection is unreliable it should still be able to output the voiced over information

requested. In that case, we decided not to have a major part of the system be reliant on

something as a strong internet connection in order to function properly. It is best if the

software installed does not demand internet connection in order to service the user.

Using the listed requirements above, we ran across a few good Text to Speech

solutions. Among them is IVONA Text, this text to speech solution that supports both

SSML 1.0 and 1.1 (as defined by speech synthesis markup languages standards).

IVONA text provided by far the clearest and best voice out of all the other Text to

Speech software we came across. It provided great functionalities and was highly

configurable providing many configurations that allowed its user to set the nationality,

language, gender, and even pronunciation method. At first, we we’re very ecstatic that

we found such a system that provided so much customizability and we completely

overlooked one of the requirements (actually describe as a major requirement) listed

above. We needed a software system that would not require a reliable internet

connection to function properly. Another apparent and incredibly further annoying issue

that moved us away from this software is the other fact that it breaks yet again another

requirement by not providing a possible way of easily saving the output of the file by

default. Even worst when we realized we we’re looking at a software system that

required a monthly payment service. We then added the requirement that the system

must be free as our sponsor would definitely not wish to pay a periodic sum per month

for this software.

3.2.4.2 Selecting the Text-to-Speech Software

Looking further for a free test to speech software, we came across the Festival TTS. We

made sure that this was a possibility by first simply asking if it was free, open sourced,

and mainly also compatible with a Linux system. The Festival TTS software is written in

using C++ libraries and provide a general framework for building speech synthesis

systems. It also includes various modules that offer full text to speech from a number of

APIs. Festival TTS as of this moment is only bilingual providing an interpreter for

23

English and Spanish. This is purposely fine for our case as we only require a system

that can work in English. Festival works well on Linus and is by far the most

configurable system we found as it provided us with tons of different configurable

voices. Furthermore, the online community created and uploaded a multitude of other

language packs that can simply be imported into the system that are neatly

documented. The harsh compatibility issue to one requirement that needs to be met to

pair well with our system was that Festival was not as clear as we wanted nor provided

an easily storable filesystem. Another set-back that causes keep researching and

testing different text to speech software.

 Finally, we came across the PICO TTS and hoped it would meet all of our

specified requirements. The PICO TTS is a barebones and stripped down version of an

abandoned text to speech project recently used in googles android products that was

formerly named Google TTS. This software provided incomparable voice quality with a

lot of support and documentation. The Google TTS was scrapped and switched into

PICO which is a free open source, non-commercial product that boast of being an

improvement over Festival, PICO, and FLITE (another TTS). PICO is also open source

(just like GOOGLE TTS used to be) and run quite perfectly on Linux and the Raspbian

operating system of the Raspberry Pi. With Linux, the installation step is quite simple as

we only need to call the commands using a terminal which facilitates the installation

process by making it overly easy. While there is not a ton of configuration for this

system, it doesn’t require internet connection, is open source, and above all free.

Furthermore, we finally settled on this choice because it also fulfilled all our other

requirements. It provided a clear voice output and the file is easily store as a wav file.

This system lacks the configurability of the other TTS’s mentioned above but at least

still provides a way configure the actual voice over. The default gender which is set to a

female voice and cannot be changed. This is also fine as our sponsor declared that he

would prefer to have a female voice with a sort of clear accent. Thus, this is not an issue

for our project it fits perfectly within the scope of what we wish to accomplish. It’s true

that the PICO doesn’t provide much configurability in the voice department, but at least

provides a good amount of different languages while also allowing the user to switch the

pronunciation speed with different filters. This can be changed by editing the text that is

being sent to the engine. The PICO TTS engine provides us with just enough

configurability, it is free, and runs quite well on the Linux operating system without

needing an internet connection. This system evidently meets all our requirements and

was thus the clear winner for our project.

24

3.2.3 Voltage Regulator Options and Selections

The power supply system of the Auto FBO needs three supply voltages of 3.3, 5, and

13.7 or 15 V. The 3.3 V supply will need to supply an estimated maximum current of

0.56 A, the 5 V supply 2.6 A, and the 13.7 or 15 V supply 1.4 A. Both supply voltages of

13.7 and 15 V are considered in this selection since 13.7 V regulators are rare and may

not be suitable given their specifications. All regulators under $10.00 were considered

to aid in the overall price of the Auto FBO system. The tables 3.2.3.1 – 3.2.3.3 below

show a comparison of the final selection of regulators considered, with the chosen

regulators marked with a star after their part number.

The main parameters chosen to compare the candidate linear voltage regulators for the
regular system were the regulated voltage range, maximum current output, maximum

input voltage, maximum voltage dropout at the maximum current output, and price. The

regulated voltage range is the given voltage range that a regulator will have at its

output, at or near the maximum output current. The regulated voltage range is an

important parameter to consider because a wide regulated voltage range can cause
unstable or unforeseen effects on other components it is supplying, which usually have

a minimum and maximum supply voltage specification. Maximum current output was

considered since the power supply system must be dependable enough to deliver

enough current to all devices if they are demanding maximum current. The maximum

input voltage and maximum dropout voltage go hand-in-hand. The dropout voltage of a

voltage regulator is the smallest possible difference between the input voltage and

output voltage for the regulator to remain in its intended operating range. For example,

a regulator with a 15 V output and a 2 V dropout voltage rating will only output 15 V if

the input voltage is above 17 V. If the input falls below 17 V the output of fail to regulate

15 V. The maximum input voltage is important for all regulators because the 15 V

regulators of this design will have around a 2 V dropout voltage. Due to this, the

maximum input voltage of any regulator to be considered must be around 17 volts,

however an input voltage greater than 17 volts would be preferred to provide overhead.
As demonstrated in the example above the lower the maximum dropout voltage the

more dependable a regulator it will be. Other parameters such as the line regulation,

load regulation, maximum quiescent current, and operating temperature are used as

well to decide which linear regulator to choose. However, these parameters carried less

weight than the formerly described parameters, and we're only included for a more well-

rounded comparison.

In choosing the 3 V linear regulator it was an obvious choice to choose the LT1129I-3.3

since its maximum input voltage is 30 volts and the other two regulators had only a 16 V

maximum input voltage. This regulator also met the maximum current output needed for

the regulator design. These qualifications along with its other specifications and price

25

gave merit to choose this regulator. The same situation was involved in choosing a 5 V

regulator where the maximum input voltage of one gave more assurance than the other,

while also meeting the maximum output current and other specifications. This led to the

decision of the LD1085 being chosen. The decision between picking a 15 V or 13.7 V

regulator was made when searching for a 13.7 V regulator. The only 13.7 regulator

found commercially available had suitable specifications, however, not many parts for

left on the market. The 15 V regulator was chosen for reliability of buying instead. Since

each of the candidate 15 V regulators had a maximum input voltage of 35 V, the
L7815C regulator was chosen since it had a lower maximum voltage drop out with

enough maximum output current with a tighter regulated voltage.

3.2.3 Power Supply Options and Selections

The candidates for the central power supply were chosen to supply at least a maximum

current output of 5.2 A, the maximum sum current output of the linear voltage

regulators, and a supply voltage of 20 V, as required for the voltage regulator system.
These voltage and currents are chosen to prevent against dropout of the linear voltage

regulators and maximum current draws. Also, power supply units were only chosen if

their price for one unit was under $60.00 Shown in table 3.2.3.4 are the power supply

units considered for the central power supply with their specifications as well as price,

with the chosen unit marked with a star after its part number.

The main parameters chosen to compare power supply to units where AC input voltage,

DC output voltage, maximum current output, efficiency, and price. Since the maximum

input voltage of the chosen 5 V regulator was 20 V, a power supply unit 20 volts with

needed. This constraint narrowed the search or a power supply unit vastly, especially

considering price. The two considerations for the power supply unit we're from the same

company with similar design. The GST120A20-R7B power supply unit was chosen

since it had the cheapest price and the necessary specifications.

26

Part No. Min-Max
Regulated

Voltage

Max
Current
Output

Max
Input

Voltage

Max Voltage
Dropout at

Max Current
Output

Line
Regulation

Max Load
Regulation

Max Q
Current

Operating
Temp.

Per
Unit
Price

 V A V - - - mA °C

TLV111
7I-33

3.168-
3.432

0.8 16 1.2 10 mV
(max)

15 mV
(Max)

15 -40-125 $0.85

LT1129I
-3.3*

3.250-
3.350

0.7 30 0.7 10 mV
(max)

30 mV
(Max)

.050 -40-125 $5.65

AMD715
0

±2% 0.8 16 1 ±0.01 % 1% 4.3 -40-125 $4.91

Table 3.2.3.1: 3.3 V Linear Regulator Comparison

Part No. Min-Max
Regulated

Voltage

Max
Current
Output

Max
Input

Voltage

Max Voltage
Dropout at

Max Current
Output

Line
Regulation

Max Load
Regulation

Max Q
Current

Operating
Temp.

Per
Unit
Price

 V A V - - - mA °C

LT323A
T#PBF

4.85-5.15 3 20 N/A 10 mV
(max)

50 mV 20 0-125 $4.27

NCP593
01DS50

R4G

±2.5% 3 18 .5 ±0.5% 1% N/A -40-125 $2.64

LD1085*

4.9-5.1 3 30 1.5 10 mV
(max)

35 mV 10 -40-125 $1.51

Table 3.2.3.2: 5 V Linear Regulator Comparison

27

Table 3.2.3.3: 13.7 V and 15 V Linear Regulator Comparison

Power Supply
Unit

Input
Voltage
(VAC)

Output
Voltage
(VDC)

Max Output
Current (A)

Efficiency Overload
Protection

Overvoltage
Protection

Output
Power

(W)

Operating
Temperature

(°C)

Per Unit
Price

GSM160B20
-R7B

80-264 20 8 92.5% 105-150% 105-135% 160 -30-70 $61.75

GST120A20-
R7B*

85-264 20 6 90% 105-160% 105-135% 120 -30-70 $41.68

Table 3.2.3.4: Central Power Supply Unit Comparison

Voltage Part No. Min-Max
Regulated
Voltage (V)

Max
Current
Output

(A)

Max
Input

Voltage
(V)

Max
Voltage
Dropout
at Max
Current
Output

(V)

Line
Regulation

(mV)

Max Load
Regulation

(mV)

Max Q
Current

(mA)

Operating
Temperatu

re (°C)

Per
Unit
Price

15 V L78S15C 14.25-15.75 2 35 2.5 300 150 8 0-150 $0.84

L7815C* 14.4-15.6 1.5 35 2 150 100 6 -40-125 $0.61

LM340 14.25-15.75 1.5 35 2 150 150 8.5 0-125 $1.51

13.7 V PB137A
CV

13.43-13.97 1.5 40 2.6 150 100 8 0-150 $1.14

28

3.2.4 Weather Sensor Options and Selections

In order to meet the specifications for the weather system it is necessary to select
devices that can measure wind direction and speed, temperature, dew point, and

pressure. The sensing of wind speed and direction is typically measured by an

anemometer and wind vane. There several types of these devices including cup, vane,

hot-wire, laser doppler, and ultrasonic anemometers. Temperature is measured by a

thermometer which is also used for the measurement of dew point which utilizes

humidity and temperature. For our weather reporting system, pressure will need to be

reported as absolute pressure. Current pressure sensing technology includes vizio

resistive strain gauge, capacitive, electromagnetic, and potentiometric. For the

purposes of this design it was desirable to choose weather sensors that would

communicate in I2C.

3.2.4.1 Anemometer and Wind Vane

The anemometer and wind vane huge for the weather system is the Davis Instruments

7911 Anemometer. This device is used as it was given to this project free of charge by

our adviser. The 7911 Anemometer features 3 polycarbonate wind cups to measure

wind speed and a UV-resistant ABS plastic wind vane to measure wind direction. It

comes with a 40- foot long, 26 AWG cable that ends with an RJ-11 connector. It can

measure wind speeds up to 173 knots (200 mph) with a 1 knot resolution and a ±5%

accuracy. It can also measure wind direction from 0 degrees to 360 degrees with a 1-

degree resolution and a ±7% accuracy. The Davis Instruments 7911 Anemometer is

also a component of the Weather Monitor II and Weather Wizard III, both of which are

complete weather stations also manufactured by Davis Instruments.

3.2.4.2 THD Sensors

A comparison among the potential temperature, humidity, and dew point sensors are

shown in the tables below. Since dew point can be derived from temperature and

humidity measurements only temperature and humidity sensors are necessary for the

weather system. The main parameters used for comparison among the temperature

sensors are range, accuracy, resolution, long term stability, maximum response time,

voltage supply, maximum current use, operating temperature, and price. Similarly, the

main parameters used for humidity sensors mirror that of the temperature sensors. The

chosen THD (Temperature Humidity Dew Point) sensor is marked with a star in the

tables below after its part number.

3.2.4.3 Barometric Sensor

A comparison among the potential barometers are shown in tables below with the

chosen sensor marked with a star in the table below after its part number. Barometers

29

were only chosen if they only had a range of roughly 20-40 inHg, as this is slightly

beyond the range of atmospheric pressure around the world. The main parameters

used for comparison among the barometers are similar to that of the temperature and

humidity sensors.

3.2.4.4 MS860702BA01

Among all the temperature, humidity, and pressure sensors the chosen device to cover

these measurements was the MS860702BA1. Not only was it chosen because it could

be used for temperature, humidity, and pressure measurements, but also its

specifications compared to the other parts. In terms of price, however, it is clearly a

better selection, especially if mass production of this system is to be implemented.

The MS8607 is the novel digital combination sensor of MEAS providing 3 environmental

physical measurements all-in-one: pressure, humidity and temperature (PHT). This

product is optimal for applications in which key requirements such as ultra low power

consumption, high PHT accuracy and compactness are critical. High pressure

resolution combined with high PHT linearity makes the MS8607 an ideal candidate for
environmental monitoring and altimeter in smart phones and tablet PC, as well as PHT

applications such as HVAC and weather stations. This new sensor module generation

is based on leading MEMS technologies and latest benefits from Measurement
Specialties proven experience and know-how in high volume manufacturing of sensor

modules, which has been widely used for over a decade.

Regarding its temperature measurements, the MS860702BA1 performs best among the

other parts in max response time and power consumption. Its temperature range is third

best, however, its range is more than adequate. The accuracy of the device is the worst

among the selected devices, but is sufficient enough for accurate weather reporting.
Resolution is among the best, along with its long-term stability. The humidity and

pressure specifications of the device is overall the best out of all the possible selections.

The MS8607 includes two sensors with distinctive MEMS technologies to measure

pressure, humidity and temperature. The first sensor is a piezo-resistive sensor

providing pressure and temperature. The second sensor is a capacitive type humidity

sensor providing relative humidity. Each sensor is interfaced to a ΔΣ ADC integrated

circuit for the digital conversion. The MS8607 converts both analog output voltages to a

24-bit digital value for the pressure and temperature measurements, and a 12-bit digital

value for the relative humidity measurement.

