U-Park

Real-Time Parking Information Solution

Spring/Summer 2016 (April,28th 2016)

(Team 9) Member: Major:

Them Le Electrical Engineer
Danny Russell Computer Engineer
Carlos Pereda Computer Engineer

Roddey Smith (PM) Computer Engineer

i. Title Page

Table of Contents

ii. Table of contents
1. Executive Summary
2. Project Description
2. 1 Motivation and Goals
2. 2 Objectives
2. 3 Requirement Specifications
3. Administrative Content
3. 1 Budget and Financing
3. 2 Milestones
3.3 UPark Design Team

4. Research

4. 1 Existing Solutions

4. 1. 1 Baltimore/Washington International Airport
4. 1. 2 Disney Springs Parking Garage
4. 1. 3 Denmark Automated Parking Garage

4.2 Sensors

4. 2. 1 Sensors General Description

4. 2. 2 Case Study: Applicable Sensor Types
4. 2. 2. 1 Hall Effect Sensor
4. 2. 2. 2 Ultrasonic Sensor
4.2.2. 3 Sharp Infrared Sensor

4. 2. 3 Sensor Decision

4. 3 Transceiver

4. 3. 1 Bluetooth
4. 3. 2 Wi-Fi
4. 3. 3 Other Notable Options

4. 4 Networking

4. 4. 1 Networking Models
4.4.1.1 Linear Connection
4.4.1. 2 Mesh Network Topology
4.4. 1. 3 Star Network Topology
4.4.1. 4 Ring Network Topology
4. 4. 2 U-Park Network

4. 5 Power

4.5. 1 AC to DC converter
4.5.2 DC Power (Batteries)

4. 6 Software Packages

4. 6. 1 Programming Languages
4.6. 1.1 AVR-C (ATmega328p)

. 2 Java

.3 PHP

. 4 Javascript

. 5 Visual Basic

. 6 Bootstrap CSS

ramming Design Patterns

1 Observer

2 Factory

3 Singleton

4 Facade

1
1
1
1
1
1

raaas

4.6.2P

—

(0]

coo8 o000

P R

. 2.
. 2.
. 2.
. 2.

Page 1

Page 2
Page 3
Page 5

Page 6
Page 8
Page 9

Page 11
Page 12
Page 12

Page 12

Page 13
Page 15
Page 18

Page 19

Page 19
Page 21
Page 22

Page 23
Page 23
Page 24
Page 25
Page 26
Page 27

Page 29
Page 36

Page 37
Page 38
Page 38
Page 39
Page 39
Page 39

Page 40
Page 41
Page 43
Page 43

4. 6. 3 Database Management System (DBMS)

4.6.3.1MySql
4.6.3.2MS SQL Server
4. 7 Application
4.7.1 Website
4. 7. 2 Smartphone Application
4. 8 Project Scaling
4. 9 Microcontroller
4. 9. 1 Processor Speed
4. 9. 2 Peripherals
4. 9. 3 Other Microprocessor Information
4. 9. 4 Part Selection
4. 10 Summary of Features
5. Methods
5. 1 Research Methods
5. 2 Design Methods
5. 3 Project Management
5. 4 Implementation
6. Reallistic Design Constraints
6. 1 Standards
6. 1. 1 Wireless Standards
6. 1. 2 Other Relevant Standards
6. 1. 3 Defacto standards
6. 2 Economics and Time
6. 3 Ethical, Privacy, Health and Safety
6. 4 Manufacturing and Sustainability
7. Design
7. 1 Design Specifications
7.1.1 Sensor
. 1. 2 WIFI - LAN Transceiver
. 1. 3 Power
. 1. 4 Microcontroller
. 1. 5 Server
7. 1. 6 Application Interface
7. 2 Microcontroller
7. 3 Sensors
7
7

7
7
7
7

. 4 Communication between Microcontrollers
. 5 Software
7. 5.1 Language
7. 5. 2 Programming Pattern
7. 5.3 Web Application
7. 5. 3. 1 Overall Design Philosophy
7.5. 3. 2 User Interface
7. 5. 3. 3 Administrator Interface
7. 5. 4 Mobile Application
7.5.5UML
7.6 Server
7. 6. 1 Gateway
. 7 Design Summary
7. 7. 1 System Installation and Mounting
7. 7. 2 Network Infrastructure

~

Page 44
Page 44
Page 45

Page 46
Page 48
Page 48

Page 50
Page 51
Page 52
Page 52
Page 53

Page 54
Page 56
Page 57
Page 59

Page 60
Page 60

Page 61

Page 61
Page 62

Page 63

Page 65

Page 67

Page 69

Page 69

Page 69
Page 70

Page 71
Page 78

Page 80

Page 81
Page 82

Page 83
Page 83
Page 84
Page 85
Page 85
Page 89
Page 89

Page 90
Page 93

7. 7. 3 Database Design
7.7.3.1ER Diagram
7.7.3.2mySQL Tables

8. Prototype
8. 1 Microcontroller
8. 2 Sensors
8. 3 Software
8. 3. 1 Web Application
8. 3. 2 Mobile Application
8. 4 Database (and Server Application)
8. 5 Construction
8. 5. 1 Facilities and Equipment
8. 5. 2 Suppliers
9. Testing Plan
9. 1 Sensor
9. 2 Microcontroller
9. 3 Network
9. 4 Database
9. 5 Application
9.5.1Web
9.5.2 Mobile
10. Project Operation
11. Conclusion
11. 1 Reflections
11. 1. 1 Features Left Out
11. 1. 2 Future Improvements
12. Appendices
A. Works Cited
B. Permissions

Page 96
Page 98
Page 102

Page 110
Page 114

Page 114

Page 115
Page 115

Page 123
Page 123
Page 124

Page 125
Page 126
Page 126
Page 128

Page 130
Page 130
Page 131

Page 132
Page 132

[A]
[B]

1. Executive Summary

Across the world today there are thousands of parking garages, and there are
millions of people who must deal with the frustrations of driving around aimlessly
through said parking garages attempting to find a spot. This parking problem is
especially apparent to any student who attends classes on the main campus of
the University of Central Florida. At the beginning of the fall and spring
semesters, this problem only worsens, and often results in driving around in
circles for 45 minutes or more. Some people resort to waiting by the stairs in the
garages to follow a returning student to their vehicle and take the parking spot as
soon as it becomes available. This is not only inefficient, but also results in traffic
jams inside the garages which only further exacerbates the stress of finding a
spot, and still making it to class on time. This is only one example of inefficient
parking garage management, but the problem is prevalent in over-utilized
garages all across the country. The U-Park system, which this senior design
team will be designing, and testing will aim to alleviate these stresses by
supplying users (students) with real-time information of available spots in the
garages in which the system is implemented. With students being able to know
where spots are available, and which garages have the most spots available,
these students will be able to better plan which garage to enter first. Students
will be able to spend less time getting to class, and more time being in class.

The proposed solution consists of an array of sensors detecting whether or not
there is a car in each parking space in a particular garage. The sensors will be
positioned above the cars from the ceiling, so as to have access to the power
lines for the lights, and to avoid any tampering, or anybody accidentally driving
over one of the sensors. One module will monitor three adjacent spaces using
ultrasonic sensors. The modules for the top floor will be slightly different. They
will be mounted in front of the parking spots, and they will only detect two cars
each. Each of the sensors will point downwards at a space. It will be set to a
threshold distance from the ground to be able to detect whether a car has parked
in the space or the space is still open. The module on which the three ultrasonic
sensors are connected to is based off of the Arduino open-source platform.
Instead of using the plug-and-play prototype board, the U-Park solution will
simply use a microcontroller chip. The sensors modules will be connected
together in a mesh network in order to communicate all of the information for
each of the parking spots in the garage down the line to a control module
connected to a router. This then sends all of the status information for the spots
on each floor to a central database over the internet.

Such a system would be of no use unless users can gain access to this
information in an easy and quick way. Since the true problem with the parking
situation at UCF, in particular, seems to stem from a lack of information about
available parking in the garages. The fix to this problem is to eliminate the

information deficit. Users can access real-time information through a web site
which is optimized for mobile use by using dynamically scalable CSS libraries
which will optimize the display elements for each screen size. A future goal of
the system would be to also develop mobile applications for iOS and Android,
which would be able to send users a notification as to what garage to park in, as
soon as he/she arrives on campus.

U-Park is a complete solution to a problem which is pervasive in college
campuses and large event venues across the country. This system, properly
implemented in such locations, will not only save user’s time, but will also, in the
process, save fuel by minimizing the time driving around searching for parking in
a full garage rather than simply driving to another garage with empty spots that is
right down the road.

2. Project Description
2. 1 Motivation and Goals

When group nine started brainstorming ideas for senior design project, there
were many different ideas from each member in the group. There are three
Computer Engineers and one Electrical Engineer in the group, so some of the
project ideas were related to computer and some related to electrical
engineering. But overall, those ideas were improved solutions or solutions to
existing problems that have already been solved efficiently. Even though all the
ideas were extremely great, one idea needed to be chosen that all four members
would be interested in and able to contribute work to the project. After many
group meetings discussing the possible projects, group nine finally came up with
the U-PARK system.

The readers may be asking, what exactly is U-PARK, and how does it work?
U-PARK refers to the use of sensing devices to determine the occupancy of
parking garages. With over sixty thousand students, the University of Central
Florida is one of the largest schools in the United State by enroliment. The
demand for parking spots has been increasing as the number of enrolled
students keep growing. Unfortunately, the current number of parking spots are
not enough for all students, leading to the problem that many students are
wasting their time driving around looking for a place to park. Students have no
knowledge about which parking garage is open or which floor has unoccupied
spots. Many students arrive at classes late just because they spend over thirty
minutes searching for parking or waiting for other students to get out of class.
Even though a possible solution would be to build more parking garages in order
to make a more efficient supply to demand ratio, this solution has not solved the
problem thus far, and the cost of constant new construction is huge. If students
were informed of the location of open spots, the problem could be fixed with a
much smaller investment. The cost-effective solution consists of an information

system that provides up to the minute updates to people seeking a spot. In this
way, a person who needs to park can determine not only how many spots are
available in a particular parking garage, but also know with certainty how many
spots are available on a particular floor.

U-PARK is the project that can solves the problem that University of Central
Florida’s students are facing every day. There will be a lot of benefits that this
project can bring if it is successfully implemented. Some of the critical
advantages will be discussed in this paragraph. The first benefit is to help
students find an open spot faster and provide guidance to optimize the use of
existing spaces. All they have to do is to look at their mobile app to get the
information about availability and capacity of all parking garages. Secondly, this
project helps reduce traffic congestion and therefore improve safety. If students
know certain parking garage is full, they will not waste their time to drive there.
This will diminish the number of cars in the driveway. Thirdly, all four members in
group nine will have the opportunity to apply the knowledge from many classes to
this project as well as research and learn more about how to make this project
work.

Group nine was excited to take up the challenge. Just thinking about how this
project might benefit the school as well as all four members really motivated
group nine into researching and planning on how to design the project. In order
to start the researching process, group nine divided the tasks to each member in
the group depending on each person’s interest and major. It turned out that this
project is a perfect blend between software and hardware. Group nine will also
prototype and research at the same time so that any existing errors will be fixed
early. Doing so will help group nine keep everything on track and be able to take
control over the project.

Solving the parking problem is not a new subject. It has been a real frustration for
many students. Especially in recent years because of the increasing amount of
student enroliments. Parking on campus needs improving. This is what makes
the U-PARK project is important. Group nine’s goal is to implement a better
solution than existing ones. The project that group nine will build will not only
work for University of Central Florida, but it can also be expanded to a larger
scale. The other important goal is to minimize the cost of the whole system so
that other customers can see that it is a reasonable cost and worth the money to
install the system.

2. 2 Objectives

The primary objectives of the U-Park system are focused around improving the
efficiency of parking garages. The problem arose from years of frustration with
the garages at UCF in particular, but is rampant at parking garages around the
world. There seems to be a lack of information about where there is actual
available parking and, when the information is available, it is often wrong and
misleading. UCF has a system which has lights or indications on signs at the
entrance of the parking garages to tell drivers whether a parking garage is full or
whether it has spots available. But this system is often inaccurate that it is more
accurate to believe exactly the opposite of what the sign states. U-Park aims to
bridge this gap by providing users with up-to-date information about parking by
actually giving users the exact number of spots available in a particular garage.

Parking systems in populated areas are only effective if they relay information
that is accurate and immediate. For instance, it does users no good to know that
a spot was available 5 minutes ago, and if current systems are not able to
account for cars pulling out of a spot and immediately having the spot taken by
another driver, the system will have such a high level of inaccuracy that the
system may as well not even exist at all.

U-Park will be a system which takes into account these intricacies of parking
garages, and will provide users with the information that they need, when they
need it. By doing this job correctly, the U-Park system will reduce student
frustration at UCF by enabling students to get to class faster. And, by avoiding
having students/users driving around aimlessly until a driver happens to be
pulling out a spot as that student was driving by, and wasting gas. The system
will also be beneficial to the environment due to the decrease is fossil fuel
emissions. With implementation costs of such parking systems likely being
passed on to it’s users (in the case of UCF through tuition), students would likely
be willing to pay for a system which would save large amounts of headache and
would save them money in fuel costs in the long run.

In this document, the U-Park system will be described, and will show how such a
system would be implemented. The system is designed around the problems at
UCF, but can easily be scaled to meet the needs of parking garages around the
world. The document will list the requirements of the U-Park system along with
research on how the design team plans on creating the system.

2. 3 Requirement Specifications

The U-Park system’s primary mission is to be a cost effective and reliable
solution for parking management, while allowing the application’s users clear
parking availability information. The below requirements reflect this mission and
delineate the specific criterion for making this mission a reality.

The unit cost per sensor module will cost no more than $50.

Each sensor module will contain sensors to monitor three adjacent parking
spots.

Each sensor module will contain a wireless transceiver to communicate
parking availability data to a central hub.

Data on the user interface will be no more than 3 minutes out of sync with
actual parking availability.

The sensor modules will be able to monitor parking 24 hours a day, 7 days
a week and 365 days a year, however will likely only be used for around
16 hours to increase the lifespan of the components.

Each module will pull no more than 0.5 watts of power.

The U-Park system will rely solely on the use of standard 110V AC power
and will convert to the required DC voltages used in the system.

The U-Park system will be able to operate in the Florida climate.

The user interface to check parking availability will allow users to see
current parking availability and will have a mobile-friendly interface.

The Figure 2.1 shows the high level system schematic. The below system is the
basic overview which the U-Park design team will be aiming to replicate in the
final product.

Internet

>

Cell Phones, PDA's tablets, etc.
Requesting parking info.

Figure 2.1 - High-Level System Schematic

3. Administrative Content

3. 1 Budget and Financing

The U-Park system is comprised of multiple integrated parts ranging from
electrical wiring, sensors, microcontrollers, wireless communication modules, and
power supply components. These are used to mount the hardware and
case-design hardware. Each sensor module contains three ultrasonic sensors
and thereby covers three parking spaces. The three sensors are wired through
the mounting hardware to a single microcontroller and power supply. A primary
requirement of the U-Park system is that each module will remain as inexpensive
as possible in order to stay competitive in the parking sensor market and to
reduce the cost of deploying such a system in a parking garage. The system will
need a large array of these units to fully implement the design. By keeping the
costs for the modules as low as possible, the U-Park system gains a competitive
edge on competing products which retail on average about $100.00, and only
detect in one parking space. On the next page is a table containing the cost of all
of the components needed to build a sensor module. Effectively, this is the cost
of sensing three parking spaces.

Table 3.1 - U-Park System Pricing:

Component Number Component Total Cost
Required Cost (each)

ATMega 328p-pu 1 $3.38 $3.38
22 pf Capacitor 2 $0.015 $0.03
HC-SR04 Ultrasonic 3 $1.99 $5.97
sensor
120V to 12V 1 $5.00 $5.00
Transformer
Switching Regulator 1 $2.00 $2.00
LED 2 $0.05 $0.10
16 MHz Crystal 1 $0.58 $0.58
Oscillator
Fuse 1 $0.97 $0.97
1N4007 Diode 4 $0.43 $1.72
220 uF Capacitor 2 $0.26 $0.52
10uF Capacitor 1 $0.02 0.02
2.2 kQ Resistor 2 $0.055 $0.11
10 kQ Resistor 1 $0.05 $0.05
Wire (misc.) N/A $0.50 $0.50
PCB Board 1 $15.00 $15.00
Mounting Hardware 1 $2.00 $2.00
Aluminum Arm 1 x (3ft Section) $3.15 $3.15
3D Printed Housing 1 $0.00 $0.00
Total: 26 $35.45 $41.10
Total Number of Components: 26
Gross Cost: (of Detecting Three Parking Spaces) $41.10

The project is self funded by the development team, and therefore needs to
remain cost-effective. The requirement for the cost per module to be less than
$50.00 is clearly met as shown by the figures below. The total cost per sensor
module is only $41.10. While many senior design projects are funded by external
sources and development cost is less of an issue, the U-Park system meets the
challenge that all individual test modules must be purchased by the designers.
While this can be a problem due to the limited resources of the group and the
fact that the development team is made up of students, this also allows for more
design freedom. It focuses more attention on keeping the system not only
affordable for the future customers, but also sets limitations on the cost for the
team itself.

At the quoted cost, the U-Park system remains extremely competitive price-wise.
Compared to the cost of other systems, the U-Park system is able to monitor
three parking spaces at a cost three times less than other systems which only
detect one single parking spot for $100.00 or more. This leads the U-Park system
to be around nine times (9x) more cost effective than other products in the same
category.

The most costly aspects of the U-Park system are the PCB Board, the Aluminum
arm which extends two of the sensors out to the side to detect the adjacent
parking spots, and the three HC SR-04 Ultrasonic sensors. The largest cost
being the printed circuit board is unavoidable as having the PCB designed and
printed is not able to be much cheaper until the boards are put into mass
production. Purchasing only three boards at a time from companies such as OSH
Park results in a huge markup since the boards must be custom built. If the
U-Park system were to be purchased by a customer, there would be cost savings
with increased production levels according to the economies of scale.

3. 2 Milestones

The U-Park design team decided from the beginning that sticking to a strict
schedule was very important to the success of the final design of the system. For
this reason, the team set early deadlines and goals for when parts of the various
aspects of the project would be ready for team review. The team worked very
hard to consistently meet these goals to ensure that, because everyone on the
team is a student, everyone inherently has different schedules and assignments
for other classes. Deadlines were set three to four days before official Senior
Design deadlines to ensure that in a worst case scenario, additions and changes
could be made without putting the team under undue stress at the last minute.
Below in Figure 3.1 a Gantt chart showing the timeline for the U-Park design
team is shown. The figure shows the timeline starting at the initial group
formation at the beginning of the Senior Design one semester, all the way
through until the final demonstration to faculty during the summer of 2016 in
Senior Design two.

Spring 2016 Taday
o Jan 2016 Feb 2016 Mar 2016 Apr 2016
D Task Name Start Finish Duration
VAT /20 131 2/7 2/14 2/21 2428 3/6 313 3/20 327 43 40 417
1 | Form group 1/11/2018 1/15/2016 1w
2 | Brain Storm & Project selection 1/11/2018 1/22/2016 2w _
Research about project & write
3 description 1/22/2016 1/29/2016 12w [——]] :
4 | Group meeting / Assign tasks 2/1/2016 2/5/2016 1w =
5 | Extend research / Order components 2/1/2016 4/1/2016 Sw]
6 | Write paper 3/7/2016 | 4/29/2016 Bw —|
7 | Receive components 4/25/2016 | 4/29/2016 1w ‘I

Summer 2016
T e May 2016 Jun 2016 Jul 2016 Aug 2016
5/8 5/15 522 5/29 6fS /12 6/19 6/26 T3 T/0 7/17 Tf24 731 87 814
1 | Components checked and ok 5/16/2016 5/20/2016 1w)
2 | Meet Group 5/16/2016 | 5/20/2016 1w]
3 | Project building 5/20/2016 7/1/2016 6.2w]
4 | Project tests 5/27/2016 7/1/2016 52w [|
5 | Final Presentation 8/1/2016 8/5/2016 1w []

Completed Duration

Figure 3.1 - Timeline (Gantt Chart) for the Completion of the U-Park System

3.3 U-Park Design Team

Group nine divided the tasks for each member in the group based on each
person’s interest and major. Figure 3.2 is the primary block diagram where it
explains specifically the role of each member. Roddey Smith and Them Le are
responsible for most of the hardware side, such as the PCP board and sensor.
Carlos Pereda is responsible for the database. Danny Russell is responsible for
the web application. All the members are required to spend enough time to
research on their sections. Whenever someone in the group has a difficult time of
understanding something, group nine will have a group meeting to discuss about
that problem. Group nine also meets every week or, other week to report on the
research status to make sure that everyone is on track.

Figure 3.3 is the input/output of the PCB board. It explains what needs to be
connected to the PCB board and the output from the PCB. Basically, this figure is
the brief summary of the project about the interaction between hardware and
software.

/" Hosted mySQL Database f;:nr \ }
¢) student& Garage information Hardware/ Custom PCB Board E\\

from the PCB/ RFID Reader Software (Hardware)
Software Interface || - Member Responsibility:
pol
Member Responsibility: Carlos Pereda | % Them Le, Roddey Smith
Status: Research - Status: Research
\\\ i _/;

ks Populated database containing
v the current, real-time status of each +
5 of the garages supported by the system w | * Distance information fram each of the
& * Tables for each of the garages, - connected sensors
= Students with parking permits in the E_ * DC Input Power
DI garages, and whether er not there are £ * Signals through a wireless connection ta
A spots remaining to be shown on the | other boards in-line, down the garage to
"5' web app. i) communicate all available spots from other
a * Tables from the mySQOL database g_ groups of 3-4 sensors since there is planned
£ should be read into and displayed by i To be about 1 board in control of every 3 -4

the web app Hall Effect 8 Spots.
h 4 * The sensors, whether they are Hall effect or
Garage Status Web lication Ultrasonic will give the inputs to the custom PCB
Software

- Member Responsibility: Danny Russell | Sensors SPotd) rpa

R = RS
Status: Research ’% (mnngcred ta PCB bnum’,l A
= B=C Spot3 ‘

* Dynamic HTML/ CS5 application
Spot 2

to retrieve current status information [RS:
>
\
Either Hall Effect or

on parking in current garages supported
Users (Students ultrasonic. Still TBD

Spotl
by the system TBA
[RS-]
Figure 3.2 - Primary Block Diagram

Outputs

Sensors
{connected to board)
» oR
Hall Effect Ultrasenic Software/
DBMS
Inputs: (Outputs:
S vt < > Custom PCB Board o Al v
erial data througl (Hardware) ata containing the
1/0 pins) spot ID, and whether there
. - - Member Responsibility: v g
Information from the Them Le, Roddey Smith is a car currently in that
connected sensors _ Status: Research spot based on sensor

detecting in each of the thresholds declared in the

Parking spots software on the board

* DC Input power * Formatted data to be
run by the code which
populates the database
* Data will be received
by the software server-side
to be queried into the SQL
database
* This feeds into the
“Hardware-Software
Interface”

Figure 3.3 - Input/Output for the Custom PCB with Connected Sensor

4. Research

4. 1 Existing Solutions
4. 1. 1 Baltimore/Washington International Airport

The first smart parking garage system in the United States was installed at the
Baltimore/Washington International airport. = This smart parking system is
installed to help travellers find an open spot in a garage that has over 13,200
parking spots. This system uses embedded sensors in each parking spot to
detect if the spot is occupied or vacant. As drivers enter the garage, they can
view the number of parking spaces available on each floor through displays in
the garage. Someone driving into the garage will find messages such as “follow
green arrows to vacant spots,” as shown below in Figure 4.1. This allows people
to find spots quickly once they have entered the garage. This is a great design
for use in only one parking lot, but if there were multiple unconnected parking
garages, it would be difficult to relay the information to drivers about which
garages were empty.

