
Smart Shower

Lucas Gillespie, Andres Huertas, Alex Power,

Nicholas Stoll

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The objective of this project is to simplify the

act of taking a shower. Allowing the user of the product to

enjoy a temperature-controlled automated shower system
without having the dependability of water temperature
fluctuation. The solution is to precisely contain and restrain

the temperature the user desires via an in-the-shower
interface as well as access through a mobile device. This
project was chosen because as a team we felt that the act of

taking a shower has been mundane for centuries and has a
great deal of room for improvement. The Smart Shower team
believes that our product can change the way people enjoy

showers.

I. INTRODUCTION

Showers can be dated back to the times of the Ancient

Greeks and since then the concept has not revolutionized.

Some technology has been added to facilitate the use

throughout the years, like the introduction of valves,

pressurized water, and the adjustment of water

temperature. Any other house appliance in a modern, 21st

century house, has had the opportunity to be upgraded to

relevant technologies except the shower system. Keeping

this mundane piece of technology is what users are

comfortable with. Perhaps society does not want to

introduce a new “solution” for the shower because they

have the mindset of “If it’s not broken why fix it?” But that

is where the misunderstanding is prominent. It is not about

fixing something that already works but rather improving

a legacy piece of technology to better the lives of the users

by creating collection of software and hardware technology

that will become a new standard feature in everyone’s

home.

This concept that has been developed by the creators of

Smart Shower allows the users to simply simplify their

lives. When a person wakes up and goes to sleep, he or she

will encounter our product and the result of this interaction

will be positive. That is because the product is created for

no other reason than to assist the user in this daily routine.

Our development team’s goal is to allow the user to have

precise, automated, and intuitive features that a manual

shower system does not offer. This includes exact water

temperature control, timers, and water consumption

statistics. With the shower alarm and temperature control

features, the user is able to set the desired start time for their

shower at their desired temperature. A use case for this

feature originated from your everyday workers or students

that need to wake up early in the morning and have limited

time to take their shower. In addition, an important aspect

of water consumption is to be integrated throughout the

product. A statistical report of previous showers taken with

water used during the showers will be displayed to the user.

II. SYSTEM COMPONENTS

Due to the complexity of the device, it’s easier to break

it down into its major sub-components and explain them

from there for better clarity. This section provides a

semi-technical introduction to each of these components.

A. Microcontroller

The primary functionality of our Smart Shower system

is only made possibly by the use of a microcontroller. All

physical functionality such as temperature control and

water flow measurement will be linked to the

microcontroller. The microcontroller will interface with

sensors and a servo to provides these features.

For our project, we decided to use the ESP8266; a low-

cost microcontroller created by Espressif that has a fully

integrated 802.11 wireless stack. The ESP8266 was

determined to have all the necessary functionality for our

project while also being the most cost-effective making it

an easy choice.

B. PCB

The main component of the project that binds all the

electrical components together is the mother board.

Designed in the electronic design automation (EDA)

program KiCAD and manufactured by Osh Park

manufacturing, it’s a single board construction that

manages most of the electronic components for the project.

This includes power regulation for the boards three power

rails, the microcontroller and all of its supporting circuitry,

and binding points for the external interfaces used.

C. LCD Interface

While in the shower our users will use a touchscreen

display interface to interact with our system. This interface

will allow the user to turn the shower on and off, control

the temperature, as well as view helpful information

relative to the shower experience and the day. The display

unit uses a resistive touch element allowing for input from

the user even when wet.

D. Servo

In order to physically control the shower in our system

we must have some sort of hardware that can bridge the

gap between our microcontroller and the shower valve. To

do this, we decided to use a servomechanism. A

servomechanism is a device that uses a feedback loop to

rotate a shaft to a specific location as determined by a

received encoded signal. Using a servomechanism

(abbreviated to servo) for our project will allow us to have

precise physical control of our shower valve. This is

necessary as our temperature control system will need the

ability to make precise small adjustments to accurately

control the temperature of the water.

E. Sensors

 One of the main features of our smart shower is water

temperature control. To obtain a temperature that is desired

by the user, we must be able to measure current water

temperature so the system may compensate by adjusting

the shower valve. The feedback provided to the control

system by the temperature sensor is necessary for the

system to provide this functionality.

 Another major feature of our smart shower is water flow

measurement; This will allow to the user to view statistics

on water use and provide necessary information to the

control system for limiting user water consumption if

desired.

