Smart Mirror

Group K

Hector Zacarias | EE

Justin Gentry | CpE

Michael Trivelli | CpE

Motivation

- Seamless integration of technology into people's daily lives
- Smart Home technology is a blooming new field
 - Google Home (Nest)
 - Amazon Echo
 - Windows 10 IoT
- Extend the idea of a 'Digital Assistant' to a room people use every morning

What Is It

- One-Way Mirror in front of large display
- White/Light-colored pixels bleed through mirror
- Dark pixels appear off and mirror reflects

Goals and Objectives

- Quality of Life improvement in the mornings
- Provide users with information they utilize regularly
- Implement a convenient user interface
 - Voice Commands
 - Limited Gesture Control

Specifications

Voice Recognition Range	Up to 5 Feet
Voice Recognition Success Rate	>80%
Display Auto-Off	After 2 Minutes of No Motion Detection
Temperature Sensor Accuracy	+/- 1 °C error
Humidity Sensor Accuracy	+/- 2.5% error
Motion Detection Distance	5 Feet
Gesture Recognition Success Rate	>90%

Overall Hardware Diagram

Raspberry Pi

Raspberry Pi 2

Raspberry Pi 2 Model B			
CPU	Broadcom Quad-Core ARM7 900MHz		
Memory	1GB SDRAM		
Storage	8GB microSD		
Power Supply	5V microUSB		
Wi-Fi Module	802.11b/g/n		
Video	HDMI 1.4		
Audio	3.5mm Audio Port		
USB	4x USB 2.0		
GPIO	40 pin extended GPIO		
OS	Windows 10 – IoT Core		

Price: \$35

Size: 86mm x 57mm

Raspberry Pi vs Minnowboard

- Minnowboard MAX
 - Higher cost
 - **\$139**
 - More powerful
 - Doesn't meet requirements for Microsoft Kinect

MCU

MCU Specs

Parameter	ATmega328-PU	MSP430
Operating Voltage	1.8 to 5.5 V	1.8 to 3.6 V
Operating Temperature	-40 to 80 C	-40 to 85 C
EEPROM	1 KB	-
SRAM	2 KB	512 B
Digital Pins	14	6
Analog Pins	6	8
Clock Speed	16 MHz	16 MHz
Price of Development Board	\$9.99	\$19.81

Sensors

Temperature & Humidity Sensor Specs

Parameter	TMP 36	DHT11
Voltage Supply	2.7 to 5.5 V	3 to 5.5 V
Current Supply	<50 μΑ	o.5 mA
Humidity Temperature Range	N/A	20 to 95%
Operating Temperature Range	-55 to 150C	o to 50C
Accuracy (Humidity)	N/A	+/- 5% RH
Accuracy (Temperature)	+/-2C	+/-2C
High Chemical Resistance	N/A	low
Hysteresis	N/A	+/-1.0 % Rh
Response Time	N/A	6 s
Price	\$3.79	\$1.75

Light Sensor Specs

- Converts light energy into an electrical signal output
- A piece of exposed semiconductor changes its electrical resistance

Long Range Motion Sensor Specs

Parameter	HC- SR501	GP2YoAo2YKoF
Voltage Supply	5 to 20 V	4.5 to 5.5V
Current Supply	65 mA	33 mA
Output type	Digital	Analog
Output Voltage	3.3V	-0.3 to 5.7V
Maximum Sensing Distance	7m	150 cm
Operating Temperature	-15 to 70 C	-10 to 60 C
Price	\$1.80	\$12.95

Short Range Motion Sensor Specs

<u></u>	
Parameter	GP2YoAo2YKoF
Voltage Supply	-0.3 to 7 V
Power Consumption	40 mA
Output type	Analog
Output Voltage	+/- 0.3 VCC
Maximum Sensing Distance	8ocm
Operating Temperature	-10 to 60 C
Price	\$9.90

Other Hardware

- Display Device
 - 32-inch television behind one-way mirror as earlier discussed
- Speakers
 - External speakers via 3.5mm audio out from Raspberry Pi
 - Internal speakers are present, pending update from Microsoft for audio over HDMI
- Microphone
 - Webcam mic Logitech C920 Pro
- 3W LED on top of mirror for low-light scenarios

Power Control

Linear Voltage Regulator

- Same as the ones used in Experiment #3 from EEL 4309 – Electronics II
- 12 V
- 5 V

12V Fan Power

 MCU will send signal to the desired pin and complete the circuit that will activate the fans

٩

FAN2

FAN1

Mirror Housing

- Stained Wooden Frame
 - Frame backed by sturdy housing
- One-Way Mirror In Front of TV
- Motion Sensor Mounted on Bottom
- Speakers on Sides
- Raspberry Pi USB access on Side
- Single LED Mounted on Bottom