. FOLLOW GREEN ARROWS
{;: TO VACANT SPACES

4

Figure 4.1 - Display at Baltimore/Washington International Airport

4. 1. 2 Disney Springs Parking Garage

A similar parking solution can be seen at the parking garage at Disney Springs in
Walt Disney World. This system has a sensor above every parking spot that
detects if a car is parked there or not. When entering the parking garage, a sign
can be seen, this sign gives the amount of spots available on every floor. Each
floor has signs that point to how many spots are available in each row, and each
spot has a red or green light showing whether or not the parking spot is available.
This system is meant to help guests of Disney Springs find a parking spot quickly
once they arrive. They do not have any connection to an outside system where
people can check the status using a website application. All of their information
is displayed using signs in the garage itself.

4. 1. 3 Denmark Automated Parking Garage

A completely different form of parking solutions has been implemented in
Denmark. This system does away with the normal parking garage and replaces
it with a completely automated system. A person will drive their car onto a
specialized pallet inside a specialized parking area. Once they have left the car,
the car is automatically taken on the pallet and stored inside a completely
automated structure. When someone comes back from their car, the pallet is
called back up to allow the person to get their car back. This system catalogues
how many cars are in the garage, so if it is full, someone looking for a spot just
has to find another garage. There is no need to know what spot to go to since
the system automatically places the car in an open spot.

4. 2 Sensors
4. 2. 1 Sensors General Description

A sensor is a device that detects and responds to different types of input. The
inputs can be light, heat, pressure, etc. Sensors provide various types of output,
but typical use are electrical and optical signals. Sensors are used widely around
the world nowadays. The significance of sensor technology is constantly growing
that allows more and more sensors to be manufactured. Sensors allow us to
monitor our surroundings in ways we could barely imagine a few years ago. New
sensor applications are being identified every day which broadens the scope of
the technology, and expands its impact on everyday life.

Selecting the correct type of sensor for the project can be an intimidating
process. There are literally thousands of models available in the market, so
having a good starting point to narrow down the field is essential. In order to
decide the appropriate sensor for our project, we have to consider many crucial
factors. One of the important factor is the range that it can detect. We want to
make sure the sensor that we choose has to be able to read at least a distance

from the ceiling of the parking garage down to the car. Another factor is the
working condition (temperature). The sensor has to provide accurate
measurement for the environmental condition that it will be subjected to. Power
consumption, and lifetime of the sensor is also important because we always
want to choose the ones that consume less power, and last longer, but still give
us the best quality. Those sensors that last under a year and consume too much
power should not be taken into consideration. How fast the sensor would
respond to an issued command is also a significant aspect. For example — if a
microprocessor is programmed to retrieve information from a pressure sensor
every 5 minutes, but it takes the pressure sensor a couple minutes to respond,
this would obviously not be a good sensor for the proposed application due to the
substantial inaccuracy caused by the time delay. If the sensor does not meet all
of the listed requirements above, then it needs to be removed as a viable option.

Out of all the requirements and specifications, cost is one of the most significant
aspects. Most of the sensors are not high-priced, but since a sensor is needed in
each parking spot, then the cost will be huge if we multiply it out to the whole
parking garage. Therefore we need to minimize the cost as little as possible so
that the consumer will by the idea to apply the project to real life.

In this section, different types of sensors, and a brief description of the
functionality of these different sensors will be discussed. The following will also
compare and contrast between sensors, and will conclude with the reasoning
behind using the ultrasonic sensor in this application.

4. 2. 2 Case Study: Applicable Sensor Types
4. 2. 2. 1 Hall effect sensor

A Hall Effect sensor is a magnetic field sensor. The basic principle of the Hall
Effect is based on a thin metal sheet of semiconductor material that carries the
flow of an electrical current. The output connections are perpendicular to the
direction of the current. When there is no magnetic field, current distribution is
uniform and the potential difference across the output is zero volts as shown in
Figure 4.2. When a perpendicular magnetic field is present and positioned at a
right angle to current flow, a voltage disturbing the current is exerted across the
semiconducting metal plate. This potential difference in voltage across the output
is termed the Hall voltage as shown in Figure 4.3. The Hall voltage is
proportional to the vector cross product of the current and the magnetic field.

L

Figure 4.2 - Hall Effect Sensor When no Voltage is Applied

Figure 4.3 - Hall Effect Sensor When Voltage is Applied
A Hall Effect sensor could be used in our project to detect whether the parking
spot is occupied or available by sensing the magnetic field around the car.
Some features of Hall Effect sensor are listed below in Table 4.1

Table 4.1: Hall Effect Sensor Specification:

Parameter Value
Supply Voltage 3.5V-24V
Supply Current 5 mA
Maximum Switching Frequency 10 KHz
Operating Temperature -50 to 150 Celsius

Advantages of using Hall Effect sensors are:

e Low noise output

e |t does not suffer from contact bounce because a solid state switch with
hysteresis is used rather than a mechanical contact.

e Hall Effect sensors are not affected by ambient conditions, such as dust,
humidity, and vibrations and are due to are insensitive to some ambient
conditions based on the principle that these sensors display a constant
flow of an electrical current making their characteristics constant over
time.

e Can measure a wide range of magnetic fields

e Hall sensors work in a wide temperature range, provide highly repeatable
operation, and are capable of measuring a large current.

e Hall Effect sensors do not have contact with neighboring mechanical
parts, making these sensors strong and sensitive enough to detect
movement. These sensors do not wear over time thus maintain quality
and unlimited use.

Disadvantages of Hall Effect sensors are:

e The Hall Effect sensor is not capable of measuring a current flow at a
distance greater than 10 cm

e Hall Effect sensors work on the principle of a magnetic field, making it
possible for external magnetic fields to interfere with this and bias the
measurement of a current flow.

e Temperature affects the electrical resistance of the element and the
mobility of majority carriers and also the sensitivity of Hall Effect sensors.

4. 2. 2. 2 Ultrasonic Sensor

An ultrasonic sensor is also known as a sonar sensor. lts common use is for
distance measurement. An ultrasonic sensor has two parts: a transmitter that
sends out a signal, and a receiver that reads the signal. Ultrasonic is a sound
wave beyond the human ability of 20 KHz. The main idea behind the ultrasonic is
that it emits an ultrasonic wave in one direction, and start timing when it is
launched. Ultrasonic spread in air, and will return immediately when it encounters
obstacle on the way. Finally, the ultrasonic receiver will stop timing when it
received the reflected wave. By measuring time lapse and the spread velocity is
known (340 m/s), we can calculate the distance between the object and
transmitter. Thus, the principle of ultrasonic distance measurement is the same
with radar.

Distance measurement formula is expressed as: L= C x T. In this formula, L is
the measured distance, C is the ultrasonic spreading velocity in air, and T
represents time (T is half the time value from transmitting to receiving). This
distance is relevant to our project because it would be able to detect if the
parking spot is occupied or available. If the sensor output the signal, but does not

receive any return, then there is no object for the frequency to detect, this parking
spot is available. However, if the frequency returns to the receiver, then the
parking spot is currently occupied.

An ideal target surface for ultrasonic sensor is hard and smooth because it would
reflects a greater amount of signal than a soft and rough surface which is suitable
for our project because our target is cars. If the object is small and far away, the
sensor will receive a weak echo and this will reduce accuracy. The shorter the
distance from the ultrasonic sensor to an object, the stronger the returning echo
is. Therefore, as the distance increases, the object requires better reflective
characteristics to return a sufficient echo. The sound is a longitudinal wave;
therefore, when the obstacle is not perfectly in front of the module, sounds are
deflected and echo signal may not reach back the sensor or reach it very
attenuated and hence not being detected.

In respect to the proposed project, it is important to analyze the minimum and
maximum distances as well as the weather conditions that the sensor can detect.
Group nine’s research found that the range that the ultrasonic sensor works is
between 2 cm-4m. For our project, the average distance from the ceiling to the
car is within this range, so the sensor would be adequate to detect a parked car.

As discussed in previous sections, cost is always one of the main concerns. The
price is varied in different websites, team nine was able to find sensors as low as
$1.10. Even though the price is reasonable, but if this project is applied to the
whole parking garage, the total cost will be high. The only problem with this
sensor is that it can only detect one car as a time. Multiple sensors would be
needed if we want to detect many cars. If this sensor was able to sense many
cars as the same time, then the cost can be reduced.

The advantages of using the ultrasonic sensor are:

e An ultrasonic sensor’s response is independent upon the surface color or
optical reflectivity of the object.

e The response of analog ultrasonic sensors is linear with distance. By
interfacing the sensor to an LED display, it is possible to have a visual
indication of target distance. This makes ultrasonic sensors ideal for level
monitoring or linear motion monitoring applications.

e Stable performance, accurate distance measurement.

The disadvantages of ultrasonic sensor are:

e They need to be mounted in a down-looking configuration as
perpendicular as possible to the target,

e Difficulty in identifying lane-straddling vehicles and vehicles traveling side
by side, and susceptibility to high wind speeds.

e Targets of low density, like foam and cloth, tend to absorb sound energy;
these materials may be difficult to sense at long range.

For this project, team nine has considered the use of a sensor called HC-SR04.
A list of the features within the HC-SR04 ultrasonic distance sensor was taken
from the product’s data sheet with permission from the manufacturer. The list of
features is provided in the tab. The dimensions of this sensor is extremely
compatible with our design. With the entire detection system being placed on the
ceiling, the small dimensions and light weight of the HC-SR04 Ultrasonic
Distance Sensor make for a perfect fit within our design.

Table 4.2 - HC-SR04 Ultrasonic Distance Sensor Specifications:

Parameters Values
Working Voltage 5V DC
Working Current 15mA
Maximum Range 4m
Minimum Range 2cm
Measuring Angle 15 degree

Trigger Input signal 10uS TTL pulse
Echo output Signal -25 to 125 celsius
Dimension 45*20*15 mm
Operating Temperature Output TTL level signal, proportional
with range
Operating Frequency 40KHz
Resolution 0.3cm

With the ultrasonic advance and the electronic technology development, the
applications of ultrasonic has been increasingly widespread, such as: public
security, level detection, parking detection, etc.

4. 2. 2. 3 Sharp Infrared Sensor

Unlike other infrared (IR) sensors, the Sharp IR sensor is a more specialized
detector that not only determines if there is an object in range, but it can also
measure how far an object is and return an analog value of the distance. There
are two major types of Sharp's infrared sensors: analog rangers and digital
detectors. Analog ranges provide information about the distance to an object in
the ranger's view. Digital detectors provide a digital (high or low) indication of an
object at or closer than a predefined distance.

The detector in the Sharp IR sensor is similar to the imaging sensor found in
digital cameras. The detector and the IR LED have a fixed distance, the distance
of the object will affect the angle at which the light from the IR LED hits the
receiver. By looking at where the light hits the detector, it is possible to calculate
the angle of the light and from that angle derive the distance to the object.

The Figure 4.4 below characterizes each sensor by minimum and maximum
ranges. Depending on the purpose of each project to choose a specific type of
sensor.

1.5" 4" H" 12" 24" 31.5" A0 59.5% 216.5"

GP20120 .-—
GP2YOADZYK . —

GP2YOAZ1YK . —

GP2YDAT10YK .—'—
GP2015 . i

Figure 4.4 - Comparison Chart for the Sharp IR Rangers

Some of the advantages of infrared sensors are that they can be operated during
both day and night, and they can be mounted in both side and overhead
configurations. Disadvantages are that infrared sensors can be sensitive to
inclement weather conditions and ambient light.

Even though Sharp Infrared Sensor can be used to detect whether or not a car is
parked in a certain spot, the distance that this sensor can detect does not meet
the range that group nine specified. Therefore, group nine considered this type
but does not use it.

4. 2. 3 Sensor Decision

There is obviously a wide range of sensor technologies available for vehicle
detectors. Some of the most common sensors and how they work were
described in the above sections. Each type of sensor has its own specification
and work condition. Some of the sensors can only detect an object in a small
range while other sensors can detect in an object farther away. There are also
many advantages and disadvantages that each type has. After many group
meeting discussing about a suitable type of sensor that would work for group
nine’s project, a decision was made that Ultrasonic sensor is the one. There are
many reasons that group nine chose Ultrasonic sensor over other types. These
are some of the main reasons. First, the range of the ultrasonic sensor can
detect falls into the range that group nine looking for. Second, Ultrasonic sensor
not only can operate outside but also can function under various weather
condition. Finally, Ultrasonic sensor consumes low power and the cost for each
sensor is within the group’s budget.

4. 3 Transceiver
4. 3. 1 Bluetooth

The primary viable solution for bluetooth communication using a microcontroller
would be the “HC-05 Wireless Bluetooth Transceiver Serial Communication
Module” which is shown below in Figure 4.5.

e s sE e e e e mwa"=
| | i ‘ Lo L= |
[r

Figure 4.5 - HC-06 Wireless Bluetooth Transceiver Module (purchased/ tested)

This sensor operates within the 83 MHz wide, 2.4 GHz ISM band. This is the
same frequency band as Wi-Fi. According to HP, “Bluetooth uses Frequency
Hopping Spread Spectrum (FHSS), and is allowed to hop between 79 different 1
MHz-wide channels in this band” (9). This is different from Wi-Fi because it uses
Direct Sequence Spread Spectrum (DSSS). These are fundamentally the
languages used by the transmitters and receivers, to format the way the bits are
transmitted over a distance. Bluetooth’s method of “Frequency Hopping”, is a
means to avoid interference from other signals in the same band. If, for instance,
there is a competing signal which is interfering with the bluetooth device, the
bluetooth device simply jumps to the next available channel until the interference
subsides. Unlike Wi-Fi, which remains locked on a 22 MHz-wide band, Bluetooth
can “hop” between 79 independent bands, each being 1 MHz wide. This
difference can cause problems as 22 of bluetooth’s 79 channels will be contained

within the Wi-Fi band. While bluetooth and Wi-Fi have much in common, their
delivery method and software interface have different goals and purposes.
Bluetooth is based on the IEEE 802.15 standard, and is being further developed
by the bluetooth SIG (Special Interest Group) to continue working on efforts to
ensure reliability and compatibility with newer systems.

One of the main issues for bluetooth is the presence of Wi-Fi interference and
and an inability to develop easy to control mesh networks of devices which would
also be able to communicate with the internet. For the U-Park project, one of the
fundamental abilities of the system is to communicate whether there is an open
spot to the server over a network. While there have been experiments done, and
mesh networking software has been made available for bluetooth 4.0 devices
and higher. The system would be made more complicated by switching between
a bluetooth mesh network for serial communication between the different
modules in the garage, and then transferring the data through Wi-Fi modules to
the required routers which would communicate with the UCF LAN, and then to
the U-Park servers. While such a solution is technically possible, there is a strong
possibility of overwhelming interference due to all of the various Wi-Fi and
bluetooth signals that would be present.

Pros:
e Simple 4-pin serial tx/rx modules.
e Low power consumption.
e Independent 1 MHz channels .
e Methods such as TDMA (Time Division Multiple Access) to reduce
interference from other sources such as Wi-Fi.
Ease of use.
e The HC-06 has a built-in antenna.

Cons:

e Mesh networking which would be required for U-Park system is in it's
infancy .

e Interference issues with wireless LAN’s .

e Bluetooth tends to be slightly “glitchy” in practice and the rate of error may
be too high for a system such as U-Park which relies on accurate
up-to-date parking data to be usable at all.

e Lack of compatibility with Wi-Fi.

e Limited to basic communication such as serial between modules.

The HC-05 module mentioned at the beginning of this section would be the
primary candidate if a bluetooth module were to be used for the U-Park System.
This board takes an input voltage of 5V and transmits and receives over 3.3V.
The baud rate for this board in 9600 by default, with 8 data bits, 1 stop bit, no
parity bit, and no handshake protocol. By default the board is set to DATA mode,

where the module is able to transmit and receive data to/from another bluetooth
module. Onboard the chip there are 8 Mbit of flash memory.

Since the design team already has experience using the 802.11 standards for
setting up networks, and the interference between the required Wi-Fi
transceivers and bluetooth transceivers is likely to be a problem, it is very likely
that an alternative besides bluetooth 4.0 transceivers will be used to implement
the U-Park system. While Bluetooth does exhibit strengths in many applications,
this project would likely encounter unneeded hiccups if bluetooth was used, and
will likely not be included as the serial communication module for
device-to-device communication.

4. 3. 2 Wi-Fi

Wi-Fi is a wireless computer networking technology whose name was coined by
the Wi-Fi Alliance, and it's mainly based on the IEEE 802.11 standards. Due to
the fact that IEEE does not certify any of its standards, products based on the
standard 802.11 were not so operatively compatible. To face that problem a
group of technology companies (from which is important to mention Cisco,
Harris, Lucent, Apple, Microsoft, among others) decided to form the Wi-Fi
Alliance by the late 2000. The goal of this alliance is to establish a number of test
a product must pass in order to obtain the Wi-Fi certification.

Today, due to its cost, easiness of use, and wide acceptance Wi-Fi is used in
airports, colleges, hotels, and any other places where the need to connectinto a
network (mainly Internet) is a must. Wi-Fi allows multiple connections (mesh)
using radio frequency (RF), in the range of both 2.4, 3.6 and 5.0 GHz. The
standard 802.11 relates to the physical Layer, and wireless Medium Access
Control (MAC) -OSI standards-, and its variants a, b, g, and n will indicate the
frequency and the speed of transmissions.

Pros:

e Use of standards.

e Even though prices may be higher compared to other technologies such
as Bluetooth, its relationship price/performance makes Wi-Fi the best
alternative.

e Wi-Fi distance range can be up to 300 feet indoors and 600 feet outdoors

Larger distances may be covered by the use of extenders and boosters.
e Wi-Fi speeds range from 11 Mbps (802.11b), to a speed of up to 600

Mbps (802.11n).

e Ability to connect multiple access points reliably in a mesh network

Cons:
e Due to its wireless nature, it's easier to be infiltrated by hackers.

e Speed easy to degrade if other technologies share the same frequencies
(such as Bluetooth, etc.)

One of the primary requirements for team nine’s project is the ability to establish
a reliable wireless communication between the micro-controllers (they control the
sensors, that will determine in time, if a parking spot is available or not) and the
router (that will in turn send the data collected to the router). The data to be sent
by the microcontroller basically consists of two bytes:

Byte 1) The first byte contains the ID of the micro-controller and
Byte 2) Two bits encapsulated into a byte where the status of the three sensors
will be reported.

Team 9 has chosen to implement the wireless part of the project using Wi-Fi
technology due to the following reasons:

e Distance. The project contemplates to install one or more routers per
floor at each and all of the parking garages. They will serve all
micro-controllers installed in said floors. At this point it's important to point
out that in a real life situation, UCF has already installed Wi-Fi in all
parking building, thus eliminating the need for extra routers.

e Standards. The project adheres to the OSI standards, and requires
TCP/IP in order to establish a telnet session between the micro-controller
and the server (via router). This telnet session, consists of microcontrollers
sending data, and server receiving and acknowledging upon receipt.

At this time different boards are being tested, and the most efficient solution will
be used in the final deliverable product.

4. 3. 3 Other Notable Options

As an alternative for wireless connections, team 9 has considered the use of
wired connections. The option to evaluate is 1000BASE-T also known as Gigabit
Ethernet, which is based on the IEEE 802.3ab standard. The reason for
considering this alternative are based on pros and cons on the following page.

Pros:
e |t increases the distance between the microcontrollers and the router.
Team nine estimated a maximum distance of 40 meters using a wireless

system. By adopting 1000BASE-T this distance can be increased to 100
meters (large enough for this project), this is achieved by using Category 5
cable or better.
e Throughput is increased to nearly one gigabit.
e Security:
o Data transmission is less vulnerable due to RF interference.
o Access to data is restricted to a wired media.
Cons:
e Price
o Connecting each and every microcontroller to a router would
increase the cost of the project is several times its original cost, due
not only to the cost of cable per se, but also the cost of pipes,
connecting boxes, clips, etc.
e Maintenance.
o Fixing a broken connection requires higher costs (tools, more
cable, testers, etc.) than fixing a wireless connection.

After debating over cost/performance, it was determined that even though the
advantages obtained with wired connections improve the quality of
communications, in order to meet our desired budget the project requires the use
of wireless technologies.

4. 4 Networking
4. 4. 1 Networking Models

There are many different network configurations that could be used for the
wireless communication in the U-Park system. These networking models provide
the rules of how each node, and each connection is made to create a network.
Each model has its own benefits and shortcomings. The following are the
networking models that were considered for the U-Park System.

4.4.1.1 Linear Connection

A linear network consists of nodes that are each connected only to their adjacent
nodes. As it can be seen in Figure 4.6 below, this type of network allows data to
move along through each node, one at a time.

The main advantage of this model is that each node is relatively close together.
As a wireless model, this would mean that each node would only need to be able
to reach its closest neighbors. If this model were used in a garage, the network
would be able to snake its way through each parking sensor without having to
worry about being blocked by the walls or ceilings. The main disadvantage of this
type of network is that if one node, or link goes down; then the entire network (or

a big chunk of it) will be taken offline. Since there is only one route for the data to
take, if the chain is broken, no data will be able to flow until the module is
repaired. Another disadvantage is that each node must have a large enough
memory buffer to transfer the data through the network. As the network grows
larger, there is more traffic going through each individual node. There is also a
high probability of data collisions if there is too much data flowing through this
type of network.

Figure 4.6 - Linear Connection Network Topology

4.4.1. 2 Mesh Network Topology

Mesh networks are similar to linear connection networks, except that each node
will have a connection with up to four surrounding nodes. The nodes in the
corners have two connections while the nodes on the edges have three. This
creates a pattern similar to a grid as can be seen in Figure 4.7 on the next page.

The mesh network has similar advantages as the linear chain except that the
data does not have to flow in one direction. This allows for easier routing of data
and a smaller chance of collision. A mesh network will still be able to work if one
or more of the nodes or connections fails. The data will simply be routed around
the failed connection. The disadvantage of a mesh network is creating a routing
solution. Each node must know from where to send and receive data. This
makes routing much more complicated than if there were only two connections
like the linear chain. Mesh networks also require a large number of connections,
which adds to this complexity.

() E

o}

!

Figure 4.7 - Mesh Network Topology

4.4.1. 3 Star Network Topology

The star network, as seen in Figure 4.8 consists of a central hub that every other
node is connected to. Each outside node will send and receive information only
through the hub. This allows a network with a minimum number of connections
where each can send data.

The main advantage of the star network is that it will continue to work if any of
the nodes of connections fail, except for the hub. Itis also a good model to use if
the communication is mostly one way. [f each of the outside nodes is sending
and not receiving from the hub, this network can be created easily.

The obvious disadvantage of this network model is that the entire network will go
down if the hub fails, but this in turn makes a failure easier to diagnose. The hub
also has to be able to handle the data from the entire network. In a wireless
environment, such as the U-Park network, the outer nodes must be able to reach
the hub. This means that obstacles such as walls and ceilings will come into

play.

© ..o

Figure 4.8 - Star Network Topology
4.4.1. 4 Ring Network Topology

A ring network is similar to a linear network except that there are no end nodes.
Every node on the network is connected to two other nodes. This allows data to
move in either direction. This can be be viewed in Figure 4.9.

The advantage of this network configuration is that it can withstand the loss of a
single node. If one node were to be lost, the data could be routed the other
direction to meet its destination. If this were used in the garage, the data would
be able to travel through each parking sensor, and it would be able to continue
working if one of the nodes went down.

If two nodes that are not connected to each other fail, then the network will fail.
This is the main disadvantage of the ring network. It is more reliable than the
linear network, but it will still fail with relatively low broken nodes. There is also
the same disadvantage as with the linear network of possible collisions.

Fig 4.9 - Ring Network Topology

4. 4.2 U-Park Network

The network model that will be utilized for the U-Park sensor network will be a
combination of a wireless star network with a mesh network as depicted in
Figure 4.10. Each of the sensor modules will use a star network to wirelessly
connect to a hub. Since the modules do not need to receive data and only need
to send it, it makes sense to use this type of configuration. Each module will
continuously update the data to the hub and the hub will relay the information to
the surrounding hubs.

