

Smart Mirror
A smart home solution for increased productivity during those busy

mornings

Group: K
Senior Design II Project Documentation

12 / 06 / 2016

Members

Justin Gentry Michael Trivelli Hector Zacarias

i

Table of Contents
1.0 Executive Summary 1
2.0 Project Description 2

2.1 Project Motivation and Goals 2
2.2 Objectives 3
2.3 Project Specifications 4

2.3.1 PC Specifications 4
2.3.2 Video and Audio Specifications 5

2.4 Required Features 6
2.4.1 Required Features 6
2.4.2 Additional Features 6

3.0 Initial Research 7
3.1 Similar Projects & Products 7

3.1.1 Projects 7
3.1.2 Products 8

3.2 Relevant Technologies 9
3.2.1 Operating System 9
3.2.2 Speech Recognition Software 11
3.2.3 Universal Windows Platform 12
3.2.4 Windows Cortana 13
3.2.5 Applications 14

3.2.5.1 Clock 17
3.2.5.2 Weather 17
3.2.5.3 Calendar 18
3.2.5.4 To-Do-List 19
3.2.5.5 Music 20
3.2.5.6 Travel Time 20
3.2.5.7 News 21

3.2.6 Temperature Sensor 21
3.2.7 Light Sensor 23
3.2.8 Motion Detection 26
3.2.9 Humidity Sensor 27
3.2.10 Audio Capture 30
3.2.11 Microcontroller 30

3.3 Design Constraints 30
3.3.1 Economic and Time Constraints 31
3.3.2 Environmental Constraints 31
3.3.3 Social and Ethical Constraints 31
3.3.4 Political Constraints 32
3.3.5 Health and Safety Constraints 32
3.3.6 Manufacturability Constraints 32
3.3.7 Sustainability Constraints 32

4.0 Hardware Design 33
4.1 Design Discussion 33
4.2 Mirror Housing Construction 34

4.2.1 Requirements & Constraints 34

ii

4.2.2 Housing Design 35
4.3 Sensors 38

4.3.1 Temperature Sensor 39
4.3.2 Motion Sensor 47
4.3.3 Light Sensor 51
4.3.4 Humidity Sensor 51
4.3.5 Temperature Controller 53

4.4 MCU 54
4.5 Audio System 57

4.5.1 Audio In 57
4.5.2 Audio Out 58

4.6 Power 58
5.0 Software Design 59

5.1 Design Discussion 59
5.2 Voice Control 62

5.2.1 Requirements & Constraints 62
5.2.2 Error Handling 63
5.2.3 Implementation 64

5.3 Sensor Integration 67
5.3.1 Requirements & Constraints 67
5.3.2 MCU to PC Communications 69
5.3.3 Implementation 69

5.4 Applications 70
5.4.1 Clock 70
5.4.2 Calendar 71
5.4.3 To-do List 72
5.4.4 Weather 72
5.4.5 News 74
5.4.6 Music 74

5.5 PC/Mobile App 75
6.0 Project Prototype Construction & Coding 76

6.1 Parts Acquisition & BoM 78
6.2 Final Coding Plan 79

7.0 Project Prototype Testing 81
7.1 Hardware Testing 81

7.1.1 Temperature / Humidity Sensors 81
7.1.2 Microcontroller Signal Control 82

7.2 Software Test Plan 83
7.3 Software Testing 84

7.3.1 Graphical User Interface 84
7.3.2 Functional 84
7.3.3 Non-Functional 86

7.4 Final Prototype 87
8.0 Administrative Content 89

8.1 Milestones 89
8.2 Budget & Finances 91

iii

8.3 Work Distribution 92
9.0 Standards 92

9.1 Standards 92
Appendix A: Copyright Permissions 93
Appendix B: References 94

1

1. Executive Summary

Technological integration into homes, so called “Smart Home Technology” is
becoming increasingly popular in our society today. The primary benefit of smart
home technology is to simplify our day to day lives in any way possible. Some
benefits include saving time, relieving stress, or even saving money. These
benefits can be accomplished in a number of ways including automation of tasks,
improved access to media and information, as well as varying degrees of personal
comfort.

A Smart Mirror is meant as a smart home technology to allow convenient access
to media and information that people might be interested in on a daily basis. The
mirror will display customized information to the user to allow users to get some
basic daily information at a glance. This will save users time in their busy morning
routine which will, as a result, relieve stress and help people get out the door on
time in the morning. The mirror will display information users may access in the
morning via their phone or other technology in a way that is readily available as
soon as they walk into the bathroom. This will allow the user to plan for their day
while simultaneously completing their daily routine in front of the mirror.

Some information that will be provided to users includes; the time and date, the
weather for the day, a daily schedule, a to-do list, the users preferred news source,
traffic delays to expect on the way to work, and so much more. The Smart Mirror
will improve people’s lives by integrating information they consume into a location
that they visit multiple times daily in the most convenient format possible. The
mirror will be hands free, turning itself on and off automatically when someone
enters and exits the room. Due to the fact that mirrors are generally used by
multiple people, facial recognition will be implemented and the mirror will display
custom information per user, with a basic guest account for faces not recognized
by the mirror. User interaction will be achieved through voice commands, keeping
the interface hands free for convenience and ease of use.

One of the driving design principles behind this project is to create a platform for
open source development. This will allow an abundance of application to be
developed by multiple people, expanding this project beyond what one team can
easily achieve. Due to this, this project will be implemented on a platform such that
any user can design and implement their own widgets, allowing ultimate
customizability to tech savvy users. Though it offers unlimited capability to
technologically intelligent users it will have a simple basic interface with the most
critical functions implemented in a way that is beneficial to any user. This will allow
the mirror to appeal to casual users while also offering advanced users any
potential features they can imagine and create. Customizability is an important
aspect of anything that goes into people’s homes as these type of items tend to
cost a lot of money. With the level of flexibility provided by the mirror, users will be
able to set the mirror up exactly as they personally see fit.

2

2. Project Description

2.1 Project Motivation & Goals

As technology advances, we continue to find more and more uses for it that would
previously be inconceivable. Originally, technology was primarily useful for
performing tasks humans struggle with, but today it is used in even the most
mundane tasks in an attempt to simplify our lives. With the technological revolution,
we have been able to save time in a number of ways; however, as media
consumption has increased, we also lose time. Due to this, saving time in our daily
routines is always helpful. One way technology has been implemented to save
time is by integrating computers into numerous elements in our home, thus
creating “Smart Home” devices. The “Smart Mirror” project is based upon this
concept.

The Smart Mirror will merge technology with a mirror to provide users information
while they use their mirror. The primary motivation behind the smart mirror is to
improve quality of life. Providing information to users in the most convenient way
possible is a driving motivation behind the majority of technological development
for smartphones and tablets. The smart mirror will provide convenient information
to users on their mirror every day. Allowing the user to multitask by consuming
media while preparing for the day will save people time nationwide. The goal of
the mirror is to provide people with information they may require in the morning
while getting ready for the day or at night before going to bed. This will save users
time every day and help to ensure they are aware of important details for their day.
A user will be able to check their calendar for any upcoming events, peek at the
weather forecast, and not to mention, consult the mirror for traditional personal
appearance adjustments.

Motivation for this project stems from multiple sources. In the Iron Man films, the
main character utilizes holographic displays around the home to perform a number
of activities. A couple years back, Corning released a video about their product
called Glass which is intended to allow a smart surface anywhere in the home.
While these examples, and a multitude of others, are well beyond the scope of this
mirror, their realization also seems to be well into the future. One benefit to the
smart mirror is that, while it does not provide the advanced capabilities of these
examples, it is readily feasible. Another driving factor in this project is the fact that
smart home technology has been developed for many parts of the home but smart
mirrors are lacking. While there are plenty of tinkerers projects posted around the
web, no fully realized implementation has been marketed to users thus far.

3

2.2 Objectives

A staple furniture piece found in every bedroom and bathroom, the mirror has
provided a means for effective personal grooming for thousands of years. Our
team has brought it into the 21st century with Smart Mirror. While the user is
preparing themselves for the day, they will be able to glance at their mirror and
instantly retrieve important bits of information such as the current time, date, and
weather conditions. These simple bits of information are commonly sought after in
the morning while getting ready for the day or at night before going to bed. Our
Smart Mirror ensures that you remain at the forefront of the emerging smart-home
revolution. You will take advantage of every opportunity to look at yourself in the
mirror in order to be filled with weather information and today’s date. With a brief
look at the mirror, users will be able to check the current time, peek at the weather
forecast, and not to mention, consult the mirror for traditional personal appearance
adjustments. While the user is preparing themselves for the day, they will be able
to talk to their smart mirror to see what reminders they had set for the up and
coming week, what the weather will be like so they can dress accordingly, and set
any calendar events they need to remember all while being able to listen to their
favorite songs via Pandora Internet Radio.

The Smart Mirror will be a smart home implementation in the bathroom which is a
room currently lacking technological innovations. Smart Home technology has
been integrated to a number of rooms and interfaces throughout the home
however the bathroom has been left mostly untouched. Almost every person
spends some portion of their time daily in the bathroom. As a result, there is ample
opportunity to present users with information that could improve their daily life.

The mirror will be able to present personalized information to users every morning
as they prepare for their day. Ideally it will save users time by displaying
information they would likely check in the morning. This will include information
such as weather, daily schedule, news, and also the time so the user can keep on
schedule. The information will be provided on the mirror in an unobtrusive manner,
leaving the majority of the prime mirror real estate unaltered. This will allow the
user to easily absorb the displayed information while going about their normal
routine.