F. Enclosure

Due to the expected environmental conditions that the

device as a whole will be in, carful considerations were

made to keep the electronics used for the project moisture

free. This was done by designing an enclosure with an

overlapping seam to reduce water infiltration that can also

be back filled with a rubber gasket or liquid sealant like

silicone. This same mentality was taken towards the

external interfaces when selecting water resistant

connectors, as they too would need to be water resistant to

inhibit corrosion of the contacts. The connectors were then

mounted to the chassis with epoxy resin for water

resistance and mechanical rigidity.

G. Android Mobile Device

The Smart Shower mobile application will allow for

remote control of the smart shower device. The mobile

development portion of the project was programmed for

Android devices to be specific. The Target SDK Version

of the application is API 25: Android 7.1.1 also known as

“Nougat”. Although however it does support a minimum

SDK version of 19 being KitKat.

III. SYSTEM CONCEPT

 A Use Case Diagram as seen below in Figure 1, will

better break down the Smart Shower System.

IV. HARDWARE DETAIL

A. Microcontroller

 At less than a dollar per chip, the ESP8266 offers all of

the features needed in a microcontroller for our project.

Relevant features to our project include: Integrated 802.11

b/g/n with a TCP/IP stack, powerful 32 bit 80Mhz CPU,

512 kb of flash storage, and 16 GPIO allowing UART, SPI,

I2S, I2C communication protocols. With these stated

features, developing our project on the ESP8266 was not

an issue. The plentiful GPIO allow for integration with our

display module, servo, sensors and for control of the

system.

Figure 1: Complete System Use Case Diagram

B. PCB

As outlined in section II, the PCB was designed in

KiCAD, being a complete electronic design sweet the

designer has the ability to start with a blank circuit design

and move directly into laying out a PCB by simply

assigning mechanical footprints to the components.

Along the way there

are a few design

considerations to make

that could be impotent or

just convenient later on.

Component choice is an

endless struggle, in the

case of this project

surface mount devices

(SMD) were used to keep

the PCB area lower by

using small components

as well as both sides of

the board. This choice to

a lesser extent results in a lower bill of material (BOM)

cost. The other crucial consideration for the project is trace

routing. For most of the I/O devices they don’t have any

special needs as they are low-power low-speed devices that

will have no trouble with standard sized traces. However

the high torque servo motor also requires sizable amounts

of current when it runs. This results in the need for the trace

size to be increased because it’s basically a flat wire, and

the carful use of vias if the trace needs to pass through the

board. By deliberate design, the power regulator for the

servo was intentionally placed closer to the servo header

than the others to reduce it’s length and interference to any

of the other component’s mounting pads.

The final steps were to assemble and test the board. This

was done by hand soldering each component to the board

which is made easy from the design stage by using over

sized pads for the components rather than the standard size

used for reflow soldering. Testing is done by starting with

a visual overview to spot any solder bridges or abnormal

residues that could conduct between pins and then by

adding power to the board with the power jumpers

removed and verifying that each power rail is within

specification.

C. LCD Interface

 The Nextion Intelligent Display is the touchscreen

display chosen for this project. The Nextion display line

offers all of the features we need in our project from a

standalone display solution, specifically the

NX4832T035_011R Nextion display model. All Nextion

(touchscreen) displays (As of 3/29/2017) use resistive

touch for touch input. All Nextion displays communicate

via serial. All Nextion displays are compatible with their

easy to use interface development software.

 The Nextion design software provides an intuitive

interface for designing and testing interfaces. Nextion

provides several examples to help speed along

development. The software includes a debugger and even

has a display emulator so that development may be done

even without the physical presence of the display.

 Figure 3 shows our main touchscreen interface. This

interface allows the user to turn the shower on and off,

change the temperature, and view information such as time,

current weather, and sensor data. This interface was created

using the Nextion UI builder software.

 One of the main advantages to this solution is that is

allows for fast iteration display interfaces. Instead writing

per-pixel changes in code to create a user interface,

Nextion display solution uses a graphical interface design

software. An interface can be rapidly designed on a desktop

computer and then uploaded to the display solution for use.

In many cases, no or little code must be written for the

display to function on its own with limited functionality

such as navigating through interface pages. A complex

interface can be created for use with the display solution in

a matter of minutes instead of hours or days. This is highly

advantageous in our situation with limited time and many

display interfaces to implement.

 The main microcontroller in the system is only used for

certain functionality such as sending sensor data to be

shown on the page or reacting to a button press. The display

solution can send data to the main microcontroller when

certain interface elements are pressed. This can be used to

Figure 3: PCB 3D render

Figure 2: Main Touchscreen Interface

Figure 4: PCB Rendering

run functions on the main microcontroller or update values.

Data can also be sent from the main microcontroller to the

display solution for display.

