

Team Members

Vanessa Pena, *CpE* Michael Graziano, *EE* Joshua Dean, *EE* Gilbert Vieux, *CpE*

Michael Young, *Advisor* Dr. Lei Wei, *Professor/Advisor*

Motivation

- Nearly 20,000 nontowered airports in the United States, compared to approximately 500 that are towered
- Two primary concerns for pilots: real-time weather reports and radio communications checks
- It is critical that pilots are aware of *wind speed* and *direction*, *barometric pressure*, *temperature*, and *dew point* surrounding the airport

Orlando-Apopka Airport

- Pilots need to have a confirmation of correct radio operation before takeoff
- Automatic Terminal Information Service (ATIS) and Automated Surface Observing System (ASOS) in place at larger airports are not cost-efficient for smaller airports

Slide 3

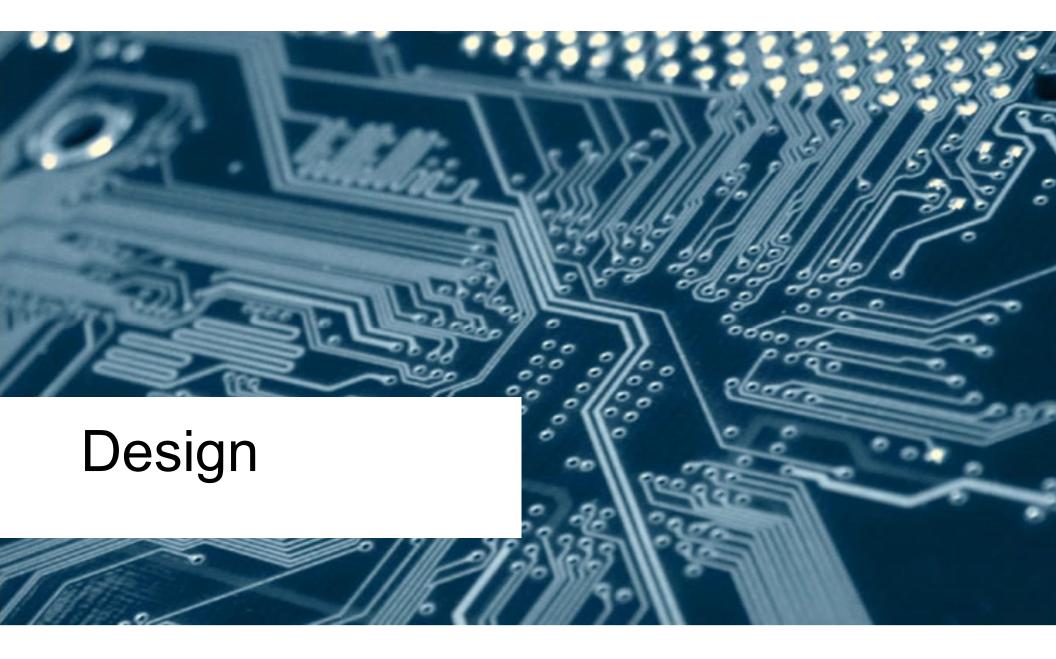
MG2 Josh

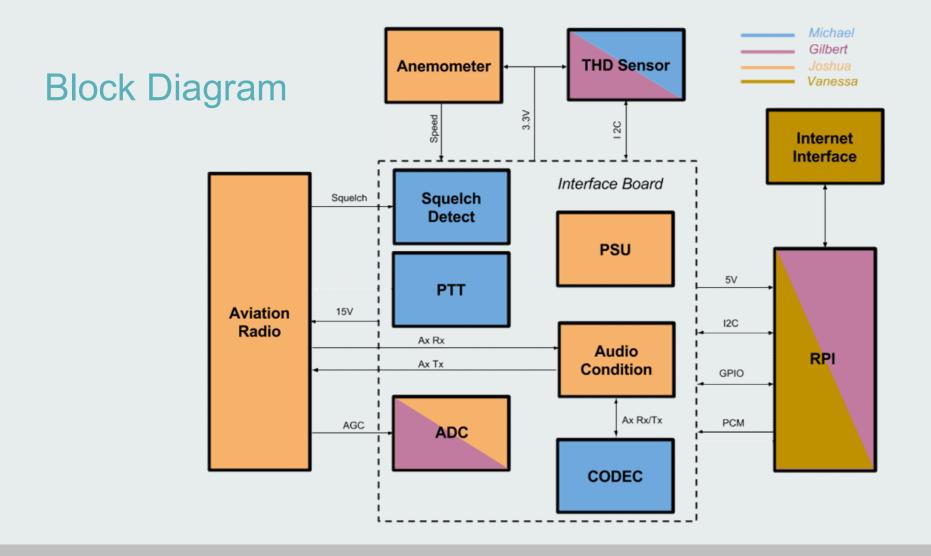
Michael Graziano, 6/22/2017

Goals & Objectives

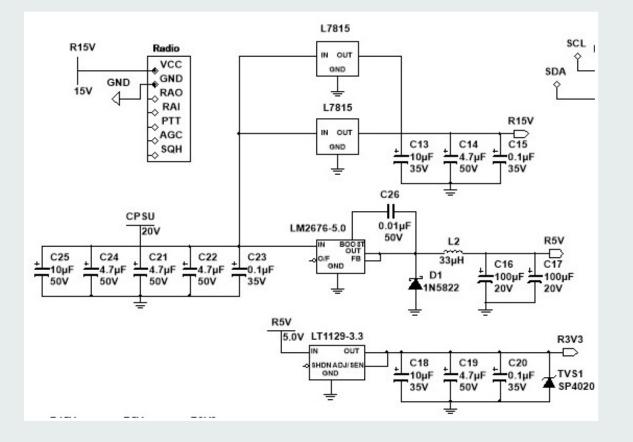
- The objective of this project is to build an easy to use, reliable, and efficient system for pilots to receive critical weather information and perform a communications check when flying into a non-towered airport
- 1. To increase the safety of pilots and passengers at these smaller airports with no manned Field Base Operator (FBO)
- 2. Provide a cost-effective alternative to expensive ATIS/ASOS systems
- 3. Improve upon the previous group's final design and expand the system's capabilities

Previous Design Flaws


