
Auto Logger
Vehicular Data Logging Interface

Hassan Siddiqui, Zachary Ross, Justin Wright

Dept. of Electrical Engineering and Computer

Science, University of Central Florida,

Orlando, Florida, 32816-2450

Abstract — The AutoLogger is an autonomous logging

interface for both electric and internal combustion engine

vehicles. The device will collect characteristic

transportation data which can be utilized by the project

sponsor, The Florida Solar Energy Center, to help improve

the UCF campus parking infrastructure and raise

awareness of the benefits of electric vehicles.

Index Terms — Automotive applications, Electric Vehicles

Global Positioning System

I. Introduction

The Auto-Logger is an autonomous logging device

which will collect a robust amount of information in

order to meet the University’s and the FSEC’s needs. In

order to adequately portray the advantages of electric

vehicles, data on fuel combustion rates, engine stress, and

oil levels will be collected on Internal Combustion

Engine (ICE) vehicles. Additionally, the Auto-Logger

has the capability to collect information on battery health,

charge capacity, atmospheric temperature and many

other parameters when interfacing with electric vehicles.

With this information the FSEC can make a strong

comparison between combustion engines and electric or

even hybrid engines and their impact on both your wallet

and the environment. To address parking infrastructure

on the UCF campus the Auto-Logger will log

information pertaining to the vehicle’s location with an

integrated GPS module, overall time spent on campus

including time parked using the onboard clock associated

with our chosen microcontroller, and even duration of

time spent accessing one of the EV charge stations if

integrated onto electric vehicles.

The Auto-Logger will incorporate customized

microcontroller design and fabrication in order to

minimize the housing space required within the vehicle.

We expect the Auto-Logger to reside in a small and

discreet package, enough to fit within the vehicle without

imposing on the driver’s legroom. This microcontroller

will interface directly with the vehicle through the

standardized OBD-II interface port, which resides in the

cabin of the vehicle typically below the steering wheel.

The AutoLogger will automatically upload all collected

data to a MySQL database hosted by the FSEC in Cocoa

Beach. To drastically reduce the operational costs of the

Auto-Logger, Group 13 will make use of a Wi-Fi

network to upload this data, as opposed to charging

additional fees to the drivers or the budget for any cellular

data used.

II. OBD-II Interface

Many different manufacturers use their OBD-II port in

different manners. Older Japanese cars used ISO lines

while American manufacturers used PWM and VPW,

and newer cars use CAN. On top of this variation, many

manufacturers use the open pins for proprietary uses (e.g.

Alfa Romeo OBD command to check supercharger

performance). The Auto-Logger will ignore the pins that

aren’t mandated by SAE J1962 because our device

wouldn’t be able to interface with them without

potentially damaging the vehicle’s computer or itself. In

order to communicate to the OBD of the vehicle, the data

transmitted and received from the car should be sent over

an RS232 converter cable. Only 9 pins from the OBD-II

port is needed in order to call the SAE J1962 required

OBD-II readings. So in order to minimize the thickness

of the cable and the space required on the PCB, RS232

DB9 type cable was chosen. OBD-II PIDs are

hexadecimal based codes that are used to fetch data from

a vehicle. The Auto-Logger incorporates only the PID

commands that are outlined and standardized within SAE

J/1939. The PIDs below outline the types of commands

that will be implemented into the design. The modes that

will be utilized along with their respective hexadecimal

PID commands are as follows:

Mode 1 allows real time data acquisition from the time

at which the PID command was sent from the Auto-

Logger. PID commands 00, 1C, 20, 40, and 60, will allow

the device to identify which PIDs and standards, if any,

are available to extract data from and will determine

which commands will be valid with the vehicle currently

being data mined. PIDs 04, 0C, 0D, 10, 50, and 5E are all

used to determine internal combustion engine load on the

vehicle. Under typical conditions, the device will only

need PID 04 to read the engine control unit’s (ECU)