Display Layout

- Offer information at all times
- Preserve mirror space
- Display important information closest to where your eyes fall
- Removable display elements for different use cases

Clock

Weather

Commute Time

Time Format & Address Information (upon request)

Sensor Information (upon request)

Music

News

Software Design

Considerations

- Run on multiple platforms seamlessly
- Adaptable UI across platforms
- Modularity
 - For ease of creation with multiple developers
 - For future additional features

Results

- Universal Windows Platform
- Model-View-View Model Pattern

Universal Windows Platform (UWP)

- Standard Windows 10 runtime model
- GUI defined by XAML files using data binding for modularity
- Common API accessible by all Windows 10 devices
- Different API's accessible by individual platforms

Model-View-View Model (MVVM)

- Two reasons
 - Works great with UWP
 - Supports Modularity
- Loose coupling with Data Binding allows information to be seamlessly switched
- Easily format different data into similar layouts
- Easily create multiple GUI layouts from the same data bindings

Software Design

Voice Processor

Voice Processor Class Diagram

- Singleton Class
- Runs in separate thread
- Contains reference to all voice controlled modules
- Passes control to appropriate module when command received

Voice Processor

- -Tags: List<String>
- -ActiveModules : List<IVoiceControlModule>
- -Recognizer: SpeechRecognizer
- +InitializeSpeechRecognizer(): void
- +LoadModulesAndStartProcessor(List<IVoiceControlModule>): void
- +IsModuleLoaded(IVoiceControlModule): boolean
- +CreateGrammarFromFile(String, String): SpeechGrammar
- +UnloadSpeechRecognizer(): void
- -RecognizerResultGenerated(SpeechSession, SpeechArgs)

<<Interface>>

IVoiceControlModule

- +IsVoiceControlLoaded : boolean
- +IsVoiceControlEnabled : boolean
- +VoiceControlKey: string
- +GrammarFilePath: string
- +Speech Recognition Grammar: string
- +ProcessVoiceCommand(): void

Gesture Controls

Gesture Controls

- Simple Gesture Controls
 - Use of the mirror itself
 - Hardware Limitations
 - Kinect: 3.1GHz Processor, USB 3.0, 4GB RAM
 - Leap Motion: 2GB RAM
- Uses
 - Initiate Music Playback
 - Next song
 - Stop Music

Software Modules

Main Module

- Boot into Main Module on startup
 - Win10 IoT boot option
- Maintains a reference to all submodules for information exchange
- Handles all sensory information from MCU

Software Modules

- Clock
- Weather
- News

- Music
- Commute Time

Clock

- Digital Format
- Uses System Time
 - Raspberry Pi Windows 10 IoT
 - NTP server
- Military 24-Hour Format
 - User setting

Weather

- OpenWeatherMap API
 - Returns JSON object
- Formats:
 - Current Weather
 - Today's Weather
 - 3 hour intervals Highs and Lows & Icon
 - Tomorrow's Weather
 - 3 hour intervals Highs and Lows & Icon
 - Week's Weather
 - 5-day forecast Highs and Lows & Icon

News

- News Headlines
 - List of 4 Headlines
- CNN
 - RSS2JSON API
 - Returns JSON object
- Request different categories via Voice Command
 - Top News
 - Business
 - Technology

• • • •

Music

- Local Media
- Now Playing View
 - Artist Song
- Music playback controlled with gestures
- Sound output to external speakers

Commute Time

- User sets location
 - Work | School

Commute Time

- User sets location
 - Work | School
- Google Maps
 - Distance Matrix API
 - Fetch travel time from current location

Configuration & Setup

- Initial User Setup
 - 24-Hour Clock Format
 - Work/School Locations
 - Time to leave for work/school

Administrative Content

Work Distribution

Name	Embedded Hardware	Voice Recognition	Software Modules	Frame Design
Hector Zacarias	Р			S
Justin Gentry	S	Р	S	Р
Michael Trivelli		S	Р	S

Budget

ltem	Quantity	Cost
MCU	0	\$O
Power Relay	1	\$1.41
Fan	2	\$20.48
Diodes	1	\$0.32
Proto Broad	2	\$0.76
Motion Sensor (Long-Range)	1	\$1.80
Motion Sensor		
(Short-Range)	2	\$9.90

Item	Quantity	Cost
Humidity and		
Temp	1	\$1.75
РСВ	10	\$14.00
32-inch 108op HDTV	1	\$100.00
Raspberry Pi 2 Kit	1	\$114.95
Microphone	1	\$ 0
Speakers	1	\$0
Mirror Assembly/Frame	1	\$104.25
Total:		\$369.62

Issues

- Motion/Light sensor
- False voice recognition
- Eagle learning curve

Questions