Another reason this sensor was selected was because it can be communicated with via

I2C. Since the anemometer uses the same communication protocol, it greatly simplifies

integration if both sensors run on the same protocol. The external microcontroller clocks

30

in the data through the input SCL (Serial CLock) and SDA (Serial DAta). Both sensors

respond on the same pin SDA which is bidirectional for the I2C bus interface. Two

distinct I2C addresses are used (one for pressure and temperature, the other for relative

humidity). The I2C address for pressure and temperature is 1110110, while the I2C

address for humidity is 1000000.

31

Part No. Range
(°C)

Accuracy
(°C)

Resolution
(°C)

Long Term
Stability
(°C/year)

Max
Response
Period (s)

Voltage
Supply

(V)

Max
Current

Use
(mA)

Operating
Temperature

(°C)

Per Unit
Price

DHT22 -40-80 ±0.5 0.1 N/A 2 3.3-6 2.5 -40-80 $9.95

HDC1080 -40-125 ±0.2 0.1 N/A 0.0064 2.7-5.5 7.2 -40-125 $4.65

SHT21 -40-125 ±0.3 0.01 < 0.02 5-30 2.1-3.6 0.330 -40-125 $6.62

MS8607-
02BA01*

-40-85 ±1 0.01 ±0.3 0.015 1.5-3.6 1.25 -40-85 $8.48

Table 3.2.4.1: Temperature Sensor Comparison

Part No. Range Accuracy Resolution Stability
(RH% /year)

Max
Response
Period (s)

Voltage
Supply (V)

Max
Current

Use (mA)

Operating
Temperature

(°C)

Per
Unit
Price

DHT22 0-100% 2-5% 0.1% ±0.5% 2 3.3-6 2.5 -40-80 $9.95

HDC1080 0-100% ±2% 0.1% ±0.25% 0.0065 2.7-5.5 7.2 -20-70 $4.65

SHT21 0-100% ±2% 0.04% <0.25% 8 2.1-3.6 0.330 -40-125 $6.62

MS8607-
02BA01*

0-100% ±3% 0.04% ±0.5% 0.015 1.5-3.6 1.25 -40-85 $8.48

Table 3.2.4.2: Humidity Sensor Comparison

Part No. Range (inHg) Accuracy
(inHg)

Resolution
(inHg)

Long Term
Stability

(inHg/year)

Max
Response
Period (s)

Voltage
Supply

(V)

Max
Current

(mA)

Operating
Temp (°C)

Per
Unit
Price

KP236N6
165

17.718-48.7245 ±0.2953 0.2953 N/A 0.010 4.5-5.5 10 -40-125 $6.80

MPL3155
A2

14.765-32.483 ±0.4 0.00044 ±0.295 0.512 3-5.5 2 -40-85 $9.95

MS8607-
02BA01*

0.2953-59.06 ±0.059 0.0005 ±0.0295 0.015 1.5-3.6 1.25 -40-85 $8.48

Table 3.2.4.3: Pressure Sensor Comparison

32

3.2.5 Operational Amplifier Options and Selections

The usage of operational amplifiers in the Auto FBO system will be exclusively for audio

signals. These signals have a bandwidth of roughly 0 to 20 kHz. A quality operational

amplifier will have the basic requirements of low noise, low total harmonic distortion

(THD), good response (slew rate), and low power. However, these are somewhat

conflicting requirements. Typically, lower power operational amplifiers with have poor

noise and THD specifications.

Table 3.2.5 compares the potential operational amplifiers used for the Auto FBO

system. For this comparison noise, slew rate, gain bandwidth product, total harmonic

distortion, supply voltage and current, CMRR, and price per unit are included. The main

factors in this comparison are noise, THD, and slew rate. During the recording and

playback of the voice communication check, our system strives to not change the

incoming audio signal in any way. Thus, low noise and THD is needed along with a

good response rate. The GDP, CMRR, and supply voltage and current are also

important features to the characterization of an operational amplifier, and were thus

included. Cost is also of concern as our goal is to produce a low-cost product. However,

a higher performance device will obviously cost a lot more.

The chosen operational amplifier was the NE5534A. It was determined that the needed

slew rate for audio signals up to 20 kHz was 0.377 µs/V. This was determined by the

equation SR = 2πfV where f is the maximum frequency of interest and V is the max

voltage. This slew rate was met by all the chosen candidate operational amplifiers, but

some overhead was preferable. The NE5524A also has a great noise figure even

comparable with the high performance OPA models. These factors along with its other

specifications and low price is why this operational amplifier was chosen.

33

Part
Number

Noise Slew Rate GBP THD+N Supply
Voltage

Supply
Current

CMRR Price Per
Unit

 nV/√Hz
(1kHz)

V/µs MHz % V mA dB

TL082 18 13 3 0.003 7-32 2.2 100 0.50

OPA2314 14 1.5 3 0.001 1.8-5.5 0.15 96 0.75

OPA2376 7.5 2 5.5 0.00027 2.2-5.5 0.76 90 1.20

NE5534A* 3.5 13 10 0.002 6-40 4 100 0.90

OPA209 2.2 6.4 18 0.000025 4.5-36 2.5 130 1.50

OPA1612 1.1 27 27 0.000015 4.5-36 3.6 120 5.00

LM4562 2.7 20 55 0.00003 5-34 4.8 120 3.00

LME49726 15 3.7 6.25 0.00008 2.5-5.5 0.18 98 0.80

NJM2060 10 4 10 0.01 8-36 2.25 90 0.43

LM833 4.5 7 16 0.002 10-36 2.05 100 0.40

Table 3.2.5: Operational Amplifier Comparison

34

3.3 VHF Aircraft Radio Selection

The ICOM IC-A2 is a compact, synthesizes, 5 W PEP, VHF handheld transceiver. The IC-A2

offers keyboard frequency selection with extremely good stability and frequency accuracy.
Shown in figure 3.5 below is the ICOM IC-A2.

 Figure 3.5 ICOM IC-A2

3.4 Termination of Unused Operational Amplifiers

When using a dual or quad operational amplifier device it is common to have an extra

operational amplifier stage left over that isn’t required by other circuits in the design. In

this case, it is critical to correctly terminate the device. By terminate, we mean to

configure the device in a manner that allows for it to operate in a stable and predictable

manner. The added benefits of proper termination are reduced susceptibility to noise,

reduced input power consumption, reduced power dissipation, and reduced exposure to

EOS.

The understanding of an operational amplifiers specifications will aid in properly

terminating a device. These specifications include input common-mode voltage range

35

and input differential voltage range. The input common-mode voltage range is the input

rage for which a stable linear behavior is guaranteed. The input differential voltage

range is the max voltage allowed between input pins. Exceeding this range can

overstress the input stage. Concerning the output stage of the amplifier, the output

stage can saturate when driven to either supply rail. When saturated to operational

amplifier will consume more power than if it was not saturated. Since operational

amplifiers have large open-loop gain, negative feedback is recommended to achieve a

low, stable, and predictable behavior.

Shown below in figures 3.4a and 3.4b are the proper configurations to terminate unused

operational amplifiers. The overall goal is to keep the output voltage directly between

the positive and negative supply rails. Both configurations make use of a voltage

follower topography.

Figure 3.4a: Single Supply Termination

Figure 3.4b: Dual Supply Termination

36

3.5 Circuit Protection

Transient Voltage Suppressors, TVS, are devices used to protect vulnerable circuits
from electrical overstress such as that caused by electrostatic discharge, inductive load

switching and induced lightning. Within the TVS, damaging voltage spikes are limited by

clamping or avalanche action of a rugged silicon pn junction which reduces the

amplitude of the transient to a nondestructive level. In a circuit, the TVS should be

invisible until a transient appears. Electrical parameters such as breakdown

voltage(VBR), standby (leakage) current (ID), and capacitance should have no effect on

normal circuit performance. When used in circuit design TVS are put in parallel with

loads as shown in figure 3.5.

 One scenario where TVS can help protect electrical devices is lightning strikes. Even

though a direct strike is clearly destructive, transients induced by lightning are not the

result of a direct strike. When a lightning strike occurs, the event creates a magnetic

field which can induce transients of large magnitude in nearby electrical cables.
A cloud-to-cloud strike will affect not only overhead cables, but also buried cables. Even

a strike 1 mile distant (1.6km) can generate 70 volts in electrical cables.

Figure 3.5: TVS Application

37

3.4 Interfaces

This section details how the various components of the system will communicate with

each other. Given the nature of the system, there are many streams of data that need to

be accurately relayed from one component to another so the interfaces between them

are crucial.

3.3.1 To Radio

These are the signals the radio will transmit to the pilots so the audio coming to the

radio needs to be in a form that it can transmit and it cannot be distorted.

3.3.1.1 TX Audio

The transmission will be an analog audio output coming from the audio CODEC we will

implement on the interface board. This audio will be sent through a low pass filter to

remove any high frequency noise added from the raspberry pi before being sent to the

radio through voltage-follower circuit to remove any loading effect.

3.3.1.2 PTT

This PTT block will put the radio into transmit mode prior to audio being sent to it. The

purpose of this signal is to simulate the action that is pushing the mic button to talk over

the radio.

3.3.2 From Radio

Like the signals being used to be able to transmit through the IC-2A Radio, there is also

a need to analyze the signals coming from it. These signals will allow for the Raspberry

Pi 3 to analyze what is needed by the pilot at the other end, as well as allow the

Raspberry Pi to receive the actual audio from the pilot.

3.3.2.1 RX Audio

As previously mentioned the Raspberry Pi will need to be able to receive the audio

being transmitted by the pilot. This RX audio signal will be picked up from the top of the

volume potentiometer and run through the interface board. This is to prevent the volume

setting on the actual radio to affect the RX audio signal being transmitted to the

interface board. Once the audio signal is received on the interface board it will be sent

to a unity gain buffer and then sent to our codec chip which will amplify and digitize the
signal into a Pulse Code Modulated signal which can then be sent to our raspberry pi for

recording.

38

3.3.2.2 Carrier Detect

The carrier detect in our system was identified from the main radio. The carrier detect

levels were obtained by connecting the radio, at the squelch circuit output, to the
oscilloscope and examining the output voltage when there is a radio signal detect

present and when there is no radio signal detect present. For our radio, we found that

when there is no carrier present our squelch voltage is 0 V, and when there is a strong

enough signal detected the squelch voltage jumps to 4.8 V.

3.3.3 From Microcomputer

The only two signals coming from our raspberry pi will be the PTT and TX audio signals.
These will be received by our IC-2A radio and utilized to broadcast back to the user on

the other end of the communication channel.

3.3.3.1 PTT

The start of the PTT line will be originated from one of the Raspberry Pi’s GPIO pins
which will be fed to our interface board which can then be pulled to ground to signal the

radio to begin transmission.

3.3.3.2 TX Audio

The audio will come out from the Raspberry Pi through Pulse Code Modulated lines that
will then be sent to the audio codec for decoding and transforming into an analog signal

that will be useful for the radio to receive.

3.3.4 To Microcomputer

These are the signals sent from the radio and weather sensors to the microcontroller for

processing. The weather sensors need to be easily accessible and the carrier signals

need to be real time and undistorted.

39

3.3.4.1 I2C Bus

 Figure 3.3.4 Typical I2C Configuration

All communication with peripheral devices will be interfaced over the I2C “I-squared-C”

bus that is able to individually address each device. A typical configuration is shown in

Figure 3.3.4. Currently the ADC (handling the wind speed/direction and AGC), the audio

codec communication, and the temperature/humidity/pressure sensor will use the I2C

bus to communicate with the Raspberry Pi. Currently, the Raspberry Pi will act as the

Master providing the clock for all devices configured to be slaves.

3.3.4.2 Carrier Detect

The squelch voltage will be handled on our interface board by using a comparator to

check and see if the voltage has risen above a set value. In this case our squelch, when

on, goes to 4.8 V which we will compare to a 3 V baseline. When the squelch turns on

the comparator will send a logical output of 1 to the Raspberry Pi where it can be

distinguished from the “off” reading of 0 volts.

3.3.4 From Anemometer

From the anemometer, we will be sending two signals one for the wind speed and one

for the wind direction. For the wind direction, we simply supply the anemometer with a 3

volt signal and the anemometer uses an internal potentiometer to range the voltage

from 3 V – 0 V. Next, we send the wind speed line directly into the Raspberry Pi where

it will pulse low to indicate one rotation. The microcontroller will the determine how

many clicks occur in a given timeframe to determine the wind speed measurement in

knots.

40

3.5 Carrier Detect

The consolidation between the Radio and Interface Board serves as the bridge to be

able to condition the carrier detect and identify when there will be transmission. Since

we only have two (2) levels for identification, a comparator is being used to compare
and determine which level, that indicates transmission or no transmission, is being

received.

The comparator being used is the LM393 Dual Differential Comparator. The purpose of

this device is to compare two (2) voltage values, and output a digital signal indicating

which of the two is larger to the main control unit through a GPIO.

Figure 4.2.2 LM393

The differential comparator consists of a high gain differential amplifier. These devices

are commonly used in systems that measure and digitize analog signals such as analog

to digital converters, as well as relaxation oscillators. In our application, we compare the

received signal, carrier detect present or carrier detect not present, with a reference

voltage.

3.2.5 Automatic Gain Control Voltage

The AGC Voltage will be fed to our ADC where it will then be turned into a digital signal

useful by the Raspberry Pi to give Power Level Received readings back to the pilot.
Included in Figure 4.2.5.1 are the correlations we made between input signal strength

and AGC Voltage Levels. This will be used by the software as a lookup table to

determine what reading to give back to the pilot. The range of inputs (measured) for the

amplitude gain control from the radio are the following:

41

Figure 4.2.5.1

Signal Power
(dBm)

AGC Voltage
(V)

-120 3.43

-117 3.43

-114 3.43

-111 3.36

-108 3.115

-105 2.94

-102 2.745

-99 2.455

-96 2.315

-93 2.19

-90 2.045

-87 1.93

-84 1.84

-81 1.75

-78 1.66

-75 1.62

Signal Power
(dBm)

AGC Voltage
(V)

-72 1.59

-69 1.56

-66 1.54

-63 1.52

-60 1.49

-57 1.47

-54 1.45

-51 1.43

-48 1.40

-45 1.38

-42 1.36

-39 1.33

-36 1.32

-33 1.3

-30 1.28

42

4. Design Constraints and Standards

This chapter will define all the standards and any design constraints that apply to the

Auto FBO system.

4.1 Standards

This section describes relevant standards that apply to the Auto FBO system.

4.1.1 Registered Jack Standard

A Registered Jack (RJ) is a standardized network interface for connecting data and

signal equipment, usually over a long distance. The RJ is defined in the international

standard for physical network interfaces. This standard includes specifications of

physical construction, writing, and signal semantics. The interfaces defined in the RJ

standard include RJ-11, RJ-14, RJ-21, RJ-45, and the RJ-48 connector types, as well

as many other types.

The most current version of the standard is TIA-968-A. This specification defines

the modular connection fully, but not the wiring. The wiring specification is instead

included in the standard T1.TR5-1999, "Network and Customer Installation Interface

Connector Wiring Configuration Catalog". With the addition of the publication of the TIA-

968-B standard, the connector specification has been moved to TIA-968-A.