internally calculated value. However if the vehicle

doesn’t support PID 04, then the Auto-Logger will have

to calculate the engine load by retrieving all the variables

manually from PIDs 0C, 0D, 10, 50, 5E and using the

same engine load formula that PID 04 would utilize. PIDs

0C, 0D, 11, 1F, 5A, and 7F will be used to determine

whether the car is currently being used by the driver. By

using these metrics the Auto-Logger can be intelligent

enough to determine if the driver had left the vehicle off

and parked. This way the Auto-Logger can put itself into

low power mode and keep itself from drawing too much

power from the car battery. These readings such as

vehicle speed can also aid in determining distance

traveled and serve as a backup in the case that the GPS

module has lost connection.
Mode 2 takes a snapshot of the current state of the

vehicle. The hex PID commands are identical to the

Mode 1 PID commands listed about, with the exception

that the data extrapolated from this mode is given from

when the freeze frame was created. The freeze frame is

initiated once the Auto-Logger puts the OBD-II into

Mode 2.
Mode 9 commands are useful to identify the vehicle the

Auto-Logger is operating on. This will be useful when

trying to sort data from multiple vehicles using duplicate

Auto-Loggers in the future in a qualitative manner. A

vehicle identification number (VIN) is a 17 - character

affixed to every automobile since 1981. A VIN is the

most reliable way to track what kind of vehicle is being

operated on because no two cars built within 30 years of

each other can share the same VIN. This will allow FSEC

greater flexibility in organizing the data retrieved from

multiple Auto-Loggers in the future.
Modes 3, 4, and 5 are irrelevant to project design

specifications and do not aid in accomplishing any of the

data procurement from the vehicle. These modes are only

used when trying to diagnose “check engine light” errors

by checking and clearing error codes from the vehicle’s

dashboard display. Because this device will not be used

as a typical car-scanner, these modes and any data from

them will be ignored by the device.

III. Power usage

The Auto-Logger will be powered solely from the

OBD-II supplied 12V pin. Many devices such as the Wi-

Fi module, GPS receiver, and SD card circuits require

3.3V - 5 V to operate in nominal conditions. In order to

reduce the supplied voltage to a sufficient level without

requiring the use of a heat sink sufficient spacing must be

introduced to accommodate for a significant temperature

gradient.
A standard lead-acid car battery contains a charge

capacity of about 45 Amp-hours. That means that it could

supply over two amps for 20 hours. A battery should not

be discharged at a higher current draw, or asked to deliver

more amps than its amp/hour rating divided by 10 in

order to get maximum capacity out of it. During Low

Power Mode (LPM) the MCU, Wi-Fi NIC, LCD, and

GPS module only draw a total of 0.56mA. During peak

current draw the device’s components draw up to

0.575A. To ensure that the Auto-Logger will not be a

liability to FSEC or any of the participants in their study,

proper battery discharge rates on the vehicle’s lead-acid

battery are essential. Peukert’s Formula for battery

discharge was utilized to estimate the efficiency of the

AutoLogger.

 Peukert’s Number is a characteristic measure of a

batteries discharge rate and is determined through

iterative hardware analysis performed by the battery

manufacturer. But due to the many types of car batteries

drivers may have installed onto their vehicle in a

multitude of various conditions, the number can fluctuate

between 1.1 and 1.3, the calculations used to design the

AutoLogger use the worst case scenario of 1.3.

Generally batteries are measured in cycles or how

many times they can be discharged and recharged before

they fail to hold a complete charge. Different batteries

provide different charging/discharging characteristics

which influence a batteries life expectancy. The main

issue at hand is that lead-acid batteries are not designed

to be depleted lower than 80% of its charge capacity and

will be damaged if dropped below that threshold. Thus

the calculations below will prove that the Auto-Logger

will not cause such issues even in the event that low

power functionality is compromised.

𝟐𝟎% 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆 𝑻𝒊𝒎𝒆 =
𝟒𝟓

𝟎. 𝟓𝟕𝟓𝟏.𝟑
∗ (𝟎. 𝟐) = 𝟏𝟖. 𝟒𝟕𝟖 𝒉𝒐𝒖𝒓𝒔

Equation 1 - Lead Acid Battery Discharge Time with Peak Load

𝟐𝟎% 𝑫𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆 𝑻𝒊𝒎𝒆 =
𝟒𝟓

𝟎. 𝟎𝟎𝟎𝟓𝟔𝟏.𝟑
∗ (𝟎. 𝟐) = 𝟏𝟓𝟏, 𝟗𝟏𝟒 𝒉𝒐𝒖𝒓𝒔

Equation 2 - Lead Acid Battery Discharge Time with LPM Load

IV. Wireless Communications

The Auto-Logger will utilized the ESP8266 chipset on

the ESP-07 Wi-Fi Module to provide the device with a

reliable and power efficient internet interface. The

ESP8266 chipset has a uniquely small package size with

32 individual pins which double as a microcontroller.