One of the prime objectives of the mirror is to be as user friendly as possible and
to provide different options and customizability to different users. Due to this, all
applications will be customizable by the user to present information in the way they
deem best. Also, all applications will be able to be deactivated if the user deems
them useless for their day to day life. This will allow the users to use the mirror in
a way that fits their own unique circumstances without being bothered by features
that they will not use. If the user ever changes their mind about a feature they can
simply enable it and continue use as normal with the feature included.

4

Since this project is designed to be as unobtrusive and as user friendly as possible,
all control of the mirror will be accomplished via voice commands. This has been
decided due to the fact that voice commands will be the least intrusive on a user’s
daily routine. As you go about your morning or evening in the bathroom, you tend
to utilize your hands a lot, thus, touch controls or gesture controls would simply
inconvenience users. Due to this observation, voice controls seem the best fit to
allow user interaction with the mirror. One issue with voice controls we will attempt
to avoid is the necessity for a strict list of commands. The voice controls will be
implemented in a way such that interacting with the mirror seems like talking to an
intelligent agent rather than rattling off a list of scripted commands.

The Smart Mirror is designed to utilize a persistent internet connection. The mirror
will fetch the weather conditions and news headlines, for instance, periodically.
The time and date are set according to the Raspberry Pi’s internal clock which is
synced upon connecting to the internet. The voice commands do not rely upon the
internet connection. While the Smart Mirror relies on a constant internet connection
to fully function, a loss of internet connectivity is not fatal to the mirror’s operation.
In the event that the internet connection is lost during the moment when the
internet-dependent data are fetched, such information on the mirror will be hidden
to signify that the internet connection has been lost. The time and date do not
require a persistent internet connection after the initial synchronization has
occurred.

Lastly, the mirror will need to include safety measures to ensure use in a bathroom
does not cause irreversible damage to the mirror itself. The mirror will monitor the
temperature and humidity of the internals of the mirror housing and, if these levels
hit certain thresholds, the mirror will act to avoid damage. Under unsafe situations,
the mirror will either attempt to bring the temperature or humidity down by turning
on an air movement system such as a pair of fans or, if the temperature and
humidity levels run too high, the mirror will simply shut down.

2.3 Project Specifications

The mirror will be developed with specifications based upon devices people use
every day; tablets, smartphones, and PCs. The software implementation
specifically will be implemented in a way where specifications for future hardware
implementations can be as flexible as possible. However, during the early
development phase, strict specifications will be set to ensure all goals and
objectives mentioned previously are met.

2.3.1 PC Specifications

For the smart mirror, a computer will be required to process and display all
information to the user. The software for the mirror will be implemented via
Universal Windows Platform programs which means they will function on any
computer running Windows 10 or Windows 10 IoT. However, during development,

5

the mirror will utilize a Raspberry Pi 2 Model B as the primary computer. All sensor
components will be run through an MCU and fed into the Raspberry Pi. The
hardware specifications of the Raspberry Pi 2 Model B are shown in Table 2.3.1.1.
Weighing in at just 0.1 lb. and sporting a Broadcom Quad-Core ARM7 900MHz
processor, the credit card-sized Raspberry Pi was the optimal choice when
selecting a powerhouse for the mirror. While similar projects opted for full-fledged
compact PC builds, the Raspberry Pi provides all of the required processing power
and interfaces for under forty dollars. All of the sensor information is transferred to
the Pi via the 40 available GPIO pins. The software for the mirror will be built on
the Universal Windows Platform allowing for execution on any Windows 10 or
Windows 10 IoT machine. Our Raspberry Pi runs Windows 10 IoT as its operating
system and will boot directly into the Smart Mirror interface upon powering up.

Raspberry Pi 2 Model B

CPU Broadcom Quad-Core ARM7 900MHz

Memory 1GB SDRAM

Storage 8GB microSD

Power Supply 5V microUSB

Wi-Fi Module 802.11b/g/n

Video HDMI 1.4

Audio 3.5mm Audio Port

USB 4x USB 2.0

GPIO 40 pin extended GPIO

Table 2.3.1.1 – PC Hardware Specifications

2.3.2 Video and Audio Specifications

For display purposes, a thirty-two inch television will be utilized. The constraints
on the television are flexible, requiring simply a single HDMI input to display the
information presented by the Raspberry Pi. For audio implementation, there will be
three primary options: the first will be speakers via the television, the second would
be internal speakers, while the third would be external speakers. The first two
options would be housed within the mirror itself. Speakers in the television would
receive their signal from the HDMI which provides video. Internal speakers not
connected directly to the television can receive audio via the 3.5mm audio jack on
the Raspberry Pi. Finally, external speakers may be utilized but would require a
third party Bluetooth dongle connected to on the Raspberry Pi’s USB slots.
Alternatively, external speakers could be connected via the Raspberry Pi’s 3.5mm
audio out port. It is a tradeoff between wireless portability and the lack of a
rechargeable battery with the Bluetooth solution.

6

2.4 Required Features

2.4.1 Required Features

The features outlined below were selected to highlight the project’s design and
objectives. They are vital to the underlying functionality and operation of the mirror.
These features implement objectives and specifications related to both hardware
and software.
 The smart mirror shall be powered by a small computer housed within the mirror

itself.
 The smart mirror shall be connected to a thirty-two inch display, measured

diagonally set in a portrait orientation. This display shall be mounted behind a
one way mirror.

 The user shall be able to interact with the smart mirror via voice commands
thus the mirror shall implement a form of voice recognition software which will
act as the primary means of interaction.

 While it is running, the smart mirror shall display persistent applications at all
times. The options shall include a clock, calendar, news feed, weather, and
music player.

 The mirror shall allow the user to customize which of the persistent applications
are present when the mirror is on.

 The smart mirror shall have the option to provide audio output via speakers
housed within the frame or external speakers to provide audio output.

 The smart mirror shall utilize a temperature sensor and a humidity sensor, to
prevent any potential damage to the mirror under high temperature and
humidity conditions.

 The smart mirror shall utilize a light sensor and a motion detection system to
implement an auto on/off feature. The mirror will turn on at motion recognition
and will turn off if no motion occurs for a specified time or if the light in the room
is turned off.

2.4.2 Additional Features

The features included in this section detail objectives and specifications that are
not vital to the overall design. These features will be considered extras and will be
implemented only once all required features have been met. These are features
that could be nice to have but would not hamper the entire design if they are
lacking.

 The mirror shall implement an LED lighting system on the housing which
will be controllable via voice commands.

 The mirror shall implement a user account feature so different information
can be presented to different users. The accounts would be accessible via
simple voice commands to change users thus secure information will not be
displayed.

7

 The mirror shall implement Microsoft’s smart assistant, Cortana, to aid
users in daily tasks such as creating reminders or searching locations such
as restaurants or entertainment.

3. Initial Research & Design

3.1 Similar Projects & Products

3.1.1 Projects

The idea of a Smart Mirror has been floating around on the internet for a couple
years now and there are a number of well-developed projects available across the
internet. Some of these projects have inspired features of our design and some
have raised red flags allowing us to identify potential features that could improve
the practicality and functionality of the mirror. Listed in this section are three of the
more popular, polished projects that we found during our research. All projects
selected for this section were required to be done as open source software by
individuals who are not attempting to market their software.

Smart Mirror, the fairest of them all, started by developer Evan Cohen is a project
currently under development by the open source community on GitHub. It is being
developed using JavaScript and is available on a number of platforms. The project
currently has a number of features implemented including voice commands to
control the mirror. This project also includes the ability to control external lighting
via voice commands. This mirror has some of the functionality we desire but it is
not flushed out to the extent we are hoping for. While some lighting control will be
implemented directly on the mirror itself, the functionality to control external lighting
in this project is an option that will not be implemented on this project. This decision
is due to the fact that controlling systems external to the mirror are beyond what
has been deemed useful or important for the scope and goals of this project.

Magic Mirror is a project created by Michael Teeuw which was hosted on
Raspberry Pi’s website. The project was created using JavaScript and, according
to the GitHub, runs as a php script on a web server with little external dependency.
This mirror implements some basic functionality but it does not have any user
interaction capabilities. Details must be specified in a config file which specifies
information such as current locations for weather and preferences for news. The
mirror is a great implementation, from which we were inspired to add a news
feature. However, the lack of user interaction makes it seem lacking for a device
people might desire in their homes for daily use. This enforced the idea of voice
control for this project. Another issue with this project is the requirement of users
to edit a config file to set basic information such as location and news preferences.
In designing this smart mirror we intend for all user interaction to be as simple as
possible so any user, no matter the level of technical skill, could set it up and use
it. This project gave us the idea to create a mobile application that will be allow

8

user to input more complex information than the voice commands on the mirror
would be convenient for.

Another mirror project is MirrorMirror, originally posted on Imgur by user
ctraltdylan. Dylan Pierce created this mirror as a simple home project but it evolved
into a project being modified and worked on by a small community on a website
he set up. This project is a simple implementation including features such as the
date and time, the weather, and a random daily compliment. This mirror is one
among many that is floating around the internet with some simple applications
implemented. These simple mirror projects are great for an amateur who is
tinkering with software implementation and design. However, if Smart Mirrors are
going to take off one day, a lot of thought and time needs to be put into developing
solutions to display as much useful information as possible in the most user friendly
way possible. This goal is something that is going to be pursued specifically in this
project.