The hub network will use a mesh network topology. The hubs will pass the data
received from their sensors to each other, and they will then pass that
information out to the server. In order to create this network and avoid collisions,
the hubs and sensors will have to be placed in a designated order. Each hub will
read a distinct signal from each sensor. The signals from each sensor ring
network will use the same frequencies. In order to avoid collisions, each of these
star networks must be placed so that sensors using the same frequency will not
overlap with each other. This will allow the signals to be broadcasted and
connect to the correct hub.

Team nine believes that this is the best network to be utilized because it allows
each module to only send data in one direction. The modules will use a Wi-Fi

connection with the hub to send the state of each of the sensors. The hubs will
be more robust FPGAs with a Wi-Fi and Ethernet connection. This will allow it to
accommodate the data that is coming in and route it to the servers and other
hubs via either an outside Wi-Fi network or wired network.

Figure 4.10 - U-Park Network Topology

4.5 Power
4.5.1 AC to DC converter

The microcontroller that team nine will design can operate on an external power
supply of 6V to 20 V. Using over 12V, the voltage regulator may overheat, and
damage the board. Using 7V, the 5V pin might supply less than its 5V
requirement, thus making the board unstable. Therefore, the recommendation is
to supply power in the rage between 7V to 12V. The microcontroller can be
powered by USB connection, or external power supply.

Powering a microcontroller from a USB is the method used by most people
because it is quick and convenient. The advantage is when a microcontroller is
connected to a computer to load code, it also provides power for testing. The
disadvantage is that this method can only be used for temporary testing because
in real life testing, the project is mobile and not in close proximity to a computer,
so a different power option will need to be considered.

The microcontroller also can be powered by AC adapters. These are widely used
to supply power for small and portable electronic devices. There are some
advantages that these AC adapters include:

e Using an AC adapter is fundamentally safer due to its design.

e Heat reduction: A separate power supply removes the sources of heat
from the apparatus.

e Replacement: AC adapters are easy to be replaced by the qualified
maintenance crew without the need to have the powered device repaired.

While AC adapters are useful for many purposes, there are some problems with
these type of power supply:

e Size: Power supplies that plug into the mains directly without using a plug
on a cable are bulkier than bare plugs. Sometimes, they are too large to
plug into the power socket with restricted space.

e Weight: Some AC adapter are heavy and exert excess weight on the
power socket.

e Inefficiency: Some power is wasted when the AC adapter left running
while the power equipment switch is off.

Team nine design contemplates to build our own power supply to provide power
for many boards. Moreover, team nine also hopes to apply the concepts that all

the members in the group learned from electronics, and power classes to create
our own power supply for the board.

External power can come from AC to DC transformer or battery. There are two
methods to convert AC to DC that group nine considered:

Method 1)

The first method is to use a transformer (as the one shown in Figure 4.11
below).

D1 D2
XFG1
S T 1N4007 1N4007
T ' | C1
d I B 1 ATOpF
10:1 D3 D4
1N4007 1N4007

Figure 4.11 - AC to DC with transformer

Transformers are devices that change the voltage of power supplied to meet the
individual’'s needs of power consume. A transformer is based on a basic principle
fact about electricity: when a fluctuating electric current flows through a wire, it
generates a magnetic field. The strength of magnetism is directly related to the
size of the electric current. The larger amount of current, the stronger magnetic
field. The primary winding is connected to a 120V AC, 60Hz source. The
magnetic field (flux) expands and collapses about the primary winding. The
expanding and contracting magnetic field around the primary winding cuts the
secondary winding and induces an EMF into the winding. When a circuit is
completed between the secondary winding and a load, this voltage causes
current to flow.

The voltage may be stepped up or down depending on the number of turns of
conductor in the primary and secondary windings. In this design, the transformer
step down the voltage from 120V AC to 12V DC. Step down transformer is the
one that the secondary windings are fewer than the primary windings. In other
words, the transformer’s secondary voltage is less than the primary voltage. The
ratio of the winding in the primary and secondary is 10:1 because it follow the
basic formula of a transformer that is V1/V2= N1/N2. The advantage of using
transformer is the ability to transfer power from one circuit to another where
power loss is negligible. Power into the transformer is considered equal to power
out.

There are many different sizes of transformers that are being sold in the current
market. Depending on the needs of customers to pick the right type of
transformer. In this project, team nine picked to get 12V DC from 120V AC.
However, there is one more factor that the user need to be consider is the
current that the electronic component draw in order to choose that appropriate
type. The board that team nine designed draws 200mA. In order to accomplish
this task, team nine selected the step down transformer that provides 500mA
(just as a precaution in case other features are added to the board later on). The
cost of these transformers are roughly about five dollars. In real life, designers
will use transformers with an extra current capacity.

Method 2)

The second method is to step down the voltage without using the transformer.
The schematic is shown in figure 4.12 below.

XFG1
§ o
7 o l'—

8 1%

TN4ODT TN400T

D1 D2
TOkQ w

1N4007 1N4007

D5
1N52398
1
T 1000pF

Figure 4.12 - AC to DC Without the use of a Transformer

When a capacitive transformerless power supply is disconnected from the AC
mains, there is no guarantee that the capacitor will be in a discharged state. This
creates a high voltage safety hazard on a circuit that would normally be
presumed as safe when disconnected. To mitigate this concern, a high value
resistor is usually placed in parallel with the capacitor. The resistor needs to be
rated to handle at least the peak voltage of the circuit.

In both methods, four diodes were used to build a bridge rectifier. The input
voltage is a sinusoidal so using bridge rectifier will flips the negative half of the
signal up into the positive range. When used in a power supply, the bridge
rectifier allows us to convert almost all the incoming AC power to DC. The main
advantage of this bridge circuit is that it does not require a special centre tapped
transformer, thereby reducing its size and cost.

The four diodes labelled D1 to D4 are arranged in “series pairs” with only two
diodes conducting current during each half cycle. During the positive half cycle of
the supply, diodes D2 and D3 conduct in series while diodes D1 and D4 are
reverse biased and the current flows through the load. During the negative half
cycle of the supply, diodes D1 and D4 conduct in series, but diodes D2 and D3

switch “OFF” as they are now reverse biased. The current flowing through the
load is the same direction.

In reality, during each half cycle the current flows through two diodes instead of
just one so the amplitude of the output voltage is two voltage drops (2 x 0.7 =
1.4V) less than the input V,,,, amplitude.

For full-wave rectification to be effective, the rectification must be performed
before the Zener diode. This is because the Zener diode will only generate the
Zener voltage output whenever a reverse voltage is applied to it. Full wave
rectification ensures that Vin is positive, which allows the Zener voltage to be
generated. If full-wave rectification were added after the Zener diode, then the
negative portion of the AC waveform would simply result in forward conduction
through the Zener, which does not generate useful output voltage. Therefore, for
full-wave rectification, blocking diodes must always be present before Zener
diode.

To make to output of the full-wave rectifier not bumpy, the smoothing capacitor is
connected to the output. Now, the output of the power supply will be much
smoother. The size of the ripple can be reduced by choosing a larger smoothing
capacitor. However, there are two important parameters to consider when
choosing a suitable smoothing capacitor, and these are its working voltage which
must be higher than the no-load output value of the rectifier, and its capacitance
value. This determines the amount of ripple that will appear superimposed on top
of the DC voltage.

The 12V, 2W Zener diode (2EZ12D5-TP) and the 1000 uF capacitor are
connected in parallel to the circuit to smooth out the output and also bring the
output voltage to 12V. In order to choose the correct type of Zener diode, team
nine considered many factors. The Zener has to be rated to the power that is
larger than what the board consumes so that the Zener will last long, and will not
be burnt. Moreover, team nine use the switching regulator that take 12V DC input
so the Zener diodes has to be rated to 12V. Zener are very useful; they are
widely used, especially in safety circuits where the voltage signal cannot exceed
a limit that might damage the circuit. Zener diodes have very high reliability, very
sharp reverse characteristic, and low reverse current level.

The advantage of using a bridge rectifier, smoothing capacitor and Zener diode
to create a power supply over the use of transformer is cost and size. Each diode
costs $0.14 cents and each Zener diode costs $0.22 cents. The total cost of this
power supply is about $3.00 dollars compared to a transformer costs $5.00
dollars/each. When building and testing, this power supply will be built in the
same board as the microcontroller because the size of this circuit is small.
Whereas if the transformer is used, it has to be built in a separate board because

the transformer is big and heavy. The magnetic field around the transformer
might affect the microcontroller.

After the 120V AC is stepped down to 12V DC, it needs to be connected to a
voltage regulator to give to output voltage of 5V. The reason the switching
regulator was chosen instead of the linear regulator (LM7805) is because the
linear regulators are only great for powering very low powered devices. Even
though they are cheap, easy to use and very popular; the way they operate,
makes them inefficient.

The linear regulator works by burning up the difference between the input and
output voltage through the release of power by heat transfer. The larger the
difference is, the more heat is produced. In most cases, a linear regulator wastes
more power stepping down the voltage than it actually ends up delivering to the
target device. As a general rule of thumb, if a regulator wastes less than 0.5W
then it is considered good. For example, if someone wants to step down the DC
voltage from a 12V battery to 5V to power a microcontroller that draws 5SmA, and
a n ultrasonic sensor that draws 50mA then the power wasted if using LM7805 is
(12V-5V)*(0.055A) =0.385 W. The power loss of 0.385W is considered
acceptable. The LM7805 can handle this without heatsink. Now if the user wants
to add two servos that draw an average of 0.375A that also run off of 5V then the
power wasted would be (12V-5V)*(0.055A+0.375A+0.375A)= 5.635 W. The
power (5.635 Watts) is lost due to waste heat. Without a large heatsink, the
LM7805 would get so hot that it could melt the breadboard. With high input
voltage, driving loads over 200mA with linear regulator is extremely impractical.
The switching regulator would be very useful in this case.

The switching regulator is better choice because it works by taking small chunk
of energy, bit by bit, from the input voltage source, and moving them to the
output. This is accomplished with the help of an electrical switch and a controller
which generates the rate at which energy is transferred to the output. The energy
losses involved in moving chunks of energy around is relatively small and the
result is that switching regulator typically have 85% efficiency. The switching
regulators are usually used in devices like portable phones, video game platform,
robots, digital camera, and computers.

The switching regulator that team nine decided to use is TL2575-05. Figure 4.13
is the schematic of the TL2575-05 and the block diagram is shown in Figure
4.14. The input capacitor (electrolytic, Cin>47uF) needs to be located as close as
possible to the regulator for the purpose of stability. For operating temperature
below -25 Celsius, Cin need to be larger in value. For both loop stability, and
filtering of ripple voltage, an output capacitor is required. Also, the diode is
placed close to the output to minimize unwanted noise. Schottky diodes have a
fast switching speeds and low forward voltage drops, and thus offer the best
performance, especially for switching regulators with low output voltages. Proper

inductor selection is the main factor to the performance-switching power-supply
design. The type of inductor chosen can have advantages and disadvantages. If
high performance is a concern then the more expensive core inductors are the
best choice. The inductor never should carry more than its rated current. Doing
so may cause the inductor to saturate, in which case the inductance quickly
drops, and the inductor looks like a low value resistor.

m
V1 |_J.
= | T& % L1 L
2 4 L1 Eae a pa—

3
— 12V :
o Cin 330pH 20pH
—=100pF TL25775 D1 z Cout : C1
2 1N5819G THﬂpF T1m:upF
Figure 4.13 - Schematic of Switching Regulator
1 .
ST _ ON/OFF N
Regulator -
- .
Fixed Gain

Comparator

Driver

R1

123V 52KHZ
Bandgap

Thermal
Shutdown

Current

Oscillator Limit

Reference

Figure 4.14 - Block Diagram of Switch Regulator

Note:

1 is connected to DC input voltage.

2 is the output voltage.

3 is ground.

4 is the feedback.

Options, feedback need to be connected to Vout. For the adjustable
version, feedback must be connected between the two programming
resistors R1 and R2.

e 5 is the ON/OFF and must be connected to the ground.

Table 4.3 - Shows the characteristics of a TL2575-05 switch regulator:

Parameter Values
Input voltage 12V
Output voltage 5V
Efficiency 77%
Output current 1A
Operating Temperature -40 to 125 Celsius

The TL2575 accepts a wide input-voltage range of up to 60V and available in
fixed voltages of 3.3 V, 5V, 12V, 15V, or adjustable-output version. The device
also offers internal frequency compensation, a fixed-frequency oscillator,
cycle-by-cycle current limiting, and thermal shutdown.
Even though team nine can design a power supply for the board transformerless
with less cost, team nine did not choose that option. There are many
disadvantage that the transformerless power supply has, which are listed below:
e There is no isolation between the high volt AC and the load DC so failure
of power supply will destroy the device and also introduce safety issue
e Main voltage is not always steady so this will reflect the output voltage

e If the transformer is not used, it is really dangerous when testing. The
board is power from the main source 120V AC, if the users accidently
touch any of the component, the will get electronic shot and might cause
death.

The following are some advantages of transformerless power supply:
e Significantly smaller in size and weight than the transformer power.
e Supply is easier to come by than transformers.
e Lesserin cost compared to using a transform.

4.5. 2 DC Power (Batteries)

The board that team nine is designing can also be powered by DC power, which
typically is supplied by batteries. Since the board consumes 5V DC, a 5V supply
could be obtained from a 9V battery or a set of four AA batteries (1.5V each).
Even though a 9V battery seems to be an ideal solution, using this type of battery
is inefficiency. The problem is that, in order to obtain 5V from the 9V source, a
voltage regulator is needed. The board will draw approximately 200mA, which
means 0.8 W is being dissipated by the linear regulator which creates heat which
must then be dissipated safely. Furthermore, the typical 9V battery has a
relatively low capacity and will drain in a short period of time. If four AA batteries
were used, the total voltage that these batteries will provide is 4x1.5V = 6V.
Therefore, 0.2W will be burnt in the regulator. While this method is still inefficient,
the relative energy dissipated is less than when using a 9V battery.

Table 4.4 - Shows the capacity of standard alkaline batteries:

Stery e | Nouhnl || it | Suipr | Rkt | e
a9V 9 volts 570mAh 4.8 volts E20 Ohm 0.025
ALA 1.5 volts 1.150mAh 0.8 volts 75 Ohm 0.017
Jiyil 1.5 volts 2.870mAh 0.8 volts 75 Ohm 0.00v
C 1.5 volts 7.800mAh 0.8 volts 39 Ohm 0.005
D 1.5 volts 17.000mAh 0.8 volts 39 Ohm 0.0022

A battery can be used to supply power in the testing process. Such as: testing to
see if the microcontroller works, testing if the sensors are functioning, or
providing the power for the Wi-Fi modules. However, using batteries to power the
board is not an efficient method in the long run to implement the U-Park system.
The reason is that a lot of power will be wasted through the voltage regulator,
and using batteries alone would require much higher maintenance costs as the
batteries reached the end of their life. Since the project will be applied to the

whole parking garage, the power supply used for the U-Park system needs to
last as long as possible.

4. 6 Software packages

4. 6. 1 Programming Languages
4.6.1.1 AVR-C (Arduino)

A microcontroller is nothing more than a small computer, or a System On a Chip
(SoC) that typically features a CPU, flash memory, RAM & ROM memory, and
programmable 1/O peripherals.

The microcontroller selected for this project is the ATmega328P-PU, which
according to the manufacturer, contains an eight bit CPU, 32Kb flash memory,
1Kb EEPROM, and 2Kb RAM memory. Microcontrollers are commonly
programmed using Assembler, C, or C++ programming languages. The tool
chosen by the team to program the microcontroller is AVR-C (a form of C++), for
its simplicity of use, and royalty free.

AVR-C consists of a GCC (GNU compiler collection), GNU binary utilities, and
the AVR-libc which contains the standard C library. To complete the set of tools
for programming the microcontroller, an IDE must be chosen, alternatives to be
review are the Arduino IDE, Makefiles, and AVR studio.

4.6.1. 2 Java

“‘Java is a programming language and computing platform first released by Sun
Microsystems in 1995” (1). It's widely used in ATMs, cell phones, laptops,
websites, game consoles, embedded systems, and other devices are
programmed using Java.

Java provides a multi platform operability (Java code designed for Windows, may
be used under IOS, Linux, and other OS) thanks to the use of a Java Virtual
Machine (JVM). Java is a free tool; both the Java Runtime Environment (JRE),
and the developer (Java SE) are free for downloading from the Oracle website.

Pros of the Java Programming Language:

e One of the most used platforms, constitutes by itself and asset, for it's
quite easy to find staff to maintain the application.

e Royalty free.

As previously stated, it runs on virtually any platform.

e The IDE contains excellent tools for documentation

Cons of the Java Programming Language:

e GUI for the IDE is not very user-friendly. It is not as easy to program as
other tools available, and graphics elements not as ‘good looking’ as IDEs
of other languages.

e The fact that runs on all platforms, makes its more vulnerable to attacks.

4.6.1.3 PHP

PHP is a general purpose scripting language. It is designed to be used for web
development, but can also be used as a general purpose programming
language. PHP can be embedded in HTML code for a website. This allows the
programmer to add dynamic content on their webpage. It is an object-oriented
language with each variable declared as objects and assigned a type when they
are used instead of when they are declared.

The language PHP is helpful in connecting a website to a database. It allows for
the connection to be made as well as make database calls. This allows the
website to dynamically display information from a database.

One of the major downsides to PHP is that it can make websites vulnerable to
hackers. In order to combat this, many safety updates have been implemented
to prevent outside users using PHP calls inside of website for malicious reasons.
The programmer must also make sure to close any loopholes that would allow
such intrusion.

4. 6. 1. 4 Javascript

As the name implies, JavaScript is a scripting language. It is used by a majority
of websites and as such is allowed in almost all web browsers. JavaScript
supports object-oriented, imperative, and functional programming styles. On the
client side, it is usually implemented as an interpreted language (compiled into an
executable before use), but on web browsers, it is often uses just-in-time
compilation. This allows it to be portable to almost any system, but it does cause
it to run slower than an executable file.

4. 6. 1. 5 Visual Basic

Visual Basic (VB) is considered the flagship language for developing from
Microsoft. This easy to learn/use language starts with a versatile IDE which
allows development of applications oriented to PC’s (forms), standalone
applications (Services), web development, and in more recent versions
development for the Android platform.

VB is an object oriented language that allows the developer to write programs
from drivers (using Windows system calls), up to the most complex database

oriented applications, thanks to the ability to connect to many available DBMS
interfaces such as Access, SQL Server, MySQL, SQLite and many others.

Among many programming tools available; all of them with similar characteristics
as VB, VB was selected by Team nine for the development for the server
interface, due to the fact that is has the best GUI and IDE available today. This
GUI not only contains the largest object library (buttons, checkboxes, drop-down
list, etc.), but also the GUI ‘writes the forms code’ as the programmer ‘draws’
(places objects) onto the screen.

With regards to the aspect of investment security, VB permits the developer to
continue using legacy applications, or develop new ones with the latest
technologies available in the market. Should the server platform change in the
future? Visual Studio’s Xamarin permits any Windows based application (VB), be
transported to other environments such as I0S, and Android.

4. 6. 1. 6 Bootstrap CSS

Bootstrap is the most popular HTML, CSS, and JS framework for developing
mobile first project on the web. It allows the programmer to create web pages
that will scale to almost any size screen. It uses programs webpages in HTML.
The main benefit of Bootstrap CSS is its portability.

People now use many different devices to connect to the Internet. Bootstrap
allows the programmer to create web pages that will look correct on almost all
devices. It does this by dynamically scaling the content to the size of the screen.
This saves a lot of time in developing web pages by eliminating the need to
create different code for each device the web page is viewed on. Bootstrap CSS
makes it easy to create web-based applications that can be access on a desktop
computer or a cellular phone.

4. 6.2 Programming Design Patterns
4. 6. 2. 1 Observer

The Observer pattern consists of a subject, an object and its observers. The
subject object maintains a list of observers. When there is a state change, the
subject automatically notifies the observers by calling methods in their class. This
can be seen in Figure 4.15. This is a good method for event handling because
the subject can register an event that has occurred and it will be updated by all
the observers. This provides loose coupling as a change in one class does not
ripple effect the others. The downside of this pattern is that subscribers may get
unnecessary updates, and it can lead to memory leaks. This pattern could be
used in the U-Park system for event handling.

Subject

notify observers

¥
<<Interface>>
Observer

Update

<<client>> <<client>> <<client>>
Client 1 Client 2 Client 3

Update Update Update

Figure 4.15 - Observer Pattern

4. 6. 2. 2 Factory

The Factory pattern is useful if the programmer needs to create a large number of
object and does not know ahead of time how they will act. The factory class
produces an object according to the command it receives from the client. An
example of this creation can be seen in Figure 4.16. This is a good pattern to use
in order to centralize class selection and encapsulate object creation. This pattern
is not necessary for the U-Park application. The application will only require a few
object, and their use will be known ahead of time.

<<client>>

L
<<Factory>>
Object Factory
Make Object
<abstract>
Object 1
creates -
I .| +Attribute 1
/| +Attribute 2
N
/
Y \
7 N\
P s \
7 \
P s Implements \
/
P \
Objectl Typel Objectl Type2
getAttribute1(); getAttribute1();
getAttribute2(); getAttribute2();

Figure 4.16 - Factory Pattern

4. 6. 2. 3 Singleton

The idea behind the Singleton pattern is to have only one instance of any class
running at a given time. This is shown in Figure 4.17. This means that only one
object of each type can be created. This can be accomplished by marking the
class constructor as private, and adding a get_instance function that can only be
called once. This pattern works well for embedded operations and other
programs where each class has a single purpose.

Singleton

instance

Singleton getlnstance()
operations

getter()) -4

setter()

if (instance == null)
instance = new Singleton();
return instance;

Fig 4.17 - Singleton Pattern
4. 6. 2. 4 Facade

The Facade pattern is based on the idea of hiding any complex actions behind the
scenes. The user will see a very simple interface without any access the the
complicated functions that are used to create that interface. All of the complex
functions are hidden by the facade as shown in Figure 4.18. This is a good
pattern to use for the U-Park application. The application should be simple to use,
and the user should be able to get the information they are looking for as quickly
as possible. In order to give this information to the user, a lot of background
functions have to be implemented. The user only sees the simple interface
without ever having to know what is happening behind the scenes.

<<client>>

Class

71

Class Class

Class

—

Class

Fig 4.18 - Facade Pattern
4. 6. 3 Database Management System (DBMS)

Besides doing fast calculations, the main function of a computer consists in
storing data for later access and use. There has always been discussions about
the best mechanism for storing and retrieving data; sequential files, index
sequential files, and DataBase Management Systems files which can be
hierarchy, networked, and relational. Throughout the pass of time, relational
models have become a standard, and as prices for software licensing have come
down, relational DBMS (RDBMS) can be found from a SOHO network to large
corporation mainframes. Its simplicity to design and program, yet its powerful
features, makes RDMS a tool of choice for system designers and programmers.
“SQL (Structured Query Language] is a special-purpose programming language
designed for managing data held in a relational database management system
(RDBMS), or for stream processing in a relational data stream management
system (RDSMS).

4. 6. 3.1 MySql
MySQL is a RDBMS (relational database management system) from Oracle

Corporation. Developed in 1995, and later acquired by Oracle it's one of the most
used RDMS worldwide due to its versatility, cross-platform (both operating

systems, and programming languages), and easiness of use among other
characteristics. Facebook, and Youtube can be mention as an example of large
customers.

MySQL is distributed in different editions based on the user’s needs. Team 9 is
evaluating MySQL Community Edition which is a free version under a GPL
license, and according to the manufacturer's website, it provides the following
elements (2):

Pluggable Storage Engine Architecture

Multiple Storage Engines:

InnoDB

MyISAM

NDB (MySQL Cluster)

Memory

Merge

Archive

CSv

MySQL Replication to improve application performance and scalability

MySQL Partitioning to improve performance and management of large

database applications

Stored Procedures to improve developer productivity

Triggers to enforce complex business rules at the database level

Views to ensure sensitive information is not compromised

Performance Schema for user/application level monitoring of resource

consumption

Information Schema to provide easy access to metadata

e MySQL Connectors (ODBC, JDBC, .NET, etc) for building applications in
multiple languages

e MySQL Workbench for visual modeling, SQL development and

administration

From the server side an application written in Visual Basic will interact with
MySQL, the mobile app will connect the project database using PHP. In both
cases the interfacesare acquired thanks to the use of connectors.

