woter wise smart hydroponic system

Group #4 Joe Bender - CPE Joseph Johnson IV - CPE Akeem Liburd - EE Matt LaRue - EE

Motivation

- Provide ability to grow plants in atypical environment
- Conserve water through continuous recirculation system
- Simplify hydroponic gardening through automation
- Promote healthy lifestyle with home grown greens

Goals & Objectives

- Provide real-time monitoring of environmental conditions
- Create a user-friendly experience via mobile application
- Construct a structure able to reside indoors or outdoors
- Develop an automated system for both entry-level and expert users

Specifications

Component	Parameter	Specification
Structure	Size	2.5' W x 3' L x 6' H
Environmental Sensors	Margin of Error	< 10%
Wireless Communication	Connectivity	WiFi
User Interface	Design	Material Design
Interaction	Mode	Physical Buttons or Mobile Application

Hydroponics Introduction

- Growing plants in absence of soil
- Utilizes liquid nutrient solution
- Able to grow many varieties of plants
- Multiple system techniques
 - Aeroponics
 - Drip Technique
 - Nutrient Film Technique

Hydroponics - Nutrient Film Technique

Characteristics

- Growth tray tilted to utilize gravity
- Water oxidized with air pump
- Runoff drains into reservoir

Pros & Cons

- ✓ Efficient
- Possible with low power pumps
- Low maintenance
- × Reliance on gravity increases height

WaterWise Smart Hydroponic System

Structural Design:

- Cabinet
 - Water reservoir & submersible pump
 - Electrical components & sensors
 - PCB sealed in waterproof casing
 - Peristaltic pumps & nutrient hoppers
- Growth Canopy
 - Three growth channels
 - LED grow lights suspended above

CAD Rendering

Overall Design

Power

Power Supply Considerations

- Solar vs. No Solar
 - $\circ \quad \text{Needs to work indoors} \\$
- Battery Supply vs. 120V AC
 - Charging not user friendly
- Varying Subsystem Requirements
 - \circ Some of them use 120V AC

PCB Power Supply

- PCB powered by 12V AC to DC converter providing 3A
 - PCB will use linear voltage regulators to obtain 5V and 3.3V

Relay Controlled Power Outlets

- 3 Grove Twig relays control 3 power outlets
- Current draw of 100mA
- Peak Voltage 250VAC

Relay Implementation Schematic

Microcontroller & ICs

MCU Comparison

Specification	MSP430F6638	ATMega2560AU	ATMega328
Frequency	20 MHz	16 MHz	16 MHz
Non-Volatile Mem.	256 KB	256 KB	32 KB
Volatile Mem.	18 KB	8 KB	2 KB
Operating Voltage	1.8 - 3.6 V	5 V	5 V
General I/O Pins	74	86	23

MCU Comparison

Design Decision: ATMega2560AU

- Open source nature
- Abundant community resources
- Convenient operating voltage with peripherals

Specification	MSP430F6638	ATMega2560AU	ATMega328
Frequency	20 MHz	16 MHz	16 MHz
Non-Volatile Mem.	256 KB	256 KB	32 KB
Volatile Mem.	18 KB	8 KB	2 KB
Operating Voltage	1.8 - 3.6 V	5 V	5 V
General I/O Pins	74	86	23

Darlington Driver IC

ULN2803 Darlington Transistor Array:

- Used for driving relays and peristaltic pumps
- Prevents back-emf reaching MCU
- Output Current: 500 mA
- Max Output Voltage: 50 V
- Operating Voltage: 5 V

Courtesy of Texas Instruments

PCB Schematic Design

PCB Schematic - Power Distribution

PCB Schematic - Sensor Interfaces

PCB Schematic - Darlington Drivers & Relay/Pump Interfaces

PCB Board Layout - First Attempt

PCB Board Routes - First Attempt

PCB - Final Board Design

MCU Software Block Diagram

Peripherals

Wireless Communication

- Bluetooth: very short range, low connectivity
- WiFi: high data rate, good range, high power
- **ZigBee:** low power, good range & connectivity

Standard	Bluetooth	WiFi	ZigBee	
IEEE Spec.	802.15.1	802.11/n/ac	802.15.4	
Data Rate	1 Mbps	54 Mbps	250 Kbps	
Frequency	2.4 GHz	2.4 or 5 GHz	0.8, 0.9, 2.4 GHz	
Range	10 m	up to 100 m	10 to 100 m	
Power Supply	Days	Hours	Years	
Net Topology	ad-hoc, very small networks	point to hub	ad-hoc, p2p, star or mesh	
Device Impact	High	High	Low	
Typical Applications	Wireless connectivity between devices	Wireless LAN connectivity, Internet access	Sensor networks, building automation, control and monitoring	

- Design Decision: WiFi
 - Good for Internet connectivity
 - Usability in homes
 - Abundant implementation resources

