
Fire Extinguishing Unmanned

Aerial Vehicle (FXUAV)

Adam Kutchak, Luis Brum, Jamie Peck, Greg

Kelso

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — The emergence of drones and UAVs in recent
years has opened up the possibilities of new and interesting
engineering solutions to problems in the world. The FXUAV
is a project that seeks apply this technology to firefighting. It
uses a Logitech webcam, some clever programming, and a
payload release design, to detect and extinguish flames. The
FXUAV consists of three major subsystems: 1) a quadcopter
used to search through the air 2) a processor that uses image
recognition software to identify a fire 3) a payload release
system that extinguishes the fire.

Index Terms — Image processing, microcontrollers, object
detection, satellite navigation systems, unmanned aerial
vehicles, wireless communication.

I. INTRODUCTION

 The introduction of UAVs has expanded the range of

problems that engineers are able to solve, in addition to

revisiting solutions to old problems. Firefighting has

always been a dangerous profession, and the creation of

vehicles that are able to fly autonomously introduces a

new way of thinking in regards to designing a safer fire

extinguishing system. By attaching a camera to a drone, it

is possible to safely conduct reconnaissance and identify

the scope and severity of a fire. With increases in battery

life and thrust as technology improves, drones will also be

able to carry substantial payloads in the future.

 The FXUAV is a step toward this safer firefighting

technology. It utilizes three main subsystems consisting of

a quadcopter, a camera and onboard computer for image

processing, and a payload release system. These

subsystems combine to solve the task of deploying a drone

in the vicinity of a fire, flying until a fire is seen by the

camera, and then extinguishing the fire. Throughout the

entire process, a live video stream of the mission from the

camera will be viewable on a user’s computer. The details

of these subsystems shall be covered in the sections below.

II. SYSTEM OVERVIEW

The Fire Extinguisher Unmanned Aerial Vehicle will

be composed of four main systems, the Quadcopter, a

ground control system, the Image Detection System, and

the Fire Extinguisher. The three systems will need to work

simultaneously so the FXUAV can detect and extinguish

the fire successfully.

A. Quadcopter

Even though there are many pre-built quadcopter

systems, the FXUAV is built using parts that would best fit

the objective of the FXUAV project. The Quadcopter is

composed of the following items: 1) Tarot Ironman 650

Carbon Fiber Frame 2) Four Tiger-RC MN3515 KV400

Motors 3) Four 15x5 Carbon Fiber Propellers 4) Four

ARRIS 3-6S 30A Electronic Speed Controllers 5)

Pixhawk Flight Controller Unit 6) 3DR SIK Telemetry

Radio system 7) 3DR uBlox GPS 8) Radiolink R10D

radio controller Receiver 9) Power Distribution Board 10)

QuadPro Power 10,000mAH 6S LiPo Battery. These

different items have been flight tested to verify that the

quadcopter could achieve the goal of the FXUAV project.

With these different items the quadcopter was able to lift

over the 10 pounds of weight necessary, and was able to

fly over 10 minutes in a 200 square feet area while

maintaining in contact with the Ground Control Unit. The

Ground Control Unit is what controls the initial and

different flight modes of the quadcopter. These are the

components that the Ground Control Unit is made of these

items: 1) Laptop with Mission Planner software 2) 3DR

SIK Telemetry Radio system 3) Radiolink AT10 radio

controller Transmitter. The Mission planner software

version 1.3.38 which is made by Michael Oborne is the

system that the PixHawk is programmed from, which

communicates with the Pixhawk through the 3DR Sik

Radio telemetry system. Prior to the initial flight the

Pixhawk needs to be programmed with different flight

modes, which are triggered by the AT10 radio control

transmitter and allows the quadcopter to be controlled by

the Fire Detection system.

B. Image Detection System

The Image Control System will be the main operator

after the quadcopter is in the air. It will be responsible for

detecting the fire and guiding the quadcopter to the

location of the fire. See Figure 1 below for reference of

how the system connectivity will be implemented.