While the module package will not take much room on

the final board the team must plan to give additional

space to accommodate the associated input pins, such as

signal amplification antennas if desired.

It is important to note that the ESP-07 operates at 3.3V,

a spike in current would likely cause damage to the

module. While the designed PCB does have a 3.3V

Voltage Regular on board, we must be aware of the

device’s capability in providing sufficient current to

power this Wi-Fi module. This may be considered a

design constraint, however insignificant it may seem.
The ESP-07 Wi-Fi module will require some

additional hardware, such as capacitors for voltage

regulation and resistors for current management, in order

to properly communicate with the MCU and the FSEC

server. While this module comes complete with a built in

antenna port, we have put research into improving the

capability of our device by reducing the required signal

strength to establish a stable connection. In order to

achieve this goal, an amplifying whip antenna is utilized

to improve received signal strength. This is important as

the Wi-Fi signal in the parking lots and throughout

campus is patchy, which could result in a constant failure

to establish a connection for some participants. However,

precautions must be taken when selecting a specific

device so as not to impose on the spatial necessities of the

driver. ESP-07 comes equipped with a high frequency

crystal oscillator, which can range from 26MHz to

52MHz, and a real time clock. Because the crystal

oscillator can experience a large frequency drift based on

its operating temperature, it is necessary to wait until the

vehicle has reached a stable temperature to begin wireless

communications. In order to meet this constraint, the

Auto-Logger will only select and establish a wireless

connection once the vehicle has stopped operation. This

approach makes it possible for the device to remain

asleep during rapid cooling of the cabin from the A/C,

when the most significant frequency drift would be

experienced. Additionally, the most stable connection

will be established while the vehicle is stationary.

It is understood that the Auto-Logger, with a stable

connection, will have the ability to dump its memory

banks into the FSEC mySQL database within 15 minutes,

while accommodating some miscommunications.

Substituting values provided into the total transmission

time would come to 13 minutes 19 seconds. Values were

attained by assuming “worst case scenario” conditions

for transfer. Data attained per day should not exceed 10

MB, accumulating 500 MB of data would take almost 50

days of continuous on-campus navigation. Since data will

only be collected for vehicle operation while within

campus bounds, the amount of data queued for transfer

should never exceed 100MB. Moreover, a requirement

for participants in this study is they should be driving to

campus at least twice per week. This will allow the Auto-

Logger to keep its data transfer down to a minimum,

transmitting the small magnitude of data it has collected

on a regular basis.

The Auto-Logger will perform all data transfer in a

short period of time after the vehicle has been shut down

while on the UCF campus. Even though the vehicle is

shut down, and the alternator is off, the OBD-II interface

will still provide 12V from the vehicle’s lead-acid

battery.

While not in use the ESP-07 must be held in low power

mode, specifically Light Sleep mode. The MCU will

initialize the interface with the Wi-Fi module and

immediately put it into Light-Sleep operation. While

there is sufficient power to support the system even with

the ESP-07 module running at all times, we believe that

it is unnecessary for the device to operate on full power

if not required. The Auto-Logger uses Light-Sleep

operation, as opposed to the Deep-Sleep mode, because

it supports an interrupt based wake-up support instead of

an incremental wake-up service. Since the vehicles will

be used for personal activities it would be undesirable for

the Wi-Fi module to consistently wake up at

predetermined intervals while the vehicle is nowhere

near the transmission location.

In order to enter Light-Sleep mode, the ESP-07

requires a firmware update from SDK 1.3.0 to SDK 1.5.0,

provided by the manufacturer Espressif. In order to flash

the firmware update to the ESP8266 chipset, Group 13

utilized XXXXXX. Once the firmware has been updated,

the typical AT command list is erased. As such, the ESP-

07 will operate on code architecture created by Group 13.

Implementation

The Auto-Logger will implement the ESP-07 Wi-Fi

Module in order to connect to a Wi-Fi network. The main

MCU will initiate the state sequence once the GPS

localization identifies the vehicle as “on UCF premise”

and the vehicle’s engine shuts down. Once initiated by

the MCU the Wi-Fi module will wake from Light-Sleep

Mode and begin to poll the specified network SSID. With

the confirmation of a stable network connection

established, the communications state sequence will

progress as depicted below:

Polling of the Wi-Fi network is critical for the

establishment of a reliable connection with the FSEC

Server. The received signal strength indicator (RSSI) is

utilized to uphold a tight threshold on the signal strength.