These existing projects inspired this smart mirror project. The currently existing
implementations posted around the web are generally simple and lacking in depth
features. The goal for this mirror is to create in depth features to encourage a larger
community of developers to begin implementing their own features to extend this
product. One of the primary features that was inspired by these products was voice
control. Two of these three projects have no user interaction which is an important
aspect if smart mirrors are to become an item used in people’s daily lives. Due to
this, voice control is at the top of the list for this project.

3.1.2 Products

As far as actual production quality smart mirrors go, there is not much available on
the market currently. This is due partly to the fact that smart mirrors are a relatively
new idea but it is primarily due to the cost. The cost to produce a well-made,
marketable smart mirror is high due to the cost of each component. One way
mirrors start at about $150 for a thirty two inch diagonal mirror and only increase
from there with size. Adding in the cost of a thirty two inch television and a small
computer or raspberry pi and you are left with around $500 just for the cost of
materials. This is not even including the amount required to pay developers for
quality software development and maintenance. Due to these issues and
potentially more, most of the items on the market seem to still be in production to
some extent.

One of the primary motivators behind the smart mirror is Corning’s Glass. Back in
2011, Corning released a video entitled “A Day Made of Glass…” this video paints
an amazing image of smart technology on surfaces throughout our entire day. This
video was a large motivator in interest in this smart mirror device. Later in 2012
Corning released another video, “A Day Made of Glass 2…” which explores even
more possibilities of smart home technology. As time has gone on, Corning has
turned more towards implementing specialized displays for televisions including

9

paper thin displays, flexible displays, and specialized glass to withstand the wear
and tear of daily use for smart phones and tablets. Corning paints an interesting
image of being connected no matter where we are in a future they call “The Glass
Age.” This is an exciting idea and had a huge impact on our decision to implement
this project.

Another smart mirror currently in production is a product called SenseMi, or Sense
Mirror. It is implemented as a large display mirror and it utilizes touch screen
technology for interaction. Some of its main features include a Virtual Closet,
where you are able to enter your clothes into a database in the mirror then the
mirror can display the clothes on you. It also offers a Virtual Makeover feature for
women and enables you to try out makeup before actually applying it. Another
primary feature is the home integration feature which allows the mirror to act as a
centralized controller to control systems around the home including air
conditioning, home security, or lighting. You cannot currently purchase an
implementation directly from their site, they currently only have a ‘Get a Quote’
button which gets you in touch with their sales team.

Another company, Tech20, markets mirror based displays for use throughout the
home. These include mirror based televisions, the television works as normal but
when it is off, the display appears as a mirror as well as specialized weather
resistant televisions for outdoors. In 2012, the company released a video
marketing an interactive bathroom mirror which would monitor health as well as
daily information. This is a great idea, to incorporate health information such as
weight, heart rate, blood pressure, and BMI onto a mirror which can easily track
information over time. Unfortunately, it seems nothing ever came of the idea and
on the website currently the closest thing is a specialized mirror and television
setup to display television through the mirror.

Aside from these three smart mirror implementations, a number of major television
companies, including LG and Toshiba, have done small marketing ventures into
smart mirrors but nothing is available on the market yet. The smart mirror is likely
to hit markets at some point in the future, the question is, how far out is it? Though
this technology receives a lot of interest from the public, it is not quite time for a
marketable product due to issues primarily associated with cost. Though people
may be interested in the product it is unlikely they would be willing to pay for a well-
designed smart mirror as the cost could be upwards of $500. This leaves this item
in the realm of tinkerers for the time being. This project is intended to be a proof of
concept of the idea to show what could potentially be done with this type of
technology.

3.2 Relevant Technologies

3.2.1 Operating System

10

The first decision to be made, which most decisions in the project will be built upon,
is what operating system will be used to power the mirror’s software. It is important
to choose an operating system that is readily available for as many users as
possible while also providing support for developers to create their own programs
and functions to extend this project's functionality. It is also important that the
chosen operating system is as lightweight as possible to allow the implementation
to run on as many devices as possible. If the operating system is lightweight, then
the mirror will be capable of running on small embedded systems as well as full
powered custom computers depending on the desired applications implemented.

When considering an operating system, three main contenders come to mind, Mac
OS X, Windows, and Linux. Due to the fact that Mac OS X does not meet any of
the specifications listed previously, it will not be considered. This leaves us with
the primary operating systems Windows and Linux. However, we can also
consider mobile operating systems for this project which allows us to include
Android. While there are a number of Linux distributions we will consider Linux as
one category. For Windows, the regular user distribution will be considered as well
as Windows 10 IoT. This brings us to four primary options, listed in Table 3.2.1.1.

Operating System
Options

Windows 10 Windows 10 IoT Linux Android

Open Source Community Some Large Large Some

Availability on Compact
Devices

Limited Yes Yes Yes

Cost $119-$199 Free Free Free

Table 3.2.1.1: Operating System Pros and Cons

Though each platform has its own advantages and disadvantages, the Windows
platform was chosen primarily due to the introduction of the Universal Windows
Platform (UWP) discussed in a later section. This platform is important because it
means any software implemented will have the capability to run perfectly on any
Windows device. In the end, the Windows 10 IoT platform was chosen due to its
versatility and ability to work across a large number of platforms. Although Android
and Linux offer some of the same capabilities, Windows 10 also allows for easy
cross platform development. This will allow the mirror to easily be changed to
different types of hardware at any point as desired. One unique element of the
Windows 10 IoT platform is that there is no default GUI implementation. This is not
an issue to the nature of this product, as it is preferred that the GUI is designed
from scratch. This will allow us to create an application which will simply run on
startup of the Raspberry Pi running Windows 10 IoT. The application will manage
all elements of the display and no desktop environment will be required. Even if
this application were to be utilized on a Windows system with a desktop

11

environment, the application would simply need to be launched and it would work
as intended.

3.2.2 Speech Recognition Software

It was decided that user interaction with the smart mirror will be handled mostly via
voice interaction. Due to the model we are working with, there will be limited mouse
and keyboard interaction and, due to the choice of computer platform, gesture
control systems will also be unavailable. Fortunately, for this project and its
intended uses, voice controls are the most convenient and useful form of
interaction. The purpose of the smart mirror is to provide users with concise
information as they go about their busy days. Utilizing voice controls allows users
to use their hands for whatever it is they may be doing while simultaneously
controlling the mirror. Aside from setup, sensory input, and a couple buttons, all
day to day interaction with the mirror will be controlled via voice commands.

Due to the complexity of processing audio signals, voice control will be
implemented using an existing speech to text API. There are a number of options
available for speech to text however the three primary options considered were
Google Speech API, Wit.AI, and Microsoft Speech Recognition. The final choice
for voice recognition software was narrowed down to Microsoft Speech
Recognition for a number of reasons. While all option were viable, Microsoft’s API
seemed the most straightforward while also providing plenty of power and flexibility
for our requirements. The Google API was a close second though it offered
capabilities beyond our requirements and, when programming on a relatively weak
computer like the raspberry pi, advanced features simply cost performance. Lastly,
Wit.AI seems to be an extremely powerful tool, however it utilizes standalone
software for set up and command management and there is currently little
information on utilization on small platforms such as Windows 10 IoT Core.

Once the Windows Speech Recognition platform was decided upon, the next step
was to determine the required voice controls. While every voice command will start
with a keyword to ensure the mirror knows you are talking to it, each application
running on the mirror will have its own set of voice controls. The Windows Speech
Recognition API allows specification of multiple command lists which can be
loaded or unloaded at any time. This functionality allows for a smaller number of
commands to be active at any given time, reducing the amount of potential
mistakes for the speech to text software to make. Each application will have its
own file of commands which will be loaded only when that application is running
or, for certain applications, currently focused on the mirror.

The Windows Speech Platform uses what is called a SRGS, Speech Recognition
Grammar Specification, file which specifies what commands are acceptable. The
SRGS Grammar File utilizes keywords to determine the command the user is
trying to give. If the grammar file is robust, it allows users to speak commands in
a number of ways as they see fit. The software listens for keywords specified in

12

the grammar to indicate the user’s intent. For example, if a grammar is used to
control a weather application, a number of keywords can be specified into groups
which are assigned by the software. A simple example of this is shown in Figure
3.2.2.1.

Figure 3.2.2.1: SRGS File Abstraction

This simple grammar setup allows users to utilize a number of commands to tell
the weather application what to show. It allows users some freedom to speak in
their own manner rather than requiring strict verbal commands. For instance, this
example would allow a user to utilize the command “Mirror show me tomorrow’s
weather” while another user might prefer “Mirror show me what to expect for
tomorrow’s weather.” The user is able to use their own style of speech which the
software filters for specific keywords. The grammar file can also set up a number
of rules so that this sentence could be structured differently as well. A user may
say “Mirror what is the weather like tomorrow” which, though asking the same
information, since the keywords are ordered differently this could cause an issue
however the grammar file allows designers to account for this by specifying
different phrase orders utilizing the same keywords. This is an important feature
as utilizing the voice commands on the mirror should feel comfortable and natural
as if talking to something intelligent rather than memorizing a list of commands to
recite.

Although one of the goals of this project is to make all commands as intuitive as
possible, if the users is at a loss they will always be able to ask for a list of
commands which will then be displayed upon the mirror in a specified location. The
list of commands given when the users asks will be context sensitive so if the user
is currently utilizing some application, the commands given in the list will be relative
to that application specifically. The user will also be able to ask for general
commands at any time to ensure they are able to return to the main display if need
be. This will allow the user the ability to always be aware of all the possible
functionality of the mirror which is important for the user to use the mirror efficiently.