4. 6. 3.2 MS SQL Server

Just like MySQL, Microsoft SQL Server is an RDBMS based on SQL Codasyl
standards. For this project team nine will evaluate the SQL Server Express
Edition, this due to the fact that is a free product with the same capabilities as the
standard edition.

Main components:

e SQL Server Database Engine (Server)
SQL Service Manager (Server)
SQL Profiler
Data Transformation Services (Client)
SQL Server Enterprise Manager (Client)
Query Analyzer
Replication (Server)

The vendor (Microsoft) offers many versions of MS SQL Server each one
oriented to a specific necessity. For this project, the version MS SQL Server
Express 2014 is the one chosen and being evaluated against other DBMS.

Despite the fact the components presented for MySQL might not exactly match
those of SQL Server, both products present similar characteristics —data storage,
SQL syntax, replication, backup, etc,.

The pros that could be enumerated for using SQL Server are practically the
same as those of MySQL, so in this case attention will be put on the cons that
would affect this project. First of all, in a rough estimate of data to store based on
a 10,000 car parking, and transactions being made every 30 seconds, the
applications would require approximately 20Gb storage per year. This number
would exceed the maximum limit of the ‘free’ version (SQL Server Express), and
the project would incur on new expenses not considered for this project.

4. 7 Application
4.7.1 Website

The website will be the place that the users will go to view the status of the
garages in order to decide the most convenient place to park. The most
important aspect of this application is that it will allow users to view a network of
garages. For instance, if a user is looking to park in either a city or campus
containing multiple garages, they will have instant access to the status of each
garage and the floors inside the garages. Users will be able to make a decision
quickly based on the status of the garages, and which garages has open spaces
closest to the area they would like to get to on campus. This will save people
time and help to alleviate the stress of finding a parking spot in an area where
garages are spread out.

The application will be scalable to almost any device to make it easy for users to
view the website. There are a number of different types of devices that people
use to connect to the internet and view web pages or applications. The U-Park
application will scale to be usable on almost any size screen using CSS libraries.
The interface will allow a user to view the garage status at home from their

computers or tablets and then check for any updates on their smartphones once
they arrive at their destination. The web application must be built using a script or
language that allows for scalability. This will be one of the most important
aspects for choosing the programming design for the website.

The website will be designed for administrators as well as everyday users. The
administrator accounts will be created for the “owners” of the garage, such as
parking authority at a university. The administrators will be given more access to
the garages than the standard users. If an administrator is logged into their
account, they can adjust the status of their garages to correct for errors or
inconsistencies. They will be able to mark garages closed or reserved. They will
also be able to mark certain floors closed or reserved as well. This will allow for
the owners of the garages to communicate to all the other users the state of their
garages. For example, if there was construction or a special event that would call
for the closure or reservation of a garage or certain floors, the administrator will
be able to let other users know of the changes.

Standard users will log in the same way as an administrator. They will be able to
choose which garages that they want to have saved as their viewable garages.
Once this is done, their homepage will show them the parking spots available in
the garages they have chosen. They will also be able to expand on a garage and
view which floors have free spots. This will be used in the case of a user not
wanting to park on a roof or any other floor of a given garage. They will be able to
make a quick decision in which garage and on which floor they would like to park.

The website application will need to be connected to a login database on a
server. This database will hold the credentials for users to log in. It will also keep
track of which accounts are administrators and which are standard users. The
passwords will have to be encrypted for the safety of the users. The web
application will allow people to create accounts, and will check to ensure that no
duplicate accounts are created.

The website will display the current parking spots available on each level of each
garage. If a garage is full, the website will display a colored “busyness”indicator.
There are times when a garage will be full, but when people are constantly
leaving and their parking places being filled by others looking for a parking
space. The “busyness” indicator will show how likely a person would be to find a
spot in a full garage. The indicator will show if a full garage is more or less likely
to have spots open up quickly.

A database will be used in order to keep track of the open parking spaces. This
database will be populated by the information from the sensors in the parking
garages. The website application will query this database to provide the
information to the user. In the case of the administrator, the database will allow
the admin to write to the tables to change the status of a garage or a floor.

4. 7. 2 Smartphone Application

While the smartphone application will only be implemented if time permits in
senior design two, the information describing the proposed application is listed in
the following paragraphs. The smartphone application will eventually have the
same functionality as the website application. The smartphone application will
give users quick access to the information they need. This will save users time
when searching for a parking spot on their phone. The application will be able to
be opened directly without having to pull up a website.

This application will remember the user’s credentials so that they will not have to
type in their username and password every time they want to view the U-Park
system. This will save the user time, and it will be much safer if they are using
the application while driving.

Once inside the application, the users will be able to view everything as if they
were on the website. There will be small differences because the view will be
created specifically for cellular phone screens, and the application will also make
use of the touch interface used on smartphones.

The smartphone application have the exact functionality as the website. It will
query the same database and use the same calls as the website application.
Using the same database for both platforms will allow for both the website and
smartphone application to display the same data simultaneously as it is updated
in the database.

4. 8 Project Scaling

One of the most important aspects of the U-Park system is that it has to be
designed with upgradability and scalability in mind. Parking garages come in all
kinds of configurations however, to develop a working prototype, the U-Park
team has designed its system with special consideration for the parking garages
at UCF. Because to U-Park system is not based on UCF specific features
though, the system should be able to grow to meet any other parking situation,
so long as there is an available network connection to relay the parking
information from the sensors.

Each sensor module contains three sensors to detect parking availability in three
spots, and each of these modules positioned every three spots communicates
with one another in a star-type network. By forming this star network, all of the
parking sensor modules need to communicate with router or connection to the
internet. This system allows modules to be added as needed and simply
assigned an ID number, and connect to the router when added to the other

sensors. This allows the total number of connected devices to only dependent on
the number of clients the chosen router can support and the effective range of
the router’s antenna.

To allow for a greater range on the router both a omni-directional antenna and a
patch antenna could be used for diversity. The omni-directional antenna, shown
below in Figure 4.19, has a much shorter linear range than the omni-directional
antenna, but is able to connect to devices, as indicated by the name, 360
degrees around the router. The omnidirectional antenna has a much farther
range, but since the grand majority of garages are constructed as rectangles, this
may not be the most efficient method for garages. Instead a patch antenna,
shown below in Figure 4.20 can be aimed down a line of receivers and reach the
sensor modules at the other end of the parking garage that would otherwise be
out of range of an omnidirectional antenna. The caveat of the patch antenna is
that it must be aimed in the direction of the clients that it supports, and will not be
able to pick up on modules beside or behind the router. This is where the
omni-directional antenna comes in to bridge the coverage gap.

Figure 4.19 - Omni-Directional Wi-Fi Antenna

Figure 4.20 - Uni-Directional/Patch Wi-Fi Antenna

For the test implementation and demonstration, only an omni-directional antenna
will be used due to cost limitations, and due to the fact that routers do not come
with antennas other than omni-directional antennas out of the box. However, to
achieve the benefits of having a patch antenna, all that is required is unscrewing
one of the standard antennas, and replacing it with a patch. Below there are two
figures which show the two different types of antennas that would be used for the
U-Park system. This design allows for better scalability of the system since the

length of the garage would be less of a factor, so long as the length of the garage
is within the effective range of a path antenna. The range of directional antennas
can be as high as a quarter of a mile with a 9 DBi rated patch antenna. The other
solution to the problem of implementing the U-Park system in larger parking
garages would be to use higher power omni-directional antennas. While this
solution “gets the job done”, there also exists the result of having a large amount
of signal “bleed-out” past the limits of the garage boundaries, with could result in
unwanted interference with external networks.

Connecting all of the devices in an area in a garage to the same router could
present issues with an increasing number of clients, but seems to be the best
implementation for the U-Park system which is designed primarily around the
issues of parking in the UCF parking garages. The U-park system is then able to
connect all of the various locations in the garages (the access points) in a mesh
network which is described in more detail in section 4.4.1.2. The proposed
solution should be more than enough to deal with the specifications of the UCF
garages, but is also able to grow to meet the needs of other parking garages,
wherever they may be due to the size of the total system being able to be
increased by adding a new access point to the mesh network.

4. 9 Microcontroller
4. 9. 1 Processor Speed

The clock used for the ATMega328p-pu microcontroller is a 16.00 MHz crystal.
Many times in software a multiplier is put on the raw crystal frequency to allow for
different processing speeds. However, the ATMega328p-pu chip actually uses
the 16.00 MHz clock frequency as-is. As previously stated, the frequency is often
altered for many applications, and the ATMega328p-pu is no exception to this
ability. The clock speed is able to be raised for more performance, but there is a
substantial degradation in product life, and heat becomes a greater concern as
the chip is passively cooled by exposure to its surroundings. More commonly, the
clock speed is lowered. One way to accomplish this is through the IDE software
for writing the “sketches” (programs), and the base-clock speed can be halved by
using the ATMega328p-pu’s internal 8MHz clock.This allows for a reduction in
power consumption and slightly improved life-expectancy of the chip. While this
does lower performance, lowering the base-clock frequency for the chip can be
beneficial in some systems which are reliant on battery power, and benefit from
any extra power the system can save through lowered consumption.

For the application of the U-Park system, power consumption is not a primary
concern as the power is being received over the AC wiring in the parking garage,
and then converted to usable DC in the system. Lowering of the base-clock
speed in accomplished by applying a “prescaler” value, and writing code to be
included in a header file of the executable program on the board. Applying a

prescaler does cause some headache when writing the code which, since the
U-Park is not a low-power application, would add an undue complication to the
development process. According to the Arduino website “when one changes the
clock prescaler, time-based methods millis() and delay() become void, since time
needs to be multiplied by the prescaler” (10). For the U-Park system the
standalone 328p-pu microcontroller will use the base clock of 16.00 MHz. The
clock connected on both leads to the common ground by 22pf ceramic disc
bypass capacitors. The pins 9 & 10 are then connected to pins on the
ATMega328p-pu microcontroller.

4. 9. 2 Peripherals

The U-Park system is fairly self contained as it requires only two external
peripherals to monitor a parking spot. One of the peripherals is the Wi-Fi Module
discussed in detail in Section 4.3.2, and the other is the set of three ultrasonic
sensors which are discussed in more detail in Section 4.2.2.2. Other
components which could be considered peripherals are the router for Wi-Fi, and
the cables to connect the various components together, but since these
components are not directly connected to the sensor system, they will be
discussed as part of the networking components in other sections in this
document.

There are four components which make up the parking sensor system: the
microcontroller, power supply, sensor modules, and Wi-Fi module. The Wi-Fi
module and sensors will be bought while the microcontroller and power supply
system will be built by team nine. This decision was made because building a
Wi-Fi module and/or sensor is not only impractical, but also nearly impossible
due to the level of intricacy, tiny surface mount components, and the machinery
that are required to build these devices. To build and design a router is also
incredibly impractical, and would only result in more development cost and
headache since routers are already prolific in the market and come with many
features above what the team could develop in a short period of time. The
U-Park system takes some modules which are available as commercial
off-the-shelf products, and integrates these components to an in-house sensor
and communication system which is specifically designed for the task at
hand,with no more features than are specifically required by the project
specifications. In this way the development team is able to streamline the design
and ensure compatibility with existing systems, while keeping costs low.

4. 9. 3 Other Microprocessor Information

Over the course of testing and building a stand-alone ATMega328p-pu
microcontroller, the team mistakenly connected the microcontroller’s clock pins to
ground with the incorrect capacitor values. 2.2pf ceramic disk capacitors were

used instead of the required 22 pf capacitors. The Effect of this was that the
clock did not work correctly, and would not run the test program to blink the LEDs
on pins 12 and 13. This was a learning experience, and showed the effect that
the correct values of bypass capacitors have on the valid clock output. The
problem that the board was not functioning correctly due to the incorrect
capacitor values was difficult to troubleshoot due to the fact that the board was
still receiving power and all of the corrections “seemed” correct. Also the
capacitors that small do not have an obvious labeling since the ceramic disk area
is so small. This was a valuable learning experience as it showed that the rise
and fall of voltage on the 16.00 MHz clock is very reliant on specific capacitors,
whereas other circuits may not be as sensitive to minor changes like this.

4.9. 4 Part Selection

Components used in the development of the U-Park system were chosen based
on price, part availability, use in the marketplace and whether there was good
documentation to support in the integration of the components into the system.
Also, another reason some parts were chosen such as the Wi-Fi communication
module, was from testing. The team discovered that some Wi-Fi modules
compatible with the microcontroller did not contain integrated antennas, and an
external antenna had to be used. While this was an easy fix, The addition of
having to add an external antenna was an easily avoidable issue by simply using
a WIFI module with an integrated antenna.

For the router, selection was made by using an unused router a team member
already had. While a fully-implemented system would require a router with much
higher specifications, and would require external antennas, This was not
implemented in the final senior design deliverable because the router is one of
the items that can be replaced as needed depending on the physical
requirements of the garage which the system is installed in. Also, the router is an
independent component of the system and other components do not “care” which
router is used to relay the sensor data to the network.

Other parts such as the individual capacitors, resistors, etc. were chosen based
off of availability and price off of various websites. The basic building blocks of
the system did not have any special requirements and therefore did not require
special consideration in the selection process.

The ATMega328p-pu microcontroller was selected due to its ease of
development, and its open-source hardware and software architectures. There is
an exorbitant amount of documentation available for all compatible modules such
as the sensors, Wi-Fi modules, and the microcontroller itself, which aids in
development, and minimizes the amount of time it takes to troubleshoot errors,
and reduces the overall development time and demand on the team, which may
have little prior experience working with similar embedded applications.

4. 10 Summary of Features

This section will explain the U-Park system as a whole from a higher-level
perspective. It will describe the system’s primary features and will cover how
users will interact with the features of the U-Park system, and how the users will
be able to be disconnected from the hardware, so that the only features the user
will have to be concerned will have to do with the web interface.

The hardware for the sensor modules is reliant on AC power, and is therefore
mounted on the ceiling of the garage. However, this presents a problem for the
sensor modules on the top floor of the garage where there is no roof. In this case
the modules will be mounted on the wall in front of the parking spaces, and
power will be run between the modules by a separate wire. On the main floors of
the garage where there is a ceiling, vehicles have a restricted height requirement
to be able to enter the garage, and therefore the implemented system does not
have to be overly restrictive on the amount that the module extends not from the
ceiling. The parking garage ceiling has a structure where “ribs” of concrete are
around a foot and a half lower than the actual flat portion of the ceiling. This is
where the sensor modules will be mounted. This puts the system well out of the
way of where users will come into contact with the modules and makes
tampering with the modules much more unlikely.

On the top level of the garages, where the sensor modules will be mounted on
the walls in front of the parking spaces, the modules are mounted in between
sets of two spaces. This ensures that even if a car decides to pull into a spot
extremely close to the wall, the sensor will not be hit by the car or the car’s
bumper. This does present the issue that the sensor module will be more able to
be tampered with, however, because the system will be enclosed inside of a hard
3D printed shell, the sensors will be protected from a grand majority of would-be
vandals. The team is also relying on the system being useful and provide useful
data to prevent users from wanting to vandalize the system in the first place.
After all, who would want to harm a system that is useful and helps users with the
rampant parking problems presented in parking garages, not only at UCF but all
around the country.

The sensor modules are connected to a router wirelessly through Wi-Fi modules.
Each router is responsible for only a small number of modules in a area
surrounding that router. The routers “talk” to each other in a mesh network
configuration. This allows the system to be expanded to cover larger garages,
and ensures that the system is not overloaded with too many clients on each of
the access points.

The user interface is the only aspect of the U-Park system that is pertinent to its
end-user. The user for the system would initially presumably be a student at
UCF. The student will simply be able to open a browser and access the web site,
which displays parking information for a garage. This web interface is designed
and built using Bootstrap CSS libraries to ensure that the content displayed is
optimized for any screen size. Whether the student is on a laptop and want to
check before they leave for class if a garage has available parking, or if the
student is already on campus and wants to see which garage currently has the
most available parking by the building that the student need to go to. The user
will be able to see real-time information on where to park based off of current
availability in the garages monitored by the U-Park system. This makes driving
into a garage to search for parking a thing of the past, and allows drivers to save
not only time when searching for parking, but also gas as the user does not drive
around aimlessly looking for a spot. This will save the user money and will help
lower the amount of greenhouse gas emissions from cars driving around in full
garages.

The web interface will be simple and uncluttered, only supplying the users with
the garage information that they need. This will improve the response time of the
web page as well and avoiding unnecessary distractions from irrelevant
information. At a glance, users of the U-Park system will be able to see all
current information on the garage availability and will be able to make a decision
on where to park based on that information.

5. Methods
5. 1 Research Methods

Research for the U-Park system done by the design team was an iterative
process. In principle, research for intricate projects such as these can not simply
be confined to the initial design period. All throughout the design process,
specifications were created, and new considerations had to be thought about.
Even initial design ideas had to be reconsidered once new information came to
light.

For instance, the team considered implementing the parking management
system through UHF RFID tags, where traffic and parking passes would be
monitored by keeping track of these RFID tags. However, the team realized that
there would be significant privacy and ethical concerns with implementing such a
system in a school setting. Also, there would exist the problem of drivers entering
the garage without an RFID tag. This problem would require the creation of a
separate system to take pictures of someone’s licence plate who entered without
a RFID hang-tag or sticker. This, among other computational challenges,
presented more ethical issues. Because of these hurdles and ethical issues, the

team then decided that creating a system to just detect the individual spaces
directly would be a better solution.

Research on components and tutorials of how various aspects of the project will
continue to be sought-out until the system is fully fleshed-out. Even after the
design phase, as small problems may come to light, small changes will be made
to improve the system. There is always a need for continuing exploration of new
ways to do things to ensure the product keeps improving. Figure 5.1 below
shows a visual representation of the research process the U-Park design team. It
shows how the process is iterative, and how the process is independent of the
point the team is in the design process.

Define Problem
and
Specify Requirements

Explore Best
Possible Solutions

!

Examine Problems
and Choose / Design

Compare Outcomes Custom Solution
with Requirements

I l

Prototype and Test Custom Solution Prototype

Figure 5.1 - U-Park Team Research Method

9. 2 Design Methods

The Process through which the U-Park system has been created is similar to the
methods used for research shown above in the research methods section
(Section 5.1). The design method was also an iterative process where, during
examining possible solutions for the given problem, caveats to the proposed

solutions were examined. However, during the design process, input from
mentors and Dr. Richie were also taken into account.

For example, the team was initially decided on using a simple 5V DC linear
voltage regulator. It was brought to the design team's attention that this solution
would work, but would not be an elegant solution for the problem, in that linear
voltage regulators are extremely inefficient. In linear voltage regulators, the
voltage difference between the input voltage and the steady 5V output is
dissipated through heat transfer. Instead of using a linear regulator the team
sought out help from Professor Reza Abdolovand, who suggested using a
switching regulator, which does not suffer from this lack of efficiency since it
basically switches off and on quickly to only build up the required voltage output
required and then shuts off through a feedback system. This process repeats
itself to produce a constant output voltage without having to dissipate the excess
energy through the transfer of heat.

While using the switching regulator is more efficient, using a linear regulator
accomplishes the task of voltage regulation well enough for the U-Park system.
Because using the linear regulator saves space inside the sensor module
housing, it was chosen by the design team to be the best solution, as efficiency is
not much of a concern. However, the design process benefitted greatly from
examining the caveats of using a linear regulator, and allowed the team to weigh
the pros and cons of different options more thoroughly. The design pattern the
U-Park design team followed in the development process is shown below in
Figure 5.2.

Examine Problem Prototype the

and Order === | Ordered Components
Various Components and Test
No Meet with Team
and

‘I‘ / Discuss Results

Is This the Best
Solution to Meet
the Requirements?

l

Yes = Work into Final Design

Figure 5.2 - U-Park Team Design Method

5. 3 Project Management

Effective management of the design team is fundamental in the success of
delivering a quality final product that meets, or exceeds the initial requirement
specifications of the system. Throughout the design process, developing the
team and ensuring that expectations were clearly stated and ensuring
communication was always open, was very important. For this reason, the
software used to ensure this openness and ability to collaborate had to be
chosen carefully to act as a catalyst for effective collaboration. If an inefficient
procedure was used from the start, changing half way through would be an
added hurdle that, under a timeline as short as that in senior design one and two,
would add undue stress to the development process, and could jeopardize
cooperation and participation required by the U-Park design team’s members.

To ensure that the team was able to have 24/7 open communication the team
decided to make use of the GroupMe mobile app. This app is available on both
android and iOS devices, which ensured universal usability between the team’s
members. The interface also allowed for communication which would be

separated from the team members personal phone messages. GroupMe
provides a differentiation from team members personal and “work” messages,
and ensures that whenever a notification from the GroupMe app appeared, team
members can see at a glance that attention needed to be paid to communication
specific to the project’s development.

The other piece of software pinnacle to the management of the U-Park
documentation was the use of Google’s cloud services. Namely the use of
Google Drive and Google Docs. During the initial assignments such as the table
of contents submission, the team created a shared document on the Google
drive containing a universal table of contents for the project documentation. This
table of contents was color coded by team member so that each team member
was able to see what sections each person was responsible for. This also
allowed for efficient design review sessions during the documentation process,
as while walking through the document the table of contents could be used to
examine the total completion of the document, and the completion status of each
of the team members. One other important feature of Google cloud services is
the ability to examine edit history. This feature ensures that incorrect changes
can be easily reversed.

Team meetings were scheduled at least once every week during the senior
design one semester to ensure that the team remained engaged, and was able
to begin growing as a group. While group unity is often an overlooked aspect of
design teams, the amount that team members feel that they are worthwhile
contributors, and the ability to share concerns and opinions can either make or
break the quality of the final project. Throughout the design process members
were encouraged to share any concerns or problems that they were having. This
ensured that any problems or concerns could be solved before they turned into
more significant issues, and that group members would always feel that any
personal concerns were able to be reasonably explored and resolved.

While the management style required during Senior Design two, will be different
than that required in Senior Design one, the overall communication aspect and
group collaboration aspects must remain unchanged. The reason for the
difference in management styles stems from a different set of problems the team
is likely to face. The team will likely require more face-to-face meetings, however,
unlike during the initial design document creation process, the entire team will not
always be required to attend these meetings. For instance, if members who are
working on the electrical components of the system are having issues, those
working on the database and software of the U-Park system would not be
required to attend the hardware-specific meeting. Instead these other members
could use that time to continue working on other aspects of the final design.
While the team will still have meetings where the entire team needs to
collaborate and be present, these meetings will be reserved for the fundamental
design reviews.

9. 4 Implementation

Implementation of the U-Park system happened in multiple phases. The first of
which was during the initial design process, the second was during the
experimentation and initial prototyping and the third phase will be during the final
implementation of the U-Park system during the Senior Design two semester in
the summer of 2016. While these various implementations are slightly different,
they all combine to develop the final implementation at the end of senior design
two which will be demonstrated to the faculty.

The first implementation of the U-Park System was performed during the first
couple weeks of the design process. This implementation included a proof of
concept prototype for various methods which could be used to detect cars. The
implementation which was decided to be the most effective by the team was a
simple ultrasonic sensor program using an Arduino UNO microcontroller board.
An ultrasonic sensor was connected to the board and a simple test program was
written to measure distances away from the sensor in centimeters.

The first test prototype led to other prototypes and tests of other equipment.
Namely, the various Wi-Fi modules available on the market were tested. It was
discovered that some of the Wi-Fi modules were easier to develop with than
others. Even though the other wifi modules are slightly more expensive, the extra
quality and programmability is necessary to ensure that the final prototype is a
reliable product.

The final implementation presented to the faculty and demonstrated during the
senior design expo will have a polished design. The sensor modules will have
custom 3D printed bodies and will exist as a fully integrated system. The U-Park
system’s final implementation will be demonstrated through the use of a scale
model of a parking garage and will allow the audience to move the model cars in
the garage to observe the changing status on the web interface. This
demonstration will prove the concept and will show that the system meets the
stated specifications. Furthermore, this demonstration will provide a stress test
for the system as the system will be relying on a UCF wireless network notorious
for poor connectivity. The majority of the testing will not be carried out in the
engineering 2 atrium where the Senior Design two expo will be held. And, since
the wireless network is so “spotty”, the design team will have to take this into
account. The U-Park design team must be able to supply its own wireless
internet connectivity in the case of network problems in the atrium.