- Cumbersome housing, complicated to deploy
- Only measured wind speed and wind direction
- Playback audio from the communications check/weather reporting was heavily distorted and extremely quiet rendering the final product unusable in the field
- Lack of real-world design considerations
 - Thermal design
 - Circuit protection
 - Reliability


Requirements

- Expand the capabilities for weather measuring to include temperature, humidity, and pressure sensing
- Completely redesign the audio input and output chain to allow for true "distortion free" playback
- Operate on the airports UNICOM frequency with proper phraseology and not broadcast if the channel is occupied
- Package the final design in a deployable case/enclosure that is easy to setup
- Stay on budget and produce a cost-effective solution
- Address real-world design practices and incorporate them into our final product


Engineering Specifications

- Response Time: < 3 s
- Temperature Accuracy: ± 2 °C
- Humidity Accuracy: ± 5%
- Pressure Accuracy: ± 0.12 inHg
- Wind Speed Accuracy: ± 2 kts or ± 5%
- Wind Direction Accuracy: ± 5°
- Maximum Recording Length: 15 seconds
- Power Level Accuracy: ± 5 dBm

Power Supply

Linear Regulator Selection

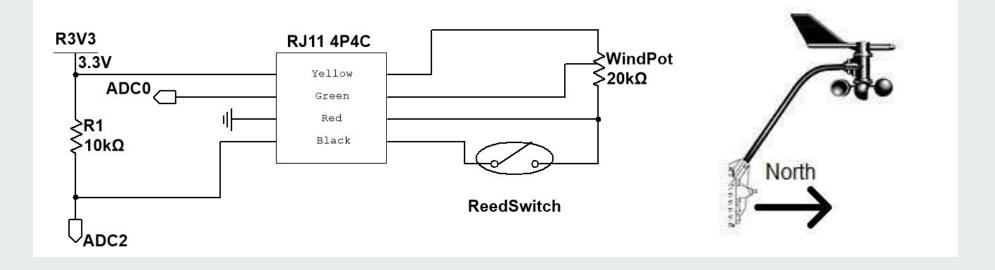
Part No.	Final Decision	Min-Max Regulated Voltage	Max Current Output	Max Input Voltage	Max Voltage Dropout at Max Current Output	Per Unit Price
		V	А	V	-	
TLV1117I-33		3.168-3.432	0.8	16	1.2	\$0.85
LT1129I-3.3	\checkmark	3.250-3.350	0.7	30	0.7	\$5.65
AMD7150		±2%	0.8	16	1	\$4.91