3.2.3 Universal Windows Platform

Microsoft introduced the Universal Windows Platform (UWP) with Windows 10 to
be a platform-homogeneous application architecture. The purpose of UWP is to

13

allow developers to create apps that run on all Windows 10 platforms without the
need to be re-written for each version of the operating system. Similar to how iOS
apps are compatible across all iOS devices, the UWP allows a single application
to run on multiple types of devices. When designing within the UWP, your target
becomes device families rather than operating systems. This allows you to take
advantage of the fact that there is a common API surface across device families.
The core APIs of the UWP are identical; thus, apps that rely solely on these core
APIs are able to run on any Windows 10 device. With our Smart Mirror, we are
targeting the IoT device family. As a result, the APIs guaranteed to be available to
our app include the APIs inherited from the universal device family in addition to
the APIs that are particular to the IoT device family [1]. The device family tree is
illustrated in Figure 3.2.3.1.

Figure 3.2.3.1 – Microsoft UWP Device Family Tree (Reprinted with permission

from Microsoft)

The UI elements utilize effective pixels which are able to automatically adapt to
various screen resolutions that can be found within the device family. The UWP
exercises not only these adaptive controls but adaptive inputs as well. Native
support exists for various keyboards, mice, touch controls, pen inputs, game
controllers, and microphones. New layout panels and tooling facilitate the task of
tailoring the UI to a specific screen size or device. The native development
environment for UWP apps is Microsoft Visual Studio 2015, a comprehensive IDE
with all of the necessary programming, debugging, compiling, building, and
deploying tools. All phases of project development, from conception to
deployment, can be realized within Visual Studio 2015. A handful of programming
languages are supported including C++ with DirectX and/or Extensible Application
Markup Language (XAML), JavaScript with HTML, and C# or Visual Basic with
XAML. Implemented into each of these languages is the Windows Runtime, a
native API built into the operating system [2].

3.2.4 Windows Cortana

Windows 10 also introduced Cortana, Microsoft’s new personal assistant to rival
the functionality of Apple’s Siri and Google Now. The voice-activated Cortana
allows you to search for files on your computer or the internet, manage your
calendar, tell jokes, and much more. Cortana is heavily implemented into Windows

14

10 and, as a result, is aware of files and information on your computer to provide
context-aware interaction. This results in a smarter and more efficient means to
accomplish tasks such as setting reminders, checking the weather, or tracking a
package. Because Cortana is part of the Universal Windows Platform, apps can
be launched using your voice, and speech-to-text input is also supported within the
app.

Cortana could be a useful application on the smart mirror due to her ability to
communicate with the user. She is able to search things throughout the user’s file
system, OneDrive, and even the internet. If implemented onto the smart mirror she
can provide a wealth of information and accessibility in an instant that could take
months to recreate. As a result, implementing Cortana on the mirror is a feature
that would add great value to our project; however, though this feature could bring
a lot of functionality to the mirror, it is not one of the main requirements because
Cortana is not necessary to achieve our goals for the basic aspects of the mirror.
The incorporation of Cortana would be placed towards the end of the list of
priorities; though if implemented, could prove to be extremely useful.

Although Cortana could potentially be useful in an application such as a smart
mirror, it was decided to implement all commands and interactions with the mirror
ourselves. This decision was to allow us to tailor the interaction with the mirror to
the exact format we desired. Cortana would generally be used to extend feature
and functionality we ended up deciding were not necessary for the mirror. Some
features originally discussed for the mirror were decided to be cumbersome for the
user and their potential benefit was low so they were cut. Many of these features
were tied to what Cortana would have helped with.

3.2.5 Applications

Each software feature of the mirror will be designed from scratch and placed
appropriately within the UI. Rather than executing individual widgets or gadgets,
the different software features will be self-contained and built into a single UWP
application that is executed on boot in order to provide a seamless user
experience. The consolidation of each software feature into a single persistent
application simplifies the design architecture and provides a unified experience.

The layout of the applications is actually one of the more important aspects of this
project. The reason for this is that, if the mirror is not well thought out, easy to use,
and does not intrude on daily use of a mirror, then users are unlikely to enjoy the
product or utilize it daily. Due to this, much thought has gone into the layout of the
applications on the mirror and more changes will likely be made as prototyping
continues. Currently it is planned for all mirror applications to remain around the
edges of the mirror and be presented in the smallest ways possible unless the
users asks for more information. This format will allow a wealth of different
information to be presented but not in much depth. Fortunately, all the user will
have to do is ask for more information to replace that application with an in depth

15

version of whatever they asked for. For the calendar this will mean if an event is
selected, the calendar will be replaced with the details of the event. This same idea
will hold for all other applications as well. Each element of the application will have
its own block of mirror space where all its information will be presented. These
locations will be customizable by the user to ensure the user can set up the layout
to their liking as some users may prefer the time on the bottom center while others
may like it in the top left. This customizability and layout design is what will set out
mirror apart from other such projects and ensure ease of use for all users.

Shown in Figure 3.2.5.1 is the default layout of the mirror blocks. Since there is not
enough space to provide all applications in a clean manner, some will have to be
requested to be displayed. Any the user requests will show up in the ‘Extras’
section on the mirror. This block is slightly larger than all the rest, this is simply to
ensure that there is always enough space to provide the applications the users
deems as not important enough to have permanent mirror real estate. All
applications displayed within the ‘Extras’ block will use their normal profiles as
close to the edge of the mirror as possible. Certain items, including the To-Do list,
the music information, and possible commands, will only be displayed under
certain conditions as listed in their subsections.

Figure 3.2.5.1: Previous Default Smart Mirror Display Layout

16

After much deliberation in regards to the user interface, a second model was
decided upon. This change was made because it was decided that the mirror does
not need to display detailed information that was previously deemed usable. If a
user wishes to make modifications to their calendar or to do list, there are many
more efficient devices to handle the task. Smartphones, tablets, and computers
still play a large part in everyone’s daily lives and these items excel in that regard.
The mirror is simply intended to display small bits of information the user may be
curious of. Due to this, the information is all displayed is a mostly static manner
with the ability of some items to be toggled on and off with a voice command. This
new layout is shown in Figure 3.2.5.2.

Figure 4.2.5.2: Final Default Smart Mirror Display Layout

17

3.2.5.1 Clock

The clock is one of the simpler components of this project and we want it to be as
customizable as possible. The user will be able to choose the location of the clock
to match their needs and desires. Users will also be able to select from a list of
fonts and colors for the clock display, allowing them to make the mirror individual
to their personal tastes. The clock will be customizable and it will be possible to
set the clock as a digital or analog clock depending upon the user’s preference.
For the digital clock, the time will be able to be set as 24 hour time or 12 hour time
and the user will also be able to select whether the clock precision is displayed to
seconds or minutes. The analog clock will be implemented with only an hour hand
and a minute hand; seconds precision will not be offered on this element. The user
will have the option to display the numbers as roman numerals or standard Hindu
Arabic numerals.

The clock implementation, by default, will only display the time. However, for users
who wish to see the date as well, there will be an option to show the date in a
number of formats. The user will be able to select all the formatting options utilizing
the created external application to manage settings. The time is one of the core
elements of the mirror and it is important in helping people keep track of time as
they prepare themselves for the day in the morning. Due to this, it is important for
the clock to be one of the more customizable components of the mirror.

3.2.5.2 Weather

The weather app will display basic weather information including the temperature
at your current location along with the high, low, and chance of precipitation. A
simple graphic, such as a sun or raincloud, representing current weather
conditions will be displayed as well. This information will be updated every hour,
providing the user with an accurate estimation of what to expect at any time of the
day. This is an important feature in assisting the user in planning for their day as
they get ready in the morning. This feature will be displayed on the mirror at all
times.

The weather application will also offer forecast options for the user which, via voice
command, will be able to be toggled on or off. These forecast options will replace
the current weather display for a set period of time before fading back to the current
weather. The user will utilize specific voice commands to request these different
weather displays. If the user asks for the current weather it will be shown as
discussed above. However, the user will also be able to ask for todays weather
which will show a three hour forecast for the rest of the day. If the user asks for
tomorrows weather they will be shown a three hour forecast of the weather for
tomorrow. Finally, if the user asks for the weeks weather, the mirror will display a
five day forecast of each day with high temperature, low temperature, and a single
image indicating rain, sunshine, or clouds. Each display element is customized in
a way to display as much information as possible in the smallest space to ensure

18

there is still space around the mirror for its general use, reflection. This feature is
important in saving a user time in the morning that they may utilize to check their
computer, smartphone, or television to determine how they should dress or
whether to bring an umbrella for the day.

3.2.5.3 Calendar

The calendar will be implemented as a list of events for the current day. An
example of this can be found in the Day view of Google Calendar. The events on
the calendar will be updated hourly to ensure the user is always up to date on their
events. As the calendar will implement a day view of events, the current time will
be indicated by highlighting the hourly row that corresponds to the current time.
The calendar will display 8 hours at a time and the current time will be the 2nd hour
on the calendar and the display will be updated hourly to shift the view bringing the
next hour into view. There will be voice commands to control the calendar by
opening events at specific times as well as to scroll the calendar to the next hours
or to see tomorrow’s information.

The calendar will incorporate events from Google Calendar and the user will be
required to log in to their google account on the external application developed.
Once the user logs in, the application will ask for verification that the users
information may be displayed as this is required by all Google APIs. At the start,
only Google Calendar will be implemented however, if possible, later on Outlook
calendar may be included as well so that users are able to see information from
whatever calendar application they use in their day to day life.