6. Realistic Design Constraints

6. 1 Standards

To implement this project, a careful observation, test, and selection on standards
was made. These standards made the implementation of the project a much
easier process both in design as well as in costs.

6. 1. 1 Wireless Standards

In the search for a mean of communication between the microcontroller and the
server, several alternatives were evaluated. There are many alternatives in the
market to accomplish this task. The most common are based on IEEE standards
for data communications. The following standards were evaluated:

IEEE 802.3-2008 (Giga-byte Ethernet or 1000Base-T). This standard is
based on a 4 pair twisted cable allowing speeds of up to 1 Gbps.

IEEE 802.15.1 (Bluetooth - Standard not maintained). This Low power
consumption solution permits the communication of two devices in a short
distance. This is a low cost solution, however it was discarded due to
distance limitations, and a lack of consistent standards. The latest version
4 LE allows throughput of up to 24 Mbits, but is not universally
recognized.

IEEE 802-11 (WiFi). Commercially known as WiFi this standard uses
2.4Ghz ISM band and allows speeds of 54 Mbps. When implemented
along with TCP/IP, this standard becomes the best alternative for
replacing “wired networks”. In the case of this particular project this was
the best alternative, and was selected to be implemented with the
microcontroller.

6. 1. 2 Other Relevant Standards

TCP/IP Embedded in the Wifi module TCP/IP is used as the transport
protocol.

Telnet Application layer. Telnet is used to send/receive data between the
microcontroller and the server applications.

6. 1. 3 De facto Standards

Even though these standard are not industry recognized as de jure standards,
De Facto standards are used due to the popularity imposed by their
manufacturers. In some cases these standards are as much recognized as any
de jure standard. In this project the following De facto standards were used.

e Microsoft Visual Basic. Used in the programming language in the design
of the server application.

e AVR-C. Even though it is based on the popular C language, this version is
adapted to be used on the ATMega-XXX family of microcontrollers. It is
used to program the microcontroller used in this project.

6. 2 Economics and Time

This section will discuss the economic cost of the U-Park system and the time
considerations associated with designing and implementing such a system. This
section will also provide an overview of the ideas surrounding some fixed costs
required to implement the U-Park system.

To design a system, which could be reliable enough to be successful in an
industrial setting, presents some challenges. These challenges are exacerbated
when such a system is to be fully fleshed-out in the short time available in the the
two semesters given to developing, building and testing an entire working project.
Because of this, to fully deploy a viable version of the U-Park system, much more
time to fine-tune the final product would be required. The last thing a prospective
customer would want would be an expensive system constantly requiring
updates and repairs due to oversights in the development process. Also, more
testing of the sensors would be required to fully ensure that, over time, the
sensors would be reliable, and that normal wear and tear would not compromise
the overall quality of the system.

The economic impact of the U-Park system changes with the size and
restrictions of the garage in which the platform is implemented. Smaller garages
would have a higher cost per spot than a garage with the same infrastructure and
network resources. This is due to the overhead of installation costs, the costs of
the design team to customize the placement of the access points, and the cost of
retrofitting the garage with the necessary electrical and network routing and
wiring. For instance, if the U-Park system were to be implemented in a garage
lacking the required network connection, the owners of the garage would be
required to factor in the continuing cost of an internet package with an internet
service provider (ISP). This would disproportionately affect the implementation of
small garages more than larger garages because the fixed cost of the
subscription would be proportionately larger compared to the installation cost of

the entire system. While network access is a caveat of the proposed system, in
the ever-increasing connected world, this cost reduces over the lifetime of the
system as new networks are made available.

The initial costs of the U-Park system are fairly minimal, and the cost of
maintaining such a system are mainly reliant on: the cost of electricity to power
the sensors and routers, and the cost of network access to be able to
communicate with the network interface. The only other time and cost
considerations associated with the proposed system would be maintenance. So,
to ensure this cost would be as low as possible, the system would need to
undergo in-depth testing and reliability analysis over the life cycle of the designs.
Also, continuing user-studies would need to be performed to ensure that users of
the U-Park system are able to consistently receive the information that they need
to avoid the problems currently prevalent in parking at highly populated
environments such as UCF.

6. 3 Ethical, Privacy, Health and Safety

This section will explore the ethical, health and safety considerations for the
U-Park parking information system and its components. Because the users of
U-Park do not directly interact with any of the hardware of the system the
negative ethical, health and safety aspects are minimized. Below, these aspects
will be explored in more detail.

There are very few ethical concerns for a system such as U-Park. Most of the
ethical problems would come from the users, weary of using the system due to
privacy concerns. In today’s day and age, privacy is often an afterthought for
many embedded systems. Consumers have become aware of this fact, has left
them with a feeling that most technology that makes life easier, must also come
with a cost of giving some level of privacy. Because the users would not directly
be paying for the services U-Park would have to offer, some would assume that
the cost for the users is privacy. This fear is unfounded in reality, however, as the
only costs associated (ethical or financial) with the U-Park system are the
installation cost, and the small sum of money required to keep the servers for the
database up and running. The U-park system was designed with security in mind
and users are not tracked. In fact there is no possible way for users to ever be
tracked due to the types of sensors that are being used. The sensors only tell the
server if someone has pulled into a parking spot, not who the person is.

Privacy concerns of the U-Park system are fundamentally non-existent and relate
only to the concerns associated with the aforementioned ethical concerns.
Because the users of U-Park are not tracked by any physical or software means
by the system itself, the users don’t have to worry about any privacy intrusions
from the system. The one main area where users would be at risk of privacy
being compromised would be on the online web interface through the IP address

used to access the interface. For this reason, appropriate security protocols must
be adhered to when developing the application, ensuring that malicious users
would not be able to compromise the security of the website itself.

Ensuring the health and safety of U-Park users is not compromised is
fundamental to the success of such a system. Any failures resulting in injury or
the damage of personal property could be a huge liability for the owners of the
garage and the designers of the system. The obvious safety concern would be
one of the modules, which are mounted on the ceilings of the garages, falling on
someone’s car, or worse, falling on someone. To minimize this risk, all
components mounted on ceilings would need to be secured using concrete
screws with maximum weight thresholds far exceeding the weight of the installed
modules. This would ensure that as time goes by, and the parking structure
ages, the ceiling-mounted components would not fall and result in injury or the
destruction of personal property. Other than components falling from height and
injuring users, the only other health and safety risk would come from electric
shock. Because the modules are powered with AC power from the garage, new
connections would need to be made into the power of the garage. These new
connections would need to abide by electrical safety standards to ensure that no
users could accidentally come into contact with any exposed wiring. Also, on that
same note, measures would need to be taken to ensure that no shortcuts were
taken during installation, which could develop into safety issues as time
progresses.

6. 4 Manufacturing and Sustainability

Manufacturing and maintaining the U-Park system is a very important
consideration during the design process. For this reason, the design needs to be
as simple as possible. This will reduce not only the cost of the components, but
also simplify the system in terms of maintenance. For instance, if a module is not
communicating over WIFI, a module could simply be swapped and in many
circumstances, a costly repair or recall could be avoided.

Manufacturing of the U-Park system would initially be carried out in custom
batches. For the prototype demonstrated at the Senior Design two expo at the
end of the summer of 2016, the hardware will be custom ordered from suppliers
such as OSH Park. OSH Park is a custom PCB designer which allows customers
to submit a design file, and within around two weeks, OSH Park will send out
three custom PCB’s. While there are a few options for custom PCB designers in
the marketplace, the U-Park has decided to use OSH Park due to its cost and,
speaking with past senior design groups, other teams have had good
experiences using this supplier.

If the U-Park system were to be implemented in a full scale purchase for a
parking garage, the small custom orders would simply not provide the

cost-effectiveness and volume required. For full-scale implementations, a
company that specializes in larger orders would be needed. One example of
such a company is the Captor Corporation, which offers much more
customization in the way of materials, and would be able to supply the quantity of
custom boards required to fully outfit a parking garage.

Production of other components such as the 3D printed housing of the sensor
module would also need to be scaled up in a full-size garage implementation.
The housing would not be able to be 3D printed as 3D printing takes far too long,
and is not very wear-resistant, especially in the hot florida sun and humidity
variations. The aluminum used for the sensor arms for the two sensors on the
sides which detect the side parking spaces would also need to be ordered in
bulk. Custom cutting and finishing individual aluminum sections for each garage
implementation would not only be impractical, but would also not be financially
viable. The aluminum would instead need to be purchased directly from the
manufacturer.

Manufacturing of the final prototypes, due at the end of the Senior Design
process, will be made in-house and will be built by the design team itself. The
team will use facilities offered by UCF and will obtain the materials either from
the facilities at UCF, or will purchase the supplies locally or online. The supply
chain of the prototypes is vastly different than a full-scale production run, and
much of the process would need to be optimized to meet full-scale product
orders. One hurdle that the U-Park system would have to overcome is that there
are no such thing as “small” orders in a full-scale implementation, as outfitting a
garage would be an “all or nothing” deal, and there are not really any small
garages in existence as the entire idea by constructing parking garages is to fit
as many parking spots into as small of a geographic location as possible.

Because the U-Park system needs to be maintained after installation, the goal of
the design team was to keep the system as simple as possible. The system is
designed such that much of the system is modular in that when a component
fails, it's place in the network can simply be replaced with a new component.
Sustainability was a significant aspect of the U-Park design, however, until the
system has gone through more extensive testing, the common faults and
problems remain unknown. For this reason the system must be as perfect and
streamlined as possible before a single sensor module would be installed in the
first garage.

/. Design

7. 1 Design Specifications

7. 1.1 Sensor

The following are specifications for the ultrasonic sensor that the parking system
will use to detect whether or not there is a car parked in a given parking space.
While other options such as hall effect sensors were considered, the ultrasonic
sensor was chosen due to its accuracy and simplicity. Also, the ultrasonic sensor
is able to be mounted in any orientation as long as it can detect whether there is
an object (i.e. a car) that has entered its detection path, and has crossed the
distance threshold set by the distance parameters in the source code. The
specifications for this sensor are shown in the tables below and on the next page.

Table 7.1 - Sensor Pins:

5V DC - 15mA power supply

Trigger Pulse Input

Echo Pulse Input

OV DC Ground (connected to the 5V power supply)

Table 7.2 - Hardware Specifications:

Working Voltage 5V (DC)

Working Current 15mA
Working Frequency 40 kHz
Maximum Detection Range ~ 4 - 5 meters

Minimum Detection Range

~ 2 centimeters

Measuring Angle

15 degrees

Trigger Input Signal

10uS TTL pulse

Echo Output Signal

Input TTL lever signal and range in
proportion

Product Dimensions

(.45 x .20 x .15) centimeters

Operating Temperature

-40°Cto120° C

Overall Accuracy

(95%)*

Life Span

2 years (minimum)

Weight

8.5 grams

7. 1.2 WIFI - LAN Transceiver

Wireless communication is a primary requirement of the U-Park System. To this
end, the group has chosen to use a transceiver that works on the 2.4 GHz WIFI
band. This will allow the modules to communicate directly with the access point
without the need for extra intermediary communication hardware/software.
Because the modules are arranged in a star network configuration (described in
more detail in section 4. 4. 1. 3), each module must have a way to communicate
with a central access point. To accomplish this the team has chosen to use the
ESP8266 WIFI Transceiver (shown in the Figure 7.1 below).

Ll

Figure 7.1- ESP8266 WIFI Transceiver Module

This transceiver has a built-in antenna, and an eight pin header pin connector for
power and data-transfer. A problem which was encountered during preliminary
research was that the team ordered a set of transceivers which required external
antennas (not included). This became an issue as it proved difficult to find
external antennas which would fit the connector on the receiver, and which would
be properly matched for this particular transceiver. This mistake, however, did
help the team better justify the slightly higher costs associated with transceivers
with built-in antennas.

The Input voltage required for this module is 3.3V or 5V depending on the model
purchased. Therefore the team opting to use the 5V version for the design, and
can therefore avoid the extra component cost to regulate down to 3.3V. The 5V
option is able to be supplied by the same 5V source that the ATMega chip and
rest of the components of the system are. The module contains the necessary Tx
(transmitter) and Rx (Receiver) pins and three GPIO pins which will connect to
pins on the ATMega328p-pu microcontroller. The pin arrangement is shown in
Figure 7.2 on the next page. Although this is the pin-out for the 3.3V versio the
pins are all the same except for the +VCC pin.

Figure 7.2 - ESP8266 WIFI Transceiver Module Pin Arrangement

One benefit of this transceiver is that it is a very common module for hobbyists,
and therefore has ample amounts of available documentation, and tutorials are
available to help in the development process. Helpful programming libraries are
also common for the module. Because there would be hundreds of modules per
garage when outfitted with the U-Park system, the code and libraries need to
have reliable and tested files to ensure reliability of the system. If for instance the
system had an unknown bug that caused errors to occur in the WIFI
transmission, resulting in the sensors not being able to transmit any data, the
entire system would effectively be useless. While other communication systems
such as bluetooth were considered, the ESP8266 WIFI module was chosen due
to its size, power, available development resources and its ability to
communicate directly with the U-Park server.

7. 1. 3 Power

Below are the list of all the specifications for the power of the board.
e |nput Voltage Limits:
e Recommended: 7~12
e Absolute: 6~20V:
o Below 7V may cause the 5V levels on the board to waver, fluctuate,
or sag, causing board instability and less accurate
o Sustained voltage above 12V will cause additional heating on the
linear voltage regulator of the microcontroller, which could cause it
to overheat.
Input/output (I/0) pins: -0.5V to +5.5V
Output Current Limits:
When powered by USB: total of 500mA
With external battery or power supply: total of 500mA~1A
5V pin: same as above: 500mA or 500mA~1A
Each input/output pin: 40m
Sum of all input/output pins combined 200mA
Life Span: At least 2 years
Fit within the package size
Little to no heat generation
Capable of a quick power on/power off cycle

7. 1. 4 Microcontroller

The micro-controller to be built by the team; features an ATMega328P CPU, and
an Ethernet WIFI module. The inexpensive 8 bit CPU allow the builders to
connect up to three sensors, the WIFI module, and LED that will identify the
different statuses (on/off, connected/not connected, etc.) that may prevail during
operation.

The 5V DC required to energize both the microcontroller and the sensor is
supplied an AC/DC converter, designed and built by the team. The function of the
microcontroller consists in querying the three sensors connected to it, and
determining if a vehicle is located in one of the three parking spots being
monitored. Every thirty seconds the microcontroller will query for information.
Once the microcontroller has acquired the data it will transmit it to the server
through a Telnet session, using the internet or a dedicated network.

7.1.5 Server

The hardware requirements for the server will depend on the data being handled,
and the connections expected from the clients (users). Fortunately with the

existing technologies, a computer powerful enough to fulfill the most demanding
needs, won’t exceed $500.

Described merely as an example (but not limited to) the Dell Inspiron
(13847-3538BK) with a street price of $499.99, which includes:

e Processor: Intel Core i5.

e 12Gb RAM memory.

e 2Tb Hard drive.

e 10/100/1000 Ethernet board (in case of extreme demanding accesses,

LAN connection could be upgraded to fiber optics).
e Monitor, keyboard, sounds card, USB ports.

The above described configuration meets the requirements needed for the
project. As for the main functions to be performed by the server, they can be
enumerated as:

Receive all data sent by all microcontrollers.

Determine the status of the parking spots.

Update the system database.

Web Server from where all clients will get updated parking information.
Determine problems with a sensor, a microcontroller, or the connection,
and notify administrator of the found problems.

In order to accomplish the previous tasks, the server will be running the following
programs:
e Monitor (As a windows server).
e A DBMS system, and the required applications to maintain data updated.
e A Web Server package.

7. 1. 6 Application Interface

The application interface is where the user will have direct contact with the
system. This is where users will be able to view the parking levels in the
garages that are monitored by the U-Park sensors. The application will pull data
from the database in order to display the parking levels of each garage.

The system will be designed to have two types of users. These types of users
will be administrators and normal users. The administrators will have access to
some of the back end features, while normal users will simply be able to see the
parking spaces in the garages.

Administrator accounts will be designed for the owners or custodians of the
garage. They will log in through the web interface and have the ability to
maintain the system. They will be able to mark garages or floors as closed or
reserved, run diagnostics to ensure the system is running correctly, and other
back end activities that the owner of the garages would need.

When non administrator users log in to the application, they will be able to add
the garages that they would like to view. The first time they log-in, they will be
prompted to select which garages they would like to personally track. On
subsequent log-ins, the system will remember and display the status of the
garages that the user has selected.

Users accessing the web application will be able to see the parking situation in
each parking garage. The main page will show the overall amount of free spaces
in each parking garage in which this system is used. If a garage is full, there will
be a “busyness” indicator that will show an approximation of how many people
are in the garage trying to find spots. This crowd notification will use an algorithm
that determines how busy any full garage is by how many spots are quickly taken
up after a car has left. This will allow users to be able to determine which garage
they will have a better chance of finding a spot in even if they are all full.

When a user clicks on any garage, they will be able to see a breakdown of how
full each level of the garage is. The menu will show how many spots, if any, are
open on each floor. This is to allow someone to quickly determine where he or
she can go to find the open spots in the garage.

The application will be built first as a web application. It will be built so that it will
scale in order to be usable by people on computers, tablets, and phones. An
Android application will be created as well for mobile phones.. This application
will allow users on their cell phones to quickly pull up the information. It will not
have any different information than the web page.

7. 2 Microcontroller

When team nine was first brainstorming the ideas that would lead to the system,
the team knew that a microcontroller would be necessity. It would need to have
enough processing power and memory to control the ultrasonic sensors and a
Wi-Fi module. After many group meetings and research, team nine decided to
use a microcontroller commonly used on the Arduino Uno board. The arduino
uno board architecture has more functions than what team nine need for the
project, and can be optimized for this project. In this section, the design process
and function of each component will be discussed.

There are many types of microcontrollers that group nine considered, such as
ATmegad8A/PA/88A/PA/168A/PA/328/P. The Atmel
ATmegad8A/PA/88A/PA/168A/PA/328/P is a powerful microcontroller that
provides a highly flexible and cost effective solution to many embedded
control applications. They differ only in memory sizes, boot loader support,
and interrupt vector sizes.Figure 7.4 summarizes the different memory and

interrupt vector sizes for the devices. Compared to other microcontrollers, the
ATmega328 has a fairly large memory space. Some of the features of this
microcontroller include:

23 Programmable /O lines

Operating voltage: 1.8 to 5.5V

Temperature Range: -40 celsius to 85 celsius

Speed grade: 0-4MHZ at 1.8-5.5V, 0-10 MHz at 2.7-5.5V, and 0-20 MHz

at 4.5-5.5V

e Power consumption: Active mode 0.2mA, power-down mode 0.1uA, and
power-save mode 0.75 uA

e Special microcontroller features: Power-on reset and programmable
brown-out detection, internal calibrated oscillator, external and internal
interrupt sources, and six sleep modes

e Three flexible Timer/Counters with compare modes

e In Power-save mode, the asynchronous timer continues to run, allowing
the user to maintain a timer base while the rest of the device is
sleeping.

e In Standby mode, the crystal/resonator Oscillator is running while the

rest of the device is sleeping. This allows very fast start-up combined

with low power consumption.

The ATmegad8A/PA/8BA/PA/168A/PA/328/P are low-power CMOS 8-bit
microcontrollers based on the AVR enhanced RISC architecture. The block
diagram of the AVR architecture is shown in Figure 7.3 This section discusses
the AVR core architecture in general.

The main function of the CPU core is to ensure correct program execution.
The CPU must therefore be able to access memory, perform calculations,
control peripherals, and handle interrupts. In order to maximize the
performance, the AVR uses a Harvard architecture, which has separate
memories and buses for program and data. Instructions in the program
memory are executed with single level pipelining. While one instruction is
being executed, the next instruction is prefetched from the program memory.
This concept allows instructions to be executed in every clock cycle.

-

Program
Counter

Flash
Program

Memory

Instruction
Reqister

Instruction

Decoder

Data SRAM
e

Status and

Control

J32%8 General
Purpose
Registers

=t

|
L

Watchdog
timer

Analog
Comparator

11O Module
IO Module
n

-

Figure 7.3 - Block Diagram of AVR Architecture

Device EEPROM Interrupt
Vector Size
ATmega48A 4 KBytes 256 Bytes 512 Bytes 1
instruction
word/vector
ATmega48PA 4 KBytes 256 Bytes 512 Bytes 1
instruction
word/vector
ATmega88A 8 KBytes 512 Bytes 1 KBytes 1
instruction
word/vector
ATmega88PA 8 KBytes 512 Bytes 1 KBytes 1
instruction
word/vector
ATmega168A 16 KBytes 512 Bytes 1 KBytes 1
instruction
word/vector
ATmega168A 16 KBytes 512 Bytes 1 KBytes 1
instruction
word/vector
ATmega328 32 KBytes 512 Bytes 2 KBytes 1
instruction
word/vector
ATmega328P 32 KBytes 512 Bytes 2 KBytes 1
instruction
word/vector

Figure 7.4 - Memory Size Table

Below are the list of components will be connected to the microcontroller:
e AT mega 328

16 MHz crystal clock

Two 22 uF capacitor, Two 10uF capacitor

A Switch

LED

Power supply

Voltage regulator

10 kQ and 200Q resistor

The main component is the ATmega328. The Atmega328 is a very popular
microcontroller chip produced by Atmel. It is an 8-bit microcontroller that has 32
Kbytes of flash memory (0.5 Kbyte occupied by bootloader), 1Kbyte of EEPROM,
and 2 Kbytes of internal SRAM. The maximum operating frequency is 20MHz
The Atmega328 has 28 pins. It has 14 digital I/O pins, of which 6 can be used as
PWM outputs and 6 analog input pins. These I/O pins account for 20 of the pins.
The description for each pin of the ATmega328 is shown in Table 7.3 below.

Two important pins are Vcc and GND. The Atmega328 is a low-power chip, so it
only needs between 1.8-5.5V of power to operate. Since we are using an
external power supply for the board, a voltage regulator is needed to stabilize the
5V DC voltage. An LED is attached to the power input and therefore acts as a
power-indicator.

One nice feature is that the Atmega328 chip has an analog-to-digital converter
(ADC) built-in. Without an ADC, the Atmega328 would not be capable of
interpreting analog signals from the sensors. Three pins are needed for the ADC
to function: AVCC, AREF, and GND. AVCC is the power supply, positive voltage,
for the ADC. The ADC needs its own power supply in order to work. Therefore,
GND is relative to the power supply. AREF is the reference voltage that the ADC
uses to convert an analog signal to its corresponding digital value. Analog
voltages higher than the reference voltage will be assigned to a digital value of 1,
while analog voltages below the reference voltage will be assigned the digital
value of 0. Since the ADC for the Atmega328 is a 10-bit ADC, meaning it
produces a 10-bit digital value, it converts an analog signal to its digital value,
with the AREF value being a reference for which digital values are high or low.
The last pin is the RESET pin. This allows a program to be rerun without having
to disconnect the power.