Each registered jack type, such as RJ11, identifies both the physical connectors

and the wiring. Thus, an inspection of the connector type will not necessarily indicate

the type of wiring used in the cable. This is because the same connector can be used

for a multitude of wiring patterns. This has led many confusion among the industry and

its customers of what type of cable standard is actually being used in an application. For

example, the RJ11 connector is also used for the RJ14. Tale 4.1.1 below shows a few

of the officially recognized registered jacks with their connectors. Most registered jacks

use designation XPYC, where X is the number of positions on the connector and Y

denotes the number of conductors. For example, the RJ11 can use a 6P4C connector

where there are 6 positions and 4 conductor connections. The RJ11 6P4C connector is

shown in Figure 4.1.1a.

Code Connector Note

43

RJ11 6P2C Common usage in single telephone lines, 6P4C can also be used

RJ21X 50-pin micro ribbon Up to 25 lines

RJ45S 8P8C keyed One data line with programming resistor

RJ48C 8P4C Four-wire data line

 Table 4.1.1

Figure 4.1.1a

Typical wiring of registered jacks uses twisted pairs with separation of supply and data

lines with ground lines. These conventions were originally put in place to help create a

standard of wiring across the industry. The pinouts of the connectors of each registered

jack usually correlate to a specific function for a given application and are color

coordinated as shown in Figure 4.1.1b.

44

Figure 4.1.1b

4.1.2 Radio Communication Phraseology and Techniques

Many pilots fly in a noisy cockpit and are sometimes using their radio at extreme

distances between their transmitter and another receiver. For these situations, the FAA

(Federal Aviation Administration) clearly defines in their 7110.65W how radio

communication should be used by air traffic control. This order also governs weather

reporting stations that will be informing pilots visa radio. These radio communication

techniques and phraseology is put into place for the safety and efficiency of air traffic.

In general, when reporting numbers each number should be individually spoken.
However, the exception to this rule is when the reporting number is in the thousands.
Figures indicating hundreds and thousands in round number, as for ceiling heights, and
upper wind levels up to 9,900 shall be spoken in accordance with the following, 500

pronounced five hundred 3,500 pronounced three thousand five hundred. Numbers

above 9,900 shall be spoken by separating the digits preceding the word "thousand":
10,000 pronounced one zero thousand, 13,500 pronounced one three thousand five

hundred. Up to but not including 18,000 feet MSL (Mean Sea Level), state the separate

digits of the thousands plus the hundreds if appropriate. At and above 18,000 feet MSL

(FL180), state the words "flight level" followed by the separate digits of the flight level:

19,000 pronounced Flight Level One Niner-Zero.

All directions communicated over radio are to be of a magnetic reference and not a true

heading. Speed is to be reported in knots, and the word knots must be used after the

value of the speed has been spoken. The FAA also uses Coordinated Universal Time

(UTC) for all operations. The word "local" or the time zone equivalent shall be used to

45

denote local when local time is given during radio and telephone communications. The

term "Zulu" may be used to denote UTC. When individually speaking letters the

phonetic alphabet must be used. Overall, the goal of radio communication is to be as

clear and concise as possible.

Information Example
Message
Content

Non-Avionic
Pronunciation

Avionic Pronunciation

Time 1321 EST One - Twenty-One
PM

One-Seven-Two-One Zulu or
One-Tree-Two-One Local

0239 EST Two - Thirty-Two AM Zero-Seven-Tree-Niner Zulu
or Zero-Two-Tree-Niner

Local

Wind Speed 35 Knots Thirty-Five Knots Tree-Five Knots

Wind
Direction

90° True East or 90° Zero-Niner-Four Degrees

Thousands of
Feet

11,500 Feet Eleven Thousand
Five Hundred Feet

One-One Thousand Five
Hundred Feet

20,000 Feet Twenty Thousand
Feet

Flight Level Two-Zero-Zero

Table 4.1.2: Phraseology Examples

4.1.3 METAR

METAR is a weather reporting format that is highly used in aviation. It is the most

common format in the world for the transmission of observational weather data. This

format has be standardized by the International Civil Aviation Organization (ICAO),

which allows it to be standard throughout most of the world. A typical METAR will

contain the ID of the weather reporting station, time in day of month and Zulu time, wind
direction and speed (including gust), visibility, sky conditions, temperature, dew point,

barometric pressure, and remarks. This format is used when reporting weather

information over radio as well.

4.1.4 Traffic Advisory Practices Without Operating Control Towers

The Traffic Advisory Practices at Airports Without Operating Control Towers defines our
project as an UNICOM system, under the guidelines that it is a “nongovernmental

air/ground communication station which may provide information at public use airports.”

46

In this standard is it stated that UNICOM stations can provide wind direction and wind
speed information to pilots upon request, regardless if the UNICOM station shares the

same operating frequency as the Common Traffic Advisory Frequency. This is

important because in small airports which our project is aimed towards, will operate in
the CTAF can commonly be assigned to a designated UNICOM frequency operating

range. This is ideal for a small airport as the small amount of air traffic can be managed

by commercial systems like our project, but in larger airport where the CTAF is different
from the UNICOM frequency this can present itself a challenge as the pilot would have

to switch between frequencies to communicate with the UNICOM system. This standard

also calls for communication with UNICOM stations of at least 10 miles from the airport

the station is in. This forces our system to be able to operate at such distances to

comply with standards.

4.1.4 WAVE File

We will be using the WAVE format standard for storing audio data. The WAVE file

standard was introduced as a joint standard from the IBM Corporation and the Microsoft

Corporation in the “Multimedia Programming Interface and Data Specifications 1.0”

standard document released in August of 1991. The WAVE file standard in particular

was introduced as a substandard of the RIFF, or the Resource Interchange File Format,

standard for storing multimedia. While old we chose this standard because it is the most

common form of uncompressed audio, and is recognized across all systems as well as

multiple audio centered programs. By using the WAVE format standard, we did not

have to commit to a certain form of audio compression standard. This will allow us to

directly interface with the raw audio data, as well as compress the data using any of
form of audio compression standard in the future if we feel we need to compress the

data.

The WAVE file format standard organizes the data it stores using what the RIFF

standard defines as “chunks”. Each of these chunks, while having no particular set

order to where they are located within the file, contain their own specific sets of fields

and parameters. For the WAVE file format, the standards indicate that there are only

three chunks that are required for any WAVE file; these three chunks include: the

Header chunk, the Format chunk, and the Data Chunk. While there is no set order for

these chunks, the adopted standard is to write each of the chunks in the order they

were introduced above. This allows for readability, and the ability for programs to know

where to look for certain information without the need of including more header

information about where data is located. This reduces the file size and the speed in

which the file can be processed. Two optional chunks, the List chunk and the Info

chunk, can be included in a WAVE file to document the order in which the various

chunks appear in the current WAVE file. These two 10 chunks are usually place right

after the Header Chunk and are only included for compatibility with software that did not

47

follow the suggested chunk order adopted by the industry.

Each of the required chunks outline the basic needs of any multimedia player. The first

is Header Chunk which specifies the multimedia format standard used by the file as well

as the particular substandard of multimedia used. In the case of the WAVE format

standard, the RIFF standard for multimedia, and the WAVE substandard are always

included in the Header chunk. Along with these two fields the Header chunk contains

the size (in bytes) of the rest of the file. The next required chunk, the Format chunk, is

uses to specify the format in which the WAVE file was being recorded. Along with the

standard chunk id and chunk size that outlines which chunk is being read and how large
the chunk is, these fields are almost all variable and include the sampling rate, byte

rate, number of channels, and bit resolution used to record the audio data. The only

other major field to note that is included in the Format chunk is the Audio Format field

which is used to specify what audio recording standard is being used to record the data.
Because we are using an Analog to Digital converter to sample the audio we are

recording, we will use the Pulse Code Modulation, or PCM, standard or audio recording.
Lastly the WAVE file format standard requires the data chunk which is responsible for

storing the raw audio data sampled in the audio format specified in the Format Chunk.
This data is encoded in two’s compliment format and then stored in the Little-Endian

format.

4.1.4 Pulse Code Modulation

We will be using the Pulse Code Modulation audio format standard for recording audio

data. This standard is used to digitally represent the analog audio data being recorded.
We chose to use the PCM standard for recording audio data, as it directly coincides with

how we will be receiving data from the analog to digital converter. The PCM standard

requires taking a sample of an analog audio signal and representing it using a decimal

number. Because most analog to digital converters use PCM to sample analog data, we

will be using this

4.1.5 I2C Standard

The Inter-integrated Circuit (I2C) Protocol is a protocol intended to allow multiple “slave”

digital integrated circuits to communicate with one or more “master” chips. Like the

Serial Peripheral Interface (SPI), it is only intended for short distance communications

within a single device. Like Asynchronous Serial Interfaces, it only requires two signal

wires to exchange information. I2C is a protocol that was devolped by Philips

Semiconductors in 1982 to be a simple bidirectional 2-wire bus for efficient inter-IC

control. Only two bus lines are required: a serial data line (SDA) and a serial clock line

(SCL). Serial, 8-bit oriented, bidirectional data transfers can be made at up to 100

kbit/s. Each device connected to the bus is software addressable by a unique address.

48

It a true multi-master bus with included collision detection and arbitration to prevent data

corruption. The I2C-bus is now the world standard that is currently implemented in

thousands of different ICs, manufactured by many different companies.

I2C allows for simple, efficient communication between the sensors and the Raspberry

Pi which makes it a good choice for our system. It simplifies how the software will poll

from each sensor since the only thing that changes between weather sensors is the

unique address.

These are just some of the benefits. In addition, I2C-bus compatible ICs increase

system design flexibility by allowing simple construction of equipment variants and easy

upgrading to keep designs up-to-date. In this way, an entire family of equipment can be

developed around a basic model. Upgrades for new equipment, or enhanced-feature

models (that is, extended memory, remote control, etc.) can then be produced simply by

clipping the appropriate ICs onto the bus. If a larger ROM is needed, it is simply a

matter of selecting a microcontroller with a larger ROM from our comprehensive range.
As new ICs supersede older ones, it is easy to add new features to equipment or to
increase its performance by simply unclipping the outdated IC from the bus and clipping

on its successor.

Designers of microcontrollers are frequently under pressure to conserve output pins.
The I 2C protocol allows connection of a wide variety of peripherals without the need for

separate addressing or chip enable signals. Additionally, a microcontroller that includes

an I 2C interface is more successful in the marketplace due to the wide variety of

existing peripheral devices available.

The possibility of connecting more than one microcontroller to the I2C-bus means that

more than one master could try to initiate a data transfer at the same time. To avoid the

chaos that might ensue from such an event, an arbitration procedure has been

developed. This procedure relies on the wired-AND connection of all I2C interfaces to

the I2C-bus. If two or more masters try to put information onto the bus, the first to

produce a ‘one’ when the other produces a ‘zero’ loses the arbitration. The clock signals

during arbitration are a synchronized combination of the clocks generated by the
masters using the wired-AND connection to the SCL line

Generation of clock signals on the I2C-bus is always the responsibility of master

devices, in this case, the Raspberry Pi. Each master generates its own clock signals

when transferring data on the bus. Bus clock signals from a master can only be altered

when they are stretched by a slow slave device holding down the clock line or by

another master when arbitration occurs.

49

4.1.6 Python Standards

Since Python is our language of choice, there are a few standards within the language
we need to adhere to so that the code compiles correctly and so that the code can be

maintained and is easily understandable. PEP8 is the style guide written by Python

Software Foundation which serves as the official documentation for the language.

A style guide is about consistency. Consistency with this style guide is important.
Consistency within a project is more important. Consistency within one module or

function is the most important.

Continuation lines should align wrapped elements either vertically using Python's
implicit line joining inside parentheses, brackets and braces, or using a hanging

indent [7] . When using a hanging indent the following should be considered; there

should be no arguments on the first line and further indentation should be used to

clearly distinguish itself as a continuation line.

When the conditional part of an if -statement is long enough to require that it be written
across multiple lines, it's worth noting that the combination of a two character keyword

(i.e. if), plus a single space, plus an opening parenthesis creates a natural 4-space

indent for the subsequent lines of the multiline conditional. This can produce a visual

conflict with the indented suite of code nested inside the if -statement, which would also

naturally be indented to 4 spaces. This PEP takes no explicit position on how (or

whether) to further visually distinguish such conditional lines from the nested suite

inside the if -statement. The closing brace/bracket/parenthesis on multi-line constructs

may either line up under the first non-whitespace character of the last line of list

Spaces are the preferred indentation method and tabs should be used solely to remain

consistent with code that is already indented with tabs. Python 3 disallows mixing the

use of tabs and spaces for indentation. Python 2 code indented with a mixture of tabs

and spaces should be converted to using spaces exclusively.

When invoking the Python 2 command line interpreter with the -toption, it issues

warnings about code that illegally mixes tabs and spaces. When using -tt these

warnings become errors. These options are highly recommended!

Limit all lines to a maximum of 79 characters. For flowing long blocks of text with fewer

structural restrictions (docstrings or comments), the line length should be limited to 72

characters. Limiting the required editor window width makes it possible to have several

files open side-by-side, and works well when using code review tools that present the

two versions in adjacent columns.

https://www.python.org/dev/peps/pep-0008/#fn-hi

50

The default wrapping in most tools disrupts the visual structure of the code, making it

more difficult to understand. The limits are chosen to avoid wrapping in editors with the

window width set to 80, even if the tool places a marker glyph in the final column when

wrapping lines. Some web based tools may not offer dynamic line wrapping at all.

Some teams strongly prefer a longer line length. For code maintained exclusively or

primarily by a team that can reach agreement on this issue, it is okay to increase the

nominal line length from 80 to 100 characters (effectively increasing the maximum

length to 99 characters), provided that comments and docstrings are still wrapped at 72

characters.

The Python standard library is conservative and requires limiting lines to 79 characters

(and docstrings/comments to 72). The preferred way of wrapping long lines is by using

Python's implied line continuation inside parentheses, brackets and braces. Long lines

can be broken over multiple lines by wrapping expressions in parentheses. These

should be used in preference to using a backslash for line continuation.

Surround top-level function and class definitions with two blank lines. Method definitions

inside a class are surrounded by a single blank line. Extra blank lines may be used

(sparingly) to separate groups of related functions. Blank lines may be omitted between

a bunch of related one-liners (e.g. a set of dummy implementations). Use blank lines in

functions, sparingly, to indicate logical sections. Python accepts the control-L (i.e. ^L)

form feed character as whitespace; Many tools treat these characters as page

separators, so you may use them to separate pages of related sections of your file.

Note, some editors and web-based code viewers may not recognize control-L as a form

feed and will show another glyph in its place.

For Python 3.0 and beyond, the following policy is prescribed for the standard library

(see PEP 3131): All identifiers in the Python standard library MUST use ASCII-only
identifiers, and SHOULD use English words wherever feasible (in many cases,

abbreviations and technical terms are used which aren't English). In addition, string

literals and comments must also be in ASCII. The only exceptions are (a) test cases

testing the non-ASCII features, and (b) names of authors. Authors whose names are

not based on the latin alphabet MUST provide a latin transliteration of their names.

https://www.python.org/dev/peps/pep-3131

51

4.2 Design Constraints

In this section, we will talk about the different realistic design constraints we will

encounter when tackling this project. We will discuss various things from time

constraints, budget constraints and other related real-world constraints we might

encounter.