The calendar is an important application for the mirror as it allows the user to see
events they have planned for the upcoming day at a glance. This will help users
ensure they do not miss any events planned for that day. The ability to check the
calendar for tomorrow allows users to get an idea of what their day will be like the
night before. This is a great way for users to prepare for their day the night before
by ensuring they remember everything they have coming up the next day.

The calendar application will also be interactive with the user. If the user is in front
of the mirror and realizes they need to add an event, they will be able to command
the mirror to create a new event at a specified time. The mirror will then open a
new event window which will allow the user to enter information such location,
people, and reminders to the event.

Another important aspect of the Google calendar that will be brought to the smart
mirror is Reminders. Reminders help a number of people in their daily life and are
actually one of the easier items to set on an Android device. Due to this, reminders
will be brought to the smart mirror to ensure users notice their reminders in the
morning. If users grow accustomed to utilizing the smart mirror in the mornings and
don’t check their phone, they could potentially miss reminders which is a

19

consequence that would be ideal to avoid. By allowing reminders to be utilized on
the mirror we allow users another step in the direction of saving time and increasing
productivity and efficiency.

Reminders will be displayed differently from other calendar elements and could
almost be implemented as a separate section however since they are tied directly
to google calendar they are being included here. Since reminders are meant to
appear at certain times only, the reminder will only appear on the mirror if it is
currently active and it has not been dismissed on any other devices. The reminders
will appear directly above the calendar display keeping all event based information
in one location on the mirror. This is an important simplification as users will always
be looking to that area of the mirror to check on their events anyways.

Unfortunately, the calendar application was not able to be implemented due to
limitations of the OS we chose for the smart mirror, Windows 10 IoT. This OS does
not currently provide a web browser for user and thus implementing google
calendar is very difficult due to OAuthorization requirements. While it is possible to
implement OAuth without a web browser, it was more work for the user and a lot
of extra work for the developers. In the time frame of senior design it was decided
to scrap this feature in order to support other features.

3.2.5.4 To-Do List

A to-do list is a helpful item in any person’s life. A to-do list connected to all your
devices is even better. The intention of adding a to-do list to the smart mirror is to
offer users the ability to keep track of items even beyond their daily calendar that
they have ahead of them. This will allow users to be reminded daily of potentially
time sensitive tasks that didn’t seem to fit their calendar specifically. This will help
users stay on top of all the important things in their life.

For the to-do list implementation on the smart mirror we will be using the popular
to-do list application called Todoist. It is an established to-do list service with
applications already developed on Windows, Mac OSX, Android, and Linux making
it an already versatile tool. The company also offers an open API for developer use
which will allow us to seamlessly implement this application into the smart mirror.

This application will not be one of the ever present staples on the smart mirror and
will only be utilized when the user asks for it. When the user commands the mirror
to show the to-do list, it will be toggled on in place of the calendar application. The
to-do list will show all the main to-do items the user has while the user will be
required to select a to-do list item to expand it to see any subtasks within. This will
allow us to present as many to-do items possible on the mirror with the least space.
By default the to-do list will show only the current day’s items but at a command
from the user the list will be able to be expanded to include the next day or even
the upcoming week’s items.

20

It was also an unfortunate circumstance to remove the to do list for the same
reason as the calendar stated above. Hopefully in the near future a web browser
will be implemented for Windows 10 IoT that can be utilized to allow developers to
easily implement applications which require OAuth. This would also make it less
cumbersome on the user to utilize widgets on the mirror that need OAuth
permissions.

3.2.5.5 Music

In order to provide another step of convenience and functionality to the user, music
playback will be created to allow the user to listen to their music while they utilize
the mirror. The music playback will be controllable via voice commands as
everything else on the mirror is. The mirror display will house a small player that
shows the current song name, artist name, and album name of the current song
as well as a slider to indicate the current position within the playing song. The
location of this information by default will be located in the lower left corner of the
mirror. One of the commands will allow the user to see the names of all playlists
they have currently stored on the device, this will be shown in the Extras location
on the mirror and the user will then be able to select one of the playlists.

The music application will be implemented utilizing an online streaming service or
music stored directly on the Raspberry Pi. The original idea, to use the Spotify web
API is unfortunately not possible as it does not allow full audio playback. A number
of other options were looked into and the only one that could possible work is
Microsoft Groove. Due to this only being a possibility, it may be required for users
to select music from their own personal collection to store on the Raspberry Pi.
More details on these issues are discussed in the design discussion in section
5.4.6.

In the end, music was implemented as local music playback only. The application
allows users to load music onto the raspberry pi and store them into a specified
music folder. All the music in this folder is randomly shuffled by the mirror. The
user is able to play/pause the music or skip songs using gesture controls. The user
is also able to utilize another set of gesture controls for controlling the volume of
the music playback on the mirror. Gesture controls are discussed in section 3.2.8.

3.2.5.6 Travel Time

The mirror will allow a user to enter locations on their calendar events and it will
utilize the calendar to provide users with travel time to their events for the day. This
will be implemented as a simple travel time rather than an entire map. This feature
is extremely useful as it will let the user know what to expect when traveling to their
destination that day. If the user wakes up and sees that the travel time to their
destination is twice that which is normal, they can ensure they get ready faster and
leave in time.

21

The mirror will also allow the user to enter a work location and hours via the
external application. If this is done, then for the hour prior to the time the user
needs to leave to arrive on time, the mirror will display the travel time to the location
specified for work. This will allow users who work every day to set reminders of
different types of events but still ensure their travel time to work shows up at the
appropriate time.

A full map display will not be offered as this would take up a significant portion of
the mirror to implement and it is not necessary during normal daily routines. The
user will be expected to use external devices to plan out an external route or see
exactly where the delay is located. For this part of the application to function, it will
be required for the user to enter their home location via the external application at
set up. If a home location is not set then this portion of the mirror will be disabled
by default as there will be no way to calculate the time to the location.

3.2.5.7 News

In order to provide the user with a few news events, a simple news feed will be
displayed to provide three headlines from world news. After researching various
different news feed APIs, we have decided to use CNN’s World News RSS feed.
The other news outlets we considered included USA Today, The New York Times,
and Associated Press. Our decision was based on simplicity of use and
straightforward parsing ability. The alternatives were either down for maintenance,
required complex API structures, or didn’t provide the scope of news stories we
sought.

The news content will be centered near the bottom portion of the display in a
bulleted-list fashion. The RSS feed will be converted to a JSON format which can
be easily parsed and refreshed every hour. We will extract the headline as well as
a teaser thumbnail image that is provided by the RSS feed. If no thumbnail is
provided, a simple graphic representing the newspaper will be displayed in its
place. CNN provides many different RSS feeds to cover different sections of the
news such as Top Stories, World, U.S., Money, Technology, etc. Because all of
the different feeds share the same internal format, we can easily change between
them by simply exchanging the source link from one category to another. The news
feed category we have decided to implement is World News.

3.2.6 Temperature Sensor

As it was mentioned previously, the temperature sensor will be needed to maintain
the inside of the mirror cool enough to keep the component operational. The
temperature sensor will be a component in the temperature control mechanism
that will be discuss on the later sections of the project. There are multiple types of
temperature sensors in the industry such as thermocouples, Resistance
Temperature Detectors (RTDs), Thermistors, Infrared, and Integrated Circuit
Sensors.

22

Thermistors

Thermistors temperature sensors are resistors that change their physical
resistance depending on the changes in temperature. Thermistors are
manufactured with two different set ups, Negative Temperature Coefficient (NTC)
or in Positive Temperature Coefficient (PTC), for Negative Temperature
Coefficient the value of the resistor decreases as the temperature increases and
for the Positive Temperature Coefficient the resistor’s value increases as
temperature increases [3]. Since Thermistor sensors are resistors that change
their values depending on the temperature, we would need to pass a current to
measure the difference in voltage. Figure 3.2.6.1 illustrates the proper connecting
for a Negative Temperature Coefficient Thermistor Temperature Sensor.
According to the source, “The Thermistor, have an exponential change with
temperature…”, therefore are a non-linear device unless, it’s used in a voltage
divider network, if so the output voltage becomes linear with the temperature.

Resistive Temperature Detectors

Resistive Temperature Detectors (RTD) sensors are similar to the thermistors
since they also change their resistor values depending on the temperature. RTD
sensors are made with a higher purity conducting metal, which makes them a
precision temperature sensor. The coefficient values for the resistance are
positive (PTC). When comparing the RTD sensor with the Thermistor, the output
from the RTD is extremely linear which makes a more accurate temperature, the
downfall of the RTD’s is that they do not have much thermal sensitivity [3]. Since
the RTD sensor are also a linear device, we are going to need to apply a current
to create a voltage change which behaves linearly depending on the temperature,
in general the resistance value at the freezing point of water is 100 Ω, and the
operating temperatures are from -200⁰C to +600 ⁰C. In general when using the
RTD sensors in the design, the sensor is connected into a Whetstone Bridge
network to avoid any inaccurate readings due to any self-heating from the device
[3].

Figure 3.2.6.1: Proper Connection of a Thermistor- Recreated with data provided

from Electronics Tutorial

23

Thermocouple

Thermocouple are thermoelectric sensors which use two junctions of different
metals, one of the junction is used as a reference temperature usually as the lower
temperature one, and the second junction measures the larger temperature. The
sensor creates a voltage across both junctions as long as there is a difference in
temperature between them, this voltage is very small (just a few millivolts for a
10⁰C change which means an amplifier is required [3]. The Thermocouple sensors
have a fast response time when measuring temperature, these are the most
common temperature sensor used. Figure 3.2.6.2 shows the construction of the
Thermocouple sensors.