3.3 V Linear Regulator Comparison

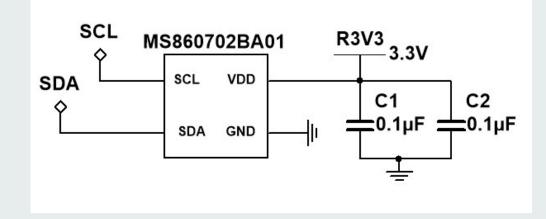
5 V Linear Regulator Comparison

Part No.	Final Decision	Max Efficiency	Max Current Output	Max Input Voltage	Min-Max Regulated Voltage	Frequency	Per Unit Price
		%	А	V	V	kHz	
LM2676	\checkmark	94	3	45	4.9 - 5.1	260	\$4.90
LM2670		94	3	40	4.9 - 5.1	260	\$6.00
LM53625		90	2.5	36	4.92 – 5.125	2100	\$3.70

Linear Regulator/Power Supply Selection


Part No.	Final Decision	Min-Max Regulated Voltage	Max Current Output	Max Input Voltage	Max Voltage Dropout at Max Current Output	Per Unit Price
		V	А	V	-	
L78S15C		14.25-15.75	2	35	2.5	\$0.84
L7815C	\checkmark	14.4-15.6	1.5	35	2	\$0.61
LM340		14.25-15.75	1.5	35	2	\$1.51

15 V Linear Regulator Comparison


Central Power Supply Unit Comparison

Power Supply	Final	Input	Output	Max Output	Efficiency	Output	Per Unit
Unit	Decision	Voltage	Voltage	Current	Enciency	Power	Price
		VAC	VDC	А	%	W	
GSM160B20- R7B		80-264	20	8	92.5	160	\$61.75
GST120A20-R7B	\checkmark	85-264	20	6	90	120	\$41.68

Anemometer

Environmental Sensor

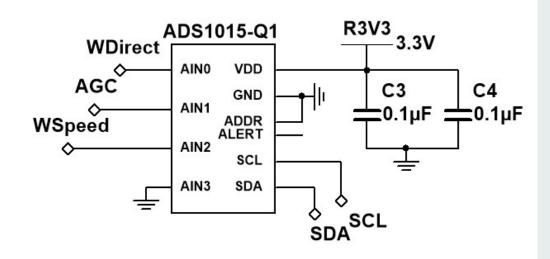
Environmental Sensor Selection

		remperati	are Sensor Com	panson	
je	Accuracy	Resolution	Long Term Stability	Max Response Period	Max Current Use

Per Unit

Tomporatura Sanaar Comporison

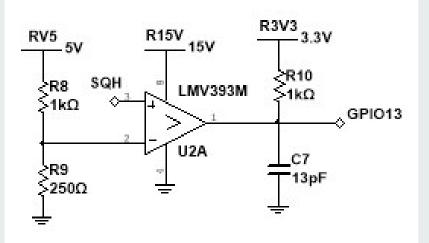
Part No.	Range	Accuracy	Resolution	Long Term Stability	Max Response Period	Max Current Use	Per Unit Price
	°C	°C	°C	°C/year	S	mA	
DHT22	-40-80	±0.5	0.1	N/A	2	2.5	\$9.95
HDC1080	-40-125	±0.2	0.1	N/A	0.0064	7.2	\$4.65
MS8607- 02BA01*	-40-85	±1	0.01	±0.3	0.015	1.25	\$8.48