Table 7.3 - Pinout for the ATMega328p-pu and Description for each Pin:

1 PC6 Reset

2 PDO Digital Pin (RX)
3 PD1 Digital Pin (TX)
4 PD2 Digital Pin

5 PD3 Digital Pin (PWM)
6 PD4 Digital Pin

7 Vcce Positive Voltage (Power)
8 GND Ground

9 XTAL 1 Crystal Oscillator
10 XTAL 2 Crystal Oscillator
11 PD5 Digital Pin (PWM)
12 PD6 Digital Pin (PWM)
13 PD7 Digital Pin

14 PBO Digital Pin

15 PB1 Digital Pin (PWM)
16 PB2 Digital Pin (PWM)
17 PB3 Digital Pin (PWM)
18 PB4 Digital Pin

19 PB5 Digital Pin

20 AVCC Positive voltage for ADC (power)
21 AREF Reference Voltage
22 GND Ground

23 PCO Analog Input
24 PC1 Analog Input
25 PC2 Analog Input
26 PC3 Analog Input
27 PC4 Analog Input
28 PC5 Analog Input

Two of the pins are for the 16 MHz crystal oscillator. microcontroller is designed
to handle off-chip crystals that have a frequency of between 4-16 MHz. The

crystal oscillator provides a clock pulse for the Atmega chip. A clock pulse is
needed for synchronization so that communication can occur in synchrony
between the Atmega chip and a device that it is connected to (sensor in this
case). The crystal oscillator are connected across two capacitors (C2 and C3). If
the incorrect crystal and external capacitors are selected, it can lead to a product
that does not operate properly or fails prematurely.

The crystal equivalent circuit is shown in Figure 7.5. The series RLC circuit is
called the motional arm. Capacitor C1 represents elasticity of the quartz, inductor
L1 represents the vibrating mass, and the resistor R1 represents losses due to
damping. Capacitor CO is called the shunt or static capacitance, and is the sum
of the electrical parasitic capacitance due to the crystal housing and electrodes.
By using a Laplace transform, two resonant frequencies can be found in this
network. The series resonant frequency, fs, depends only on C1 and L1. The
parallel frequency fp, also includes CO. The reactance vs frequency characteristic
in shown in Figure 7.6.

co
11
11
C: L1 R1
—| At Mo

CL
Il
11

Figure 7.5 - Crystal Equivalent circuit

Inductive

r 9
Series resonant
freq \\.
‘// Frequency

Parallel resonant
freq

Capacitive

Figure 7.6 - Crystal Reactance Characteristics

In the figure below (Figure 7.7), the schematic for the 16.0 MHz crystal is shown
according to its capacitance values.

XLAT1

H =

I | XLAT?
¢3

Figure 7.7 - Schematic of External component

The values of C2 and C3 are calculated using the following formula:
CL=C2C3/(C2+C3) +CS
Where:

e CL: The crystal load capacitance (15pF for 16MHz crystal)
e CS: The tray capacitance (2pF- 5pF range)

Typically, the values of C2 and C3 are equal. If we for example use the dummy

value C, then C=2*(CL-CS). In this case, the value of C needs to be between
20-26 pF. In our design, we chose C to be 22pF.

7. 3 Sensors

Ultrasonic sensing technology is based on the principle that sound has a
relatively constant velocity. The time for an ultrasonic sensor’s beam to strike the
target and return is directly proportional to the distance to the object. Therefore,
ultrasonic sensors are used frequently for distance measurement applications,
such as in backup systems of cars. There are four basic components of an
ultrasonic proximity sensor: transducer/receiver, comparator, detector circuit, and
solid-state output.

The ultrasonic transducer sends sound waves outward from the face of the
sensor. The transducer then receives echoes of those waves when they reflect

back off of an object. The schematics of the transmitter are shown in Figure 7.8
and Figure 7.9.

The working principles of ultrasonic transceivers are as follows:

e 40 KHz signal generated by the microcontroller

e The signal is passed to a resistor for safety when the signal is refracted
forward a series of diodes and transistors.

e The signal is fed to a current amplifier circuit which is the combination
between diodes and transistors.

e When the signal from the input logic high (5V) then the current will pass
through the diode D1 , then the current will bias transistor T1.

e When the signal from the input logic high (0V) then the current will pass
through the diode D2 , then the current will bias the transistor T2.

R17
10K

- R4
% 2x0
L3
_an
=] A SL100

(=]
THA 148 e
o f

SK100

iy

32
2 1M 148

1 o RS
g 220
CX¥En
(el | L=

=] 2
-
BEOpF I Ok

Figure 7.8 - Ultrasonic Transmitter Schematic

The ultrasonic receiver circuit uses a two-stage amplifier, a rectifier stage, and an
operational amplifier in inverting mode. Output of op-amp is connected to a relay
through a complimentary relay driver stage. When switch S1 of transmitter is
pressed, it generates ultrasonic sound. The sound is received by ultrasonic
receiver transducer. The receiver converts the sound to electrical variations of
the same frequency. These signals are amplified by transistors T3 and T4. The
amplified signals are then rectified and filtered by high pass filter at frequency 40
KHz. The filtered DC voltage is given to inverting pin of op-amp IC1CA3140. The
non- inverting pin of IC13140 is connected to a variable DC voltage .The inverted
output of IC1CA3140 is used to bias transistor T5. When transistor T5 conducts,
it supplies base bias to transistor T6. When transistor T6 conducts, it actuates
the relay.

Lt
BCH5R (a i
BCG48

' D5 K
C1M4007

Figure 7.9 - Ultrasonic Receiver Schematic

When the sensor receives the reflected echo, the comparator calculates the
distance by comparing the emit-to-receive time frames to the speed of sound.

7.4 Communication between Microcontrollers and Router

The core object of this project consists in identifying empty/occupied parking
spots in any parking area at UCF. To accomplish this task; a series of ultrasound
sensors are monitoring each spot in a 30 second interval, 24/7. A microcontroller,
designed will be implemented by team 9 to perform the following functions:

1. At boot up, the microcontroller after connecting to the router; will declare
itself as a telnet server with a static IP address already allocated and
reserved at the router.

2. Controls three sensors (hardwired to the microcontroller) at one time; the
sensors are identified as left (1), center (2), and right (3) sensor. Every 30
seconds each sensor is queried about the status of the parking spot; the
sensor will return a zero “ 0” if it doesn’t detect any object taller than one
meter from the floor, and will return a one “ 1” if it does detect the object.

3. The micro controller broadcasts the information just acquired in a record
with the format displayed in figure 2.

4. The micro controller sleeps for 30 more seconds and repeats the cycle at
step 2.

Table 7.4 - Messaqge structure:

Pos | Description | Use Format | Mask | Range

1-3 Microcontroller | Identify the micro-controller Integer 000 000-999
(MC) unique among the other. The server DB
ID. will associate this ID to a MC
placed in a specific building, and
floor within the building.

4 Sensor 1 | Determines if the parking spot 1 | Boolean | O 0-1
status (left) is occupied (1=true),
unoccupied (O=false), or an error
was detected (@)

5 Sensor 2 | Determines if the parking spot2 | Boolean | O 0-1
status (center) is (1=true), unoccupied
(O=false), or an error was
detected (@)

6 Sensor 3 | Determines if the parking spot3 | Boolean | 0 0-1
status (right) is occupied (1=true),
unoccupied (O=false), or an error
was detected (@)

7. 5 Software
7. 5.1 Languages

The following languages will be used in the design of the U-Park application
Bootstrap CSS

HTML

PHP

Javascript

Java

The website application will be designed using Bootstrap CSS and HTML. The
Bootstrap CSS will allow the application to be scalable to all different types of
screens. This will allow users to be able to access the website application on the
device of their choice. The application will be sized to look the same on any of
these devices.

The scripting of the website will be written using PHP and Javascript. Using PHP
will allow team 9 to implement dynamic scripting to the website application. This
will be used to query the database and return results on the fly. This will allow
the user to receive up to date information on the state of the garage they are
searching. Javascript will be used for adding other scripts to the web pages. It

will be used to display messages from the system and to dynamically update the
tables gathered from the database.

Java will be used to create the future Android application. This is the main
language used for creating applications on the Android platform. The desired
mobile application will be almost identical in function to the website application.
The difference is that Java, as a language, will be used for all functions. One
benefit of using Java is that it allows the programmer to display a page, query a
database, display the database information, and reload information on the fly
without the need for other scripting languages.

7. 5. 2 Programming Pattern

The main programming pattern employed by the U-Park application will be the
Facade pattern. The users will be given a simple interface, and they will not see
or need to interact with any of the complex functions that are used to create that
interface. Figure 7.10 below shows an example of how the user sees the simple
interface, and does not see anything that is happening server side behind the
scenes.

Visible to User Server

<<Interface>> Database

Login

Login Utils

-Username : String
- Password : String
- PasswordVerify: String

User Table

<<view>> Garage List
<<view>> Garage Floors
<<input>> Add garage
<<input>> View Floors

‘———— return =1

-GarageFloors: Int

-addGarage()
-removeGaragel()
-viewGarage()
-viewFloor()

+ return results|—

== FeguUest s query
<<input>> Username 4 + '.er\\/crl\./gtpa_SSE/)VOFU():
<<input>> Password -isValidLogin();
-isAdmin(); M return results —
<<Interface>> Garage Utils Garage Tables
User Interface
== request = "" -GarageName : String query ——-

7.5.3 Web Application

Figure 7.10 - Facade Pattern for U-Park Application

7. 5. 3. 1 Overall Design Philosophy

The U-Park application will be designed to give users quick access to the status
of the garages of their choice. The application will be accessible through a
website and an Android application if time permits. The website will be designed
so that it will be scalable to all size of screens. This will be accomplished by
using Bootstrap CSS.

The application will also feature a login and register page. Using this dynamic
language, the application will make a call to the database to check the
credentials of a user who is trying to sign in, and will check if the user is an
administrator or a standard user. It will also add users who are registering new
accounts. A database call will also be made to ensure that no duplicate accounts
are created. The passwords will also be encrypted using the sha256 algorithm for
the safety of the users.

Once a user has logged in, they will view their interface. This interface will be
built using HTML, PHP, and Javascript. The main page will be created with
HTML and will use PHP to make any database calls. Javascript will be used for
any event messages, and also to dynamically update the information on the
webpage without the user having to click refresh.

The mobile application will have the same features as the website application. It
will be written in Java using Android Studio. Java allows for similar functionality to
the languages used to create the website. Java is the most popular language
used for making Android applications.

7. 5. 3. 2 User Interface

Once a user logs into the application, they will enter the user interface. Unless
they are an administrator, in which case, they will be directed to the admin
interface. The user interface will be built using Bootstrap CSS, HTML, PHP, and
Javascript. The user will have the option to add garages that they would like to
view. This will use PHP to create a call to the database which will pull up the
available garages for viewing and allow the user to mark which ones they want
on their personal page.

Once the user has selected which garages they would like to view, their main
page will show a list of the garages they have chosen. In order to continuously
update this page without the user having to reload, a separate PHP table will be
called using a Javascript function. The Javascript function will continuously call
the PHP table to ensure that the information is constantly up to date. This will be
invisible to the user who will only see the information updated as this page is
loaded. The user can expand on each garage to view the number of spaces

available on each floor of the garage they wish to view. This will be implemented
using another PHP table and the same type of Javascript function.

One of the more important features of the interface will be for the user to view a
“busyness” indicator of any garages that are full. This indicator will use different
color to show how busy a parking garage is. If the color shown is red, for
example, it will mean that the garage is extremely busy and it will be difficult to
find an open spot. If the color is green, it means that although the garage is full,
there is a good chance that a spot will open up quickly, and the user will not have
to wait a long time to find a parking spot.

The “busyness” indicator will be implemented by keeping track of how many
spots are remaining on each floor and garage. This will allow the user to see, at
a glance, the approximate amount of available parking in each section. They can
then make a decision on where to park based on the more detailed information.

The goal of the interface is to provide accurate information quickly to the user.
They will be able to log in and immediately see the status of the garages they
have chosen. The design will allow them to quickly make a decision on which
garage they should go to in order to find an open parking space.

7. 5. 3. 3 Administrator Interface

Administrators will have access to their own application that will allow them to
oversee the garages that they own or maintain. This application will be similar to
the user interface, but will allow the administrator extra privileges such as setting
a garage to closed or open or adding or editing the microcontrollers used in the
garage.

The administrator interface will also show the status of the parking garages that
they own and any others they choose to see. This will be created using the
same method mentioned above for pulling data out of the database. The
administrator will have extra privileges that will allow them to change the status of
the garages they own.

Administrators will be able to mark a garage as closed or reserved. This will
show to the other users that these garages are not accessible, or in the case of
reserved garages, the users will know if it is reserved for them or if they must find
parking elsewhere. This will be accomplished by using PHP to write to the
database. This will reflect if the garage is closed or reserved on other users that
are accessing the database. The user can set a time for the reservation or
closure to expire, or can manually enter when the garage will be open again.

If there is a special event that is using one of the garages, the administrator can
set the status of this garage to reserved. This will show other users that this

garage is not available to them. If a garage is closed for any reason, such as
construction, the administrator will be able to make this change as well. They will
also be able to do this for each individual floor of their garage in the case that
only one of the floors is closed or reserved.

7. 5. 4 Mobile Application

The mobile application will be designed to have the same functionality as the
website application. The difference will be that it will take advantage of the touch
screen interface and will be built specifically to work on smartphones. The mobile
application will be built primarily using Java. This is the language used to build
most Android applications.

Both the user and administrator interfaces will be created using Java to query the
database. The mobile application will connect to the same database as the
website so that the information will be equal across both platforms. The user will
be able to touch the garage that they want more information on, and the
application will expand to show the information on each floor.

Since people will want to check the status of their garages while driving to them,
the mobile application will be designed with speed and safety in mind. The
application will remember the user’s login data so that they do not have to type in
their credentials each time the use the application. A Java method will hold the
information and automatically log the user in when they open the application.
This means that anyone using the application will be able to get the information
they need quickly without the need to take their concentration away from driving.

7.5.5UML

The following UML diagrams show how the application is designed. Figure 7.11
shows the state diagram as the website is being used. The Use Case diagram
seen in Figure 7.12 shows how both administrators and regular users use the
website. Finally, Figure 7.13 shows a flow diagram of the pages on the website.

<<client>>
Login Page

Client Pages

<<Javascript>>

<<Form>>

Write "Error Message"

<<input>> Selection

<<Form>>

<<Form>>

<<input>> Username
<<input>> Password

<<client>>
Main Page

@

<<submit>>
parameters: username, password

<<builds>> <<builds>>
login successful
N7
<<Server>>
Login

+verifyCredentials()
+startSession()

<<yuses>>

MySQL Database

<<Client>>
User Page

if (userType [-= user)

addGarage();
viewGarage();

<<submit>>

<<builds>>

<<link>>

if (userType == admin)

<<Server>>
After Login

+session()
+LogOut()

<<yses>>

Contains:

User Table

Locations Table
Parking Table

Floors Table
Transactions Table
Microcontroller Table

Figure 7.11 - Website State Diagram

<<Client>>
Admin Page

addGarage():
removeGarage();
closeGarage();
closeFloor();
viewGarage();

7

<<builds>>

User

U-Park System

Create Profile

View Garages

View Floors

Admin Page

<<yuses>> Close Floor

Create Garage

Figure 7.12 - Website Use Case Diagram

Admin

Figure 7.13 - Website Page Flow

7.6 Server

The configuration required to run the application (U-Park) must meet a minimum
criteria ample enough to accommodate the operating system, development
environment, DBMS environment, DBMS data and the application. Caution must
be taken when looking for a hardware alternative, so costs don’t exceed what is
forecasted.

The selected configuration for the server is:

e (Case with a 500W power supply, minimum four 3.5” bays.
e Processor: 64 bit Intel processor with 3Ghz, minimum 8Mb cache, 4
cores/4 tasks.
e Memory:
o 8 Gb UDIMM, ECC (minimum).
o 12Gb UDIMM, ECC (desirable).
e Storage:

o 1500Gb Hard drive (minimum)

o 3 500Gb SATA 3 hard drive arranged in a RAID 5 -Block
level striping with distributed parity- (Desirable but not
required).

LAN: 1000Base-T LAN Card.

Ports: 3 USB ports (minimum).

Display: 1 177 SVGA monitor (minimum).
Keyboard: US English 101 keys keyboard USB.
Mouse: USB mouse.

Operating System: Windows 10 (or newer).
DBMS: TBA.

Development platform: TBA.

7. 6. 1 Gateway

In order for the microcontrollers to communicate with the Server, a number of
routers are required. The exact number is to be determined based on the
quantity of parking spots and the size of a parking garage.

The figure presented in section 2.3. Requirement Specification clearly indicates
how routers interconnect microcontrollers to the server. The idea is to group a
number of microcontrollers close to the router. These microcontrollers, once
active, will submit information to the router, which in turn will communicate
through a LAN -or the Internet, depending on the implementation- to the router
located at the server facility. This (server sided) router will communicate to the
server, updating the database with the latest parking availability information.

7. 7 Design Summary
7. 7.1 System Installation and Mounting

Mounting the various components of the U-Park inside the garages presents
some challenges. Namely, different locations in the garage will have different
locations where the sensors and modules must be mounted. Also, the access
points will be mounted in different locations, depending on where space is
available. The mounting hardware chosen to mount the components must be
attachment securely enough to the garage surface, that will prevent any
tampering with the equipment, and ensure that users of the garage are not put in
any danger of the various components falling on them or their cars. This section
will examine these aspects and provide a detailed overview of how the U-Park
system and its components will be installed and secured inside of a parking
garage.

Relatively all parking structures are built of steel reinforced concrete. While this
can be a difficult material for hardware to “tap into”, the practice is common
enough that a multitude of hardware is available to provide a secure and lasting
connection. The components mounted on all of the levels of the garages, except
those on the top floor, will be mounted to the ceilings of each of the levels.
Because the top level of parking garages usually have no ceiling, a slight
modification of the sensor modules, and the way the sensor modules are
mounted, will be required. On the levels where there is a ceiling, the modules will
be mounted to either the ceiling directly, or to the concrete structural “ribs” which
extend down from the ceiling. On the next page in Figure 7.14 and Figure 7.15
the proposed mounting locations for the modules on the ceiling can be seen. The
first figure shows how the sensor modules will be mounted to the “rib structure”,
and the second figure shows how the module will be mounted if the ceiling is flat
and the structural “ribs” are not present.

SPOT 1 SPOT 2 SPOT 3

Figure 7.14 - Sensor Mounting Location on a Structurally “Ribbed” Ceiling

SPOT 1 SPOT 2 SPOT 3

Figure 7.15 - Sensor Mounting Location on a Structurally Flat Ceiling

The sensors mounted on the top level of a garage are unable to be mounted on
the ceilings and therefore must be altered so that even from a different
perspective, they will still perform the same functionality as those sensor
modules mounted on the main levels. The top floor sensors will have the main
difference that instead of sensing three parking spaces, these modules will only
be able to detect two adjacent spaces. The sensor modules will be located in

front of the spots and will be positioned between two parking spots. The
reasoning behind this, and the reason the same three-spot sensor modules will
not simply be placed in front of the middle spot is due to a high level of variability
in the way people park. People often do not line their car up perfectly in the
center of the parking spaces, and will either pull too far forward in a spot, or they
will not pull forward enough. In the case of a car pulling too far in, the sensor
module runs the risk of being damaged if someone were to hit it. Also, if
someone were to pull in too far the side sensors may be blocked and falsely read
that the first or third spot is also taken when in reality, it could still be open.
Effectively the problem could be that either the sensor could be damaged, or the
system could be inaccurate, both of which do not translate into a quality final
product. This is especially important in a product such as this, which relies on
robust hardware and accurate capacity reporting to work. To this end, placing
sensors between the spots on the top level minimizes the risk of being hit by a
car and also eliminates the possibility of a car “taking up two spaces” by crossing
the threshold of two sensors. Figure 7.16 below demonstrates this method and
shows approximately where a sensor module would be placed on the top floor of
a garage.

SENSOR 1 SENSOR 2
L
7 i : - o — -

SENSOR1 SENSOR1 SENSOR2 SENSOR?2
SPOT 1 SPOT 2 SPOT 1 SPOT 2

Figure 7.16 - Sensor Mounting Location on the Top Level Without a Ceiling (Wall Mount)

One final problem that mounting on the top floor of a garage would pose has to
do with weather. Because all of the components will be exposed to the elements,
special attention needs to be paid to selecting weather resistant access points
and ensuring that the modules themselves are shielded from the elements. While

these minor changes do require slightly higher costs than are required to
implement the system on lower levels in the garage, this is a necessary cost and
will ensure the best reliability of the U-Park system.

7. 7. 2 Network Infrastructure

The network for the U-Park system is made of of a multitude of inter-connected
components. In this section, the structure of how these components are
connected and how the components work is to be discussed. There are two
separate network infrastructures that are used in parts of the project and
integrate together to create the backbone of the communications network.

The first network structure used by the U-Park system is a star network. This
network model is discussed in more detail in section 4.4.1.3. In this section, the
specifics of this network type were discussed from the theoretical perspective of
initial research. The benefits of this network topology are that all of the devices
are connected to a single access point, and that routers are set-up to work in this
configuration by default. However, a problem with this type of topology is that if
the router “goes down” or faults, all of the clients connected to the access point
are unable to transmit data to the server.

The router serves as the access point to the parking sensor modules. The
modules communicate over the Wi-Fi transceivers integrated into the sensor
modules. The router can support a maximum of about 10 clients due to the fact
that there are only a limited number of independent channels to be used by the
2.4GHz Wi-Fi devices. The number of connected devices must be limited by the
number of channels for each router to avoid any interference. Also, to avoid
interference between access points across the garage, the access points must
be separated by a sufficient amount of physical space. This minimizes the noise
received from other Wi-Fi access points.

Because signal from the antennas of a router emanate in a circle surrounding the
router, each router/access point needs to be position just out of range of other
routers. This will be accomplished by installing a router on each of the four
corners of the garage and in the center of the isles of the garage on the long
sides of each floor. This means that a total of six routers will be used per floor is
the theoretical garage shown on the next page in Figure 7.17 and in Figure
7.18. The power supplied to these routers must also be adjusted accordingly to
ensure that the signal strength is low enough to only be able to “see” the
modules that are connected to the particular access point. Below, Figure 7.17
shows the proposed locations of the access points inside of the the theoretical
garage on each level. The black dots and the blue rings show the routers and the
coverage of the routers respectively. As the figure indicates, the coverage
overlaps slightly, however this is unavoidable due to the fact that all spots in the

garage must be covered by at least one router to be able to communicate with
the access point.

= IR — =
——

Iyt — !

[111
<

e |
¢ o

LR

Figure 7.17 - Proposed Locations of the Access Points on one Floor of the Garage

Because 2.4GHz passes through walls (and floors) with relative ease,
interference between the access points between the concrete floors is not
entirely avoidable. One benefit, however, of the construction of the garages is
that even though 2.4GHz WIFI does pass through walls in a house or office
building, the ability for the signal to due so in a garage is reduced due to the fact
that all of the walls and floors are made of steel and concrete which reduces the
permeability of the 2.4 GHz signals.

Connecting the router access points to one another is done with the use of
ethernet cables. The routers are out of range of each other as to not interfere.
While this would increase the overall system cost due to the added cost of the
quality ethernet cables which would be required, the added reliability and
robustness of a wired connection would be a worth-while trade off. Because the
system is completely reliant on all components in the system functioning

correctly, the reliability of the connections is an important aspect of the network
design.

The routers are arranged in a Mesh network configuration. This configuration has
an added benéefit in that it is able to “self heal”. This means that traffic is routed in
the most efficient way through to the exit node of the system, but also that if one
of the connections between two nodes fails, the network protocol is able to
reroute packets around the broken connection.

In Figure 7.18 below, the proposed configuration of the routers connected via
ethernet cable (red lines) into a mesh network topology is shown. While garages
come in all sorts of different sizes and shapes, the garage shown in the figures
above and below are modeled after parking garage C at UCF. Bidirectional traffic
is possible on both ramps and the garage is very symmetric, which makes
designing the network slightly simpler.

FEEEEEEEEREE TR ERERTTTFT T

e Tl —H

L

I

Figure 7.18 - Proposed Connections Between Access Points on one Floor of the Garage

The network described above, built using the wireless Star network topology at
the sensor (client) end and a wired Mesh network topology between the access
points seems to be the most effective way for the team to create a network that is
both reliable and simple. To over-complicate the network could prove to be
detrimental to sustainability and could result in system failures. With a simple
system, if system failures are to occur, troubleshooting the failures will be much

simpler. After all, a parking management system isn’'t of much use if the system
is plagued with system failures, and requires specially trained technicians to fix
the problems.