To ensure a reliable connection, the Auto-Logger will

enforce a threshold of -80dBm. This threshold will

guarantee accurate packet transfer and a drastic reduction

in packet loss leading to repeated transmissions. RSSI is

a measurement of how well a device can hear a signal

from an access point or router. Not to be confused with

the associated transmit power of the access point or

router, the RSSI is a value useful for determining the

strength of a specified signal you can detect. The ESP-07

will rate the specified signal on a scale from 0 to 255

where the higher the number the stronger the signal is.

When the vehicle engine is shutdown, the Auto-Logger

believes this would be the most reliable time to connect

to the UCF Wi-Fi, specifically because the device is

stationary. When prompted by the GPS and OBD-II data

streams, the MCU will wake the Wi-Fi module and

initiate the connection sequence with the specified

network. After a connection is establish the MCU will

begin to poll the signal strength. Open-source libraries

for the ESP-07 provide readily available RSSI

interpretation for the ATMega2560, supplying the Auto-

Logger with a clear and intuitive capability to study the

signal strength and determine whether or not such a

network could reliably support the transfer of our mission

critical data.

The Auto-Logger will utilize secure Transmission

Control Protocol (TCP) as its medium of communication

which comes equipped with many features which provide

reliable support. In order to avoid conflicts with the UCF

Wi-Fi firewall the team will demo the project on a

temporary Hotspot network.

As recommended and made readily apparent by

innumerable implementations, Image or Binary Mode is

the representation implemented in the Auto-Logger

because reliability is key in such a system. This data

representation will also reduce the complexity of the

serial transfer between the MCU and the ESP-07 as well

as the TCP communication between the client and server,

as various conversion will not be required on both ends

of the communication process. Various open-source

libraries are available and will be implemented to

perform these conversion on the fly

Communication with the FSEC server will require

conjoined effort from the MCU, Wi-Fi module and the

SD Card in order to gather, organize, prepare and

transmit the desired data logs. Analysis by the server will

be required to ensure the file was received successfully.

Instead of deleting logs as soon as they have been

transmitted to the server, the Auto-Logger will

implement a circular storage methodology. This

technique will continue to save data logs on a per second

basis until the entire storage unit has been filled to

capacity. Once storage capacity has been reached, the

device will begin to overwrite files starting from the

oldest file and progressing towards the newest thus

completing the circle.

The Auto-Logger will connect to the FSEC webserver

securely with the use of a private username and password

combination. Communication will utilize TCP port 443

as it, along with TCP port 80, remains open even when

such a server is stationed behind a firewall. Once a

connection has been established with the server the Auto-

Logger will transmit the contained data files, saving them

into a MySQL database provided by the FSEC. The

Auto-Logger, through the use of a data transfer log, will

keep track of transferred data ensuring the server only

receives what is needed.

V. GPS Localization

The Auto-Logger will utilize Adafruit’s

FGPMMOPA6H GPS module for accurate real-time

vehicle localization. This module implements a

MediaTek (MTK) chipset to provide features pertinent to

the goals of the Auto-Logger such as data logging and

acquisition rates which exceed 5 Hz. While the package

for the device is very small, additional space on the PCB

must be devoted in order to accommodate the modules

associated hardware such as antenna ports.

The FGPMMOPA6H is an ultra-compact, patch on

top, 66-channel GPS Engine board equipped with

antenna module and MTK chipset. This receiver provides

an RF solution that is high in position and speed accuracy

performances, with high sensitivity and tracking

capabilities in urban conditions which are ideal for the

purpose of the Auto-Logger. This GPS module is an all-

inclusive package providing the MKT chipset with a POT

antenna, 32 MHz Crystal clock, 16 MHz temperature

compensate crystal clock and main Low Dropout (LDO)

Voltage Regulator.

The temperature compensate crystal clock (TXCO) is

implemented in low-cost designs requiring a precision

frequency source within a small space. This device has

temperature compensation circuitry to suppress output

frequency deviation caused by temperature changes in

the surrounding environment. Such compensation is

highly advantageous for the Auto-Logger since the

device will remain in a vehicle for the entire product life-

cycle. Atmospheric temperature in a vehicle can easily

range from 25° Celsius to 70° Celsius. Experiencing the

complete temperature range within an hour’s time, up to

several times per day is a result of typical vehicle usage,

as such the TXCO is a significant asset to the reliability

of the GPS acquisition system.