4.2.1 Time Constraints

This project will be a complete working product by the end of Senior Design II in

Summer 2017. This creates a limited timeframe for the team to work with. The total time

for this project is about 28 weeks, and to develop, design, build, and test a system of

this nature will take diligence to complete in that amount of time. The plan is to have a

working prototype at week 11, at the end of Senior Design I. This in and of itself is a

lofty goal and requires teamwork and persistent hard work.

4.2.2 Budget Constraints

The team is comprised of four college students with limited incomes, which limits the

solutions, but also provides motivation to make this as low-cost of a system as possible.
Our primary sponsor has provided us with $250 towards our project and that has been

set as the target cost for the entire system. If the need arises, the team can use up to

$500 before having to use personal funds. This provides us with a good financial base

to build our project on, but without having unlimited funds, the team will have to be

mindful of the limited budget.

52

5. Design
This chapter covers both the hardware and software design of the Auto FBO system.
The hardware design is covered first followed by the software design.

5.1 Power Supply Design

The design of the power supply system for this project is done halfway through the

project. Shown in table 5.1 are all the components thus far known to be used in the

Auto FBO system along with their needed supply voltages and max or recommended

currents. In this case a miscellaneous category under the components has been

considered in the design to account for more components that will be potentially be

incorporated. The total max current demand of this design is estimated to be 5 A, along

with supply voltages of 3.3, 5, and 15 V.

Component(s) Supply Voltage (V) Max or Recommended
Current Supply (A)

Raspberry Pi 3 5 2.5

Radio 13.8 (11.04-

15.87)

1

Operational Amplifiers 15 0.05

Anemometer 3.3 0.005

THD Sensor 3.3 0.005

CODEC 3.3 0.200

Miscellaneous N/A 0.8

Table 5.1: Power Supply Demands

Since current power supply modules are relatively cheap and easily accessible, a power

supply module will act as the central power supply unit. Branching from this supply are

voltage regulators to provide the necessary supply voltage rails. A block diagram of the

power supply system is shown below. This design approach is taken in respect to cost,

efficiency, and voltage ripple, and simplicity of the design.

Most of the off-the-shelf power supply units, which supply high power, are switch mode

power supplies. These supplies are highly efficient that can reach efficiencies above

53

90% . Since all the power of the Auto FBO system will be transferred through the

central power supply unit and then distributed to the various regulators, it is necessary

that it be a switch mode power supply. However, switch mode power supplies do

present a high margin of voltage ripple and noise. The unwanted effects from the

central power supply will be dampened by the linear voltage regulators.

Figure 5.1: Power Supply Unit Block Diagram

5.1.1 Voltage Regulation

The usage of the linear voltage regulators are chosen not only to help block unwanted
characteristics of the switch mode central power supply unit, but also to provide the

necessary various voltages that the Auto FBO system requires. Linear regulators have

very low output voltage ripple because there are no elements switching on and off

frequently, and linear regulators can have very high bandwidth. Furthermore, linear

regulators are simple and easy to use, especially for low power applications with low

output current where thermal stress is not critical. These characteristics are critical to

the needs of this power supply for supplying power to communication and audio

components in this system and providing a simple design solution.

5.1.1.1 3.3V Regulator

Power is supplied to the input pin to the LT1129I. This power will be received from the

central power supply unit of 20 V. This input voltage is acceptable for the regulator

since it has a absolute maximum input voltage rating of ±30 V. According to the

datasheet, “the input pin should be bypassed to ground if the device is more than 6

inches away from the main input filter capacitor. A bypass capacitor in the range of 1μF

to 10μF is sufficient. The LT1129 is designed to withstand reverse voltages on the input

54

pin with respect to both ground and the output pin. In the case of a reversed input,

which can happen if a battery is plugged in backwards, the LT1129 will act as if there is

a diode in series with its input. There will be no reverse current flow into the LT1129 and

no reverse voltage will appear at the load. The device will protect both itself and the

load.” The output pin supplies power to the load, and is recommended to used an

output capacitor at the output to prevent oscillations. The minimum recommended value

is 3.3μF with an ESR of 2Ω or less. The shutdown pin, SHDN, is used to put the device

into shutdown if it is actively pulled low. According to the datasheet, “ if the shutdown

pin is not used it can be left open circuit. The device will be active, output on, if the

shutdown pin is not connected.” The fixed voltage version of the LT1129I used for this

design uses the sense pin as an input to an internal error amplifier. The sense pin can

be directly connected to the output pin, or at the load if better regulation is needed.

5.1.1.2 5V Regulator

The input pin of the L7815 is supplied power by the 20 V central power unit to regulate a

fixed output voltage of 15 V at the output pin. The input voltage of 20 V from the central

power unit is acceptable since the device has an absolute maximum input voltage of 35

V. According to the datasheet, “it is recommended that the regulator input be bypassed

with capacitor if the regulator is connected to the power supply filter with long lengths, or

if the output load capacitance is large. An input bypass capacitor should be selected to

provide good high frequency characteristics to insure stable operation under all load

conditions. A 0.33 μF or larger tantalum, mylar or other capacitor having low internal

impedance at high frequencies should be chosen.”

5.1.1.3 15V Regulator

The input pin of the L7815C is supplied power by the 20 V central power unit to regulate

a fixed output voltage of 15 V at the output pin. The input voltage of 20 V from the

central power unit is acceptable since the device has an absolute maximum input

voltage of 35 V. According to the datasheet, “it is recommended that the regulator input

be bypassed with capacitor if the regulator is connected to the power supply filter with

long lengths, or if the output load capacitance is large. An input bypass capacitor should

be selected to provide good high frequency characteristics to insure stable operation

under all load conditions. A 0.33μF or larger tantalum, mylar or other capacitor having

low internal impedance at high frequencies should be chosen.”

5.1.1.4 Overall Power Supply Design

Shown in the figure below is the power supply design for the Auto FBO system. The

central power supply unit (CPSU) supplies 20V to all three linear voltage regulators.

55

The line to the regulators also contains shunt electrolytic capacitors. These capacitors

are included for several reasons including recommended application suggestions of the
datasheets, increased capacitance, ESR, high frequency impedance, longer life,

redundancy, and peak current demands. The output of each regulator also includes

shunt electrolytic capacitors for the same reasons.

Figure 5.1.1: Power Supply Design Schematic

5.2 Interface Board Design

The interface board will interpret all incoming and outgoing signals between the radio

and the Microprocessor. This will be handling the TX and RX signal conditioning,

conversion and amplification between the two systems. This will also push the PTT

signal into the radio for whenever a transmission is going to be sent out to the pilot

requesting information. Inputs will be received from directly tapping into the radio at

specific solder points or through the back pins of the IC-A2 VHF Aircraft radio. In this

the communication between the UNICOM programmable HUB, the Raspberry Pi 3, and

the broadcasting hardware, the IC-A2 VHF Aircraft radio.

56

5.2.1 PTT Circuit

Figure 5.2.1 PTT Circuit

To communicate to the Raspberry Pi 3’s intent to transmit a signal needs to be pushed

so the IC-A2 Radio in order to get it in a ‘Ready to Transmit’ state. This signal is going

to be generated by the Raspberry Pi 3’s GPIO pin and a DC power source for system

testing. This will require two inputs: one for system use and one for system

troubleshooting. The input from the Raspberry Pi 3’s GPIO pin will be for practical use,

thus the DC voltage source will be used for testing. During testing the GPIO pin will act

as a ground and part of the current will be sent through there and the rest will be sent to

the PTT input of the radio. This will allow the user to check if the circuit is bad or if there

has been a programming error in the Raspberry Pi 3 system. The intent of this circuit is

to simulate the PTT signal generated by the microphone interface in the radio. The idea

is to act grounded when not transmitting and to input a current when ready to transmit in

order to open the mic channel and set the IC-A2 in a ready to transmit mode.

The Push-To-Talk (PTT) circuit is going to be responsible for setting the IC-A2 radio into

transmit mode. This is done by using the GPIO pin in the Raspberry Pi 3’s pins as a

3.3V source. This voltage being pushed through the NPN transistor, Q1, pulls the PTT

relay day to ground. The action of pulling the relay to ground results in the collapse of

the magnetic field around the inductor. This will send a large voltage back from the PTT

relay to the Q1 transistor. This is where the reverse biased diode will re-route that

voltage to ground, thus not burning the transistor. When it comes to testing the system

57

switch, S1, will have the 3.3V source from the interface board act as the Raspberry Pi

3’s GPIO input. This will simulate the act of readying for transmit on the IC-A2. Though

the design shows the GPIOPIN power source as a 3.3V power source it must be noted

that this is a pin from the Raspberry Pi 3’s interface. This will act as a ground when

being tested as the system will be inactive, or turned off, when being tested. The circuit

takes full advantage of the Raspberry Pi 3’s architecture to reduce the number of

components required to achieve the same function. When using the Raspberry Pi 3’s

GPIO as a ground its current limits is around 16mA maximum current before burning the

microprocessor. Therefore, the current running from the interface board power supply is

split using resistors R1 and R2 above.

5.2.2 Carrier Detect

The consolidation between the Radio and Interface Board serves as the bridge to be

able to condition the carrier detect and identify when there will be transmission. Since

we only have two (2) levels for identification, a comparator is being used to compare
and determine which level, that indicates transmission or no transmission, is being

received.

The comparator being used is the LM393 Dual Differential Comparator. The purpose of

this device is to compare two (2) voltage values, and output a digital signal indicating

which of the two is larger to the main control unit through a GPIO.

The differential comparator consists of a high gain differential amplifier. These devices

are commonly used in systems that measure and digitize analog signals such as analog

to digital converters, as well as relaxation oscillators. In our application, we compare the

received signal, carrier detect present or carrier detect not present, with a reference

voltage.

58

Figure 4.5 Comparator Circuit

The voltage measured for RX audio signal (CD) being present was 1.4V; meaning,

when compared to the reference voltage, 1V, the comparator will output a logical 1,

allowing the 3.3V become the output to the next stage of the circuit. Next stage of the

circuit being to a GPIO pin of the microcontroller. The voltage measured for RX audio

signal (CD) not present was 0V; meaning, when compared to the reference voltage, 1V,

the comparator will output a logical 0, this output will not allow the 3.3V become the

output to the GPIO pin. See image above.

𝑉0 = {
0, 𝑉+ < 𝑉 −
1, 𝑉− ≥ 𝑉 −

The 1V for reference are achieved through a voltage divider circuit. The input (Vin-) is

5V which is then divided through both resistors of 1k ohms and 250 ohms. The

reference is then then compared to the ground at the 1k ohms resistor. This will create

a constant output of 1V since the 5V is being provided by a voltage regulator.

5.2.3 Rx Buffer Audio Design

While testing the radio with the CODEC it was found that the CODEC was severely
loading the radio when it was transmitting audio to the CODEC while the CODEC was

recording. To negate this problem a buffer was inserted between the audio signal

coming out of the radio and the input of the CODEC.

59

Figure 5.2.3: Rx Buffer Audio Design

5.2.4 Tx Filter and Bias Audio Design

In transmitting audio out from the Raspberry Pi then to the CODEC we found that there

was high frequency noise being produced. This lead to the decision of a low pass filter

being needed. This was done by using a second order low pass Butterworth filter with a

cutoff frequency of 50 kHz. The Butterworth filter was chosen as it can provide a

maximally flat passband which is needed as to not alter the audio signal. The cutoff

frequency of 50 kHz was chosen since it is known that audio signals range from 0-20
kHz, and to ensure that as the passband started to drop off near the cutoff frequency it

would produce negligible difference between upper audio signals.

Since the filter design is a 2nd order Butterworth the denominator of the transfer

function is 𝑠2 + √2𝑠 + 1. This sets
𝜔0

𝑄
= √2 with 𝑄 =

√2

2
. This Q value is desirable for this

design as to not create a rise in gain as the cutoff frequency is approached. Using

frequency scaling 𝑘𝑓 was set to 2π×50000 to set the cutoff frequency at 50 kHz. 𝐶′1was

set to 200 pF to set to 𝐶′2 100 pF so that these capacitors could be commercially bought

as these values are common. Solving for the magnitude scaling factor, 𝑘𝑚 sets 𝑅′ to

22.508 kΩ, which will be implemented with commercially available 47 kΩ and 43.2 kΩ

resistors in parallel.

60

𝐶′1 =
1

𝑘𝑚𝑘𝑓

2√2

2
= 200 pF

𝐶′2 =
1

𝑘𝑚𝑘𝑓

√2

2
= 100 pF

𝑅′ = 𝑘𝑚 = 22.508 kΩ = 43.2 kΩ || 47 kΩ

Before this filter is a decoupled inverting amplifier circuit network of unity gain which

sets an offset of 7.5 V since the operational amplifiers are set between 15 V and

ground. Without this network, the audio signal could potentially be cut off. The resistor

divider biasing technique is low in cost and keeps the op-amp's dc output voltage at
halfway between the supply voltage, however the operational amplifier's common mode

rejection still depends on the RC time constant formed by RA||RB and capacitor C2.
Using a C2 value that provides at least 10 times the RC time constant of the input RC

coupling network (R1/C1) will help insure a reasonable common-mode rejection ratio.
With 100 kΩ resistors for RA and RB, practical values of C2 can be kept small if the

circuit bandwidth is not too low. Depending on the supply voltage, typical values that

provide a reasonable compromise between increased supply current and increased

sensitivity to amplifier bias current, range from 100 kΩ for 15V or 12V single supplies.

Considering the characteristics of this decoupled inverting amplifier circuit network of
unity gain RA and RB were set to 100kΩ with R1=R2 to achieve unity gain as well as

minimize input bias current errors by keeping R2 one-half of RA. The input and output

capacitors are selected to be 40µF to achieve a low impedance for low frequency audio

signals. The bypass capacitor C2 was chosen to be 470 µF to help insure a reasonable

common-mode rejection ratio and unity gain.

Figure 5.2.4: Tx Filter Audio Design

61

5.2.5 Anemometer and Wind Vane Design

The Davis Instruments 7911 Anemometer uses a RJ11 4P4C as an interface to

communicate to external devices. This interface is composed of four wires connected to

specific components within the sensor as shown on the right side of figure 5.2.5.2. The

yellow wire is used to supply the 20 kΩ potentiometer. This potentiometer is also

connected to the green wire that is used to indicate the wind direction. The reed switch

is used to compute the wind speed and is connected to the black and red (ground)

wires.

Internally, both the potentiometer and reed switch are used to sense wind speed and

direction. Wind speed is measured by the opening and closing of the reed switch, which

is connected to ground. Each revolution of the anemometer wind cups caused the

switch to open and close. This action is implemented by a magnet coming in close

proximity to the switch as the cup mechanism is rotated. When the magnet is brought

into close proximity to the reed switch the internal leads close. Conversely, when the

magnet moves away from the reed switch the leads open. Wind direction is measured

by a circular 20 kΩ potentiometer. Depending on the direction of the fin, the wiper of the

potentiometer is moved. As shown in figure 5.2.5.1 this potentiometer has a “dead

zone” where the wiper makes no contact.