Figure 3.2.6.2: Construction of the Thermocouple- Recreated with data provided

from Electronic Tutorials

Integrated Circuit Temperature Sensors

Integrated Circuit (IC) Temperature Sensors use two terminal integrated circuit
temperature transducer, which depending on the temperature produce an output
current [4]. Integrated Sensors can have different types of outputs such as voltage,
current and digital. These sensors have a quick response time and a low thermal
mass, the common temperature range are usually from 55 to 150 Degrees Celsius.
The IC sensors that have a digital output have a built in analog to digital converters,
and depending on the numbers of Bits in the A-D converter, it provides the
resolution (10 Bit provides temperature increments of 0.25 C and for a 12 Bit is
0.0625 C) [4]. The advantages of using the IC sensors are that they are a low cost
component, with the A-D converter the output can be either analog or digital with
no additional circuitry, and they have a linear output. The disadvantages of IC
sensors, the temperature can only range between -55 to 150 degree Celsius.

3.2.7 Light Sensor

Light sensors are a passive device which change their energy from the light into
electricity, usually referred to as Photoelectric Devices or Photo Sensors. There
are two classifications for the light sensors; Photo-voltaic, which creates electricity
when the sensor is illuminated, or Photo resistors which change their electrical
properties.

24

Light Dependent Resistor

Lights Dependent Resistor (LDR) is made of a semiconductor material which
changes its electrical resistance depending on the amount of light that the sensor
is expose to [5]. The LDR sensor have a long response time for the change in the
light, the sensor reduces its resistivity when it's exposed to light which creates a
better conductivity. Figure 3.2.7.1 illustrates the change in resistance depending
on the illumination.

Figure 3.2.7.1: Resistance response - Recreated with data provided from

Electronics Tutorials

The most commonly used photo resistive light sensor is the ORP12, this sensor
increases its resistance value when there is an absence in light, this causes low or
no current to flow through the sensor [5]. The top of the sensor has a zigzag pattern
which creates the higher resistivity, commonly in the Mega ohms. If the LDR is in
series with another resistor, we can apply a voltage divider and determine the
voltage across the second resistor, the higher the resistivity on the LDR the lower
the voltage across the second resistor [5].

Photodiode Light Sensor

The Photodiode light sensor is similar to the conventional PN- junction diode, the
main difference for the photodiode the outer casing is transparent to let light into
the PN junction to increase the sensitivity. One of the main advantages of using a
Photodiode is its fast response to the change in illumination, but the disadvantage
is that the current flow produced is very low even when the Photodiode is fully
illuminated [5].

Phototransistor Light Sensor

The phototransistor light sensor is the same as a photodiode light sensor, the
difference is that the phototransistor has its collector-base PN junction reverse
biased which is expose to the light source. Figure 3.2.7.2 displays this
characteristic.

25

Figure 3.2.7.2: Phototransistor Characteristics - Recreated with data provided

from Electronic Tutorials

Since the collector-base junction is reverse biased, there is a very small current
going through when there is no light presence but when the light shines on the
base of the transistor a higher current is produced and then amplified by the
transistor [5]. When a second NPN bipolar transistor is introduced then the
transistors become a Photo-Darlington, which is used to amplify the current even
further which creates more sensitivity, the downfall when using this set up is that
the response time is slower when is compared with a phototransistor [5]. Figure
3.2.7.3 demonstrates the setup of the Photo-Darlington. The typical applications
of a Phototransistor are in opto-isolators, slotted opto switches, light beam,
sensors, fiber optics and TV type remote controls.

Figure 3.2.7.3: Photo-Darlington Setup - Recreated with data provided from

Electronic Tutorials

26

Photovoltaic Cells

The most common type of photovoltaic light sensor is the Solar Cell. This type of
sensor directly converts light into a DC electrical energy. This type of sensor is
best used under direct sunlight. Solar Cells are used as an alternative source of
power for batteries, this offers a renewable source of power [5]. Photovoltaic Cells
are like the Photodiode in the sense that it uses a PN junction, but the main
difference is that the Photovoltaic cells do not use a reverse bias. Which has the
same characteristics as a very large photodiode in the dark. Figure 3.2.7.4 shows
the relation between the current and voltage depending on the amount of light
being exposed to the cell.

Figure 3.2.7.4: Current response with to voltage - Recreated with data provided

from Electronic Tutorials

3.2.8 Motion Detection

It was decided that the mirror will include a number of motion detection schemes.
First, the mirror will have a single primary motion detector on the front facing
outwards. This will detect when a user enters the room and will be used to
automatically toggle the mirror display on and off. The second motion sensor will
be a pair mounted to the side of the mirror for implementation of gesture controls.
These motion sensors will be implemented approximately eight inches apart to
allow for four gestures. The first two will be if the user holds their hand in front of
either the top or bottom sensors. The second type will be if the user swipes their
hand up or down in front of both sensors. This allows for a total of four gestures
which can be used for different things depending on what the user last interacted
with on the mirror. The primary use of these gesture controls will be for the music.
There are multiple types of proximity sensors that could be used. These include
inductive proximity sensors, capacitive sensors, photoelectric, and ultrasonic
sensors.

27

Inductive Proximity Sensors

Inductive Proximity Sensors respond to ferrous and nonferrous metal objects [6].
This proximity sensor is commonly used for modern high speed process control
for detection, also for counting and positioning any objects with any ferrous and
nonferrous metals. Usually used to upgrade the speed and reliability of existing
machinery resulting in replacing limit switches.

Capacitive Sensors

Capacitive sensors respond to any substance with a high dielectric constant with
necessarily making any physical contact. Capacitive sensor are less suitable for
any substances that have low densities [6]. This type of sensor is responding to
the change in a dielectric medium that is around the active face. Capacitive
sensors are typically used for level control of non-conductive liquids, granular
substances, and substances through a protective layer.

Photoelectric or Opto-electronic Sensors:
Photoelectric sensors consist of a light source and a detector. The light source
send either an infra-red or a visible light energy to an object which reflects back
the send energy to a detector. This non-contact sensor is able to sense objects up
to 10 meters away from it. This type of sensor is increasingly used since they can
detect over a greater distance than previously mention sensors. Photoelectric
sensor have multiple modes such as Infrared Proximity, Transmitted Beam,
Retroreflective, Polarized Retroreflective, Fiber optic, and Background Rejection
[6]. The Transmitted Beam and the Retroreflective will not be considered for this
project, since we only want to detect whether the user is in the room when the
Smart Mirror is being used and these type of sensors use a beam that need to be
interrupted to activate. For this project the only photoelectric sensor that can be
best implemented is the Infrared Proximity, since this sensor detects the light being
reflected back to the detector. We might keep the Background Rejection Sensor
as a backup, since this type of sensor is mainly used to ignore any movement
outside a range, for example we can have a range where the sensor actives if
there is movement within a foot or two from it.

Ultrasonic Sensors

Ultrasonic Sensors are uses a high frequency waves to detect objects or distances
to the object. There are two basic type of sensors, Electrostatic and Piezoelectric.
Since this sensor uses high frequency this sensor will not be considered for the
project.

3.2.9 Humidity Sensor

A key component to keep the electronics inside the Smart Mirror is a Humidity
Sensor. when selecting a humidity sensor is important to keep these consider
these specifications; accuracy, repeatability, interchangeability, long-term stability,
ability to recover from condensation, resistance to chemical and physical

28

contaminates, size, packaging, cost effectiveness [7]. Other specifications worth
to note are; cost associated with sensor replacement, field and in-house
calibrations, and the complexity and reliability of the signal conditioning and data
acquisition circuitry.

Capacitive Humidity Sensors:
Capacitive Relative Humidity sensors are commonly used for commercial,
industrial and weather telemetry applications. These sensors are made using a
metal oxide that is in between two conductive electrodes [7]. When comparing the
change in the dielectric constant of the capacitive sensor with the relative humidity
(RH) of the environment, it noticeable the near proportional relation, Figure 3.2.9.1
illustrates said relation. The response time is generally elapses between 30 to 60
seconds for a 63% HR step change. One of the limitations for the RH sensor is
distance away from the signal conditioning circuitry, the practical limit is less the
10 feet [7].

Figure 3.2.9.1: Dielectric Response to Relative Humidity - Recreated with data

provided from Sensors Online

Resistive Humidity Sensors

The resistive humidity sensors usually consist of noble metal electrodes either
deposited on a substrate by photoresist techniques or wire-bound electrodes on a
plastic or glass cylinder [7]. The substrate is coated with a salt or conductive
polymer. This result in the sensor measuring the change in impedance of the
hygroscopic medium. The sensor absorbs the water vapor and ionic functional
groups are dissociated, which results in an increment in electrical conductivity. The
general lapsed time for these type of sensors is from 10 to 30 seconds for a 63%
step change, and the impedance ranges from 1 kΩ to 100 MΩ, Figure 3.2.9.2
illustrates the relation between the output DC voltage and the RH %.

29

Figure 3.2.9.2: Voltage Response to Relative Humidity - Recreated with data

provided from Sensors Online

In general these sensors have a life expectancy of more than 5 years as long as
they are not exposed to chemical vapors or any other contaminants. When
resistive sensors are installed in environments that have a large temperature
fluctuation, a lot of temperature dependencies are present.