Figure 1

The Image Detection System will be composed of these

different items: 1) Odroid XU4 Microcontroller Unit 2)

Logitech C270 Web Camera. The Logitech web camera

will be connected to the to the Odroid XU4

microcontroller unit, that will capture live video of the

area which the quadcopter is flying in. The Odroid will

then use a classifier to detect the fire and using pixel data

it will use an algorithm that will guide the quadcopter to

the fire using Mavproxy command. Once it has determined

that the quadcopter is on top of the fire, it will send a

command to activate the Fire Extinguisher System.

C. Fire Extinguishing System

The Fire Extinguishing System will release a chemical

fire suppressant that can put out a fire that is at least of one

square inch in size. The Fire Extinguishing will be

composed of these items: 1) Chemical fire suppressant

powder 2) 3D printed container system 3) 5V servo. Once

the quadcopter is on top of the fire, the Odroid will send a

signal to the Pixhawk which will then send a signal to the

servo. Once the servo receives the signal it will allow the

fire suppressant powder to disperse on top of the fire to

extinguish it.

III. QUADCOPTER

A. Hardware

The quadcopter is a 4 rotor aerial vehicle that will be

controlled by a Pixhawk flight controller. It supports

UART, I2C, SPI, and CAN for additional peripherals, with

which we will use to communicate sensor data. It also

features 14 pwm/servo outputs with which we will assign

four of our motors to, making it a quadcopter. Some of the

embedded sensors include a gyroscope to assist

stabilization, an accelerometer, and a barometer. The

UART (serial) ports will be used for connections such as

power. A PPM encoder will be used in order to receive our

radio signal and communicate with Pixhawk’s sbus input

and output. The Pixhawk consumes up to 5.4V on the

power module for our application and is rated for a

maximum of 0V – 20V undamaged.

Connected to the Pixhawk are several peripheral

components, such as a u-Blox GPS, 3DR Telemetry radio,

PPM encoder, and a Radiolink AT10 receiver. The

external GPS unit is a very accurate unit that operates at

3.3V. The telemetry radio allows for 2 way

communication between the ground control station and the

quadcopter. Messages are sent using a MAVLink protocol

which is a header only language used to communicate with

the Pixhawk. Lastly, the AT10 receiver and ppm encoder

are used to receive input from the Radiolink AT10

transmitter. The transmitter sends pulse-width modulation

signals that the Pixhawk protocol isn’t compatible with.

See Figure 2 below for an overview of how the hardware

is assembled.

Figure 2

1

23

5

4

7

8

6
1-3DR uBlox GPS
2-3DR Telemetry Radio V2
3- R10D RECEIVER
4- ODROID
5- Safety Switch
6- PixHawk
7- Buzzer
8- Battery
9- Fire Extinguisher
10- Camera
11- Power Distribution

9
10

11

Power
Distribution

PixHawk

ARRIS
3-6S

30A ESC

MN 3515
MOTOR

MN3515
MOTOR

MN 3515
MOTOR

MN3515
MOTOR

Battery

ODroid

Fire Ext.
Servo

Proximity
Sensors

Camera

GPS

R10D
Receiver

TELEMETRY

ARRIS
3-6S

30A ESC

ARRIS
3-6S

30A ESC

ARRIS
3-6S

30A ESC

MCU

FLIGHT SYSTEM

POWER SYSTEM

FIRE SYSTEM

NAVIGATION
SYSTEM

COMMUNICATION
SYSTEM

POWER CONNECTION

SIGNAL CONNECTION

SIGNAL + POWER
CONNECTION

The PPM encoder combines those PWM signals into a

single signal of with the Pixhawk can understand. These

inputs are used to change flight modes, or flight path.

The quadcopter will be powered by a 22.2V, 10Ah

lithium polymer battery connected to a power distribution

board that is created specifically for our application and

designed by us. The power distribution is responsible for

distributing the supplied power to all of our components

on the quadcopter.

The electronic speed controllers are used to control the

rotations per minute of each motor independently, and are

calibrated through Mission Planner software using

Arducopter firmware. At full throttle the ESCs will be

supplying the motors with 20A which translates to 2.8kg

of thrust per motor. At this point we’re operating at the

least efficient of 6.73 grams per watt.

B. Software

Communication between the Pixhawk and all other

modules will be using the MAVlink protocol, which is an

acronym for Micro Air Vehicle Link. MAVLink is a

header only library that uses a system ID, a component ID,

a message ID, and parameters. The system ID represents

the vehicle being communicated with; the component ID

corresponds to the components with which information is

being extracted; the message ID and parameters include

what piece of info is needed. These messages are what will

command the quadcopter during its mission.