The design of our wind sensor interface compared to the previous group’s design
significantly reduces the amount of components, power, and provides more accurate

data. Their design included a BJT transistor, 6 resistors, and a LED, while our design

only uses 3 resistors and a LED. Their wind speed design used a transistor with

resistors to create a voltage controlled switch, which is not needed since the reed switch

in the instrument already performs this function. Not only does this use excess

components, but also uses more power with the same result. Their wind direction

design uses a voltage divider, which was also not needed as they could have only

supplied 3.3 V to the anemometer and used no divider. This division also neglects to

fully suppress the “dead zone” in the potentiometer.

62

Figure 5.2.5.1: Wind Potentiometer

Shown on the left side of figure 5.2.5.2 is the interface design for the Davis Instruments

7911 Anemometer. A 10 kΩ resistor is used after the reed switch to reduce the amount

of current through the reed switch when it closes to ground. The reed switch and the 10

kΩ resistor connected to 3.3 V provides an active low pulse from 3.3 to 0 V to the RPI

GPIO when the cups of the anemometer makes a revolution. The 20 kΩ is used in

conjunction with the wind direction potentiometer to fill in the “dead zone”. Once the

wiper of the potentiometer falls in the “dead zone” where no contact is being made the
20 kΩ resistor provides a transition between the wiper making contact on the 20 kΩ side

and the 0 kΩ side. The ADC will receive a voltage range of 0 to 3.3 V depending on the

wiper’s position. The LED is included to show that the wind sensor is receiving power

and is providing data to the RPI and ADC.

Figure 5.2.5.2: Anemometer Interface Design

63

5.2.5.1 Analog to Digital Converter

After the AGC voltage is received and conditioned it goes to the analog to digital

converter. The Analog to digital converter chosen was the ADS1015.

Figure 4.2.5.1 ADS1015 Application Circuit

The purpose of the analog to digital converter (ADC) is to provide the microcontroller
with a digital number that is proportional to the magnitude of the signal, voltage or

current, sent from the AGC. The conversion of this signal involves some error

parameter. The higher the number of bits, resolution, available on the ADC, the more

precise the conversion can be. The ADS1015 allows a precision of 12 bits, this

indicates the number of discrete values it can produce over the range of analog values.
An ADC is defined by the bandwidth available, range of frequencies, and its signal to

noise ratio.

5.2.6 I2C Bus

The ADS1015 converts the analog signal to digital signal with a precision range of 12

bits. The signal is then delivered to the Raspberry Pi through this I2C Bus. The I2C Bus

64

is able to communicate to a multitude of other peripheral devices (defined as “slaves”)

by assigning a unique address to each device. The Raspberry Pi is considered the

“master” device and retains the right to read and write to the incoming signals. The

other devices on the I2C bus, the slave constructs, require explicit permission from the

Raspberry Pi in order to read and write. The I2C bus can support well over 1000

devices using only two lines -the SDA and SCL lines. For this reason, and also because

it is less messy than the SPI connection configuration with the GPIO pins, it works quite

perfectly for our system.

For our system, the anemometer and the temperature/pressure/humidity sensor will

communicate with the Raspberry Pi through the I2C bus. They each have a unique

address on the bus which will all the software on the Pi to reach them individually to poll

for the current weather conditions.

5.2 Software Design

This section details the software logic behind the system. This system is broken down

into 2 main programs, the main logic loop program and the weather polling program.
These two programs work together to detect carrier signals and respond to them. When

the pattern recognition function matches with the carrier detected click-pattern, the
system then decides on an action - whether to announce the current weather condition

to the user or proceed to a communications check. Said action is then performed in a

timely manner within a few seconds since the pilot would need to receive the requested

current wind conditions on his way to land. The program that collects the weather data

is separate from the main loop so that there is less of a delay in the carrier detect and

so that the weather measurements can be wrapped up neatly in an object. Creating a

weather object allows the program to easily pass the measurements back to the main

loop so that it can concatenate the audio file to stream back to the pilot.

As mentioned in Chapter 3 our software will be running solely on the Raspberry Pi in the

Python language. The code will utilize the Django framework for the database aspect of

the software. This will require a model for the database structure. This model will

include aspects of wind conditions that should be saved. These attributes include date

and time, wind direction, wind speed, variable wind conditions if detected, and wind gust

if detected, but this list can be expanded in the future

65

5.2.1 Main Logic Loop

This is the main loop for this system’s software. After the Raspberry Pi is powered on, it

will automatically launch the main program. After the main program is started, it will

begin an initialization process. This process includes starting the separate weather

program and making sure it is operational and responsive, then it will also start the

webserver. The separate weather program will poll the sensors for wind speed,

direction, temperature, humidity, and pressure and when called upon, it will return an

object will the most current values for each weather condition.

We chose to separate this into its own program because it allows the main program to
handle the carrier detect more efficiently, allows us to easily compute the wind speed
and direction values, and it will also allow us to set intervals for how often we want
certain weather conditions to be read or computed without overcomplicating the main

loop. It will be much more efficient to receive an object with all the weather readings in

the main program instead of having to poll each sensor when the information is

requested. Polling each sensor when the weather is requested would result in a delay

of when the synthesized audio would play back to the pilot. This is due to the nature of

some of the sensors and the measurements being read. In order to report wind speed

and direction, the values have to be calculated by recording values from the

anemometer over a period of time and then finding the average. In addition, the

temperature/pressure/humidity sensor has a delay of a couple of seconds while it takes

its measurements.

After the initialization process, the main program will begin to listen for a carrier signal.
When a carrier signal is detected, the program will enter a function to count the clicks

which is described in detail in section 5.2.2 of this document. After the clicks are

detected and a decision is made as to whether the pilot is requesting the weather or a
communications check, the main loop will jump into either function and perform the

needed action. Both of these functions will be described in greater detail in the following

sections.

66

Figure 5.2.1 Main Logic Loop

67

Now that the software has counted the number of clicks, it will compare the pattern it
has found to the patterns needed to request the current weather conditions or a

communications check. If the clicks counted adhere to the pattern of two clicks followed

by a pause and then two more clicks, then the program will enter a function to transmit a

radio check which is described in detail in section 5.1.5 of this document. If the pattern

detected is two clicks followed by a pause and then three more clicks, then the program
will enter a function to transmit the current weather report which is described in detail in

section 5.1.4 of this document. If the clicks detected match neither pattern, then the

program will ignore the clicks and return to listening for a new carrier signal. This last bit

is important because the system needs to always look for a carrier signal. There is no

sense in continuing to try to detect a pattern if any one segment of the pattern is not

within the maximum and minimum parameters set in the count clicks function. The

administrator of the system for each airport will have the ability to change the maximum
and minimum parameters since they need to have the ability to change the click pattern

to avoid system conflicts.

5.2.2 Poll Weather Conditions

The Poll Weather Conditions process is the side process which is started by the main

program during its initialization. This process will do all the communicating with the

weather sensors and will read and store their values into an object that the main

program will request whenever a weather request signal is detected. The program starts

by verifying that it can communicate with all the sensors and then it will reset all of its

temporary variables. Then it will enter the infinite loop where it polls and stores the

readings from each sensor. The temperature/pressure/humidity sensor will only be

accessed on a timer because the sample from that sensor has a slight delay and the

weather conditions it reads do not change very often.

First the program will read, calculate, and store the wind speed and then it will compare

the current wind speed to the last recorded wind speed. If the difference between the

two is greater than a designated threshold, the program will label it as a gust. It will only

report a gust in the weather object if the difference is detected more than once. To

detect it again, we have created a second flag called verifyGust. Once the first gust is

detected and the gust flag is set to true, the next time the difference between the current
and last readings is greater than the threshold, the program will enter a separate

conditional to set the verifyGust flag and report it to the weather object. After it has been

reported, both flags will be reset. Next the program will read and store the wind

direction. DirCount is a counter that lets us set the period we want to calculate the

average wind direction over. Once the counter equals that set value, we calculate the

average wind direction using the last set of recorded readings from the sensor and then

reset the counter. This average is the wind direction the process will store to the

68

weather object which will be returned to the main program to report to the pilot. If the

counter does not equal the set value, then we will increment the counter and continue to

the temperature sensor.

Finally, the program will read and store the temperature, pressure and humidity but only

when the TempCount counter equals the set value for the designated time interval. This

interval will be much larger than the wind direction interval because the values for

temperature, pressure, and humidity will not change very often.

This process will run continually in the background while the main process listens for a

carrier signal. When the count clicks function from the main program returns a decision

to transmit weather conditions, the program will first call this function to collect the most

recent weather value.

There were many possible ways to set up this function for this system but ultimately, we
chose this more object-oriented approach because it makes the passing of the weather
information between functions easier and creates a structure that allows us to easily

store all the weather conditions for a particular period in time. This method also

simplifies the code immensely because instead of individualizing each weather
measurement, we are able to iterate through all of them with timers to pull new values

from the sensors at certain intervals. It was important to use timers for the weather

measurements because some of the measurements don’t change very often or have a
significant delay from the sensor, like temperature, and others require an interval to

compute a value or average from, like wind speed or direction.

The following figure is the logic diagram for the weather polling function that visualizes

the information described above. It shows the iteration through each of the weather

measurements, the check of their corresponding timers, and the resulting pull of new

data from the sensors.

An important part of the logic in this program is the wind gust detection. It is crucial for

pilots to be able to be notified when there are wind gusts because there are certain
counter measures they must take in order to keep control of their aircraft and to land

safely. The way we have set up the logic for wind gust detection is very accurate and it

allows pilots to be confident in the weather condition reading they are receiving from the

system. Since we have set two flags that must both be true in order for a gust to be

reported, it allows the system to only report when there is a consistent gust instead of a

singular event. There is nothing we can do to notify the pilot of a singular gust but it is

important for them to know if the winds are particularly choppy near the runway.

Another important aspect of the weather polling program is how the wind speed and

wind direction are calculated. Wind direction is based off of a potentiometer with a dead

69

zone at 0/360 degrees. This causes some difficulty with the logic since we have to

perform an average over a period of time. How do you take an average over a null

value? To solve this problem we decided the best way was to detect when winds are
varying over the deadzone then find the average and add 180 degrees to find what the

adjusted average should be.

Figure 5.2.2 Poll Weather Conditions

70

5.2.3 Counting Radio Clicks Process

Figure 5.2.3 Count Clicks Process

71

This process counts the number of times the pilot keys their radio and checks the
duration of each click or spacing to be sure the program is not picking up accidental

clicks or the wrong signals. This process is triggered whenever the main program

encounters a click. This process will then time the click, considered the “on” time, and if

it falls between specified maximum and minimum parameters, the program will move on

to the “dwell” time which is the spacing between clicks. It will continue to check each

segment according to the patterns we have designated for a communication check or
weather report until either a duration does not fall between the specified parameters or

we don’t receive the segment we were expecting. After the second click or “on”, the

program will time a “gap” instead of a “dwell” which has a longer duration in order to
register a pause between the first sequence of clicks and the second sequence of

clicks. If this pause, or any duration, does not fall between the specified parameters, the

process will end, ignore the accessed clicks, and will start over to listen for the next new

click. Once either pattern sequence is found, the program will decide and escape into

the corresponding function to report either a communication check or the weather.

5.2.4 Transmit Weather Conditions

Figure 5.2.4 Transmit Weather Conditions

72

This process will start after the main function recognizes the click pattern for weather

reporting. From there, the main program will make a call to the weather polling process

to receive the current weather object. Then the program will separate each piece of the

object, collect all the voice files needed to synthesize each condition, and then

concatenate them into a single audio file. Once it has created the audio file for the

current weather conditions, it will check the transmission line to ensure that the

playback does not step on anyone. After it has checked that the line is clear, it will then

broadcast the current weather conditions for the airport including wind speed, wind

direction, gusts, temperature, pressure, and humidity. This process must be efficient so

that there is not a noticeable or substantial delay between the time that the pilot clicks

their radio and the time that the weather report starts to transmit.

5.2.5 Radio Communications Check Process

Figure 5.2.5 Radio Communications Check Process

73

This process will start after the main function recognizes the click pattern as the correct

pattern for a communications check. After it has made the decision to proceed with a

communications check, the program will check the transmission line to make sure no

one else is on the line. Once the line is clear, then it will transmit a prompt to the pilot

which will acknowledge their request for a communications check and ask them to

proceed with their transmission. As soon as the next carrier is detected, the program

will begin recording the audio transmitted and it will stop recording when the carrier is

no longer detected. As discussed earlier in this document, we will be using an audio

codec which will allow us to efficiently record audio directly into a WAV file to easily play

back. This reduces a lot of overhead since we do not have to create the WAV file

manually. After the carrier signal is no longer detected, the program will again check to

make sure the line is clear and then it will transmit the recorded audio file back to the

pilot. After the audio file the program will also announce a signal strength level based off

the recording. This will allow the pilot to get a better idea of the quality of their

transmissions and allow them to make adjustments as needed.

5.2.6 Initialization

Figure 5.2.6 Initialization

74

This is the Initialization process of the software. Once the system is powered on, this

process will be immediately called and executed. In this process there are three main

commands. First, the computer will reset all the variables in the main program. This

ensures there are no extraneous values left over from the last time the program was run

which could interfere with current readings or calculations. Next, the software will verify

that it can communicate with both weather sensors. Finally, it will initiate the never

ending process of polling the weather data, which will gather and record data from the
anemometer and temperature, pressure, and humidity sensor and is further explained in

the previous sections. Lastly, the software will also start the web server that will be

running from the computer. From there, the software will return back to the Main Loop.

5.3 Communication with Interface Board

5.3.1 Pin Layout

The communication between our interface board, temperature, and weather sensors are

directed by our MCU, the Raspberry Pi. The interface board, at its end, interprets all

incoming and outgoing signals between the VHF Aircraft radio and the microprocessor.
To receive and analyze the analog signals from the radio and weather sensors, the Pi
needed to be outfitted with an analog-to-digital converter -we chose the ADS1015 with

12-bit precision. The next step was to verify the best viable way we could connect the

ADC to the Pi. The options we researched included either using the SPI bus to connect

to Pi to MCP3008 or I2C bus connected to the ADS1015.

Another communication line required for our project is the connection between our

system and a web interface. The web interface is one of the ways that allow the user to

change the current airport location of the device. It provides the current weather

condition to the user using a graphical interface modelled as a compass.

The Raspberry Pi 3 Model B has 40 dedicated pins. The Pi’s documentation details

each available pin with their respective pin number. The table is also color coded to

highlight the specific use of every pin. Of the 40, 26 pins are general purpose input and

output pins (GPIO pins) while the rest are ground, power, and two other pins for

additional functions. The two other pins are for the I2C Bus that our team utilize to

convert the analog data procured from the sensors to digital signal. The rest of the

GPIO pins are just used to transmit and receive digital signals. They are used to

communicate between the interface board and Raspberry Pi.

75

5.3.2 SPI or I2C connection

The tables below differentiate the connections required between two possible ADC

sources we researched. This includes a connection between a MCP3008 (hardware

and software SPI connections) and the Pi and between the ADS1015 and the PI.