Temperature Compensated Crystal Clock oscillators

with standard compensation techniques achieve

fractional stabilities of around ±1 parts-per-million (ppm)

for a temperature range of -40° C to 85° C.

Each individual TXCO requires personalized network

compensation to be matched with its specific crystal.

Subsequently, the cost of a TCXO is closely related to the

difficulty of the frequency versus temperature

specification. During operation, a voltage change causes

a change in the capacitance of the varactor diode. This

results in a change in the frequency of oscillation. The

thermistor network is tailored to the crystal in order to

force the voltage to vary with temperature such that the

crystal’s frequency variation characteristics versus its

temperature change are adequately compensated for.

The LDO voltage regulator supplies the MTK chipset

with performance capabilities optimized for battery-

powered systems delivering low quiescent current, thus

prolonging battery life. The LDO utilized in the

FGPMMOPA6H GPS module is the Richteck RT9193

300mA, Ultra-Low Noise, Ultra-Fast CMOS LDO

Regulator. This component provides the

FGPMMOPA6H with a pristine power signal, regulated

of all noise and jitter, fast switching speeds and ability to

draw sufficient current even as battery voltage continues

to deplete. Moreover, the LDO voltage regulator is driven

with low-ESR ceramic capacitors thus reducing board

space required to perform the same job. The RT9193

LDO voltage regulator helps the FPGMMOPA6H GPS

module achieve such a level of efficiency and reliability,

critical for low-power mobile applications.

A geographic coordinate system enables every location

on a spherical planet to be specified by a set of numbers

or letters, or even symbols. Coordinates are often chosen

such that one number represents vertical positioning

while the other represents horizontal positioning. The

standard depiction of global positioning uses longitude

and latitude, elevation is sometime incorporated as

additional information. Latitude depicts a point on the

Earth's surface where the angle between the equatorial

plane and the straight line that passes through that point

and through (or close to) the center of the Earth. Latitude

ranges from 0° at the Equator to 90° at the North or South

Pole. Longitude depicts a point a point on the Earth's

surface is the angle east or west from a reference

meridian to another meridian that passes through that

point.

Latitudinal and longitudinal information are usually

communicated using decimal or Degree/Minute/Second

notations. The GPS module implements a proprietary

Degree/Minute/Second notation regulated by the NMEA

standard - 0183 version 2.

Due to NMEA restriction, GPS information clearly has

an inherent error rate associated with it when compared

to the typical coordinate system notations, specifically

Degree/minute/second. The NMEA regulated notation

sacrifices the high resolution associated with the seconds

metric of the typical notation for a system tuned towards

the abilities of the technologies implemented. In order to

illustrate a greater localized accuracy the standard

sacrifices localization resolution, the regulated notation

removes the seconds unit, instead implementing a

decimal into the minute unit. Due to the introduction of a

decimal unit with 6 fields of accuracy the error associated

with ignoring the seconds unit is bypassed, securing the

error at the typical rate of acquiring a reading within 3

meters of its actual location 95% of the time.

In order to determine whether or not the participating

vehicle is within campus bounds, the MCU must take the

longitude and latitude provided in by the FPGMM GPS

module and compare it to the designated campus

footprint. The design team is working with the University

of Central Florida to acquire realistic campus boundaries

to maximize data accuracy. In the event that UCF is not

permitted to release such information, the design team

can acquire accurate coordinates through the United

Stated Geological Services (USGS). The USGS provides

free and highly accurate, up to 1 arc-sec, elevation and

terrain data for the entire United States of America.

Through the use of their applied resources, the design

team can attain an accurate footprint of the UCF campus

and possibly its sister locations.

VI. Microcontroller

The Atmel ATmega2560 is the chosen MCU utilized

by the Auto-Logger. It will interface with every single

module embedded within the device PCB. The

ATmega2560 does not come pre boot loaded with any

firmware and will have to be manually programmed

through the use of an AVR programming software or

with another boot loaded ATmega2560. This process is

required in order to upload the Auto-Logger software

onto the MCU

The ATmega2560, has 54 digital input/output ports, 15

of which can support PWM outputs. The main reason this

board was preferred is because it has the capability to

support 4 UART hardware serial ports. Because the

ATmega2560 needs to interface with all the major

modules of the Auto-Logger, it must be able to

accommodate the use of several serial lines in parallel. It

has 7 times more flash memory available in the chip

which provides the ability to write a larger program and

have more available RAM at the user's disposal if the

capability is needed.