7. 7. 3 Database Design

After evaluating pros and cons of both MySQL and MS SQL Server, the team
opted to use MySQL as the DBMS for the project. Immediately, the design phase
of the database began. The project is pretty simple: To obtain the status of a
parking spot at any time, record it, and make it available to three different user
types: Admin, monitors (operators who routinely checks the system looking for
errors), and standard users (people looking for a place to park)-.

In order to obtain parking information, team nine has designed a microcontroller
capable of monitoring three parking spots at a time, and transmit the acquired
data via Wi-Fi to a router; which in turn will transmit the data to a server. The
problem consists in how to organize the microcontrollers’ modules in a way that
they can be associated to a particular client, in this case UCF, and within the
client; where the parking is located.

Additionally, (and for security reasons) access to data must be controlled, and a
log file for transactions (for statistical purposes) is required. The resulting schema
for the database is presented in Figure 7.19.

¢ _| microcontrollers ¥ l.

' TKey INT(10)
»TCondition TINYINT{1)
2 Locations_Key INT{10)
'Jj trasactions ¥] floors v] | Parkings_Key INT(10)
Id INT{10) TKey INT(10) p———————————— & Floors_Key INT{10)
s Date DATE *Name VARCHAR(45) " “+ Serial _Mumber VARCHAR(20)
> Time TIME <2 Capacity INT(10) 1 | parkings z Date_Instaled DATE
2 Sensors Key INT{11) <2 Parkings_Key INT{10) | Ty INT(10) Date_Last_Comm DATE
» Status TINYINT (1) Status TINYINT(L) 7 Name VARCHAR(45) >Time_Last_Comm TIME
> > Comments Y ARCHAR(150) # Address VARCHAR(S0) ¥ Left Status INT(10)
| Inactive TINYINT(L) 7 City VARCHAR(16) > Left_Condifion TINYINT (1)
(7] users v > ~ State VARCHAR(Z) & Center_Status INT{10)
TKey INT(10) . 2 Z1P INT(10) > Center_Condition TINYINT(1)
First_Name VARCHAR(0) | 4 | — locations ¥ | T i ©Right Status INT(10)
O Last_Name VARCHAR(20) | ™= | TKey INT(10) -7 [oo, >Right Condition TINYINT(1)
> Type INT(11) i >Name VARCHAR(50) |r Type INT{11) Inactive TIMYINT{1)
< Locations_Key INT(10) =i | Address VARCHAR(SD) | | AT | »
> Inactive TINYINT(1) < City VARCHAR{16) | | e tos=d INF(LO]
> State VARCHAR(Z) | |+ Comments ¥ ARCHAR{ 130}
4 5 7IP INT(11) I -+ MNo_Floors INT(10)
>Inactve TINVINT(Y) | & | Tetal_Capadity INT(10)
» = locations_Key INT(10)
“ Inactive TINYINT(1)

Figure 7.19 - U-Park Database Relational Data Model

Considerations about the Schema:

e Columns and tables are named Cxxx (Where ‘C’ is the first letter of the
name capitalized, and xxx and the rest letters non-capitalized). When a
column contains in its name more than one word it will be constructed as
Cxxx_Cxxx, or Cxxx_Cxxx_Cxxx depending on how many words.

e For attributes for columns, please refer to the schema depicted in Figure
7.19 above.

e The following consideration do not apply for table Transactions.

e Due to the fact that the database is organized in a hierarchical way, and to
maintain data integrity, no records are to be physically deleted, so with the
exception of the transactions table, all tables contain a column called
Inactive, which will be false for active rows (records), or true for logically
deleted rows.

e In other to establish a reliable way to link tables the following having been
established.

e Primary keys Tkey are an integer number self-generated (auto-increment)
by MySQL, therefore no user or programmer interference is required. The
exception is for table Microcontrollers which for information purposes the
key of the row must be presented to the user before actually inserting it
into the table, therefore the auto-increment process is programmatically
performed before row insertion.

e A foreign key is established between a table and its ‘parent table’, being
Locations, the main and first in the hierarchy. Foreign keys are set to:

o Take no action In case of accidental deletion.

o Cascade in case parent key is changed.
(Both cases unlikely to happen using the applications written by team
nine).

e The Transactions table is considered merely a sequential file where rows
are stored as they are inserted. Later, they can be organized —at run time-
depending on what information is desired.

7.7.3.1ER Diagram

The entity relationship diagram for the database (SPOT) used in UPark is
extremely simple, and consists of a hierarchical design. On the top of this
hierarchy if the table Locations, the child tables to the Locations table are: Users
and Parkings (For more information on tables refer to 7.7.3.3 My SQL tables). In
all cases, except table transactions, the relationship Parent/Child is
One-to-Many. Therefore, there was no need for inserting relationship entities as
in the mandatory case of Many-to-Many.

To start, Figure 7.20 shows the entity relationship between Locations and Users,
where a location may contain 1 or many users. On the other side of the Locations
table Locations, Figure 7.21 shows how Parkings (garage) is related to

Locations. Again this is a One-to-Many relationship (one Location that contains
one or many parking garages). Next, Figure 7.22 connects the table Floors to
Parkings (see connector ‘A’), and table Microcontrollers to Floors.

Finally, Figure 7.23 shows table Transactions on its own. Even though the
hierarchical schema could be drawn down to this table, it is omitted. Its use is for
recording history transactions, which may be later retrieved for statistical
purposes, and its relation to table Microcontrollers does not require a direct link.

Ccity) (_Type)
P R o S I T
) _f\i\f_\?dreisj)!_) (\»Etati.f-' b B \'_\:I_',a_St—NaTE/') (_»Hil__gciations_ﬁK_ei\Li_’_,)
(Name) | '(2P) f\ Firt_Name | ST e
S o el \ A T e e SRR < \ ' < N
Cmlay e, % % | prme o ik Y, % R B
g PR e ; \ Fa Inactive /\ T] 1 \ 3

Locations

Notes:
- Relationship table not required.
- Relationship 1-to-Many.
(Many users per location)

Figure 7.20 - ER Diagram 1 of the U-Park Database

\ Reason_Closed

/
/ 7

: B N 3 \

__ Total_Capacity

Locations_Key

Parkings

Notes:

- Relationship table not required.
- Relationship 1-to-Many.

(Many Parking Garages per Location)

Figure 7.21 - ER Diagram 2 of the U-Park Database

—

; Time_last_Comm i

~ Left_Status : :)

ate_Last_Commr)
R

eft_Condition
<:_/;erial Number

/ Center_Statu

s O

\:7 Center_Condition 7:

~

—

(i/TCon dition

X

Floors

~ Right_Condition

Microcontrollers

Notes:

- Relationship table not required.
- Relationship 1-to-Many.

(Many floors per parking garage)
(Many microcontrollers per floor)

Figure 7.22 - ER Diagram 3 of the U-Park Database

transactions

Figure 7.23 - ER Diagram 1 of the U-Park Database for the Transactions Table

7.7.3.2 mySQL Tables

Table 7.5 - Floors: This table holds the data (capacity and status) of a given
floor within a parking garage. Even though is not a relationship table, it can be
seen as a link between table Parkings and Microcontrollers.

Column

Type

Use

TKey

Integer

Primary key of the table. Not known to the
user or programmer, but used by MySQL
to establish a key with daughter tables.

Name

Varchar(60)

The name of the floor. By floor it's
understood one of the areas (or layers)
the parking (a basement, or a parking
building) has. Example: Floor # 2.

Capacity

Integer

of vehicles
that can be

The maximum number
(excluding motorcycles)
parked at a time.

Parkings_Key

Integer

Foreign key pointing to the parent row in
Parkings.

Status

Integer

This column indicates if the parking is:
0 = Open.
1 = Closed.

More and better detailed information may
be obtained in the Status column for the
Parkings table.

Comments

Varchar(180)

Any comment the administrator

considered valuable.

Inactive

Inactive

Boolean to determine is the row is
logically deleted (True) or active (False)

Table 7.6 - Locations: This table contains the information about the person or
institution giving parking access to Standard Users.

Column | Type Use

TKey Integer Primary key of the table. Not known to the user
or programmer, but used by MySQL to establish
a key with daughter tables.

Name Varchar(60) The name of the location. By location it's
understood the entity who own the parking area,
and offers the information, so clients can locate
a parking spot in the shortest time possible.
Example: UCF.

Address | Varchar(60) The address for the location’s main offices.

City Varchar(16) Complement to Address.

State Varchar(2) Complement to Address.

ZIP Integer Complement to Address.

Inactive Inactive Boolean to determine is the row is logically
deleted (True) or active (False)

Table 7.7 - Microcontroller: This can be considered the main table of the hold
applications, for it holds the actual status of the parking spots. Each
microcontroller has three sensors; left (1), center (2), and right (3). Every thirty
seconds (default) the status of each physical sensors is sent to the database for

updating.

Column Type Use

TKey Integer Primary key of the table. Known to the user,
so he/she can associate to a physical
microcontroller, by hardcoding this key into
the microcontroller (See C language
sketch).

TCondition Boolean This column indicates if the microcontroller
Is: 0 =Working.

1 = Not Working.

Locations_Key Integer Quick reference to find the
grand-grand-parent row at table Locations.

Parkings_Key Integer Quick reference to find the grand-parent
row at table Parkings.

Floors_Key Integer Foreign key pointing to the parent row in
table Floors.

Serial_Number Varchar(2 | The serial number of the physical

0) microcontroller whose data is recorded in

this row.

Date_Installed Date The date the microcontroller was activated,
and started working.

Date_Last Comm | Date The last time the microcontroller sent data.
In the format of DATE.

Time_Last Com | Time The last time the microcontroller sent data.

m In the format hour, minutes, second.

Left_Status Integer The Status can be:
0 = Empty spot.
1 = Occupied spot.
2 = Read Error. (*)

Table 7.7 (cont'd.)

Left_Condition

Boolean

The Condition can be:
1= Working.
2 = Not working (damaged).

Center_Status

Integer

The Status can be:
0 = Empty spot.

1 = Occupied spot.
2 = Read Error. (*)

Center_Condition

Boolean

The Condition can be:
1= Working.
2 = Not working (damaged).

Right_Status

Integer

The Status can be:
0 = Empty spot.

1 = Occupied spot.
2 = Read Error. (*)

Right Condition

Boolean

The Condition can be:
1= Working.
2 = Not working (damaged).

Inactive

Inactive

Boolean to determine is the row is logically
deleted (True) or active (False)

Table 7.8 - Parkings:

Column Type Use

TKey Integer Primary key of the table. Not known to the user
or programmer, but used by MySQL to
establish a key with daughter tables.

Name Varchar(60) | The name of the Parking. By Parking it's
understood the physical location a vehicle is to
be parked. Example: Parking garage A.

Address Varchar(60) | The address for the parking.

City Varchar(16) | Complement to Parking.

State Varchar(2) Complement to Parking.

ZIP Integer Complement to Parking.

Latitude Float Stores the latitude in degrees of the parking’s
location. Used in combination with Longitude to
retrieve (via Google API) a map of the parking’s
surrounding area.

Longitude Float Stores the latitude in degrees of the parking’s
location. Used in combination with Latitude to
retrieve (via Google API) a map of the parking’s
surrounding area

Type Integer Indicates if the parking is:

0 = In a basement.
1 = In a building.
2=inalot.

Status Integer Indicates if the parking is:

0 = Open.
1 = Closed.

Table 7.8 (cont'd.)

Reason_CI
osed

Integer

Indicates the reason why the parking is closed.

Reasons can be :

1 = Maintenance.

2 = Security.

3 = Special Event.

4 = Sports.

5 = Others (to be specified on Comments)

Comments

Varchar(180)

Any comment the administrator would like to
add regarding the parking. This is of
importance when the parking is closed due to
Others, for monitors, and standard users will
know the specific reason on why it’s closed.

No_Floors

Integer

In case the parking is a basement or a
building, this column will indicate how many
floors are allotted for parking purposes.

Total_Capa
city

Integer

Indicates the total number of parking spots
available in the parking. This is updated by add
Floors, for each row in the Floors table contain
a Capacity column. It's main value if for
speeding up the process of determining how
many empty spaces remain in the parking.

Locations__
Key

Integer

Foreign key pointing to the parent row in table
Locations.

Inactive

Inactive

Boolean to determine is the row is logically
deleted (True) or active (False)

Table 7.9 - Users:

As its name indicates, this table contains all information pertaining to the users
who are going to access, monitor, or administer the system.

Column Type Use
TKey Integer Primary key of the table. Not known to the user
or programmer, but used by MySQL to establish
a key with daughter tables.
Login Varchar(15 | This is the key used by the user to identify
) him/herself to the system.
Password Varchar(15 | Validation for the Login. It is case sensitive, not
) less than six digits, and must contain at least one
number and one special character.
First Name | Varchar(20 | The user’s first name.
)
Last Name | Varchar(20 | The user’s last name.
)
Type Integer The Type can be:
0 = Administrator.
1 = Monitor.
2 = Standard user.
Inactive Inactive Boolean to determine is the row is logically

deleted (True) or active (False)

(*) As a reading error may occur at any time, many reading errors will be used to
consider that the sensor is not working at all, and needs to be replaced. A
damaged sensor is set in the next (XX_Condition) column.

Table 7.10 - Transactions: A sequential recorded, accessed table containing a
log file of all the updates occurred at the Microcontrollers table

Column

Type

Use

Integer

A sequential number generated by MySQL
used merely as an identifier of the
transaction (row).

TDate

Date

The date when the transaction occurred.

TTime

Time

The hour, minute, and second when the
transaction occurred.

Microcontrollers
Key

Integer

Not a foreign key though, but a reference to
the microcontroller affected by this
transaction.

Left Status

Integer

The value for Left Status can be:
0 = Empty spot.

1 = Occupied spot.

2 = Read Error. (**)

Center_Status

Integer

The value for Center_Status can be:
0 = Empty spot.

1 = Occupied spot.

2 = Read Error. (**)

Right_Status

Integer

The value for Right_Status can be:
0 = Empty spot.

1 = Occupied spot.

2 = Read Error. (**)

Inactive

Inactive

Boolean to determine is the row is logically
deleted (True) or active (False)

(**) Refer to Read Error (*) in table Microcontrollers.

8. Prototype

8. 1 Microcontroller

The main purpose of this section is to discuss the process of prototyping the
microcontroller. There are two types of testing boards that can be used to
prototype the microcontroller: breadboard and through-hole proto-board. Team
nine prototyped the microcontroller on the breadboard to make sure that it
worked first before all of the components were soldered together on the
prototyping board.

The purpose of using the proto-board is to test out a standalone microcontroller
in a sleeker way than a breadboard. The components will also not fall off, which
is also a benefit.

There are two options for bootloading the ATmega 328. The first method, using
Arduino board and an AVR programmer, is quite easy. The second method is
bootloading the chip on breadboard and AVR programmer. Both of the options
will be discussed.

Using an Arduino board:

e Place the ATmega328 into the Arduino board

e Connect the jumper to the external power supply.

e Attach the 6-pin female plug of your AVR programmer to the 6 male
header ICSP pins with the plastic nub of the ribbon cable head facing
inward.

Using a breadboard:

First of all, to power the microcontroller, a voltage regulator is needed to
make sure that the voltage supply to the microcontroller is stable and is not
over the maximum voltage that the microcontroller is rated.

e Add the TL2575 switching regulator and the lines to power the board.
Input from the external power supply goes into pin one of the regulator.
Connect Cin (100 uF) from pin one to the ground.

e Pin three is the ground pin.

Pine five is ON/OFF pin so it is connected to the ground.

e Pin two is output pin. Connect a diode from pin two to ground.Connect an
inductor from pin two to a capacitor Cout and then ground Cout.

e Pin four is the feedback so it needs to be connected to the same node as
the inductor and Cout capacitor.

Second, connect all the components to the microcontroller ATmega328.
Before start connecting, it is important to read the ATmega328 pin mapping;
this pin mapping provides information about each pin of the ATmega328

e Start by connecting 10KQ resistor from +5V to pin number 1 (reset pin),
the purpose is to prevent the ATmega328 reseting itseft while operating.

e Add a small tackle switch close to the reset pin. Add a wire from the
bottom left leg to the reset pin of the chip and a wire from the top left to the
ground. This switch will reset the board whenever we like and also
prepare the chip for uploading program.

e Add a 16 MHz external clock between pin 9 and 10, and add two 22 pF

capacitors running to ground to pin 9 and 10

Ground pin 8

Connect pin 7 to Vout in the voltage regulator

Ground pin 22

Connect pin 20,21 to +5V

Figure 8.1 below shows the schematic of the microcontroller.

vce
5V
R2
10kQ
U1
vee =f BE
5 Ed |
| 7 B I
| v ml vee
5V |||J ¥ =0 =
i eC
C1 e 1 M= ; o
——22pF [C__IHC-49/US_15MHz ATmega328 LED
lcz
_|_22pF

=

Figure 8.1 - Schematic of ATmega328p-pu

To test if the board is working, team nine used an ATmega328 that is already
programed. To demonstrate that the board is working, the blink test code was
uploaded to the microcontroller. The longer leg (anode) of the LED is connected
to pin 19, and the shorter leg (cathode) is connected to a 200Q) resistor and
ground the other leg of the resistor. Now if everything is connected correctly,
when supply power for the board, the LED should blink. Figure 8.2 is the
blink-test flowchart.

Initialize
Entity

SET LED High

Delay for 1000ms

SET LED Low

Delay for 1000ms

~—

Figure 8.2 - Blink LED Flowchart

Second method:

After all of the connections on the breadboard have been made, the second
method to boot-loading the microcontroller, is by using an AVR programming
adapter. This adapter breaks out the six pins on the programmer to six inline pins
making it easy to connect to the breadboard. Figure 8.3, on the top of the
following page, shows the AVR programming adapter.

goess

Y
auR F“-'E-.allu:.u.nmsm&é

. ' SCK ([«
L [l Fl HESE !
MOSI(a

Figure 8.3 - AVR Programming Adapter

Add USB to Serial breakout board to breadboard.

Connect the VCCIO of the breakout board to the +5V and Ground to
ground of the breadboard.

Connect the AVR adapter such that the 5V pin is connected to the +5V
and the ground is connected to the ground of the board.

Use wire to connect the MISO pin to pin 18 of the ATmega.

The SCK will be connected to pin 19.

The Reset pin goes to pin 1.

The MOSI pin goes to pin 17.

Plug USB cable to USB breakout board to get the breadboard connected
to the computer.

Plug the 6-pin plug of your AVR programmer to AVR programming
adapter.The black nub of the 6-pin head must be facing upwards towards
the Atmega chip

Using Arduino software to burn bootloader:

Fire up Arduino. Go to Tools and then Boards and then choose the type of
board.

Go to Tools and Burn Bootloader and choose the programmer.

The AVR programmer will start bootloading the ATmega328.

When bootloading is finished, a message will appears on status bar say
“‘Done burn bootloader.” The ATmega is now ready to be programmed
using Arduino software.

Now that the ATmega is bootloaded, the AVR programmer and the USB serial
can be taken out from the breadboard. Since the board is powered by external
power supply, the positive power lead is connected to the first leg, and the
negative power lead is connected to the ground leg of the voltage regulator.

8. 2 Sensors

The means by which the ultrasonic sensor is connected to the microcontroller will
be discussed in this section. As mentioned in the previous section, the
ATmega328 pin mapping is really important to know, because it describes the
role of each pin. The Figure 8.4 below is of the HC-SR04 ultrasonic sensor.
Which is the team’s choice for a distance detection sensor.

Back side

e Tl
Eilca

2o N

Voo Trigger Echo GHND www.circuitstoday.com

Figure 8.4 - Ultrasonic Sensor (HC-SR04)

e Connect Vcc to +5V of the voltage regulator.

Ground pin to ground.

e The Trigger pin is connected to digital pin and Echo pin is connected to
digital pin PWM.

When measuring distance, code is uploaded to the ATmega328, turn on the
switch. To test if the ultrasonic is working, just simply place an object in front of
the ultrasonic sensor. The console on the computer will display the distance of
the object from the sensor. If the object is moved further away, the distance
display in the console will change according to the distance of the object. If the
object is placed in a range that the sensor can not detect, the console will display
“The distance is not within the range.”

8. 3 Software
8. 3. 1 Web Application

The U-Park web application prototype will be a full instance of the proposed
website application. It will allow for a full demonstration of normal use of the web
application. It will be running on a laptop, tablet, and mobile phone to
demonstrate the scalability of the application.

team 9 will be able to demonstrate to the users how to create a username and
password and login to the system. Once a user has logged in, the garage that
will be viewable will be the prototype model used for the demonstration. Users
can watch in real time as the application is updated as cars are moved in and out
of the parking spaces on the model. The application will also demonstrate the
ability of the admin to close and reserve garages. These attributes can be
changed on one device, and the other devices will reflect the change.

In addition to the standard website application, there will be a driver built to
simulate different parking states. This will be something that Group 9 will be able
access and change the states of parking garages. This will allow for the
demonstration of the “busyness” indicator and also show the states of a large
number of garages. This will demonstrate how the application would run in the
real world.

8. 3. 2 Mobile Application

The mobile application prototype will have all the functionality mentioned above
in the website application. It will be running on an Android mobile phone to
demonstrate the use of the touch screen and immediate log in features of the
mobile application.

Group 9 will be able to demonstrate all the same aspects of the web application
working on a mobile phone. Users can be registered and logged in on the
sample phone. This application will update at the same time as the running
website application when the spots are changed on the model garage. It will also
be able to access the simulation that will show how the application will be used
on a broader scope than can be demonstrated with the model.

8. 4 Database (and Server Application)

As previously stated, the team selected MySQL as the DBMS engine, and Visual
Basic 2015 for the development of the server application. Prototyping the
database consisted in two steps:
1. Creating a database prototype from the schema are shown in Figure 8.5
and Figure 8.6.
2. Designing, and writing the server application that will be used by
administrators and monitors to load the initial data and watch over it.
The first step —Creating the database- consisted in using the MySQL workbench
to create a database from the schema created in 7.6.3. There are seven steps in
this process.

B MysaL Workbench

A Localinstance MySQLS7 x

File Edit View Query Database Server Tools Scriping Help

S8 e SEEHEHE B & @ D=0
[iavissassssa—")

N;

MANAGEMENT. Y EBBEIFTFAQCIBIOOR umewme -l ¥ QR
1

© server status

2 Client Connections

2 Users and Privileges

21 Status and System Variables
& Data Export

& DataImport/Restore

INSTANCE
B startup / Shutdown
A serverlogs
4~ Options File

PERFORMANCE
& Dashboard
&1 Performance Reports
&\ Performance Schema Setup

SCHEMAS LY

Q [Fiter objects

> sakila
» [spot
> sys
> - world

<

Information:
Output

[T Action Output -

Schema: spot

Tme | Acton Messzge Duration / Fetch

Object Info _ Session

Ready =]

Figure 8.5 - Selecting the Schema

Sarl P ts o o B o b e

] E.u--nuu.-m.n . s e L TR

o s s s a5

" e .:fl.lll H'I'I-FFIHWH--F

L e L

e Fop s per i, ol D e
-ad k.

T wadared. I v o Bl s L
- g e gy

=i] pe—r
Figure 8.6 - Set Parameters to Connect to the DBMS

The first step is choosing the schema from MySQL workbench. (1), Then clicking
on Database, in the designer select Forward Engineer (2). The next step (3)
consists of setting the parameters for connecting, they include the use of specific
TCP ports, the users connecting and SSL certification parameters. On step 4, the
designer is asked if options for the creation of keys or foreign keys will be
included. This is followed by a screen (5) requesting for objects to create. Next
on (6), the designer is given the opportunity to revise the auto-generated script
that will create the database. Finally, the database is created, and the designer is
informed as this is happening (7).

Once the prototype of the database is created, the designer proceeds to enter
the basic data needed to perform. To accomplish this task, the server application
will be used. As for the server application, it performs two tasks; update/inquire
database tables, and monitor the parking availability.
e Update/lnquire of database tables (which are performed by the
administrator).
e Once completed the login process, the user is presented with the main
screen as shown in Figure 8.7.

Figure 8.7 - Main Application Screen

The required sequence to follow for data updating is shown below in Figures
8.8(1) through Figure 8.8(6) :
1. Create location(s).