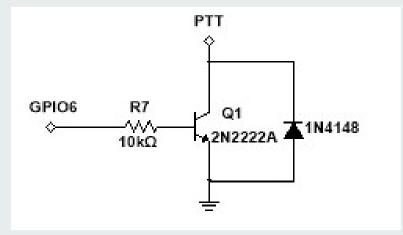

Humidity Sensor Comparison

Part No.	Range	Accuracy	Resolution	Stability	Max Response Period	Max Current Use	Per Unit Price
	%	%	%	RH% /year	S	mA	
DHT22	0-100%	2-5%	0.1%	±0.5%	2	2.5	\$9.95
HDC1080	0-100%	±2%	0.1%	±0.25	0.0065	7.2	\$4.65
MS8607- 02BA01*	0-100%	±3%	0.04%	±0.5%	0.015	1.25	\$8.48

Pressure Sensor Comparison

Part No.	Range	Accuracy	Resolution	Long Term Stability	Max Response Period	Max Current Use	Per Unit Price
	inHg	inHg	inHg	inHg/year	S	mA	
KP236N6165	17.718-48.7245	±0.2953	0.2953	N/A	0.010	10	\$6.80
MPL3155A2	14.765-32.483	±0.4	0.00044	±0.295	0.512	2	\$9.95
MS8607- 02BA01*	0.2953-59.06	±0.059	0.0005	±0.0295	0.015	1.25	\$8.48

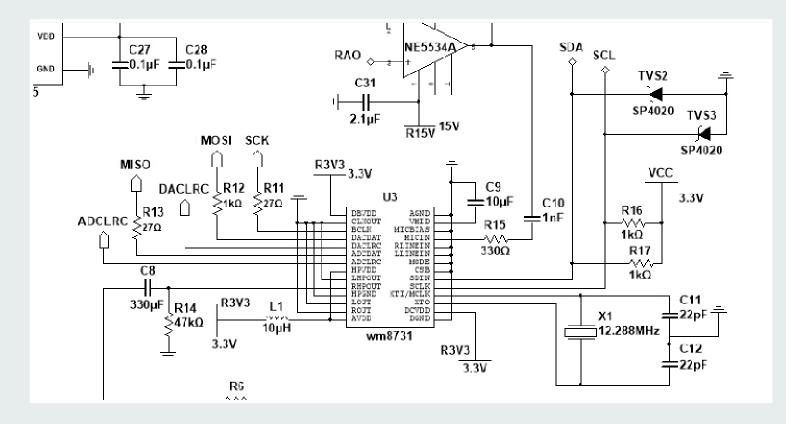

ADC

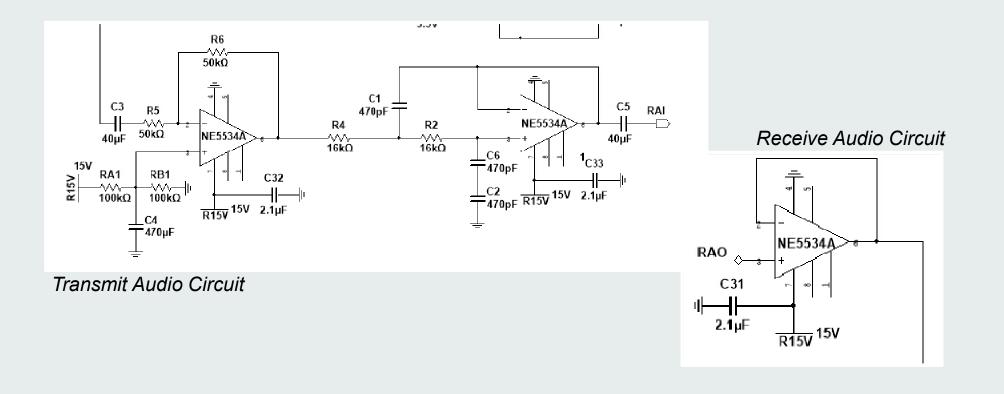


ADC Comparison

Part No.	Resolution	Sample Rate (max)	# of Inputs	Interface	Input Range	Per Unit Price
MCP3004	10	200 SPS	4	SPI	0.25-7V	\$2.32
ADS1015*	12	3300 SPS	4	I2C	0-5.5V	\$2.74
ADS1115	16	860 SPS	4	I2C	0-5.5V	\$6.47