MCP3008 (Software SPI) Raspberry Pi 3

VDD 3.3V (Pin1)

VREF 3.3V (Pin 17)

AGND GND (any ground pin)

DGND GND (any ground pin)

CLK Any GPIO pins (pin 18 for example)

DOUT Any GPIO pins

DIN Any GPIO pins

CS/SHDN Any GPIO pins

MCP3008 (Hardware SPI) Raspberry Pi 3

VDD 3.3V (Pin1)

VREF 3.3V (Pin 17)

AGND GND (any ground pin)

DGND GND (any ground pin)

CLK SCLK (pin 23)

DOUT MISO (pin 21)

DIN MOSI (pin 19)

CS/SHDN CEO (pin 24)

76

ADS1015 Raspberry Pi 3

VDD 3.3V (Pin1)

GND GND (any ground pin)

SCL SCL (pin 5)

SDA SDA (pin 3)

The SPI connection (both software and hardware style configurations) requires more

physical connections than the I2C bus and creates additional problems when dealing

with noise. Problems also arose from the SPI’s asynchronous feature as it doesn’t

guarantee the same clock rate between connected devices. This can cause problems

when two system with different clocks attempt to communicate.

The inter-integrated Circuit (I2C) Protocol (also asynchronous) is the route we chose for

connecting our Pi to the external analog-to-digital converter. The I2C bus requires less

connection (only two lines) and allows us to communicate with multiple devices as

illustrated below. The two lines can support up to 1008 slave devices and allows more

than one master to communicate with all devices on the bus unlike the SPI connection.

Figure 5.3.2a SPI connected to multiple devices

77

Figure 5.3.2b I2C connected to multiple devices

5.3.3 ADS1015 Communication Logic

5.3.3.1 Background Information

We chose to use the ADS1015 for our analog-to-digital converter. This particular ADC is

supported with a variety of software libraries and interfaces that are open-sourced by

Adafruit Industries. The open-source libraries and interfaces provided made the overall

coding process easier because without these libraries we would have to start coding

from scratch. Creating a library would have resulted in a delay in our schedule for we

would have to create the functions required to read the analog signals. With the already

published libraries, we can skip this step and just call the function required to obtain our

data.

Another viable option for an external analog-to-digital converter is the MCP3008. The

MCP3008 is also supported by Adafruit Industries through a variety of software libraries

and interfaces. We ultimately chose the ADS1015 as our sponsor had mentioned its

versatility for obtaining precise analog to digital conversion as well as amplifying and

accurately processing extremely low signals.

5.2.3.2 ADS1015 Wiring

As mentioned earlier, the Raspberry Pi doesn’t have a built-in onboard analog-to-digital

converter like the Arduino Uno. We needed to find a compatible A/D converter with

enough power and precision. Our choice was split between two ADCs, the MCP3008

and the ADS1015 -we chose the ADS1015 which uses the I2C bus as opposed to the

MCP 3008’s SPI bus. The Pi is thus complimented by the ADS1015 external analog-to-

digital converter to process and convert analog readings from our sensors to digital
signal; the digital signal is then processed by the Pi to obtain and relay necessary

information.

78

The ADS1015 is a 12-bit precision ADC that operates at 3300 samples/second and

interfaces via the I2C communication bus. A 12-bit precision allows for higher accuracy

when obtaining, for example, the exact degrees associated with the wind direction. This

chip contains 4 single-ended input channels, requires 2V to 5V to run, and includes a

programmable gain amplifier that provides up to x16 gain for small signals. The

programmable gain amplifier helps magnify and boost smaller signals to be able to read

them at higher precision.

 Figure 5.2.3.2 ADS1015 connected to the Raspberry Pi

The wiring between the Raspberry Pi 3 and the ADS1015 is shown above in figure

5.2.3.2. The I2C bus of the ADS1015 makes the wiring fairly simple with no extra step

required except on the software side. The ADS1015’s VDD is connected to the Pi’s

3.3V (pin 1 in our case) as it requires a power source from the range of 2V to 5.5V. The

ground pin of the ADS1015 can be connected to any ground pins on the Pi; we

connected ours to the sixth GPIO pin on the Pi. The ADS1015’s SCL pin receives a

clock signal from the microcontroller and is connected to the I2C SCL dedicated pin on

the Pi. The SCL pin is the 5th pin on the Pi. This pin uses the clock signal provided by

79

the microcontroller to clock data from the SDA pin. Data obtained by the sensors is

transmitted and received through the SDA pin connected to pin 3 of the Raspberry Pi.

As mentioned before, the ADS1015 supports up to 4 single-ended input channel. This

includes input channel A0-A3. Single ended inputs only measure positive voltages but

provide twice as many inputs. On the other hand, there are two differential inputs used

to measure voltages (with the ability to also measure negative voltages). This analog

input is measured between two analog input channels A0 and A1 or A2 and A3. We did

not deal with negative voltages plus the increased immunity to electromagnetic noise
provided by the differential measurements was ideal for dealing with noise during our

testing procedures.

5.2.3.3 Programming the ADS1015

In order for the Pi and ADS1015 to operate properly, we installed Adafruit Industries’
required libraries to allow the devices to communicate and ease the code development

process. We installed the Adafruit ADS1015 python library. This library allowed us to

use several commands like “read_adc_difference()” which reads the voltage difference

between channel 0 and 1. The function returns the signal difference between both

channels which will allows us to obtain the noise acquired from analog signal inputs

from our sensors.

The libraries provided us with many more functions and examples of singled-ended

analog to digital conversions as well as differential conversions. These methods allow

us to convert analog signals to digital signals as well as setting the gain of the on-board

programmable gain amplifier.

5.3.3.4 I2C Interface

Since the Raspberry Pi has dedicated I2C ports, The Raspberry Pi can communicate
with the ADS1015 via the I2C bus interface instead of its GPIO pins which is much more

preferable than a SPI connection (as illustrated in section 5.2.2). The I2C bus operates

between many devices; usually one device operates as the “master” while the others

are defined as the “slaves.” In our project’s case, the master is the Raspberry Pi and the

slave is the ADS1015 as well as any other devices connected on the bus. It is important

to mention that both master and slave constructs can read and write, but the slave

constructs can only do so with explicit permission from the microcontroller -the master.

The I2C bus operates based on two lines, the SDA and SCL. The SCL provides the

clock needed to clock the data received by the SDA line; the SDA line carries data

between the two devices. This data is transmitted in chunks of 8-bits on the bidirectional

SDA line. When transmitting, the SDA is either high or low, but requires the SCL to be

80

low in order to do so. A high SDA means the bit is 1 while low represents the bit as 0.
This receives and transmits data with the terminology that if the master sends file to the
slave, then the master drives the data line; else, if the master reads from the slave then

the slave drives the data line. The bus lines are idle when there is no communication

happening between the Raspberry Pi and the ADS1015. It’s worth mentioning that only

the master can start the communication between both devices.

For communications to start between the Raspberry Pi and ADS1015, the Pi must
initiate the communication to the ADS1015 or any other devices; the Pi then needs to

provide an address to detail which slave devices it wants to transmit to. This address is

a unique 7-bit address given to each device on the I2C bus. The unique I2C addresses

are set by the ADDR pin. The ADDR pin allows unique addresses to be selected for

each slave device connected to the microcontroller. A great debugging tool and check

for potential errors is the acknowledge bit that brings the SDA to a low. The

acknowledge bit switches the SDA to low confirming that the data was received.

The I2C interface provides a great communication line that transmits and receives data

between the microcontroller and other peripherals with minimum wiring. It functions

primarily on two lines, serial data (SDA) and serial clock (SCL) as mentioned above.
One of the reason it is better than SPI for our project is the I2C protocols that allow any
number of masters (microcontrollers) to be connected to any number of slaves

(peripheral devices/sensors). The SPI connection requires 3 wires: a SS, SCLK, and a

bi-directional MISO/MOSI line as well as one SS line per connected devices. Using the

I2C bus, we can communicate to any of the sensors and other devices by using the 7-

bits unique slave address assigned to each device with only two lines.

5.4 Configuration Screen

When the user connects to the Raspberry Pi’s Wi-Fi hotspot, the user will be able to

access the website hosted on the Pi. The main screen (Fig. 6.X on left) will display an

overlay of the runway at the airport with a compass rose and an arrow telling the user

what the current wind direction is. It will also display the current wind conditions in

words below as they would be broadcast to pilots. Towards the bottom of the screen the

user will see three links. One is titled “Archived Wind Data” and when clicked, will take

the user to a screen that shows past logged wind data for a specified length of time.
Another link is titled “Archived TX Checks” and when clicked, will take the user to a

screen that shows past logged TX check recordings for a specified length of time. The

last is titled “Change Parameters” and when clicked, will take the user to a screen (Fig.
6.X on right) where they can change every aspect of the system including, but not

limited to, runway headings, carrier dwell time, and the number of clicks for functions.

81

5.5 Integration and Prototype

This section describes how the components are integrated and the breadboarding that

has been done to combine the components.

Here we have the RJ11 network hooked up to be able to measure both the pulses for

the wind speed as well as a voltage potential from the wind direction potentiometer.

 5.6 Web Server

The web interface is intended to provide an easily accessible graphical interface for the

user. The interface would provide the user with valuable information concerning the

current weather conditions; this includes wind speed, wind direction, gust, and

temperature. The interface would allow users to check the current conditions anywhere

at any time. The system will also allow the user to switch the click pattern for requesting

different task, like a communications check, to best fit their preference; the operator

would also need to switch the click pattern if the current click pattern interferes with any

patterns already established at a specific airport.

82

5.6.1 Introduction to the Model View Controller Architecture

Since we did not want to deal with the arduous process of creating and implementing a

big and complicated relational database we looked towards other more simple and

practical options. We decided that a web framework based on a Model View Controller

would best meet our project’s needs. This type of web design is simplistic and allows us

to easily transfer data between the frontend of the system to its backend. Focus would

be set at the back end of the system meant for capturing the weather data, passing, and

formatting it into a relevant and easy to use database. We would then use the data

obtained from the backend and broadcast it back to the frontend without having to deal

with any of the complicated PHP scripts like PHP or MySQL. We would not need to use

any PHP scripts with a Model View Controller framework in order to send queries back

and forth to the database. This would further decrease the complexity of the

development process. An increase in performance would also be achieve because if

we’re using a Model View Controller architectural pattern, the system would not need to

load the page and recommunicate to the backend for the specified data every single

time. Thus, the increase in performance since that’s one function we do not have to

repeat over-and-over again.

This kind of architectural pattern further increases the performance of our system since

the data received is dynamically allocated to the class-based views structure. A view is

a callable that obtains a request and returns and appropriate response. The class-

based-views structure allows us to rapidly structure our views dynamically; they are

saved and can then be accessed and reused through inheritance and mixins. This is

also an alternative way of implementing views as python objects instead of functions or

methods. The view class handles linking the view into the URLS, HTTP method

dispatching, and several other simple features like redirectView and templateView. This

provides multiple benefits as the codes related to any specific HTTP method can be

utilized by separate methods; not just through conditional branching access. This also

increases ease of use for our application because we can use multiple inheritance to

pass down the object and reuse its components. The Model View Controller increases

performance, allows for more efficient code reuse, and parallel development by

decoupling its major components and focusing on each separately and simultaneously.

As mentioned earlier, the team did not want to deal with the complicated structure and

code development associated with designing and implementing a needlessly big

relational database. As a relational database would not only be impractical but would

also cause major performance issues when operating with the Raspberry Pi. Instead we

decided to use a web framework based on the use of a Model View Controller

architectural pattern. This design model would allow us to parse and format the

information obtained via views and not through the use of complicated PHP scripts; in

83

other words, this would make obsolete the need to request and send multiple queries to

the database every single time data is required. In the Model View Controller

architecture, the controller component steers the entire system. The controller does this

by handling all requests and responses across the database. It sets up the database

connection and handles loading addons. It obtains and reads a setting file that feeds it

the info regarding what to load and set up. Furthermore, the controller component is

provided an URL configuration file that instructs it on the desired responses from an

incoming request from the browser. On the other hand, the model partition of the

architecture captures the required data the website needs and stores it into database

tables. Fortunately, python provides extensive examples detailing exactly how this is

done. Python classes (or models) are emphasized and work quite well with the Django

framework that tie into a one-to-one ratio the database tables. Switching to another

component, the view is the user interface layer. It provides an automatic web admin

interface for editing the models using the python code.

This type of design steers and controls data more efficiently with less load capacity than

a regional database which is great and definitely meets our project’s requirement. A

regional database would just be too complex and would result in a decrease in

performance as it would request and acquire the desired data then parse that data to

and from the frontend and backend of the system repeatedly. The propose MVC

architecture is faster as we obtain the desired data and simply pass it using the model.

Then we can pass it to our views and allocate the database dynamically without any

complicated implementations of PHP scripts.

5.6.2 Django Web Framework

We researched a few Model View Controller framework and found Django. The Django

Web Framework is quite a robust and great selection for the backend of the system.

Django provides a fully functional backend web frame work with the admin view

application. It provides a concise and picture-perfect style with multiple features;

unfortunately, it does not provide a good template for the frontend application. We then

realized we could apply a different framework for the frontend and proceeded to look for

a compatible version which will be discussed in greater details later in the next

subsection. We chose the AngularJS for the frontend of the system, the parts visible to

the user like HTML, CSS, client-side JavaScript, because we didn’t want to deal with

creating our own template from scratch and wanted to avoid html coding. The team did

not have much experience with html coding and as time was a stringent factor we

looked for an already customized and optimized frontend template. We researched

multiple frameworks as well as a few platforms that would support our project and best

fit our capabilities. We looked over AngularJS, JQuery, and ReactJS as viable options

84

to see which would work better with Django. We finally decided to use the AngularJS for

the front-end framework of our system.

With the Django MVC style framework, we are able to further simplify the coding

development process because we can write our code in an object-oriented manner and

use the framework to build our database table simultaneously in the background; this

framework abstracts a lot of the database behind models that are represented as

python objects. Each table database can be treated as an easily accessible object

making it quite useful because we are able to change the fields of that record with no

big fuss. Its fields are treated as general variables that are part of the object. Since the

database is abstracted, we can import the schema of our models directly into our views.

We can then basically treat the database records as if they were objects and insert

them directly into our html code. Another major reason that this method is useful, is the

fact that we do not have to write anything in SQL. We are able to use functions to obtain

and apply the specified fields of that object of our database in order to store, sort, and

search through the database; we can then sift through the data, update, and record the

database without having to worry about coding in SQL. This framework is definitely

great for our project’s purpose and meets its designed specifications; as mentioned

previously, we can choose any database we want for the backend and not have to

change or worry about compatibility issues with our models and any related issues to

the frontend from using a different framework for the backend. This web framework

provides extra usability which relieves the coding process as the user does not have to

follow the complex steps when dealing with HTML coding. Usually, we would have to

create a client, discern the correct SQL statement, and recommunicate to the backend

system. Then it must wait for the response to our request. Instead, this framework

relieves and negates these steps as it is more flexible and compound the user with the

ability to use the frameworks custom tags to preload the required data and make use of

that database’s objects directly in the HTML. Thus, this allows even more flexibility as

we are able to change our database based on our needs at any given time; as an

example, if we decide we want a smaller, faster, lighter, or more robust system.