Thermal Conductivity Humidity Sensors

Thermal Conductivity Humidity Sensors measure the absolute humidity by
quantifying the difference between the thermal conductivity of dry air and that air
containing water vapor [7]. These sensors are made up of two negative
temperature coefficient (NTC) thermistors that are matched, one of NTC is expose
to the environment and the other one is encapsulated by dry nitrogen. Since the
thermistors change their resistivity depending on their temperature, the sensor is
creating a proportional relation between the voltage (once we apply a current to
the thermistor’s resistance) and the absolute humidity presence as illustrated in
Figure 3.2.9.3. The advantages of using thermal conductivity sensors are that they
are durable, they operate at high temperatures (up to 300 degrees C) and they are
resistant to chemical vapors.

Figure 3.2.9.3: Output Voltage Response to Absolute Humidity - Recreated with

data provided from Sensors Online

30

3.2.10 Audio Capture

Audio input will be provided via USB microphone. The primary purpose for audio
capture is to receive speech recognition requests; thus, it is an extremely important
component of the mirror, serving as the sole bridge between the user and the
mirror software. Should the microphone fail to perform its function, the user would
have no way to interact with the mirror. It is important to place the microphone in
an effective location, taking into consideration the possibility that music may be
playing from the internal speakers that can interfere with any speech recognition
requests. A small hole will be cut into the front of the mirror frame towards the
bottom to allow for a clear path for voices to be picked up. This location is ideal
because it is far away from the internal speakers which are mounted high on the
sides of the mirror. It is also worth noting that the microphone must be sensitive
enough to sense faint voices. The USB microphone we have elected to implement
into our mirror boasts an impedance of 2.2KΩ and its sensitive to -58dB ± 1dB
[8]. Erroneous speech inputs can be tuned out through software thresholds.

3.2.11 Microcontroller

Microcontroller Units (MCU) are a self-contained system with peripherals, memory
and a processor that can be used as an embedded system. In the modern era
most MCUs are embedded in phones, cars, house appliances and many other
consumer products. MCUs can be a sophisticated systems regarding programing
and memory which become more complex, or they can be very minimal in terms
of programming and memory capacity. The MCU will be used to process the data
from each of the sensors mentioned above and send it to the Raspberry Pi. The
programmable MCUs are usually categorized by several parameters such as Flash
size, RAM size, number of input/ output lines, packaging type, supply voltage and
speed. Microcontrollers are also categorized on their processing bits, 4-bit, 8-bit,
16-bit, and 32-bit. The 4-bit microcontrollers are commonly used for electronic toys
[9]. 8-bits microcontrollers are generally used for control applications like position
control, speed control and many other process control system. The 16-bits
microcontroller are developed for a higher speed control application than the 8-bit
one, an example of a higher speed control would be robotics. The 32-bits typically
used for very high speed operations in robotics, image processing,
telecommunications, and intelligent control system.

3.3 Design Constraints

As per the ABET Design Requirements, the following subsections will outline the
project level realistic design constraints that we have determined to be factors
during the development of our project. It is important to set realist design
constraints that can be accomplished over the course of two semesters.

31

3.3.1 Economic Constraints

Economic constraints for a project like this are simply the cost of the system. It is
necessary to produce a system that can compete in the market for a product like
this. To do this it is necessary to potentially use some items the group has access
to rather than purchase everything. As this is a proof of concept project, having
some items unfinished and used is acceptable. This project is being funded
between the three members of the group and thus it needs to stay cheap. Some
things we have done to minimize costs was to use free software, use a webcam
we owned for audio input, purchase a used TV on craigslist, use a raspberry pi
rather than build a custom PC, and utilize a piece of glass with reflective tint rather
than an actual one way mirror.

The time constraints of this senior design course limit the complexity of the system
and the number of things we would accomplish. If this system were to go to
production we would have more time to work on it each week as it would be our
sole focus and more features would have been able to be implemented. It was
required to cancel some features we desired due to time limitations and while this
is unfortunate, we have done the best possible for a group of our skill with the time
given.

3.3.2 Environmental Constraints

The environmental constraints on this system are very important as it will likely be
housed in a bathroom and the system has electronic components. Due to this it is
important the system have good airflow and is kept at a reasonable temperature
and humidity. To handle this, the system will include a temperature and humidity
sensor as well as two fans. One of the fans will allow intake of cool air and the
other will be used to exhaust the hot air from the case. The temperature and
humidity sensors will be used to toggle the fans on and off as necessary and also
to shut the system off at critical heat or humidity levels.

3.3.3 Social and Ethical Constraints

The social and ethical constraints are somewhat overlapping in some cases. It is
important that if this system has a camera that no one is allowed access to the
camera from outside the mirror. This is because the mirror is in a bathroom which
is a private room and it is vital that the webcam cannot be hacked to allow people
a view inside someone’s bathroom. This is a social and ethical dilemma as socially
people need to be able to accept their software is secure and be able to trust in it.
Ethically it is our responsibility as engineers to ensure peoples trust in the software
is well based. It is also an ethical obligation to ensure no one in the design phase

32

were to intentionally leave a loophole to access the system for information or
webcam access.

3.3.4 Political Constraints

Politically there are not many constraints on our system currently. It is required
that no information gathered by the mirror such as user credentials is tracked by
our software in any way except to allow the user access to their information.

3.3.5 Health and Safety Constraints

The health and safety of the user is of paramount importance. We have included
fail-safes to ensure that there is no danger to the user. The temperature and
humidity sensors are always monitoring their respective data points and we have
set acceptable thresholds that will cause the mirror to shut off in the unlikely
event of a dangerous occurrence. Any safety hazard that may exist may be the
negligence of the user pertaining to where and how they operate the mirror. An
excess of humidity from a hot shower, for example, may cause damage to the
electronics of the mirror. On the other hand, in the rare chance that any of the
circuity becomes excessively hot, a fire risk is posed. Therefore, the software
precautions are set in place to prevent any incidents.

3.3.6 Manufacturability Constraints

Manufacturability constraints are restrictions that may affect the manufacturing of
the final product. During the research process of the project, we were unable to
find any constraints that may be applied to our Smart Mirror project. The only
standard that may affect the manufacturability of this product was found on the
NSSN website document number DIN EN ISO 19235:2015. Which states that “the
basic parameters, requirements, and testing methods of timing accuracy for
analogue quartz clocks, hereinafter referred to as the quartz clock”. Since the clock
of the smart mirror will be synchronized using the software, this constraint does
not apply to our project.

3.3.7 Sustainability Constraints

Sustainability constraints are constraints that affect the operational lifetime of the
product under normal operating conditions. We obtained materials that would be
sustainable and easy to build. As stated previously, this project was self-funded
and it was to the team’s best interest to have a design that would last as much as
possible. Multiple components were placed in the PCB design in order to prolong
the life spam of the components.

33

4. Hardware Design

4.1 Design Discussion

This project has two major components that will be working together to accomplish
the tasks required. The Raspberry Pi 2 will control all software components and
handle all aspects of displaying information to the user. The MCU will handle all
sensory inputs excluding audio to interact with the environment in the most helpful
and convenient way possible. Shown in Figure 4.1.1 is a block diagram of the
overall system indicating which member is responsible for which aspect of the
design.

Figure 5.1.1: Previous Overall Hardware Block Diagram

As shown, the MCU will interface with a number of sensors to monitor the
environment around the mirror including temperature, light, and motion. Each
sensor will be mounted onto the mirror appropriately to record information that will
be passed back to the MCU which will then be able to communicate with the central
computer as necessary. The central computer will be implemented using a
Raspberry Pi and will interact with all specified components of the system in Figure
4.1.1. The individual components will be discussed and selected in the coming
sections as well as details on their implementation.

The overall hardware block diagram of the project in its final form can be seen in
Figure 4.1.2. As you can see from the diagram, nearly all of the components have
remained the same. The temperature sensor now incororates a humidity sensor
as well and we have also included LEDs and Fans that feed into the MCU.

34

Although the webcam is being used in the final project, it is only utilized as a
microphone. The final diagram includes the power management aspect which
delivers power to both the Raspberry Pi and the MCU from a 120 VAC source.

Figure 6.1.2: Final Overall Hardware Block Diagram

4.2 Mirror Housing Construction

4.2.1 Requirements & Constrains

The housing of the Smart Mirror will be designed in a way that is cost effective but
also displays the mirror and software in the clearest way possible. The housing will
be built from wood with a face panel made of four miter cut boards as shown in
Figure 4.2.1.1. The wood will be done with a burned finish then stained for a nice
presentation that people might like to have in their homes. It is important that this
is presented as a quality display piece otherwise most people would have little
interest in having it in their home. All sensors and buttons will be hidden to present
the image of a regular mirror.

The way the mirror works is by utilizing a one way mirror behind which is placed a
television. This will allow light to shine through the mirror wherever the television
is lit but it will simply reflect like a mirror wherever there are black pixels on the
display. To accomplish this, the one-way mirror will set into the face panel slightly
and the television will be mounted directly behind it. This is a simple and

35

economical means to achieve the mirror-like finish without purchasing an
expensive piece of glass.

4.2.2 Housing Design

All the bezel and plastic housing will be removed from the television so it can sit
as close to the mirror as possible. There will be a small rubber seal between the
metal face of the television and the mirror to avoid any unnecessary pressure on
the mirror. This configuration will create a dark environment behind the mirror,
which is required for a one way mirror to work efficiently. Keeping the television as
close to the mirror as possible is important because it will prevent light from
bleeding across the mirror and will localize the light to the areas where the display
elements are located.