The ATmega2560 is programmed using the Arduino

Integrated Development Environment (IDE) or its

predecessor, Processing. Programs written using Arduino

Software (IDE) are called sketches. These sketches are

written in the text editor and are saved with the file

extension (.ino). Arduino IDE will be used to debug and

implement the final software and is readily available for

free because of its open source nature.

The ATmega2560 is only available in surface mount

100 pin Thin Quad Flat Pack (TQFP). BGA packaging is

very compact and allows for a very small footprint on the

manufactured PCB, unfortunately it will be a very

cumbersome feat to attempt to troubleshoot any BGA

package due to all the conductive contacts being hidden

under the IC. It would also be a challenging undertaking

to assemble the PCB even if there is not a need to

troubleshoot the device. The TQFP package of the

ATmega2560 will allow us to easily troubleshoot the IC

because all the pins are exposed and easily probed. The

team is also experienced enough in soldering to assemble

the PCB while using TQFP components. Additionally, by

using a TQFP packaged IC the need for multilayered

PCBs will diminish because the leads can be easily

managed on the surface layer.

VII. Temperature Sensor

The TMP36 sensor is a low voltage, precision

centigrade temperature sensor. This sensor provides an

output voltage which is linearly proportional to the

centigrade temperature scale. The TMP36 can provide

typical accuracies of ±2°C over the -40°C to +125°C

temperature range and does not require initial external

calibration to deliver such accuracies.

The low output impedance of the TMP36 simply the

interfacing process and is intended for single supply

operation from 2.7V to 5.5V, which lays along the range

the Auto-Logger will supply to its other components.

This model of temperature sensor produces 125mV

output at 25°C and scales linearly as temperature

increases or decreases by a factor of 10mV/°C.

The TMP36 temperature sensor, consisting of three

pins, will interface directly with an analog pin on the

ATMega2560. Using the two simple conversions

previously stated, the MCU will be able to attain the

ambient temperature of the vehicle cabin to within 1°C.

The value produced by the TMP36 ranges from 0 to 1023

based on the temperature it is experiences. With the value

stored as a voltage measurement, the MCU can now

convert it directly into a temperature measured in °C.

VIII. Real Time Clock

The DS1307 real time clock will be used in low power

mode when the car is off. The DS1307 serves to keep

track of how long the vehicle is parked in one location

until the vehicle is turned on and begins moving again.

The DS1307 will use backup battery power while the

device is in low power mode. The DS1307 uses 8 bits and

8 address lines to keep track of time from seconds to the

year. The day of the week register increments at midnight

and the days are defined by the user, such as 1 equals

Sunday. The accuracy of the clock is determined by the

32.786 kHz crystal oscillator. When reading and writing

the time and date registers, secondary buffers are used to

prevent error when the internal registers update. When

the time and date is read the buffers are synchronized to

the internal registers. The time information is read from

the secondary registers while the clock continues to run.

This would eliminate the need to re-read the registers in

case the internal registers update during a read.

The DS1307 operates as a slave that needs to be

controlled by a master device that generates the serial

clock, controls the bus access, and generates the start and

stop conditions. The data transfer can only be initiated

only when the bus is not busy. While data is being

transferred the data line must remain stable whenever the

clock line is high. Changes in any data line while the

clock line is high will be interpreted as control signals.

To start a data transfer change the data line from high

to low while the clock is high. To stop a data transfer,

change the data line from low to high while the clock is

high. The master device must acknowledge the reception

of each byte by generating an extra clock pulse with the

acknowledge bit. A device that acknowledges must pull

down the SDA line during the acknowledge clock pulse

so that the SDA line is stable low during the high period

of the acknowledge-related clock pulse. On the last byte

a master must signal an end of data. To do this, the slave

must leave the data line high to enable the master to

generate the stop condition. To run without power from

the car the DS1307 will use a CR2032 battery to operate.

The CR2032 is a small lithium coin cell battery that has

sufficient voltage output of 3V to operate the DS1307.

The DS1307 is needed because when the ATMega2560

goes into low power mode the clock shuts off failing to

track the time that has passed while in low power mode.