MAVproxy is the application we will use to start our

missions. MAVproxy is a command line based application

written in python that will serve as our mission control.

Because it is lightweight and simple, we will use it to send

commands to our quadcopter during a mission.

IV. IMAGE DETECTION SYSTEM

A. Hardware

1. Odroid XU4

All image processing for the FXUAV System will be

done via an onboard microcontroller.

2. Logitech C270

A camera will act as the eyes of the FXUAV during

both the system’s detection and tracking mode. For this

reason, camera choice is a vital aspect of the design and

development process for the FXUAU. The camera will be

mounted to front side of the quadcopter frame and situated

in such a way to direct its field of view straight at a strict

90-degree angle with the ground, ensuring no angular

offset. The chosen camera must be able to communicate

with an onboard microcontroller unit in order to transmit

individual frames of data or images. The camera must also

be able to provide adequate data, both in terms of rate and

level of quality, so that a fire can successfully be

distinguished from its surroundings. Furthermore, the

quality of the cameras output is also important because it

must be high enough to allow the object to be detected

from a height of about 10ft. optionally, however preferred,

the camera must incorporate a stabilization module to

compensate for both climate 25 conditions such a wind,

and vibrations stemming from the body of the quadcopter

of which its attached to.

The Logitech C270 camera will be used to capture the

real time video of the drone’s path. This camera provides

several capabilities that justify its use for the image

detection and tracking components of the FXUAV. This

camera proved HD and 1280 x 720 pixel video capture. It

provides software enhanced photos of up to 3.0

megapixels and utilizes Logitech’s Fluid Crystal

Technology.

Logitech Fluid Crystal Technology encompasses a

wide range of features that our image processing

subsystem requires for low false detection ratings. The

Logitech C270 follows the H.264 AVC Compression

standard which allows for considerably lower data bit rates

for high quality video capture. High definition video

requires one gigabit of data per second to be transferred

however the Logitech C270 can provide the same high

definition video at a much smaller bit rate. The Logitech

Fluid Crystal Technology also incorporates auto focus

features and enhanced optics.

The Logitech C270 has a 2.4 GHz Intel Core2 Duo

processor and requires 2GB of RAM as well as 200MB of

hard drive space. It is USB 2.0 certified and has a video

upload speed of 1Mbps. The output screen resolution is

1280 x 720 pixels and it is responsive to multiple

operating systems such as Windows and Linux platforms.

Lastly, this camera has an automatic light correction

feature that allows it to intelligently adjust, according the

current environment light settings.

B. Software

The FXUAV will contain an image processing module

which serves the purpose of analyzing data to look for a

specified object. The object, in the case of the FXUAV, is

a small grease fire. The image processing module will

receive data, or frames of images, from the Logitech C270

camera via the Odroid XU4 micro processing unit; the

Odroid controller will process these frames onboard.

Once the Logitech C270 sends the images to the Odroid

XU4 and, OpenCV will be used to analyze each image and

detect if the fire is present in the field of view or not. If the

fire is not detected within the current image, it will

continue extracting frames from the video stream,

otherwise, the Odroid XU4 would send a MAVLink

command to the flight controller. The image processing

system would then continue extracting frames from the

stream and as long as the fire is detected in the images,

then it will continue to report back to the flight controller

accordingly via MAVLink commands.

The Intel Open Computer Vision Library, OpenCV,

offers an assortment of algorithms related to both

computer vision and video capturing. The libraries offered,

provide a means to streamline the process of extracting

and reading images from a specified video camera.

OpenCV is compatible with a specific list of

microcontroller units, the Odroid being one that list. Once

the compliant MCU has access to the specified data

source, OpenCV can execute its algorithms on that data.

OpenCV’s open source framework supports a select few

programming language interfaces; Python, C, C++, and

Java. In regards to image processing algorithms

specifically, OpenCV offers two different methods for

object detection; Latent SVM and Cascade Classifier.