" [CLT - o .

idale Loctbara

Mame |UCF]

G [odends e [n | DrCod [|

Iractvn []

TR oo [omeal |

Figure 8.8(1) - Update Locations Screen.

2. Create a ‘Parking unit(s)’ within a given location.

B Padings = O ¥
Usdabs Paskerza

s] |
hF—Mi

O fouwde [oee fn] on[om |
Lot (557 | ongete (812003 |

Troe: ChBesement) uddng Ol
Sdfew [l | Toidlopscty |10 |

e Diopen @ eed [Mpeeance]
Cimmalii

ot (]

TS e || o

Figure 8.8(2) - Update Parkings Screen.

3. Create floor(s) within a ‘Parking unit’.

B ress e i | »
| Locwen: Lptste Pamary
| er x
| Mlamg: | Floor 8 3
| Pabangy
| |Pavre e B Total copacty. |222
| Saha E Coen) Cinssd
Foo
| Commarty: | Winter inaics in Piceth sl |
fian 811
Mg
’ Inacen]
Fuw B4
£]
[] Sraw ractwes Upats Cancel

Figure 8.8(3) - Update Floors Screen.

4. Create Microcontroller(s) within a floor.

In this step the operator must take note of the Id created by the

server application, for this must be hardcoded into the

microcontroller using the previously provided sketch (C program),
and locate it the designed parking/floor.

. bscrocontrolia:

=]

Liedafe Mmooy

He
vl Condbon: % Woding () Mot Woding
Commanty

[Corvmnrg paricng mota 1201 Lk, 1-202 Cacter], 1-203 (Rigrel |

b Cortroler
Senlrumber | JIATEAID Dt st | 10070016

Dt sl Saspdeed Tirse Moo aecintund

Lek & [
Comar 22 | |
¥ Rghe 53 []

inactwn]

Figure 8.8(4) - Update Microcontrollers Screens.

Monitoring the parking is performed by the monitor user. This task besides
informing of parking availability, also informs about problems in sensor, and
microcontroller. It also informs of closure of floors, or parking buildings. From the
main menu, the operator select Monitor from the File from the menu (shown

below in Figure 8.8(5)).

@ ain
Fie A

Figure 8.8(5) - Main Screen.

Upon selection, the following screen is displayed:

i@ Monier - o =
Location: VCF
Parking - Floor |Status |MC |Condition |L|C|R[d

Parking garadg A
Fhoor # 1
Id & 0 LA
Id & 002 |20
Floor # 2
Id #0003 (Mol wodlkandg) L. B I
Id # 004 ? -
Floor 8 3
Id & 007 (Not weorkano) L. B
Idd % DO L B N
Floor # 4
Ied & 05 Qe G
I # 004 Te v
Parking garags B (Closad for
Floor # 1
Id & D0E @ 7T C
Id #0100 (Mol working) ® 7T @
Floor # 3
Id #0111
Parking garage C
Fhsor # 1
Id & 012 L B
Ll .08 8k o v

Figure 8.8(6) - Check Status Screen.

This screen presents all parking spots sorted by ‘Parking garage’, then floor, and
finally microcontroller. To read this screen is necessary to know the following
indications:

e A red flag indicates the parking spot is occupied.

e A green flag indicates the parking spot is empty (available).

e A question mark (?) indicates that the last ‘read’ operation was not
successful.

e Additionally, information about the status of parking, floors and
microcontroller is also presented. Columns are resizable and movable in
order to accommodate all information.

e This screen is updated every 30 seconds.

Communication module: This program runs on the server as a windows service
(background process). Its role consists in reading the data produced by the
microcontrollers, and update the database with such information. To perform
these tasks, the program must contain the following functions:

Start: Initiate a Telnet session (as a client).

Read: Read each microcontroller's data, and verify its validity.

Write: Insert/Update the data just read into the database.

Check: for missing microcontrollers, and if found report them. Also check
for connections with router, microcontrollers, and database.

5. Sleep: For thirty seconds and loop to number two.

N~

[/-* Start) l/: \I

Stablish connection
as a Telnet Client

microcontrolier
issing for more

7
St Mo Sleep for 30 seconds Report MC.
[write on database)
v
Fead data from Checks= conecction e
i 1. Router. {
Microcontrollers. (55
2. Server. -\
3. MC's. —

i"‘\
B
Yes
h 4

Write received data
on database.

Coneections OK?

h 4

- Check for mizsing
IMicrocontrollers
- Count times a MC
is mising.

Figure 8.9 - Arduino Sketch Flowchart

8. 5 Construction

In this section the specifics of the construction of the U-Park prototype as a whole
will be discussed. This section will cover the facilities which will be used by the
team to develop and build the prototype, and the equipment provided by these
facilities which the team has made use of. Various machines and materials are
provided for use at UCF, paid for under tuition. The team will require some other
equipment to build and test the prototype, which will also be discussed.

In the second part of this section, the PCB supplier OSH Park will be explored and
the process through which the team will obtain the PCB board from OSH Park will
be covered. The parts suppliers and the purchasing will also be discussed, and
the reasoning behind why certain suppliers were chosen will be listed.

8. 5. 1 Facilities and Equipment

The U-Park system contains a mix of software, mechanical and electrical
hardware components. A variety of facilities and equipment is required to build the
final prototype. This sub-section will provide an overview of the facilities and
equipment used in the development and production to construct the working final
prototype used in the Senior Design two faculty demonstration.

During the initial development, the team member require fewer resources than in
the later portions in the design process. Much of the smaller equipment used to
prototype such as power tools, soldering equipment, and hardware are able to be
supplied by the U-Park team members. Roddey Smith and Carlos Pereda already
own much of the hardware required to produce a working prototype. The
database and web interface require a small test server and a computer to run and
develop these. Luckily, as students who have had to accomplish similar tasks in
previous classes, the team members do not have to rely on facilities or hardware
provided by UCF to develop these features.

One main exception to this will be when the team needs to design and construct
the 3D model of the casing for the sensor modules. For this, the team will need to
make use of the CAD software, and the 3D printers provided in the various labs at
UCF. Another option available to the U-Park design team to design and build the
final sensor module housing is to make use of the facilities at the Space Coast
FabLab. This is a privately owned and operated facility, originally developed by
MIT, which has opened up locations around the country. The Space Coast
FabLab facility offers free 3D printing for students working on school projects, and
would therefore be a good option if the labs at UCF become too crowded with
other Senior Design groups. The Space Coast FabLab facility is located in Palm
Bay Florida, and also offers many other tools which may be required by the
U-Park design team when constructing the final prototype.

8. 5. 2 Suppliers

This section contains information about the various suppliers where many of the
components used by the U-Park design team during the developments process
were purchased. The primary suppliers or the components include UCF,
Amazon.com, and OSH Park. In Table 8.1 below, the specific suppliers are
shown, along with the components obtained from those suppliers.

Table 8.1 - List of Suppliers for the U-Park System Components:

Supplier: Components:

UCF Resistors
Capacitors
LEDs

3D Printing

CAD Software in Labs at UCF

Amazon.com ATMega 328p-pu
Microcontroller

HC-SR04 Ultrasonic Sensors
120V to 12V Transformer
Switching Regulator

16 MHz Crystal Oscillator
Fuses

1N4007 Diodes

Wire (misc.)

OSH Park Custom PCB Fabrication

Home Depot e Mounting Hardware
e Angle Aluminum for the Sensor
Extension Arm

U-Park Design Team e \Website and Database
Development Software

e Power Tools Used During
Construction of Final Prototype

While Other suppliers may be required as time progresses, this table gives a
preliminary plan for purchasing, and lists the sources where many of the initial
prototyping components have been sourced from. Amazon has proved to be an

invaluable resource for components as many of the components can be
purchased and arrive via either 1-day or 2-day mail.

9. Testing Plan

“Testing the system is very different from unit and integration testing. When you
unit test your components, you have complete control over the testing process.
You create your own test data, design your own test cases, and run the test
yourself. When you integrate components, you sometimes work by yourself, but
often collaborate with some of the test or development team. However, when you
test a system, you work with the entire development team, coordinating what you
do and being directed by the test team leader.” (3)

9. 1 Sensor

The first test needed to be performed by team nine, is the depth sensor reading
test. This test is done on each ultrasonic sensor to ensure the distance reading is
accurate. Sending consistent ultrasonic pulses out from an individual sensor, use
a tape measure to read the current distance and look at the values received from
the ultrasonic sensors. If they are within +/- an inch of each other, the sensor
should be functioning properly. After that, place different objects (blockages,
cars, soft objects, etc.) in front of the sensor to observe how the reading
changes.

The second test is the connection between sensors and microcontroller. Since
there will be at least two sensors connected to one microcontroller, make sure
that all of the sensors communicate with the microcontroller.

One microcontroller will be installed per two or three parking spots, so two of the
sensors will be at an angle. This angle must not be so steep the ultrasonic signal
has trouble reflecting back. The angle of the Ultrasonic sensor should be
positioned at around 15 degrees from the vertical axis to meet this requirement. .

The Ultrasonic sensor will not be tested in a full-scale implementation in a real
parking garage due to the garage being owned by UCF. Instead, Team nine will
build a scaled-down parking garage and install microcontrollers and sensors in
that parking garage model as a proof of concept. While there are some obvious
aspects that will be different from a “real” parking garage, such as temperature,
target, etc., the basic idea functionality is exactly the same.

Another test of the ultrasonic sensor, is to see how long it takes for the sound
wave reflect back to the receiver (ping). The sensor needs to provide the
information to the microcontroller as fast as possible so that the information can
be uploaded to the database and updated on the application interface.

A full system test will need to be evaluated as soon as possible to ensure that all
sensors are stability tested with the full readout chain. This will help to ensure
that unforeseen electronics-related issues, including noise, are addressed as
early as possible.

9.2 Microcontroller

To ensure that the whole system is functioning properly, the most important test
of the hardware side is microcontroller testing. The microcontroller is the core of
the PCB board, so if something is wrong with the microcontroller then the entire
system will not work. Since to test the microcontroller unit, the sensors need to
be connected in order to have visual input and output, this unit testing has to be
done after sensor testing.

First of all, make sure all the components that are connected to the
microcontroller are in the correct pin base on the ATmega328 pin mapping. The
values of these components have to be exactly the same as the design.
Especially, the two capacitors that are connected to the crystal oscillator.

Once the connection is done, power the microcontroller. Use the multimeter to
measure the voltage at all points on the board. Make sure that the measured
voltages are correct. After the code is uploaded to the microcontroller, connect
sensor to the microcontroller. If there is a target in front of the sensor, the
computer screen will appear the result. If the reading result is correct, then the
microcontroller is functioning correctly. If there is no response, then there is
something wrong with the microcontroller since the sensors are already been
tested. If so, the connection of the microcontroller need to be checked again.

9. 3 Network

The U-Park Network is constructed on a system of WIFI transceivers which all
communicate with a central router to the internet. The network management
system will be similar to that used in auditorium-sized classrooms. Because there
is a bandwidth limit on routers, and because routers (aka “access points”) can
only support a certain number of concurrent devices, the actual real-life
implementation of a full-scale system in the prototype for this stage of the senior
design process is impossible without further funding. The professional-grade
access points which would be required to support the total number of sensor
nodes is well into the thousands of dollars for the access point alone. Most
consumer grade router hardware can only support up to about 255 concurrent

users, which in reality is not possible due to interference issues between network
channels. This would limit the size of the garage to a maximum of 765 spaces
(three sensors per connected modules) connected to a single router. This would
also be a huge problem since the system would be operating at the quoted limits
of the router and is not desirable for liability purposes. For this reason,
industrial-grade network hardware infrastructure would be required and would
need to be developed in such a way that would allow for the system to grow.

In an entire parking garage, physically reaching all of the individual sensor
nodes, where the number of total parking spaces can be between 1000- 2000
proves to be a challenge. To ensure that the system is robust and reliable
enough to be expandable to other parking applications in other locations, the
routers used in the final project would be responsible for a certain number of
sensor modules in a certain physical area. Multiple routers would need to be
placed throughout the garage in strategic locations. The multiple routers would
need to be connected in a mesh network, and would communicate with each
other and work together to be able to support a growing number of sensor nodes
in larger and larger parking garages.

The U-Park system final project deliverable shown at the final demonstration will
contain only one router which will connect to a total of less than three users
(sensor modules). The displayed system will be developed as a system of
building blocks, where once a router is connected to a set of sensor modules,
that router can be connected to the U-Park mesh network inside of the garage to
monitor different physical areas in the garage. This allows for the use of standard
network control protocols, and would not require the development of new and
untested systems, which would be a risk to the reliability specifications of the
U-Park system.

In summary, the U-Park network will consist of the individual sensor modules
connected in groups of 10 or 15 by physical locations in the garage connected
through 2.4GHz Wi-Fi to a router/ access point. The total number of access
points required is dependent on the size of the garage in question, but would
communicate between each other in the same way in the mesh network of the
garage regardless of the size of the garage or the number of nodes required by
even a large garage. This network of routers accesses the internet through a
gateway and communicates back and forth between the database to populate
the data on the web interface for the parking availability in the garages.

9. 4 Database

For testing the database and the server application, team nine applies the
classical System Testing Process, the tests are:

e Function testing -Each function in each program of the server application
is checked for correctness. Example a routine that insert row into a table is
checked that it performs that action with accuracy, and does nothing else.
In practice, table update programs consists in three basic functions:

o Insert rows.
o Update rows.

e For the database portion, it's checked that:

o All tables with foreign keys relate in the proper way to their parent
table.

o Key increments (both self-generated by MySQL and programmed
are accurate.

e Web Server and Mobile App:

o Basically put the applications to run and compare the data shown
with the data stored at the database.
o Performance testing. See Proposed tests
o Acceptance testing.
m Once performance tests are completed, the system will be
given to the final user (simulated), for tests and acceptance.
o Installation testing.
o After final installation of the system, another set of performance
tests will be conducted.

Test teams: In order to accomplish all tests required for this project, team nine
has divided the work into four areas (listed below):

1. Function testing:

Performed by the developers themselves.

Note: Since this project involves developments both in hardware
(microcontrollers), and software (Microcontrollers sketches,
communication software, server application, web site, and mobile
applications), the rest of tests will be conducted with both hardware and
software operational.

2. Performance Testing: the software team swaps with the hardware teams
for conducting tests. That'’s is, software developers will test hardware
(AC/DC converters, Microcontrollers, Wi-Fi portion, etc.), while hardware
developers will test the software applications.

3. Acceptance testing: (Simulated)

The whole team will act as a customer receiving an unknown solution and
will test it for functionality.

4. Installation testing:

The whole team will test again prior to presentation.
Proposed tests:

e Functional Tests: Functional tests have to be conducted on the following

software components:

o Microcontrollers Sketch: Read sensors data using another
microcontroller and sketch to compare them with the ones
proposed in the project.

o Communication software (Liaison) compare data read with data
sent by microcontroller’s data sent. Check for connectivity (refer to
flowchart 8.4(9).

o Server Application (SPOT): Verify functions:

m Insert_Row: Make sure all data selected, “points” to the right
columns.

m Update Row: Make sure all data selected, “points” to the
right columns.

m Verify_Data: Validate all ‘validated data’ from this function is
accurate; Dates are in the right format, values are not out of
range, etc.

Performance Tests: This tests (under development) consists in putting the
application under pressure. To achieve this goal, the following tests will be
conducted.

o Put the system to work, that is start capturing data (24/7 every 30
seconds), from every microcontroller, and store data into database.
From this test, an evaluation of response time will be performed.

o Querying data (Users looking for a parking spot). Volunteers will be
required, for the test would be conducted with 20, 50, and 100
users simultaneously. From this test, an evaluation of response
time will be performed.

Acceptance Tests: The (simulated end user) will operate the application
(subject of this project) as if it was a daily routine.

Installation Tests: Finally the project will be put to work before the
presentation datta.

9. 5 Application

9.5.1Web

1.

Test Create User

a. Create user
b. Try all cases outside of the scope of create user
c. Make sure all cases are stopped
2. TestLog In
a. Create username and login
b. Login and logout multiple times
c. Make sure system keeps track of user info
d. Continue to monitor over time
3. Test Main Page
a. View garage information on main page
b. Update data in the database
c. Make sure the changes are shown on main page
4. Test Admin
a. Create Admin Account
b. Use each feature of admin account
c. Watch database to ensure correct changes are made
d. Log in as user to check that changes are being shown on main
page
5. Test Add Garage
a. Login as user
b. Add and delete garages multiple times
c. Ensure that main page updates correctly.

9. 5. 2 Mobile

-

. Test Create User
a. Create user
b. Try all cases outside of the scope of create user
c. Make sure all cases are stopped
Test Log In
a. Create username and login
b. Login and logout multiple times
c. Make sure system keeps track of user info
d. Continue to monitor over time
Test Main Page
a. View garage information on main page
b. Update data in the database
c. Make sure the changes are shown on main page

N

w

4. Test Admin
a. Create Admin Account
b. Use each feature of admin account
c. Watch database to ensure correct changes are made

5.

d. Log in as user to check that changes are being shown on main
page
Test Add Garage
a. Login as user
b. Add and delete garages multiple times
c. Ensure that main page updates correctly

10. Project Operation

*Note: (This part refers to the daily operation, and it’s not intended to be an
installation manual)

On the microcontroller:

Once a microcontroller is installed and powered, it starts a sketch (AVR-C
program) written in EEPROM.

Logic of the sketch (as described in the flowchart shown in figure 8.4.9)
starts by declaring itself as a Telnet server, next the microcontroller on a
30 seconds (default) loop queries the three ultrasonic sensors attached to it
and creates a record (as shown if figure 7.4.1) with the microcontroller ID,
and the status for each sensor. In turn this information is propagated (sent
via routers to the server). The microcontroller sleeps for another 30
seconds.

On the server:

A Windows service “Liaison” is permanently waiting for microcontrollers to
send data.

After a record is received from a microcontroller, the information on the
DBMS database (spot) is updated, and a history transaction is created if
the table “transactions”.

At this point data is available for both “clients” (users looking for an empty
parking spot) and “administrators” (operators checking for space availability
and microcontroller malfunction).

On the “Client’-Side:

Anyone looking to park at the location (In this case UCF), accesses the
website designed for this application.

e Once in the website, the application determines geographically the location
of the “Client’, and will inform of the nearest parking garage, and its
availability giving in garage’ floors.

e Once the target gets to the parking spot, and his/her vehicle occupies an
empty spot, the microcontroller will update the data.

11. Conclusion

11. 1 Reflections
11. 1. 1 Features Left Out

The U-Park system is the type of systems which performs one basic functionality,
which means there are not too many extraneous features which are not included.
The system requires a basic set of functionality to work, and adding too many
extra features could actually get in the way of users using the parking
management interface efficiently. However, there is one aspect of the system
which is currently being overlooked due to time constraints. Currently the design
team has decided to leave out the feature to be able to see how much traffic is
driving through a particular garage. This information would help users not only
know how many spots are available, but also if those spots are likely to be
available in the near future, or if there already are a significant number of drivers
in the garage that by the time the user would arrive the spots would be gone.

The U-Park system aims to be a product similar in usefulness to a fork. For
instance a fork does a very helpful daily task, and no-one would want to live
without a fork. But, adding too much functionality to the fork could detract from
the actual usefulness and optimization for the specific task of eating. In the same
way, if the design team tries to add too much functionality to the U-Park system,
the added features could actually detract from the system’s primary functionality
of helping users park faster and avoid driving around aimlessly.

11. 1. 2 Future Improvements

There are two main improvements that the U-Park system could benefit from.
The first, already mentioned in the above paragraph is the addition of sensors to
detect users driving through the garage. This would likely require sensors at all of
the entrances and exits of the garage that would be able to keep a rough
estimate of how many cars are moving in and out of the garage. This would be
extremely inaccurate, however, since the sensors would not be able to tell the
difference between a person and a car and would therefore falsely estimate the
number of cars driving through the garage. The fix to this problem would be to
have cameras set up that using image processing software, would be able to
detect the difference between cars, motorcycles and humans, which would allow
it to keep a better count on the number of vehicles inside the garage.

The other improvement which would be of use to the U-Park system would be
the inclusion of user studies. These user studies would examine the users
opinions about the web application interface, and would ask users for input on
what features, if any, to add the the U-Park system which would help it better
accomplish its goal of making the search for parking quicker and less
cumbersome.

The primary reason these improvements are left to the future is due to the strict
timeline required in the senior design process. If these improvements were tried
to be accomplished in the time for senior design two, less time would be able to
be spent perfecting the primary features of the U-Park system. Also, as the
project develops in maturity, other important missing features may arise that
could take precedent of the aforementioned ones.

12. Appendices
A. Works Cited

1. What is Java Technology and why do | need it?. java.com. Oracle
Corporation. n.d. 16 March 2016.
https://java.com/en/download/fag/whatis_java.xml

2. My SQL Community Edition. Mysqgl.com. Oracle Corporation. N.d. 25
Match 2016. https://www.mysql.com/products/community/

3. Pfleeger, Shari, Atlee Joanne. (2013). Software engineering, Theory and
Practice. New Delhi: Pearson.

4. "Sharp Infrared Ranger Comparison." Acroname. Accessed April 26,
2016.
https://acroname.com/articles/sharp-infrared-ranger-comparison.

5. "BU-106: Advantages of Primary Batteries." Primary (non-rechargeable)
Batteries — Battery University. Accessed April 26, 2016.
http://batteryuniversity.com/learn/article/primary_batteries.

6. "ATMEL 8-Bit Microcontroller with 4/8/16/32KBytes In-System
Programmable Flash." Atmel. Accessed April 26, 2016.
http://www.atmel.com/images/atmel-827 1-8-bit-avr-microcontroller-atmega
48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet _complete.pdf.

7. "Full Wave Rectifier and Bridge Rectifier Theory." Basic Electronics
Tutorials Full Wave Rectifier Comments. 2013. Accessed April 26, 2016.
http://www.electronics-tutorials.ws/diode/diode_6.html.

8. "HC-SR04 User Guide." ElecFreaks. Accessed April 26, 2016.
http://www.elecfreaks.com/store/download/product/Sensor/HC-SR04/HC-
SR04 _Ultrasonic_Module_User_Guide.pdf.

9. "BlueTooth HCO5 Modules - How To"Arduino-info. Accessed March 1,

2016.
https://arduino-info.wikispaces.com/page/history/BlueTooth-HC05-HCO06-
Modules-How-To

10.“Prescaler utiIity Iibrary” Arduino Playground. Accessed March 1,

2016.
http://playground.arduino.cc/Code/Prescaler

B. Permissions

https://java.com/en/download/faq/whatis_java.xml
https://acroname.com/articles/sharp-infrared-ranger-comparison
http://batteryuniversity.com/learn/article/primary_batteries
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
http://www.atmel.com/images/atmel-8271-8-bit-avr-microcontroller-atmega48a-48pa-88a-88pa-168a-168pa-328-328p_datasheet_complete.pdf
http://www.electronics-tutorials.ws/diode/diode_6.html
http://www.electronics-tutorials.ws/diode/diode_6.html
http://www.elecfreaks.com/store/download/product/Sensor/HC-SR04/HC-SR04_Ultrasonic_Module_User_Guide.pdf
http://www.elecfreaks.com/store/download/product/Sensor/HC-SR04/HC-SR04_Ultrasonic_Module_User_Guide.pdf
http://www.elecfreaks.com/store/download/product/Sensor/HC-SR04/HC-SR04_Ultrasonic_Module_User_Guide.pdf
https://arduino-info.wikispaces.com/page/history/BlueTooth-HC05-HC06-Modules-How-To
https://arduino-info.wikispaces.com/page/history/BlueTooth-HC05-HC06-Modules-How-To
http://playground.arduino.cc/Code/Prescaler

BatterylU <BatterylU@cadex.com

Hi Them,

Yes, you may use the material as requested. Please cites sources where appropriate.

Regards,

John Bradshaw - Marketing Communications Manager
Cadex Electronics Inc. | www.cadex.com

Vancouver | Minneapolis | Frankfurt

Tel: +1 604 231-7777 x319 | Toll Free: 1-800 565-5228

Permission email #: Battery University