The frameworks custom tags and filters, mentioned above, reduce the amount of coding

in HTML by allowing the user to utilize prebuilt functionalities in Django. Those functions

are designed to address the presentation logic needs of a variety of applications. The

custom filters are part of the python functions and take in one or two arguments unlike

the custom tags that require a number of arguments to return the correct result. These

template tags provide great usability. They are useful because we don’t have to write

multiple blocks of the same HTML code repeatedly. It also allows us to reduce delays

when processing the data received from the database by not having to continuously

85

reassign data to each block individually. Django also provides many other functions,

packages, and modules to further cope with the code development process for the

backend. Some of the functions have already been explained above while the modules

available for the Django framework like Django Rest and Celery are discussed below.

5.6.2.1 Django Rest

Django’s prevalent modules and packages include a variety of API creation framework

and other asset managers. Among these API creation toolkits, which are all reusable, is

the Django Rest, Django TastyPie, Piston, Django-Nap, and many others. Below is a

table providing a comparison between the listed toolkits.

 Rest TastyPie Piston Django-
Nap

Applications 202 88 69 1

Development
/status

Production
/stable

Beta Alpha unknown

Documentation Yes Yes N/A N/A

API key
authentication

Yes Yes No No

Serialization JSON
JSONP
HTML

…

JSON
JSONP
HTML

…

JSON
Django

JSON

Accept
Headers

Yes Yes No No

Browsable
Web APIS

Yes No No N/A

Figure 5.6.2.1 Table of different API creation toolkits

 After researching the different available API creation toolkits, we decided to use the

Django Rest framework for several reasons. This framework’s toolkit, as opposed to the

others listed in the table above, definitely has more support and flexibility than the other

API’s. It is supported by over 202 applications. It is also the most stable and is still in

production providing several continuous updates. The ability to code using this toolkit is

further increase for beginners because of the multitude of documentations available;

making it easier to learn, understand, and develop. Last but definitely not least, it

provides a web browsable API which further helps us with our development process

paired with the provided documentation. A web browsable API is a generated API that

86

includes an HTML version that allows for browsing and editing the API. The Django

Rest framework is a powerful, sophisticated, and flexible toolkit for building web APIs. It

requires both python and Django to function properly and provides support with a

variety of packages. We used the coreapi package for schema generation, the Django-

filter for filtering support, and Markdown to support the browsable API. We decided to

pair this toolkit with Django because of its easy to use and attractive web browsable

version of the Django API. Another major reason is the option of returning a raw JSON.

JSON (JavaScript Object Notation) is an easy to use lightweight data exchanger that

works between a browser and a server where the data can only be text. It allows us to

convert any JavaScript object into JSON and send JSON to a server.

The Django Rest framework provides a flexible and powerful model serialization and

displays data using standard function based views. With the built-in model serialization

for data formatting, we are able to compose powerful representations of our data that is

processed and delivered in a number of formats with a few lines of code. Rest is defined

as “Representational State Transfer” and allows us to take advantage of Django’s ability

to abstract away the database as objects; it also allows us to communicate data to the

frontend framework using web endpoints. As previously stated, we are able to provide

information to the frontend as a raw JSON which are objects that are used in JavaScript

as if we obtained it directly from Django. This is important and worth mentioning

because it allows us to parse our data to the frontend framework while putting less

stress on the frontend framework. The purpose of using two different framework is

because this process allows us to relieve stress on our Raspberry Pi allowing for faster

performance and not crashing when obtaining a great multitude of web requests. The

simple fact that the Django Framework does not provide a pre-built frontend template

also affected our decision to choose a different framework for the frontend portion. A

prebuilt frontend template would lessen the coding development process making it

easier on the team saving time and also removing the need to write the template from

scratch. Fortunately, AngularJS extensively meets the desired requirement for a pre-

built frontend template.

5.6.2.2 Celery

Celery is a powerful, production ready asynchronous job queue that allows the user the

ability to run multiple python applications in the background. This would allow us to

asynchronously queue, schedule, and run functions written as tasks. This system

meshes perfectly with our other frameworks as it powers these applications and quickly

responds to user’s requests. It creates the asynchronous job queue and passes long

running tasks to the queue. We installed this asynchronous task queue for Django using

Celery and Redis. For this job queue application, it is worth mentioning that we were

87

provided with two major possibilities that would pair quite perfectly with the Django

Celery Module. These two major options are Redis and RabbitMQ. Both options are

compatible with Celery and are both default recommendations by Celery’s developers.

RabbitMQ is a fast, lightweight, and persistent job queue that exchanges data between

processes, applications, and servers. In this case between Celery, servers (Django),

and possibly other applications. It is a message broker and message brokers act as a

middleman for various applications and reduce loads and delivery time of web

application servers. Since tasks usually take a while to process, RabbitMQ or Redis can

speed up this process as it is the only job they are meant to perform -so it’s best to

perform it extremely well.

As previously stated, RabbitMQ is actually faster and a more lightweight and persistent

job queue than Redis. But Redis is more robust and can serve as a key-value pair

dictionary that is stored in the system’s persistent memory. Redis also boasts the

potential for having multiple job queues clustered together as to increase performance.

The key-value pair dictionary would benefit us in case we found compatibility issues.

Furthermore, this process would help us because it would be better to avoid

implementing the python objects as read and write for the GPIO pins in order to govern

the Django framework and web server completely. The Redis Key Value Dictionary

would allow us to store all the different signals obtained from the external peripherals as

the Redis key value that would act as a standalone function. This process would provide

much more functionality and ease the testing and debugging process. The RabbitMQ

software, as mentioned earlier, is indeed faster, lighter, and more persistent than Redis;

but, Redis makes up for this shortcoming by providing more functionality that will help

us link all the various components attached to our system quite neatly.

Redis, as part of Celery, is used to broker messages between Celery and other

applications. Celery is a great choice for our system as it relieves stress on the

Raspberry Pi. As mentioned previously, Celery relieves pressure on the Raspberry Pi

leaving the software applications created to calculate, process, and output the

parameter to take most of the computation power.

5.6.3 AngularJS Framework

The AngularJS Framework is another Model View Controller that we decided to pair

with the Django Framework. The Django framework serves as the backend of our

system providing a multitude of functions and is quite robust. It is written in python and

provides framework custom tags to preload the required data and injects that databases

objects directly into the HTML. Django is facilitated by Django Rest as well as Celery.

88

The MVC framework of the AngularJS provides us the exact requirement we need for

our frontend with a focus on developing a single web page application. AngularJS is a

structural framework for dynamic web applications that lets the user use HTML

templates. It also provides an ease of use for the user by allowing the system to extend

the HMTL’s syntax detailing the application components clearly and concisely. This is

an ideal mesh with our Django framework working with the backend since all the

bindings and dependency injection eliminate much of the coding process. This

framework is compatible with most current server technology as the data binding and

injection all occur within the browser itself. AngularJS offers a better and much simpler

format for designing application and is fairly beginner friendly; as opposed to HTML’s

complex and difficult coding process. AngularJS uses JavaScript in order to teach the

browser new syntax after creating new HTML constructs -these constructs are called

directives. With these directives, users can break up a single page and separate it into

multiple views. This is done by obtaining data from our Django Rest API and storing the

data as models. Utilizing both the models and views acquired, the framework easily

displays the information requested by the user onto the screen.

AngularJS simplifies applications development process by creating a higher level of

abstraction. Using this method allows its user a much more needed control because we

can decouple the client side of an application from the server side allowing the

development of both sides to operate simultaneously in parallel to each other. It also

allows the system to be able to reuse both sides as needed. This in correlation to the

models working in conjunction with the views are all loaded at once. The system only

requests and pulls the information it requested as it needs it -and thus the data is

dynamically allocated like any Model View Controller architectural framework. This is

superb as it allows the AngularJS frontend the capability to obtain all the views from

Django (the backend) and combine them into one view. Then the browser can handle

the requests for exactly which view and information is currently being demanded.

AngularJS truly eases the development process by broadcasting any application easily

using services that are auto-injected into a chosen application. This would allow us to

quickly create and control the initialization of automated tests.

Utilizing both the Django framework (as the backend) and the AngularJS (as the

frontend), all the desired views are all already loaded at once on the client machine.

Thus, the system does not need to keep requesting a new view from the Raspberry Pi,

recommunicating to it and waiting to acquire its response. The browser is then

responsible for switching between the contents that it wants to display and those that it

wants to hide. This reduces considerably the traffic and computational load that the

Raspberry Pi would have initially observed. Instead, all the computational intensity is

89

transferred onto the client’s browser -which is perfectly fine. This works because the

client is usually placed on machines more suited for heavy and complex computations.

We have discussed the individual frontend and backend framework with the respective

packages we intend to use but still have not exactly explained which database engine

we intend to use. In the prevalent and fervent spirit of decreasing or completely

removing the computational load done by the Raspberry Pi, we used the Django

framework. This framework relieves the computational complexity of our system by

abstracting away most of the database. The database chosen is still a crucial factor and

should definitely focus on being light and fast to further fit our application creation

theme. We fixated on the SQL databases like PostgreSQL which provides an extensive

number of unnecessary features that our project does not require. SQLite on the other

hand, just as the name suggests, is a lighter SQL database that focuses more on

speed, memory load, and portability.

5.6.4 SQLite Database

SQLite is a software library stored in a single file format that favors a light and faster

database engine as opposed to the heavy traditional database design. It is the most

widely used SQL database in the world. It’s software libraries implement a self-

contained and server-less transactional SQL database engine that facilitates incredible

portability. This is made apparent by its simple back up procedure that stores and saves

files at certain stages providing the system administrator with a variety of functionality. It

provides the administrator with the ability to back up and roll back the database in case

it gets compromised or corrupted. This database engine allows files to easily be copied

and transferred to completely different systems (as long that it is configured properly).

This provides the new system with a complete copy of the database. As mentioned, the

database’s design is incredibly light which means it takes less space than the other

traditional databases. Its small size offers many great advantages that for example

allow it to be paired particularly well with the Raspberry Pi. It also boasts of less

memory consumption, a great variety of application, and we almost forgot to mention

that it is completely free for use for any purposes -private or commercial.

SQLite is a compact library with less than 500KB space necessary to encompass all of

its related features. It is a zero-configuration database which means that it does not

need to be installed in order to be utilized -no server processes need to be configured.

“The system just works” as described by its developers; if the system happens to crash,

nothing needs to be done it will re-orientate itself into working order. The databases

small size propagates its speed allowing it to work at a very fast pace. Now these

advantages we listed are great and pair nicely with our system and the few

disadvantages are barely worth mentioning. One disadvantage of this system is the

90

(basically) zero security features it provides. As described above, this is not necessarily

a drawback for our system as no personal information is ever saved or even recorded

by the system. The system’s main priority is to obtain the different signals from our

sensors and simply output the correct weather conditions or establish a communications

check.

Another possible issue that might arise with other systems is the fact that the database

can only allow one write action to happen at one given time. This is not a notable issue

for our system because our system only writes to the database for certain

circumstances in which data is being accessed and read from the various peripheral

devices connected to our system. After the analog signals (switched to digital) are

received, each request sent based on the information obtained can only be processed

one at a time. In other words, we do not need to worry about problems arising from

obtaining and writing multiple entries at the same time. Worst case scenario a queue

system would need to be implemented. Furthermore, this problem would only be an

issue if the system was being accessed by multiple users attempting to change the

configuration settings over via the user interface at the same time. A quick solution to

this is to only allow one user at a time to access the interface at any given point. The

simple fact that the Raspberry Pi will only be placed on a local and very small network

means that it would be inaccessible to the outside world further trumps the idea that

security would be a possible problem. In fact, the only form of security employed by our

system is the WPA encryption of the local network the system will be connected to. A

would-be assailant would need to have remote access to the Raspberry Pi’s DCHP

server to access the page and gain the ability to change the configuration settings. Or

else, they would need direct access to the Pi.

91

5.7 Master Schematic

92

6. Testing
This section describes how the system and each component will be tested to ensure accuracy

and to make sure each requirement is met including sub systems. Testing is a crucial part of a

system’s development because it is necessary to make sure each requirement for the system is

met and that the system operates as expected and is reliable. Especially with a system like ours

that pilots will be depending on so that they can take off and land safely, it is important that the

system be reliable and accurate.

6.1 Anemometer and Wind Vane Testing

The testing of the anemometer and wind vane interface is easily done by measuring the

voltage level and waveform pulses at the output of its RJ11 jack. Facing the fin of the

wind vane as depicted in figure 6.1.1 should show a reading of 3.3 V on the green

output pin, this is the North configuration of the wind vane. The East, South, and West

configurations should result in 1.8 V, 1.97 V, and 2.6 V, respectively on the green

output pin of the wind vane that is connected to the ADC. These voltage levels were

measured from the prototype. The anemometer is tested by spinning the cups and

measuring the pulse waveform from the black output pin. This pulse is active low and

should have a width of 4.55 ms, shown in figure 6.1.2 below.

Figure 6.1.1: Wind Vane North Configuration

93

Figure 6.1.2: Anemometer Pulse

6.2 PTT Testing Procedures

Process Expected Outcome

Turn off the Raspberry Pi 3 microcomputer.
All signals going to the radio should be silent
and the Raspberry Pi 3 microcomputer

should be off.
Measure the voltage going into the KX 170B
Aircraft Radio pin 40

The voltage going in should be 0V

Press the button on the interface board
labeled “PTT Test”

The LED labeled “PTT” should light up when
the button is pressed

Measure the voltage going into the KX 170B
Aircraft Radio pin 40

The voltage going in should be ##V (still need

to test for actual value). There should be an

audible ‘click’ as the PTT voltage in the radio

gets pulled to ground.
Measure the voltage running through the
resistor to the Raspberry Pi 3 GPIO Pin

It should be no larger than 1.2V

To test the Interface Board PTT Circuit, follow the testing procedure above.

94

6.3 Audio Testing

The audio buffer from the radio output to the input microphone of the CODEC can be
tested by applying a sinusoidal wave no more than 20 kHz and 3 V peak-to-peak at the
radio output (non-inverting input of operational amplifier) and measuring the output of

the operational amplifier. Both signals should be identical. This buffer was tested on the

prototype by a 3 kHz 2 V peak-to-peak sinusoidal signal, shown below.

Figure 6.3.1: Audio Buffer Testing

The Butterworth filter from the CODEC audio output to the radio audio input can be

tested by applying sinusoidal waves in a frequency sweep at no more than 3 V. The

input should be applied at the CODEC audio output with its bias before the DC block

capacitor. The output voltage should be measured at the radio audio input after the DC

block capacitor. The passband of the filter should result in little to no attenuation in the

output voltage. At 50 kHz the gain of the filter should be -3 dB. From frequencies

ranging from DC to around 10 kHz there should be negligible attenuation with 0 dB gain.

Shown in that table below are the measurements from the prototype filter accompanied

with a few waveforms from the measurements. This prototype was implemented with

resistor values of 47 kΩ and 43 kΩ and capacitors measured to be 137 pF and 180pF,

as they were provided by the on-campus lab. Due to this, the measurements are slightly

offset compared to the designed filter, however its functionality is still sound even with

component values different than the design for its function.