Latent SVM can only be implemented via C and C++

code. This algorithm approach is based very similarly on

the Dalal-Triggs detector. It provides the programmer with

convenient features such as storing images, and a

framework for using filters on histogram of oriented

gradients (HOG) descriptors. The second image

processing algorithm provided by OpenCV, Cascade

Classifier, is a two stage process. It involved the training

stage and the detection stage. Amongst the two

applications within OpenCV, which are used for classifier

training, both HAAR-like features and LBP features are

supported. Both negative and positive samples are needed

when using OpenCV’s Cascade Classifier Training method

for object detection. Cascade Classifier Training can be

implemented in all supported interfaces of OpenCV; that

is, Python, Java, C, or C++. That being said, the FXUAV

image processing unit will implement OpenCV’s Cascade

Classifier Training algorithms to allow for more versatility

when it comes 31 to implementation methods. A list of

classifiers will be trained to detect an object specified by a

specific set of training materials. The classifiers are then

used to determine, when given an image, if the specified

object occurs in any vicinity within that image. An object

is said to be detected, if or when a vicinity, within the

image of which was passed to the classifier(s), passes all

classifiers successfully. Two common errors that are seen

when Cascade Classifier Training is implemented are,

false positives and false negatives. A false positive error

occurs when a vicinity with an image passes each classifier

in indication that the object was detected when in fact, the

object does not occur within that vicinity. Secondly, a false

negative occurs when a vicinity within an image that does

contain the specified object, does not pass all the

classifiers, which again, indicates that the object does not

exist in that vicinity. In a perfect world, one-hundred

percent of the true positives should be deemed as true by

each of the classifiers. In retrospect however, it is a fact

that not every true positive can be found and each

classifier is therefore trained to catch as many true

positives as possible. That being said, the main issue with

this method of classifier training, lies principally in the fact

that the number of false positives reported by a single

classifier is, on average, about fifty percent. In attempt to

surmount such a high error rate, it is of practice to cascade

a number of classifiers amongst the input data. Previously

as mentioned, a classifier in itself has roughly a 50% false

positive error rate. Therefore, by cascading several

classifiers, each with an approximate 50% error rate, the

overall error rate will be less; depletion occurring as the

number of cascaded classifiers increases. In effort to do so,

each subsequent classifier, in the cascaded line, should be

trained to anticipate false positive reports from the

preceding classifier and mark it as such. The AdaBoost

algorithm provides the foundation of which such classifier

training is a derivative of. The technique implicates each

classifier based on the number of image regions reported

as positive, in descending order; more explicitly, each

classifier is cascaded in a decreasing manner, with respect

to the number of positive image vicinities it identifies.

This systematic technique allows for the number of false

positives to decrease as the data gets forwarded further

down the line of cascaded classifiers in a liquidating

fashion. With redistribution rights for the following figure

still pending from Jeff Bier, the founder of Embedded

Vision Alliance, Figure 3 illustrates the cascade of

classifiers of which the systematic technique executes.

Figure 3

Each classifier is said to take in a certain number and type

of feature based on the algorithm used in implementation.

The basic classifier input consists of edge features, line

features, and center-surround features. This set of

classifier inputs are known as Haar-like features and can

be seen in Figure 4 below (redistribution rights granted

from OpenCV User Guide documentation).

Figure 4

The white areas within each feature signify positive pixel

weights and similarly, the black areas signify negative

pixel weights. Responses are calculated via a simple

arithmetic difference equation. The weighted sum of pixels

covering the black spaces of the feature is subtracted from

the weighted sum of pixels covering the whole feature.

The resulting integer is then used to classify the image as

either a positive or a negative, as it pertains to containing

the object or not containing the object, respectively. The

threshold defining a positive versus a negative response is

determined by the programmer in accordance with the

preferred false positive rate as well as the desire detection

rate.

The pixel values that are used in the response

classification process are calculated via integral images at

a very rapid speed. The intrinsic functions within the

OpenCV library that calculate the integral of an image,

take in certain parameters from a particular set. The

differing particulars are dependent upon the programming

language interface being used to execute the integral

function. This particular set includes and image parameter,

a sum parameter, a sqsum parameter, a tilted parameter,

and finally an sdepth parameter. The integral function is

responsible for calculating three differing integral images

for a given source image using a series of three equations

(see Figure 5: Equations for Integral Image Calculation—

copyright permission granted from OpenCV User Guide

documentation).