Standard	Bluetooth	WiFi	ZigBee	
IEEE Spec.	802.15.1	802.11/n/ac	802.15.4	
Data Rate	1 Mbps	54 Mbps	250 Kbps	
Frequency	2.4 GHz	2.4 or 5 GHz	0.8, 0.9, 2.4 GHz	
Range	10 m	up to 100 m	10 to 100 m	
Power Supply	Days	Hours	Years	
Net Topology	ad-hoc, very small networks	oc, very point to hub ad-hoc, p2p, networks		
Device Impact	High	High	Low	
Typical Applications	Wireless connectivity between devices	Wireless LAN connectivity, Internet access	Sensor networks, building automation, control and monitoring	

ESP8266 WiFi Module

Features

- Three modes of operation
 - Wireless Access Point
 - Wireless Device
 - Soft Access Point
- Connects using TX and RX pins on the MCU
- Capable of hosting HTML webpage

WiFi Module Connectivity

Connecting the system

- Program wireless module to host simple HTML form
- Mobile application will instruct user to connect to AP hosted by wireless module
- User will input SSID and Password for desired wireless AP through HTML form.

LCD Control Panel

LCD & Push Button Controls

- Low financial cost
- Simple to implement
- × Lacks innovation
- × Less user friendly

Touch Screen Interface

- Innovative design feature
- High design utility
- × Difficult to implement
- × Non-critical design component

LCD Control Panel - Design Decision

LCD & Push Button Controls

- Low financial cost
- Simple to implement
- × Lacks innovation
- × Less user friendly

Touch Screen Interface

- Innovative design feature
- ✓ Hig esign utility
- × Difficu p implement
- × Non-critic design omponent

LCD Control Views

- LCD and five-button control mounted to structure
- Able to power on/off and view sensor readings

Electrical Conductivity (EC) Meter Kit

DF Robot EC Meter Specifications

Operating Voltage	+5.00 V
Operating Temperature	5 - 40 °C
Measuring Range	1mS/cm - 20mS/cm
Accuracy	<±10% F.S.
PCB Size	45 mm x 32 mm
Temperature Sensor	DS18B20 (Waterproof)

EC Meter Kit Connection Diagram with Temperature Sensor

DF Robot pH Meter Specifications

Operating Voltage	+5.00 V
Measuring Temperature	0 - 60 °C
pH Measuring Range	0 - 14
Accuracy	< ±0.1pH (25 °C)
PCB Size	45 mm x 32 mm
Response Time	≤ 1min

pH Electrode Dimensions from DF Robot

Analog pH Meter Connection Diagram

Analog DHT11 Specifications

Operating Voltage	3.00 - 5.50 V
Temperature Range	0 - 50 °C
Temperature Accuracy	±2°C
Humidity Range	20% - 90% RH
Humidity Accuracy	±4% RH
Temp Response Time	6s - 30s
Humidity Response Time	6s - 15s

Water Level Sensor

- Simple circuitry of jumper wire, resistors, and NPN transistors
- Operating Voltage: 5.00 V
- Realized by three digital probes
- MCU reads signals from different probes to indicate water level

Hydroponic Components

Submersible Pump

Active Aqua PW250

- Flow rate of 250 GPH
 - Much greater than needed for design.
 - Minimum flow rate of 87 GPH at head height of zero feet.
- Circulates system capacity once every two hours
- Versatile and relatively inexpensive

Lighting

HQRP 225 LED Grow Light

- (2) 12 in x 12 in x 1.5 in grow lights in canopy of structure.
 - Lights feature a proper balance of red, blue, and white LEDs for each stage of growth.

Color	Wavelength	velength Intensity Nu LE	
Red	660 nm	7.3 lux	77
Blue	450 nm	4.8 lux	47
Orange	630 nm	7.1 lux	77
White	n/a	7.5 lux	24

Air Disk & Pump

EcoPlus 728355 Air Pump

- 253 Gallons Per Hour
- 4 channel output

EcoPlus 728418 Airstone Disk

- Air Disk yields higher bubble output than air stone
- Combination yields higher dissolved oxygen levels

Nutrient Peristaltic Pump Array

Three 12V DC Peristaltic Pumps

- pH up
- pH down
- Liquid nutrient
- Low maintenance

Mobile Application

Platform Considerations

Android

- Largest market share
- Less expensive developer fees
- Application Side-loading
- Applications written in Java and XML

Windows Phone

- × Very low market share
- × Requires paid subscription
- × Visual Basic or C#

iOS

- × Requires paid subscription
- Applications written in objective C or Swift

Android Application Functionalities

User account system

- Create personal account for use with the mobile application
- Google+ log in
- Store application settings

Plant Database

- Database of plant growth information
- Search database and select a plant of interest to view growth information
- Assign currently growing plant to automatically configure nutrient pumps

System Interaction

- View sensor data
- Control power to subsystems
 - Pumps, lighting, etc.