95

Frequency (Hz) Gain (dB)

100 0

500 0

1000 0

5000 0

10000 -0.22

15000 -0.35

20000 -0.63

30000 -1.26

40000 -3.22

50000 -5.19

100000 -17.02

Table 6.3.1 Prototype Filter Response

Figure 6.3.2: Prototype Filter Response at 500 Hz

96

Figure 6.3.3: Prototype Filter Response at 5 kHz

Figure 6.3.4: Prototype Filter Response at 50 kHz

97

6.4 Power Supply Testing

Shown below in figure 6.4.1 is the pin configuration for the central power supply unit.
Measuring the voltage over pins 1/4 and 2/3 should result in a measurement of 20V.
There should be no more than 180 mV peak-to-peak ripple voltage. This power supply

is also equipped with a LED indicator which illuminates when the power supply is

active.

Figure 6.4.1: Central Power Supply Pin Configuration

Each linear regulator can be easily tested in respect to its output voltage, dropout

voltage, and line regulation to ensure it is properly working. The output voltage should

be tested with an input voltage of 20 V and by measuring the output voltage. Dropout

voltage can be tested by monitoring the output voltage while the input voltage is lowered
slowly from 20 V to where the linear regulator starts to drop outside its intended voltage

range. The input voltage where the drop starts is the dropout voltage. Lastly, the line

regulation can be measured by taking the difference in output voltages for two different

input voltages that are above the dropout voltage. Shown below in tables 6.5.1 and

6.5.2 are the testing parameters for each regulator and the tested results done for our

breadboard prototype with no load.

Linear
Regulator

Min-Max Regulated
Output Voltage (V)

Maximum Dropout
Voltage (V)

Maximum Line
Regulation (mV)

LT1129IT-3.3 3.25-3.4 0.70 30

LD1085V50 4.9-5.1 1.5 10

L7815AB 14.4-15.6 2 150

Table 6.4.1: Linear Regulator Specifications

98

Linear
Regulator

Regulated Output
Voltage (V)

Dropout
Voltage (V)

Line Regulation
(mV)

LT1129IT-3.3 3.3013 0.128 1.22

LD1085V50 4.99153 0.844 2.03

L7815AB 15.132 0.83 97

Table 6.4.2: Prototype Testing Results

6.5 Software Design Testing

6.5.1 Anemometer Data from ADC

To test the anemometer data and the communication through the ADC, we will begin by
putting the anemometer outside and then we will verify that we are able to receive
values through the ADC to the Raspberry Pi and to verify that the value changes in real

time according to the current conditions. Next, we will verify accuracy by comparing the

current values from the anemometer to those collected by a separate instrument. After

we have verified that the Raspberry Pi can receive values from the anemometer and
that they are accurate, we will verify how the anemometer behaves within the weather
polling function and that the calculations done for wind speed and direction are

accurate. To set up this part of the test, we will leave the anemometer outside and

collect values for a particular time period. From those values, we will calculate by hand

what the average speed and wind direction should be and compare it to the result from

the corresponding logic in the weather polling function. Finally, once we have verified

the Raspberry Pi can communicate with the anemometer, the readings are accurate,
and the calculations are accurate, we will verify that those values are being stored
correctly into the current weather object through print statements and the debug

functionality of our IDE.

6.5.2 Temperature, Humidity, and Pressure Data

To test the communication between the MS860702BA01 temperature, humidity, and
pressure sensor and the Raspberry Pi over the I2C bus, we will first individually poll the
sensor for each weather reading, and compare it to the values reported by a separate

weather reporting instrument to verify accuracy. After we have verified communication

between the sensor and the Raspberry Pi at a foundational level, we will test

communication through the weather polling function. We will do accomplish this by

verifying that the values are only read at the specific intervals set by the loops and that

the data is successfully stored in the current weather object. To do this, we will utilize

print statements and the debugging functions of our IDE so that we can verify when the
values are collected for each condition, how the value compares to current conditions

reported by another instrument, and that the values are stored correctly and accessible.
From here we will move onto testing how the weather is reported back to the pilot.

99

6.5.3 Weather Reporting

To test the weather reporting system, we will begin by testing the audio synthesis from
the weather data to make sure the audio is not choppy and the correct values are being

reported. After the audio has met our standards for quality and is consistently reporting

correctly the values the function has been given, then we will move on to test the inputs
to the function by making sure that any values that are received from the weather

polling function are accurately reported. After this has been verified, we will move on to

test the transmission.

We will begin testing the transmission by making sure the synthesized audio file can be

played back to the radio. After we are sure that the function can communicate with the

radio, we will verify how the system responds when the line is busy. We will make sure

the system detects traffic on the line and waits to transmit until after there are no carrier

signals detected.

6.5.4 ADS1015 ADC Channel

To test the ADS1015’s conversion of Analog signal to digital signal, after soldering the

header pins to the breadboard, we used the chips I2C protocols for transmitting the

analog readings. Fortunately, Adafruit Industries provides great documentations and

excellent open source python libraries. The functions of these libraries allowed us to

read values from the ADS1015 using the I2C bus. Before starting, we must connect the

Raspberry Pi with the ADC converter correctly. The table below shows how this

connection is done.

ADS1015 Connection Test

VDD 3.3V (Pin1 of Pi)

GND GND (Any Ground Pin of Pi)

SCL SCL (Pin 5 of Pi)

SDA SDA (Pin 3 of Pi)

Channel A0 To Middle Pin of Variable Resistor

Table 6.5.4.1 Wiring Test for Raspberry Pi and ADS1015

We proceed by connecting the 3.3-volt pin of the Raspberry Pi (pin1) to the VDD pin of

the analog-to-digital converter. Then we connect the rest, the ground pin to any ground

pins of the PI and the SCL pin to pin 5 of the Pi. The SCL provides the clock for all the

peripheral devices when using the SDA connection. The SDA pin is connected to the 3rd

pin on the Pi. We then use a potentiometer which is essentially a variable resistor that is

used to test the ADS1015’s channel port. The middle pin of the variable resistor can

then be connected to any channels (we chose channel A0).

100

After wiring the Raspberry Pi correctly with the ADS1015 connected to a breadboard,

we proceeded with the software connection to the I2C bus. Before using the I2C bus it

must be enabled on the Raspberry Pi after which, a couple libraries need to be installed

as documented in the Adafruit’s website for the ADS1015. After which we are can turn

the dial on the potentiometer which changes the voltage coming into channel 0 of the

ADS1015. The calculation and hard parts are all done by the ADS1015 libraries making

it and easy to receive and manipulate the signals obtained by the analog sensors. An

actual image of the wiring between the Raspberry Pi and ADS1015 is provided in figure

6.5.4.2 below.

101

7. Management

7.1 Task List

TASK
Estimated

Completion Date

Person
Responsi

ble
Person
Backup Completed

Documents

Task List Initial Draft 2/17/2017 Michael Joshua Yes

Hardware Block Diagram 2/17/2017 Joshua Michael Yes

Software Block Diagram 2/17/2017 Vanessa Gilbert Yes
Divide 60p Senior Design 1 Document
Assignments 3/12/2017 Michael Team No

60p Senior Design 1 Document 3/30/2017 Michael Team No

Bill of Parts 7/10/2017 Michael Team In Progress

100p Senior Design 1 Document 4/14/2017 Michael Team No

Final 120p Senior Design 1 Document 4/27/2017 Michael Team No

Radio
Research and Determine Radio for
Purchase 2/16/2017 Joshua Michael Yes

Purchase Radio 2/16/2017 Joshua Team Yes

Study Radio Schematic for Tieoff Locations 2/21/2017 Joshua Michael Yes
Confirm Locations of Critical Features in
Lab 2/24/2017 Joshua Michael Yes
Correlate AGC Voltage to 3dBm
Increments 3/17/2017 Joshua Michael In Progress

Determine Audio Tx Voltage Level Needed 3/17/2017 Joshua Michael No
Determine Ideal Squelch Setting &
Permanently Set Potetiometer 3/17/2017 Joshua Michael In Progress
Design Audio Rx Input Circuit for
Appropriate Mic Biasing Level 3/17/2017 Michael Joshua In Progress

Design PTT Circuit 3/17/2017 Michael Joshua Yes
Research and Determine Permanent
Connection 3/30/2017 Michael Joshua In Progress

Purchase Cable/External Connectors 4/18/2017 Michael Joshua No

Modify Radio Case and Attach Connector 4/30/2017 Michael Joshua No

Carrier Detect

Research and Design Schematic
Using Comparator w/ Squelch
Voltage 3/24/2017 Joshua Michael No

102

Order Parts 4/14/2017 Joshua Team No

Breadboard and Confirm Operation 4/24/2017 Joshua Michael No

Weather Sensors
Determine What Measurements Will Be
Collected 2/21/2017 Joshua Michael Yes

Make Decision on Sensors for Purchase 2/28/2017 Michael Joshua Yes
Research and Decide on Interfacing for
Sensors 3/2/2017 Michael Joshua Yes
Design Annemometor Wind Speed
Interfacing Circuit 3/10/2017 Joshua Michael Yes
Design Annemometor Wind Direction
Interfacing Circuit 3/10/2017 Joshua Michael Yes
Buy Components for Breadboarding the
Interfacing Circuits 3/10/2017 Michael Team No

Correlate ADS1015 Sensor Data w/
Wind Speed + Direction 4/14/2017 Gilbert Vanessa No

Correlate MS8607 Sensor Data w/
Temp, Humidity, Pressure 4/14/2017 Vanessa Gilbert No
Decide on Enclosure & Connection for
MS8607 3/31/2017 Vanessa Michael No

Final Confirmation of Correct Operation 4/18/2017 Vanessa Michael No

Power Supply

Determine What Voltages are
Needed 3/17/2017 Joshua Gilbert In Progress

Research and Design Voltage

Regulation from 13.8 V 3/24/2017 Joshua Michael No

Determine Interfacing for 13.8V

Tieoff 3/30/2017 Joshua Michael In Progress

Order Parts 4/14/2017 Michael Team No

Breadboard and Confirm Operation 4/24/2017 Joshua Michael No

Interface Board

1st PCB Design 5/13/2017 Joshua Michael No

1st PCB Order 5/14/2017 Joshua Team No

1st PCB Test 5/29/2017 Michael Joshua No

2nd PCB Design 6/19/2017 Joshua Michael No

2nd PCB Order 6/21/2017 Joshua Team No

2nd PCB Test/Confirm Operation 7/5/2017 Michael Joshua No

Microcontroller

Research and Decide on MCU 3/2/2017 Gilbert Michael Yes

103

Research and Decide on Appropriate ADC 3/2/2017 Gilbert Michael Yes

Order MCU 3/2/2017 Gilbert Team Yes

Order ADC 3/2/2017 Gilbert Team Yes

Software

Decide on Operating System for
MCU 3/10/2017 Gilbert Vanessa Yes

Draft Word Bank for AWOS
Standard Reporting 3/17/2017 Joshua Gilbert No

Research and Decide on Voice
Library 3/17/2017 Gilbert Vanessa In Progress

Create Comprehensive Logic
Diagram for Decision
Making/Operation 3/17/2017 Gilbert Vanessa No

Create Python Library for I2C w/
ADS1015 3/31/2017 Gilbert Vanessa No

Create Python Library for I2C w/
MS8607 3/31/2017 Vanessa Gilbert No

Enable Raspberry Pi for CODEC
Communication 3/31/2017 Michael Vanessa Yes

Write Function to Correlate AGC
Voltage to Received Signal Power 4/14/2017 Gilbert Vanessa No

Write Program for Weather
Measurement Logic 4/15/2017 Vanessa Gilbert No

Write Function for Audio Rx
Recording 4/16/2017 Gilbert Michael No

Write Function for Audio Tx to
CODEC (w/ PTT) 4/17/2017 Gilbert Michael No

Program Raspberry Pi for Main
Logic Tree 4/30/2017 Vanessa Gilbert No

Design Website Interface w/
Remote Access SD2 TBD Vanessa Gilbert No

Optional Mounting Case

Research and Decide Viability of 3D
Printing

Decide on Location for Printing

Create Model 3D Design with
known PCB Dimensions

Slice 3D Drawing

Print First Prototype

Make Revisions

104

7.2 Budget

Item Design
Quantity

Backup
Quantity

Engineering Justification and
Notes

Estimated
Expense

Anemometer 1 0 Wind speed and direction sensor.

Provided by Mr. Young.
$0.00

Barometer 1 0 Atmospheric pressure sensor $10.00

Hygro Thermometer 1 0 Temperature and humidity sensor $35.00

ADC 1 3 Receive analog data, convert analog to
digital data, process digital data

$10.00

Raspberry Pi 3 1 1 Process pilot voice and commands,
provide data to website

$60.00

Operational
Amplifiers

3 6 Audio conditioning $15.00

Comparator 1 3 Carrier detect $5.00

Diodes 1 4 University lab kit. $0.00

Transistors 10 10 Weather instrument signal processing
and audio conditioning

$10.00

Linear Regulators 3 6 Convert 20 V power supply to lower
voltage for different stages

$27.00

Other ICs N/A N/A For possible future use system $10.00

Ports/Headers N/A N/A Supply correct and secure connections $5.00

PCB + Labor 1 1 Fabricate PCB and install components $120.00

General Passive
Components

N/A N/A General resistors, inductors, capacitors

for various parts of design.
$10.00

Power Supply 1 1 Provide power for aviation radio and
system

$30.00

Aviation Radio 1 0 Used to transmit and receive signals to
and from system to pilot

$55.00

Total - - -- $402.00

Table 7.2: Budget Allocation

105

7.3 Milestones

Project Tasks Design Milestone Order Milestone Test Milestone
Final Design

Revision and Test
Milestone

Weather
Instruments

N/A 02/28/2017 03/07/2017 04/18/2017

Weather
Instrument Analog

System
03/15/2017 03/17/2017 03/27/2017 04/18/2017

Power Supply
System

04/01/2017 4/03/2017 04/10/2017 04/18/2017

Audio System 03/15/2017 03/17/2017 3/27/2017 04/18/2017

µC/DSP/CPU N/A 02/28/2017 03/07/2017 04/18/2017

Webpage N/A 04/18/2017

Digital Weather
Reporting

03/22/2017 N/A 3/30/2017 04/18/2017

Digital
Communications

Check
03/18/2017 N/A 3/30/2017 04/18/2017

1st Prototype N/A N/A 05/03/2017 05/06/2017

1st PCB 05/13/2017 05/14/2017 N/A 05/29/2017

2nd Prototype 06/05/2017 06/06/2017 N/A 06/13/2017

2nd PCB 06/19/2017 06/21/2017 N/A 07/05/2017

60 Page SD1
Design Draft (15
Pages/Person)

N/A N/A N/A 3/31/2017

100 Page SD1
Design Draft (25
Pages/Person)

N/A N/A N/A 4/14/2017

Final 120 Page
SD1 Design Draft

(30 Pages/Person)
N/A N/A N/A 4/27/2017

Table 7.3; Milestones with Deadlines