IX. Local and Remote Storage

The Data collected from the OBD-II port will be stored

locally in a microSD card. The data needs to be stored

locally because the vehicle will not always be able to

immediately transmit data. The microSD card can vary in

size depending on the interval between data

transmissions to the FSEC servers. As stated previously,

the microSD card is of sufficient size such that the

available memory will not be depleted in the event that

the vehicle is unable to transmit data on a regular basis.

The MM74HC 4050M hex inverting logic level down

converter, LP2981-N low dropout regulator from Texas

Instruments, and a SD/MMC card reader are the

components used to read the microSD.

The microSD Card will be formatted using the FAT32

file system which is directly compatible with the Auto-

Logger’s ATMega2560 chipset. The 32 bit system is

compatible with the microcontroller. Using the Arduino

library we can format the microSD card and verify it is

formatted correctly. The chip select pin should be

connected to pin 53 so the value in the library should be

set to 53. The microSD card will be inserted into a sketch

to test if the volume type is FAT32. There are several

functions for microSD Card memory management that

can be used in the Arduino library when formatting the

microSD card.

As recommended by the FSEC the Auto-Logger will

call a web application and post the recently collected data

to a server. This server will be implemented using a

mySQL database used to store and manage the dataset

received from the Auto-Logger. All communications will

be secured, sent through TCP port 443, and limited to

authenticated users only. The server will require the

capability to ensure received files have not been

corrupted or altered in any way. The MySQL database

provided by FSEC will be created around these

constraints and any additional concerns brought to the

attention of either the FSEC faculty or the design team.

The Auto-Logger will act as a node application to save

specified data files to the mySQL database in Cocoa

Beach, FL. In order to efficiently communicate with this

mySQL database, the Auto-Logger will excel at

establishing a connection, pushing data, awaiting

confirmation and managing the memory structure. In the

event that some files have been corrupt on the server side,

FSEC requests the Auto-Logger have the ability to keep

track of all transferred data and only transmit what is

needed by the server. Depending on the capabilities of

the server the Auto-Logger may need to perform this

action as a stand-alone device. The Auto-Logger should

not continue to the next file to transmit until it has

received confirmation from the server that the file was

received and is in a functional condition.

Coding Architecture

The final software architecture will incorporate a

combination of PHP and C++ to program the

ATmega2560. PHP is a general-purpose scripting

language that is especially suited to server-side web

development, in which case PHP generally runs on a web

server. Many of the server side architecture will be

handled by FSEC employees and is not completely

within the scope of the architecture outlined above. The

software on the Auto-Logger will only use PHP as a

conduit to relay information to the server in manner that

this specific server can understand and interpret. Any

PHP code in a requested file is executed by the PHP

runtime, which is located on the server side application.

Oracle implements an open source database relational

database management system (RDBMS) named MySQL.

FSEC has specified that they only have Oracle servers

that will be receiving the data collected by the Auto-

Logger. Because of MySQL’s open source nature,

documentation on how to communicate and implement

the device will not be a large barrier to overcome.

The overwhelming majority of the Auto-Logger design

and program flow utilizes C++. The multitude of open

source libraries that are advised to use with the

ATmega2560, Wi-Fi Network Interface Card (NIC), real

time clock (RTC), and the chips within the OBD-II

communications board, are all written in a stable form

using C++.

During first installation of the Auto-Logger it will

retrieve data such as the VIN, identify what fuel type the

vehicle uses, and which OBD-II standard communication

protocol it uses to interface with the vehicle’s electronic

control unit (ECU) such as CAN, VPW, ISO, etc. This

ensures the Auto-Logger does not use the wrong PID

commands to retrieve the data from the vehicle.

The code-flow of the Auto-Logger attempts to activate

Low Power Mode (LPM) whenever possible to decrease

current draw from the vehicle’s battery supply. By

minimizing power draw at opportune moments, it will

diminish thermal buildup in the separate ICs and power

regulators on the PCB. This will increase the longevity of

the hardware and allow FSEC to use the device for longer

periods subsequently gathering more data for their study.

The liquid crystal display (LCD) will be used to

display to the driver what the Auto-Logger is doing. It

will notify the driver when it starts logging data from the

car, alert the driver when it had started saving his or her

vehicle’s location to the microSD. This way the driver

knows when vehicle is being polled. The LCD can also

be built upon in future iterations of the Auto-Logger to

display useful vehicle information to driver or to notify

him or her if the ECU detected a fault. Many of those

features fall outside of the scope of the current design

effort for this iteration but will be detrimental for future

developers of this device if an LCD isn’t ever

incorporated into the initial design iteration. This feature

also will be useful for the driver so that they are

knowledgeable of any action taken while driving their

car.