Material Design

UX Design Language for Android

- Key principle of simplicity and usability
- Content lies upon Material
- Large emphasis on elevation and the use of shadows
 - Many elements are meant to be perceived as 'floating' above material
- Vibrant and distinctive color choices
 - Use contrasted colors to show where interaction is possible

Mobile Application Design

Kinvey MBaaS

Mobile Backend as a Service

- Saves development time
- Reduces liability
- Guarantees reliability
- Simple integration
- Easily scalable

Kinvey

- Popular MBaaS provider
- Multiple service tiers to fit our needs as they change
- Free tier for up to 1000 active users and 30GB of storage
- Simple API implementation for Android applications

Kinvey MBaaS Management Console

රු	waterwise Development	Plants -
~	Dashboard	+ Row + Column 👁 % 🚨 C 3 Plants
	Users	_id _acl 💿 _kmd 💿 plantName plantDescription ec
		5784246bd062295148 {"creator":"kid_SJ {"lmt":"2016-07-12 "Thai Basil" "We still need Hyd "1.3"
=	Data	576a92479b7103061a {"creator":"kid_SJ {"lmt":"2016-07-12 "Tomatoes" "Go to Kinvey Mana "3.5"
ø	Data Links	576a9231fdc064496f {"creator":"kid 51 {"1mt":"2016-07-12 "Lettuce" "Go to Kinvey Mana "1 1"
٥.	Business Logic	
((+))	Engagement	
Ø	API Console	
=	Settings	
đ	Migrate	

Testing Procedures

Hardware Testing

Components

- Peristaltic pumps & darlington drivers
- Relays and power outlets
- Sensor functionality
- WiFi module and logic level shifter
- LCD prototyping

Software Testing

Mobile Application

- User account management
- Data persistence
- Error testing

MCU Software

- LCD functionality
- HTTP GET request processing
- WiFi module AT commands
- Sleep timers for pumps & sensors
- PCB programming procedures

Administrative Content

Requirements For Success

User Must Be Able To:

- Control system using both LCD/buttons and mobile application
 - Toggle power to main system components
 - View recent sensor measurements of hydroponic ecosystem
- Download plant profile information for system

Budget Overview

#	Name	Vendor	Part #	Otv.	Price	12	Heavy Duty Swiv
1	Active Aqua Submersible Water	HydroFarm	250 GPH – AAPW250	1	\$25.95	13 14	253 GPH Air Pun Ancor Watertight
2	ATmega2560	Mouser Electronics	ATMEGA2560-16AU	1	\$16.54	15	450w LED Grow
3	Analog pH Meter Kit	DFRobot	SEN_ARDPH_D11	1	\$39.00	1.0	Elsevible Air Tubic
4	Basic Temp-Humidity Sensor	Adafruit	DHT11	1	\$5.00	10	Flexible Air Tubi
5	Analog EC Meter	DFRobot	DFR0300	1	\$69.90	17	Air stone
6	Workshop 6-Outlet Power Strip	Home Depot	0415518811	1	\$14.62	18	4" x 10' PVC
7	Peristaltic Pump	ZJchao	B00KJ5X1NY	3	\$12.59	19	Waterproof PCB
8	LCD Control Panel	Adafruit	772	1	\$19.95	20	12 VDC 2A Powe
9	Super Sprouter Propagation Station	GrowersHouse	726400	1	\$37.83	21	Grove Relay
10	ESP8266 Wifi Module	Mouser Electrionics	485-2471	1	\$9.95	22 23	3 m. Plastic Net C Kill A Watt Electr Monitor

12	Heavy Duty Swivel Caster	HarborFreight	61758	4	\$7.49
13	253 GPH Air Pump	EcoPlus	728355	1	\$27.95
14	Ancor Watertight Wire Seal	Downwind Marine	765010	1	\$11.10
15	450w LED Grow Light Panel	Yescom	11GRL003-S225- BROWx2	1	\$49.95
16	Flexible Air Tubing	Penn-Plax	B0002563MW	1	\$4.45
17	Air stone	Hydrofarm	AS4RD	1	\$7.99
18	4" x 10' PVC	Home Depot	531103	1	\$21.87
19	Waterproof PCB Casing	Estone	B00JEWNKR0	1	\$5.19
20	12 VDC 2A Power Supply	All Electronics	PS-12275	1	\$6.50
21	Grove Relay	Seeed	103020005	4	\$2.90
22	3 in. Plastic Net Cup	1000Bulbs	HG3NETCUP	9	\$0.24
23	Kill A Watt Electricity Usage Monitor	P3	P4400	1	\$19.00

Estimated Cost: \$680.28

Actual Cost: \$756.21

Difficulties & Issues

Mobile Application:

- User account creation
- HTTP GET requests
- Plant database searching
- Android version compatibility
- Google+ compatibility

WiFi Module:

- Slow response time
- AT firmware

Hydroponics:

• Water level sensor integration

Work Distribution

Name	Akeem Liburd <i>EE</i>	Joseph Bender <i>CpE</i>	Joseph Johnson IV <i>CpE</i>	Matt LaRue <i>EE</i>
Power				
Mobile Application				
Backend Integration				
PCB Design				
Sensor Interfacing				
MCU Software				
Physical Structure				
Hydroponic Design				

Primary

Secondary

Questions?