 Since this solution requires only a serial connection for

operation in a system it puts a much lighter load on the

main microcontroller when in use. Only two data lines are

required for its full functionality and integration. While

interfacing directly with the display or through a display

controller may use the entirety of the microcontrollers

resources, this solution uses almost none. Also, because the

display has its own (usually powerful) microcontroller

driving it, it can be very fluid and provide much

better(typically) user experience than trying to share

resources with the main microcontroller.

D. Servo

 One of the main reasons we chose to use a servo is that it

is a self-contained unit that can (usually) be controlled by

a relatively simple PWM signal. At first, we considered

using a motor to control our valve, but this involves a

control circuit to be built for the motor unit. These motor

control circuits can be very difficult to design, let alone

implement in a project. Building a motor control circuit

suitable for our project would be very time consuming and

could potentially be a very costly endeavor. With this in

mind, we opted for a self contained servo commonly used

by remote control (RC) vehicles. These servos come in a

large variety and are low cost and commonly available.

 There are two major types of servos in use today (with

remote control hobbyists and in robotics): the continuous

rotation servo and the fixed rotation servo. The continuous

rotation servo acts much like a motor with a controller

would. While it is a self-contained unit, it used the PWM

signal it receives to move the servo in a certain direction at

a specific rate. Much like a motor, using this type of servo

in our project would require a timer based control of the

shower valve (turn angle = rotation speed * time). This is

undesirable for our project as it adds another element into

our project which could reduce accuracy. It is also not

possible to track the current location of the servo, only

direction and rotation speed are known. The next major

type of servo, known as fixed rotation, uses its PWM input

signal to rotate to a fixed and know location. The PWM

signal it receives directly maps to a predetermined angle on

the servo. This is very desirable for use with our project as

we will be able to directly send a signal to the servo that

will correspond to a valve location. Not only does this

remove the element of time, but this allows us to always

know the location of the servo and valve based only on the

servo PWM input.

 For our project, we require a powerful servo to turn the

shower valve. The servo will interface with a small metal

spline on the shower valve that requires a high torque to

turn. Fortunately, with the rise of cheap electronics

manufacturing in China, high torque servos are available at

a relatively low cost. Of the high torque servos available,

the most desirable for longevity and strength are those that

consist of metal gears. Metal geared servos can withstand

much higher stall torques and can last for a much longer

time than similar plastic geared servos.

 After comparing many servos that could potentially be

used for our project, we decided to use the DS3218 high

torque metal gear servo as it met our needs the best.

E. Sensors

 Temperature accuracy is arguably the most important

constraint to consider when choosing a sensor type for our

project. Providing inaccurate data to the control system

may cause some serious issues (harm to user such as

scalding). Thermistors, thermocouples, and digital

temperature sensors all have the ability to provide accurate

and precise temperature readings. For our project, the

temperature sensor is located several feet away from the

microcontroller. Using a thermistor or thermocouple in the

situation may be troublesome as propagation of the analog

signal through several feet of wire introduces parasitic

resistance, capacitance, and other factors that may

significantly reduce the accuracy of the temperature

sensing. A solution to this is to run an external analog to

digital converter from the microcontroller to a close

proximity of the sensor. On the other hand, digital

temperature sensors do not have this issue since they are

digital and not analog. Wire may be simply run to the

digital sensor and an accurate reading of temperature will

still be received. While analog temperature sensors (and

other analog sensors) can be very accurate there are many

more factors that determine this when compared to digital

sensors. The overall accuracy of an analog sensor relies on

both the sensor itself and the analog to digital converter

plus factors such as wire length. These additional factors

make accuracy calculation much more complicated when

compared to a digital sensor. Digital sensors usually have

a guaranteed accuracy which is calibrated at time of

manufacture. This calibration provides an accuracy

statement that can be used directly for implementing

requirements.

 We decided to use the DS18B20 digital temperature

sensor. This sensor was chosen for its cost effectiveness,

ease of interfacing, and most importantly high accuracy.

 Hall effect water flow sensors provide a variable

frequency pulse output that corresponds with the rate of

water flow they measure. When given water flow, a turbine

inside of the sensor rotates. This turbine has a magnet

attached to the shaft of the turbine. As the turbine rotates

the attached magnet generates a changing magnetic field.

For either every rotation or specified amount stored charge

a pulse output of a fixed voltage is generated. As the

rotation speed increases (by the increased rate of water

flow) the frequency of the pulse output follows. This can

be easily measured by a microcontroller by counting the

number of pulses it receives from the sensor over a fixed

period of time. These pulses/time can then be mapped or

translated to water flow rate using a conversion specified

by the manufacturer of the sensor.