The Auto-Logger must ensure that the vehicle is on

campus before any data logging is performed. The GPS

will perform intermittent pings to check if the vehicle has

entered UCF campus grounds, data retrieval will begin to

accurately and immediately store the data stream as soon

as the vehicle crosses the campus boundary. This also

shows that the device is indeed tracking the study

participant’s vehicle location at all times when the

vehicle is in operation, but the privacy of the driver is

kept intact because this location data isn’t saved, in any

form or fashion, on the FSEC database nor on the

device’s internal memory. The GPS location will be

intermittently saved on temporary variables within the

MCU to be compared with the predetermined campus

bounds, saved within the MCU memory, to evaluate

whether or not the participant’s vehicle resides within the

UCF campus.

Once the Auto-Logger has determined that the vehicle

has entered campus grounds, it will enable the microSD

and OBD-II communication modules and prepare them

to begin fetching data from the ECU on a second-by-

second basis, as requested by the FSEC sponsors. The

speed of the ECU on most vehicles permits the retrieval

of 100 readings from the OBD-II port, through a serial to

UART conversion interface, every second. A typical

microSD card has a read and write data throughput of 4-

6 MB/s which will easily save a single data point per

second, as the typical cards have an average throughput

of 4,050 KB/s which is more than enough to log multiple

data points to a text file in one second.

The preferred method to track whether or not the

vehicle is in use or not is by procuring the many available

metrics from the ECU through the use of the OBD-II

hexadecimal PID commands. These commands are all

being utilized from Mode 1 PIDs so that the MCU can

identify exactly when the vehicle is not in use with almost

negligible time delay. PIDs 0C, 0D, 11, 1F, 5A, and 7F

will be used to determine whether the car is currently

being used by the driver. By using these metrics the Auto-

Logger can be intelligent enough to determine if the

driver had left the vehicle off and parked. This way the

Auto-Logger can put itself into low power mode and

keep itself from drawing too much power from the car

battery. These readings such as vehicle speed can also aid

in determining distance traveled and serve as a backup in

the case that the GPS module has lost connection.

XI. Conclusion

This project has proven to be a significant and valuable

experience for each person in Senior Design group 13,

especially when accounting for the lack of project

experience appointed through the engineering

curriculum. We have applied the concepts introduced in

our classes and ideas developed on our own to bring our

project into reality. Additionally, the group gained

critical experience in management and professionalism

through the support of and interaction with the Florida

Solar Energy Center, the project sponsor.

 In the end, this design experience has taught us a lot

about ourselves, including communication skills and

relative engineering skillsets, as well as aspirations for

the future. With the completion of the Auto Logger

design and fabrication and Senior Design 2, Group 13

will hand-off the final product as well as all materials to

the sponsor, the Florida Solar Energy Center.

Acknowledgement

The authors wish to acknowledge the assistance and

support of those at the Florida Solar Energy Center for

providing us with financial support and an honorable

design goal. Additional thanks go to our peers, mentors

and colleagues for sharing this strenuous experience with

us.

Biography

Zachary Ross, a 22 year old

electrical engineering senior at the

University of Central Florida. He

is presently employed at UCF in

the College of Sciences Physics

department assisting in the design

and development of the QPACE

CubeSat. He hopes to one day work alongside NASA

engineers and contractors in the pursuit of greater

scientific discoveries.

Hassan Siddiqui is an

undergraduate working towards a

bachelor’s degree in electrical

engineering at University of

Central Florida. He is currently an

intern at Lockheed Martin MFC

working in Advanced

Manufacturing Technologies.

Justin Wright, a 22 year old electrical engineering

senior at the University of Central Florida. He hopes to

pursue a career working with MEMs devices after

completing his degree.

References

[1] "Arduino - Tutorials." Arduino - Tutorials. N.p.,
n.d. Web. 01 April 2016.

[2] "ESP8266 Community Forum" Everything
ESP8266. N.p., n.d. Web. 05 June 2016.

[3] "OBD Modes and PIDs" OBD Modes and
Configuration (PID). N.p., n.d. Web. 07 March
2016

[4] W.E. Jones “Notes on Batteries”
<http://www.gizmology.net/batteries.htm>
2003