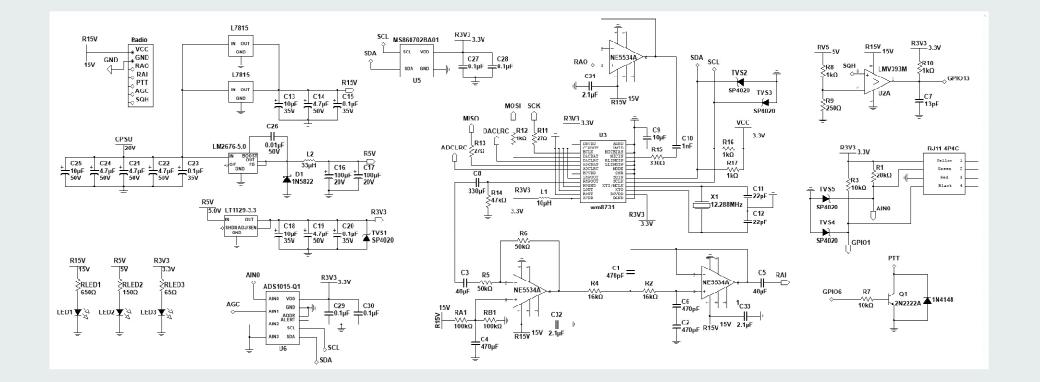
Carrier Detect/PTT Circuit

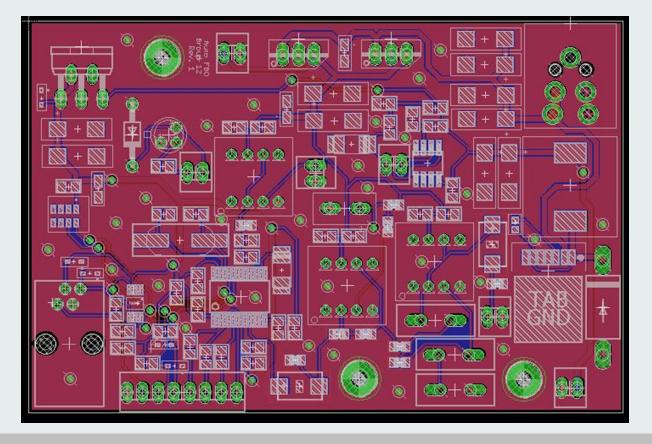



Push-to-Talk Circuit

Carrier Detect Circuit

CODEC

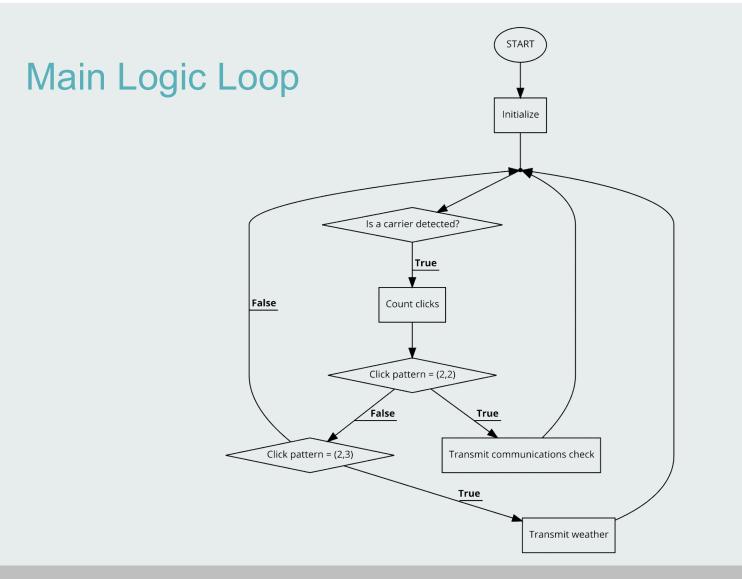

Audio Filters


Op-Amp Selection

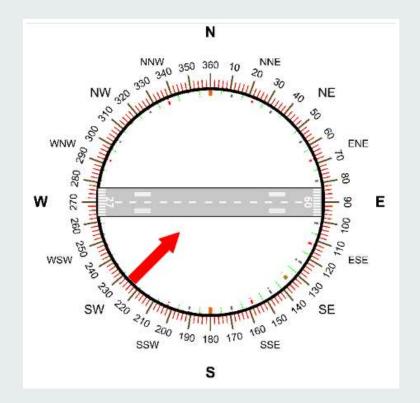
Part Number	Final Decision	Noise	Slew Rate	GBP	THD+N	Supply Voltage	CMRR	Price Per Unit
		nV/√Hz (1kHz)	V/µs	MHz	%	V	dB	
OPA2376		7.5	2	5.5	0.00027	2.2-5.5	90	1.20
NE5534A	\checkmark	3.5	13	10	0.002	6-40	100	0.90
OPA209		2.2	6.4	18	0.000025	4.5-36	130	1.50
LM833		4.5	7	16	0.002	10-36	100	0.40