 In order to provide our water measurement capabilities,

we used the YF-S201C hall effect water flow sensor as it

is inexpensive, easy to interface, and accurate enough for

our needs.

F. Enclosure

Before the enclosure can be made water resistant it must be

designed to accommodate the projects components. The

main driving force behind the final size of the enclosure

was the size of the LCD and the PCB. Conveniently the

LCD is an off the shelf unit that is designed to be

mountable and includes mechanical drawings to do so. On

the flip side the PCB was purpose built and was designed

to be as small as possible with the given components,

providing two mounting holes in the unused corners for its

eventual mounting. A trap for the unsuspecting designer at

this point is how deep to make the enclosure. Both PCBs

are plagued with irregular shaped components the jut out

from the surface just waiting to be a head ache down the

road. The easiest way is to take note of the tallest

component of each and add a tolerance margin if desired.

Other minor considerations include mechanical fasteners to

hold the device together and or to a surface. This is done to

hold the face plate to the bulk of the enclosure with long

screws and screw holes and for the PCB with shorter

mounting screws to secure it. Mounting holes were omitted

for mounting the assembly to a wall because the group

opted to for a semi-permanent method like self adhesive

tape or hook and loop strips to reduce the work required for

an end user as well as reduce to impact of the device if it

were removed.

V.EMBEDDED SOFTWARE DETAIL

The primary functionality of our project will come from an

ESP8266 microcontroller. For our project, this

microcontroller is programmed with Embedded C through

the Arduino IDE. An ESP8266 specific Arduino library is

used for many of the basic functions on our microcontroller

and some other more complex functionality such as

wireless communication.

Our initial temperature control is provided by moving the

valve by a small amount in the desired temperature delta

per degree via the servo, checking the temperature after a

set amount of time, and then either repeating the process or

Figure 5: Simplified Temperature Control Algorithm

Figure 4: Enclosure 3D render

halting after the temperature has met the set amount by the

user.

Upon the first successful setting of a user desired

temperature, the system will store the servo position and

associate it with that temperature for future use. When the

user desires to obtain a previously set temperature, the

servo first moves the valve to the stored location associated

with that temperature. The temperature is then read and

compared to the set temperature. If it is not at the correct

temperature, the same process mentioned above will occur

until the set temperature is reached.

Another primary feature set for our smart shower is its

wireless communication capability. Our system will

communicate with a mobile device and send data directly

to a database. For this to function, a communications stack

must be established on the microcontroller. A well-

established wireless communication library exists for the

ESP8266 which allows us to quickly iterate across wireless

protocols.

We have also integrated our Smart Shower system with

Amazon Alexa using our web API. Alexa communicates

with the ESP web server to direct the smart shower to

perform actions such as turning the shower on and off or

changing the temperature.

VI. MOBILE SOFTWARE DETAIL

The Mobile Software portion of the project consists of

two parts: front end and backend. The main objective of the

mobile application user interface is to be rather simple.

Simplicity is going to be a key aspect in our design because

the users that will be utilizing the application will be

average non-technical families. By allowing the

application to be simple it will cause less complications

and after all the goal of the Smart Shower is to make

peoples life’s easier not more complicated.

A. User Interface

The application will be designed in an Android platform

using Android Studio, with several fragments that

comprised will make up the front end of the application.

The application will first open when clicked on and an

introductory splash screen will appear. Following the

splash screen is the Synchronization page, this is where the

application will connect with the microcontroller. After a

successful pair, the application will then open the Home

Screen activity which is where the shower controls will be

presented to the user. In addition to the Home Screen

fragment, there will be a Settings fragment, Water

Consumption Fragment, and a disconnect option in the

menu bar. Seen above in Figure 6, is the software flow of

the mobile application.

Table 1: Non-exhaustive table of ESP API

calls

Figure 6: Mobile Software Flow Model

Having the mobile application allows the user to control

their shower remotely. But the difference between the

mobile application and the Smart Shower user interface

inside of the physical bathroom is that the mobile

application permits the user access to water consumption

data. This is a very important feature that our project has

because even though there are two competitors in the

market with similar products, neither of them have the

water consumption feature. In addition to the highly

anticipated water consumption statistics feature it will also

incorporate a Timer/Alarm feature. This feature allows the

user to set a static shower time to force themselves to

expedite their showers. On expiration of the timer, it will

trigger the shower to shut off.

The mobile application will have direct connectivity to

the backend database which will hold the shower data as

well as the water consumption data. In addition it will have

direct communication with the Smart Shower

(microcontroller) to control the temperature and on/off

water valves.