Figure 5

The equations above clarify how each pixel value is

calculated; it is equal to the sum of the value of the source

image’s corresponding pixel, the value of the pixels above

the corresponding pixel, as well as the values of the pixels

to the left of the corresponding pixel. The underlying

effort of such rapid calculation of weighted pixel sums is

in response to the integral image calculations above which

make it feasible to compute any rectangular sum with

merely four single array calls. The appropriate set, or

cascade, of classifiers that is optimal for a high detection

rate and a low false positive rate is specific to the object

being detected. During the classifier selection process,

there are two different data sets that should be used during

testing. The first should be a database comprised only of

images that do contain the object being detected. The

second should be a database comprised only of images that

do not contain the object. The results of these two tests in

conjunction with chosen threshold values for both

detection and false positive rates will help determine

which classifiers are optimal for the object detection task

at hand. After the classifier training process has been

completed, the object detection algorithm can be executed.

Figure 6 below shows the software cycle.

Figure 6

V. FIRE EXTINGUISHING SYSTEM

A. Hardware

The fire extinguishing system will be controlled by a

5V servo. The servo will be controlled by a custom self-

designed printed circuit board. Once the quadcopter

receives the data that it is directly above the target, a signal

will be sent to the custom printed circuit board that

indicates to rotate. Once the servo receives the signal, it

will retract, opening the contents of the container that is

affixed to the quadcopter. The contents inside the

container will be a chemical fire suppressant used in many

fire extinguishers. The weight of the contents will be

approximately 1lb so as to meet our requirements of

extinguishing the fire, and also, keeping the quadcopter

light enough to still fly. The material within the container

will be Sodium Bicarbonate (baking soda). This is used in

many BC fire extinguishers, and is the only dry chemical

used in large scale for kitchens. Its properties are mostly

effective towards grease fires, and small electrical fires.

When the chemical heats up, it starts to foam, and

effectively smothers the fire.

The hardware aspect of the fire extinguisher release

function revolves around a hinge and a servo. This will

create a door effect for the container in which the contents

will released out of. In order to keep the contents within

the enclosure, an electrically controlled device is needed to

keep the door like figure closed, and only open when

triggered. The servo will rotate the axle upon which the

door is attached, which will release the powder inside the

casing.

When designing the plastic container that holds the

payload, determining the capacity of the container

revolved around optimizing multiple constraints. Some

key aspects that contribute to our decision are maximum

thrust, delivery distance, and size of target. Since this

project will be scaled down for sake of demonstration, our

target will be much smaller than a real fire. After

identifying different power rangers for the thrust of the

motors, compared against the weight of the drone and its

components, it was determined that 1lb of sodium

bicarbonate would be the weight of the payload. It would

easily be substantial enough to hit the target, and leave

enough room for comfortable lift off and maneuverability.

Thus the container was designed to be able to hold up to

1lb of baking soda underneath the drone. See Figure 7

below for the cad drawing of the container.

Figure 7

There are many types of fire extinguishers: dry, wet,

even sound. After conducting research, we found Sodium

Bicarbonate was the best choice for this project. The ease

of access, the performance in fire suppression, and the

weight properties all line up for our intended purposes.

Baking soda is a crystalline powder that is used for many

things including, cleaning, odor neutralization, and even

fire extinguishers. Baking soda releases carbon dioxide

when heated. Carbon dioxide, while heavier than air, helps

in assisting the smother the fire. This makes it a rather

effective fire suppressant. While some chemicals are better

at extinguishing different types of fires, baking soda has

proved to perform well for our intended tea candle or

small controlled grease fire. The fire by design will be

small enough and of the correct nature, such that our

payload of baking soda will possess absolute ability to

extinguish the fire.

B. Software

The fire extinguishing system is executed by a 5V servo.