Master Schematic

PCB Design


MCU Selection

MCU	Final Decision	Price Range	Dimensions	CPU	Clock Speed	RAM	Flash	GPIO Pins	I2C	SPI
Raspberry Pi 3	\checkmark	\$35	85 x 56 mm	ARM Cortex A53	900MHz	1GB	Micro-SD Card	26	2	1
Arduino Uno		\$22	74.8 x 53.3 mm	ATmega 328P	16MHz	2KB	32KB	14	2	1



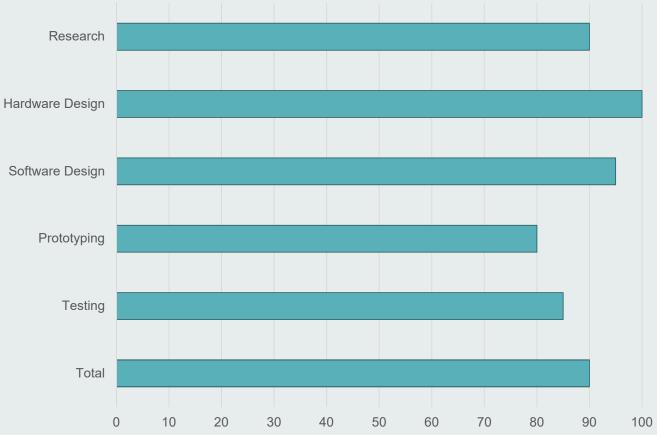
Programming Language Selection: Python

- Python has libraries for both the Raspberry Pi and the ADC
- For the web interface, we decided to use Django for the framework which utilizes a combination of HTML and Python
- Libraries and Packages:
 - Adafruit_ADS1x15
 - Smbus
 - Svox pico tts
- Other Languages Considered: C and Java
 - Unlike C or Java, Python is the language of choice for the Raspberry Pi and already had many of the libraries we needed
 - Though familiar with C and Java, we have more experience with Python

Weather Reporting GUI

Budget

Component	Design Quantity	Backup Quantity	Design Expense	Total Expense
Anemometer	1	0	\$0.00	\$0.00
THD Sensor	1	3	\$2.12	\$8.48
ADC	1	3	\$0.81	\$3.23
Raspberry Pi 3	1	1	\$40.00	\$80.00
Operational Amplifiers	3	6	\$3.27	\$9.82
Comparator	1	3	\$0.77	\$3.08
Diodes	2	6	\$0.62	\$2.46
Transistor	1	3	\$2.23	\$8.92
Voltage Regulators	4	10	\$8.29	\$29.00
Connectors/Headers	4	8	\$6.66	\$20.00
PCB + Labor	1	1	\$150.00	\$300.00
Passive Components	50	150	\$17.50	\$70.00
Power Supply	1	1	\$40.00	\$80.00
Aviation Radio	1	0	\$55.00	\$55.00
TVS	5	15	\$3.86	\$15.45
LEDs	4	12	\$0.20	\$0.80
CODEC	1	3	\$4.38	\$17.52
Case	2	0	\$20.00	\$20.00
Estimated Total			\$355.71	\$723.76


Major Goals for Completion

- Design & print 3D housing
- Continue to test overall functionality of system
- Resolve issue with CODEC
- Finish software design and programming

Work Distribution

	Aviation Radio	Weather Sensors	PCB	PTT/ Squelch	Audio	Power	Digital Interface	Web Interface
Gilbert	-	Р	-	S	Р	-	-	S
Vanessa	a -	S	-	Р	S	-	-	Р
Josh	Р	Р	S	S	Р	Р	S	-
Michael	S	S	Р	Р	S	S	Р	-

Progress