B. Database

The database allows us to access data from any location

at any time, and record information in a place that is

independent of the smart showers and smart shower

applications. This allows us to have effectively infinite

storage – our data storage will not be stifled by a lack of

storage on the phone or smart shower microcontroller. If

more storage is needed, simply adding storage to our

remote database will allow us to store more information.

The database system we have chosen to use is Microsoft

SQL Server 2014. This is a relational database which uses

3 tables – a Smart Shower table, to keep track of each smart

shower device, a Shower table, which keeps track of each

shower, and a FlowData table, which stores incremental

flow and temperature information for each shower, which

is used in the Android app’s statistical analysis.

C. Database API

The database will also be accessed through an API. This

API allows us to hide the back-end data from the client,

allowing us to change the way the client or the server does

computation or the schema of the database without having

to change the way that they communicate. Each end will

have to hold up its part of the bargain – the client will

provide the parameters of the data it needs, and form the

request, and the database will fill the request. The API does

not care how either of these things get done, and neither do

either of the endpoints. This API will be used both in the

microcontroller’s software to send shower data to the

database, and in the mobile application to retrieve shower

data from the database.

The database API is a RESTful API written in ASP.NET

MVC. HTTP calls will retrieve, update, and create data in

the database. This RESTful design allows us to adhere to a

client-server architecture which is easily accessed by many

clients without any changes to the server. We access data

by using the smart shower serial numbers, allowing both

the smart shower app and the smart shower device itself to

access the data based on your own smart shower device

info.

Figure 8: Database Design

Figure 7: Communications Overview

VII. CONCLUSION

The smart shower project consists of a few different parts

– The smart shower microcontroller and touchscreen

display, the smart shower mobile phone app, and the smart

shower power system and servo control. These parts, while

different, were not independent in the slightest. The

success of the smart shower product entails the successful

integration of all of these elements, with a unified design

objective.

The smart shower microcontroller setup and

programming is responsible for the majority of the

operation of the smart shower device. Through the

microcontroller, the shower is actually manipulated using

the servo. The microcontroller we selected is inexpensive

and has all of the connectivity and computation power we

needed. We are able to connect this microcontroller to the

wireless network, and even use it as an access point itself,

which will greatly assist in the connectivity of the smart

shower. This connectivity will assist in connecting to the

phone, and to the database.

The Nextion touchscreen display, meant to be used

within the shower, is an essential component for the smart

shower product. It allows the user to interact with their

shower in a relatively traditional way: from within the

shower. Touchscreens are intuitive to use and understand,

unlike buttons. The issues associated with using Nextion

display instead of simple button interface with LED’s, such

as waterproofing, programming, and ensuring touch

capabilities while damp, were greatly outweighed by the

benefits of quality, ease of use, and ability to display much

more detailed information.

The smart shower mobile application was another

essential element of the smart shower product. The mobile

application is what allows the user to use all of the

advanced features of the smart shower. These features are

what allow the product to go from an electronic shower

replacement device, to a luxury user product. It allows

users the new ability to make a shower alarm, to view their

temperature and flow data for each shower, to set shower

time limits, and to connect and manage multiple showers.

All of these features utilize the internet, which allows the

user to access these setting from absolutely anywhere with

an internet connection.

 With all of these elements working together, the smart

shower offers a suite of features to smart shower users.

Almost every shower can be converted to a smart shower

and implement smart technology in yet another area of the

home. Not only is it a luxury item used to increase shower

usability, but it also encourages environmentally friendly

shower use, allowing the user to regulate the shower’s time

limit and flow and be aware of the temperature and energy

being used during their shower. All of this packaged into

an inexpensive, simple, modular, and easy to use device

VII. SMART SHOWER TEAM

 Lucas Gillespie is a 23-year old

graduating Computer Engineering

student who is taking a job with Harris

Corporation in the Electronic Systems

segment located in Melbourne, Florida.

His primary focus at Harris will be

vulnerability research and reverse

engineering.

Andres Huertas is a 22- year Computer

Engineer Major at the University of

Central Florida. He has accepted an

offer from Visa Inc. in Austin, TX as a

Cloud Software Engineer. He will also

commence his graduate education at

Johns Hopkins in the Fall.

Nicholas Stoll a 22-year-old graduating

Electrical Engineering student. Nicholas

hopes to pursue a career as a research

engineer.

Alex Power is a 21-year-old Computer

Engineering major at UCF. He has

accepted a role with FIS in Orlando as a

Software Engineer. Alex intends to

continue his education in the future and

pursue new skills in firmware

engineering, digital design, and embedded software

development.

ACKNOWLEDGEMENT

The authors wish to acknowledge and thank Dr. Lei Wei

and the professors that make up the Electrical and

Computer Engineering department at the University of

Central Florida.