The servo’s power will be delivered from the battery via

the designed Power Distribution Board on the drone. The

servo will also be connected to one of the Pixhawk’s 6

available auxiliary pins, which will communicated with the

servo. Once the drone’s software detects that it is above a

fire, it will send a signal to the Pixhawk which will rotate

the servo until the payload is released. The process of

searching for a fire, identifying a fire, moving towards the

fire, and hovering over the fire while the fire suppression

is released, requires a well-defined state machine so that

the drone system is able to complete the missions

regardless of conditions. A diagram of the state machine

and descriptions of each state are as follows:

Moving towards the center of the fire will occur once

the fire is within the camera’s vision. This first change that

occurs is changing the state of the drone system from Auto

mode to Guided mode. In this mode, the drone system is

given a GPS coordinate that it moves toward, and once at

the coordinate, hovers indefinitely. The Odroid XU4 will

estimate a location based on the fire’s location within the

selected frame from the camera’s video feed. Then it will

send data to the Mission Planner, which will create a

waypoint for the drone system based on the estimated fire

location. The waypoints require the data sent as latitude

and longitude, and also takes in the length of time to spent

hovering at the current waypoint before moving to the next

state. The drone system will continually estimate the

location until the fire is located in the center of the

camera’s field of view.

Once the fire is in the center, instead of staying in

Guided mode and waiting at a waypoint for X amount of

seconds, the drone system will switch into Loiter mode.

This mode requires an input deciding the length of time it

will spend hovering at the height it enters Loiter mode at.

The Odroid XU4 will send the current location to the

Mission Planner, and will then run a script that releases the

fire suppressant. Once the suppressant has been released,

AND the camera does not detect any temperatures that

indicate a fire still exists, the drone system will exit this

state.

The final state generates a waypoint based upon the

drone’s coordinates upon initialization. This will complete

the mission and the test or demonstration will be complete.

See Figure 8 for the state machine diagram.

Figure 8

VI. CONCLUSION

FXUAV is a system that aims to prove a concept that

unmanned aerial vehicles can assist first responders in

hazardous situations such as fires. Using two relatively

inexpensive modules, a flight controller and a

microcontroller that control the drone, we’re able to create

an application that can be scaled commercially and used

for military purposes as well.

V. POWER DISTRIBUTION BOARD

A. Design

The Power Distribution System was designed using the

Texas Instruments Webench Power Architect. This system

is responsible for distributing the power to the Pixhawk,

motors, Odroid, and the servo motor from a single power

source. There are two main sections of the power

distribution system, one section provides 22.2 nominal

volts to the motors, and second section drops the voltage

down to 5 nominal volts for the Pixhawk, Odroid, and the

servo. The section that provides power to the motors uses

a current and voltage breakout that provides the Pixhawk

with the necessary power information using the Texas

Instruments INA169 High-Side Measurement Current

Shunt Monitor. The current shunt monitor circuit will be

able to sense a current range of 0 to 90 Amps and a

voltage range from 0 to 50 Volts. The second section of

the Power Distribution System uses the Texas Instruments

LM3150 Synchronous Buck Controller. This buck

controller is dropping the 22.2 nominal volts battery input

to a 5 nominal volts output with a maximum load current

of 12 Amps. The components will be laid on a two layer

printed circuit board that was acquired from OSHPark.

Figure 9 below shows the layout of the Power Distribution

System.

Figure 9

ACKNOWLEDGEMENT

The FXUAV team would to thank FLIR Systems for

sponsoring the project as well as helping guide the project

in the right direction so that it could be a success. A

special thanks is also given to Abacus for their

contribution of 3D printing materials. All contributors

have been invaluable throughout this entire process.

REFERENCES

[1] Paul Viola, Michael Jones. Rapid Object Detection using a
Boosted Cascade of Simple Features. Conference on
Computer Vision and Pattern Recognition (CVPR), 2001,
pp. 511-518.

[2] "OpenCV: Cascade Classifier Training." OpenCV: Cascade
Classifier Training. 18 Dec. 2015. Web. 25 Apr. 2016.

[3] “Advanced MultiCopter Design” ArduPilot. 25 April 2016.
Web. 20 March 2016.
http://ardupilot.org/copter/docs/advanced-multicopter-
design.html

 [4] Lorenz Meier, Dominik Honegger and Marc Pollefeys.
“PX4: A Node-Based Multithreaded Open Source Robotics
Framework for Deeply Embedded Platforms” ICRA (Int.
Conf. on Robotics and Automation) 2015. Web. March 10
2016.

[5] Rainer Lienhart and Jochen Maydt. An Extended Set of
Haar-like Features for Rapid Object Detection. Submitted to
ICIP2002