Since this mirror is not quite like a regular mirror, there will need to be a housing
built around the television which will extend 5 inches behind the face panel. The
television will mount to the back of the face panel and will be held in using brackets
and screws. The speakers from the television will be mounted to the sides of the
mirror housing to allow music to be played via the television. The control buttons
for the television will be mounted to the bottom of the mirror housing allowing
manual control of the television if necessary. An opening for the Raspberry Pi will
be located on one side of the mirror housing to allow access to the USB ports and
the Ethernet port if needed as shown in Figure 4.2.2.1. If the mirror has internal
speakers these will also be implemented on the sides of the mirror housing to
output sound appropriately but to ensure a clean presentation from the front of the
mirror. Lastly, a number of small holes will be made in the key locations on the
face panel of the mirror to allow for placement of the sensors, including the motion
detector, the light sensor, and a microphone to take user voice commands.

In the end, the majority of the sensors were mounted inside the mirror with small
holes to allow them to interact with the outside. The only sensor on the face of the
mirror is the main motion detection sensor. It is mounted in the center of the bottom
face panel of the mirror. The sensor is mounted inside the mirror with a small, 3/8”
hole for the sensor to see out of. Secondly, the gesture control sensors were
mounted on the right side of the mirror again with small 3/8” holes for the sensors
to see out of. It was decided to mount them on the right side as the majority of
people are right handed however for a left handed user it would be possible to
mount the sensors to the left side instead. The light sensor and LED were mounted
to the top of the housing, on the inside. Each of these have a small hole to allow
light through. The webcam used for voice control was left outside the mirror as it
needs to be outside the housing to receive sound appropriately. It is simply placed
on top of the mirror. Finally, a square opening was implemented to allow access
to the Raspberry Pi USB ports and the Ethernet port. The Pi sits flush within the
side of the frame; therefore, it is not interfering with the placement of the motion
sensors.

36

Figure 4.2.1.1: 3D Model of Mirror Housing Design

You can see from the 3D model that we are trying to achieve an inconspicuous
design that is both modern and functional. The frame features a beautifully burned
and stained frame which appeals to the user without sacrificing any of the mirror’s
functionality. The user will enjoy interacting with the mirror and all that its self-
contained packaging offers.

37

Figure 4.2.2.1: 3D Model of the Rear View of the Mirror Housing

The actual mirror used for the smart mirror project is an important aspect of the
overall design. There are a number of options for exactly how to implement the
mirror with a varying degree of price and functionality. There is a vendor who
manufactures and sells one way mirrors specifically for this purpose, called Two
Way Mirrors. Their mirrors are specialized for implementing televisions behind.
The company offers a number of options at varying price points. Each option has
different levels of light transmission and reflectivity as shown in Figure 4.2.2.2.
While their mirrors would be a great option for implementation of a smart mirror,
their mirrors are rather pricey and, for the intents and purposes of this project as a
proof of concept, are out of budget. Two other options are presently available
which are a regular one way mirror, or glass tinted with a special one way mirror
tint. A regular one way mirror is somewhat costly, starting around $150 for a thirty
two inch diagonal display. While this would be a better option, the price is again,

38

somewhat out of budget for a proof of concept type project. Due to this, the project
will be implemented using the final option, a pane of glass tinted with a specialized
reflective tint. Though this option does not provide the highest level of clarity,
reflectivity, or light transmission, it is the best decision for the goal this project is
attempting to accomplish. If this project were to be taken a step farther to be
implemented and marketed, the best option would likely be Two Way Mirrors
Vanity Vision Glass which offers a seventy percent reflection and a forty percent
light transmission.

Figure 4.2.2.2: Specialized Two Way Glass (Left to right: Regular One Way mirror,
VanityVision, Dielectric, Clear Glass) Permission Pending from Two Way Mirrors

In designing this product, one potential minor inconvenience is the necessity of
power cables running into the mirror housing to power the television and the
computer. In order to avoid having multiple cables running from the housing to an
outlet, a C13 Power Connector will be set into the bottom of the mirror housing.
From this C13 Power Connector, power will be run to the television as well as all
elements of the computer and MCU. This will allow for a neat appearance of a
single cable which plugs into the housing of the mirror.

4.3 Sensors

Probably the most important physical component for this experiment are going to
be sensor. On this section we are going to break down all the different type of
sensors that are going to be used for the Smart Mirror project. One of the possible
locations for the Smart Mirror is going to be in a humid area, for example a
bathroom, is very important to incorporate a humidity sensor in order to keep the
electronics protected from any moisture. A compliment to the humidity sensor will
be a temperature sensor, in order to prevent any component to be overheated
inside the Smart Mirror, we are going to need to include a way to measure the heat
inside the mirror. A sensor that will help in term of conserving power being
dissipated into the mirror is a light sensor. It’s important to incorporate a way to
measure the light in the room to determine if the Mirror needs to be ON or OFF.
The compliment to the light sensor is the motion sensor, the mirror will need to

39

determine whether there is a user present to turn ON or OFF. This section will
focus on comparing relevant sensors for each of the task mentioned above.

4.3.1 Temperature Sensor

After the preliminary research, Table 4.3.1.1 was created to facilitate a comparison
with key specifications that are important for the design of the final project. Besides
Table 4.3.1.1, Figure 4.3.1.1 was found during the research and it will be used to
select the component that will be used.

Type of Temperature Sensor

Thermocouple RTD Thermistor I.C. Sensor

Temperature
Range

-200C to
2000C

-200C
to 600C

-75C to 260C -40C to
125C

Interchange
Ability

Good Excellent Poor to fair Fair

Long-Term
Stability

Poor to fair Good Poor to fair Good

Accuracy Medium High Medium High

Repeatability Poor to fair Excellent Fair to good Excellent

Sensitivity
(Output)

Low Medium Very high High

Response Medium to fast Medium Medium to
fast

Fast

Linearity Fair Good Poor to fair Excellent

Self-Heating No Very low to
low

High Low

Point Sensitive Excellent Fair Good Excellent

Size Packaging Small to large Medium to
Small

Small to
medium

Small

Cost Low Low Low Low

Table 4.3.1.1: Comparison of Different Type of Temperature Sensor

40

Figure 4.3.1.1: Linear Comparison of Temperature Sensors - Recreated with

data provided from Omega

After using Table 4.3.1.1 and Figure 4.3.1.1 to compare the four types of
temperature sensors, it was determine that the integrated circuit sensor will be
implemented in the smart mirror project. This sensor is the simplest to implement
since it has the best linearity and it does not need any other circuitry to analyses
the data. Since Integrated Circuit Sensors will be picked for the project, 4 individual
sensors will be compared for the design of the project; LM35, TMP36, and TMP102
and DHT11. Table 4.3.1.2 compares all 4 components in multiple parameters.

The next parameter that will be compared will be the thermal response in still air,
Figure 4.3.1.2 shows the percentage change of the final value changes over 8
minutes after activation for the LM35 Sensor. It can be determine that after 3
minutes the LM35 sensor reaches 100%.

 Table 4.3.1.2: Comparison of Temperature Sensors

41

 LM35 Series TMP36 TMP102 DHT11

Output Type Analog Analog Digital Digital

Temperature
Range

-55 C to 150 C -40 C to 125 C -40 C to 125 C -

Accuracy (+/-) 0.5 C 1 C 0.5 C 2 C

Operating
Temperature

-55 C to 150 C -40 C to 150 C -55 C to 150 C 0 C to 50 C

Linear
Temperature

Slope

10 mV/ C 10 mV/ C - -

Supply
Current

114 uA 50 uA (max) - 0.5 mA

Supply
Voltage

4 V to 5.5 V 2.7 V to 5.5 V 1.4 V to 3.6 V 3V to 5.5 V

Output
Voltage
Range

-1V to 6 V 100 mV to 2 V 0.2 V to 4.0 V -

Impedance
Output

0.1 Ohm Low - -

Sensor Gain +10 - - -

Line
Regulation (+/-

)

0.02 C 0.5 C - -

Response
Time

Fast Medium Fast Medium

Long Term
Stability (+/-)

0.08 C 0.4 C - -

Self-Heating Low Low Low Low

Cost $1.23 $1.77 $5.95 $1.75

Figure 4.3.1.2: LM35 Percent of Final Value - Recreated with data provided from
the datasheet

42

Figure 4.3.1.3 illustrates the thermal response in still air for the TM36 temperature
sensor. After inspecting the graph we can determine that the smaller the size of
the PCB, the faster the response. We can see that comparing the smallest PCB
with the response time of the LM35, it can determine that the TM36 sensor is a
little slower than the LM35 by reaching 100 percent at 200 seconds (3 minutes and
20 seconds).

Figure 4.3.1.3: TM36 Change Response with Time - Recreated with data

provided from the datasheet

Figure 4.3.1.4 shows the conversion time as the temperature increases of the
TMP102 sensor. This graph is different from the previous one since this sensor’s
output is digital. But we can see the conversion time from -40 C to 140 C, when
applying a 3.6 V supply, is about 1 microsecond.

Figure 4.3.1.4: TMP102 Conversion Time Depending on Temperature -

Recreated with data provided from the datasheet

43

After comparing all 3 graph, we can determine that the LM36 sensor has the
quickest thermal response time in still air. The next parameter that will be
compared will be the temperature accuracy. Figure 4.3.1-5 displays the
temperature accuracy for the LM35 sensor, as well as Figure 4.3.1-6 for the TM36
sensor and Figure 4.3.1-7 for the TMP102 sensors. We can see that the
temperature error are very small for all of them but the TM36 is more accurate.

Figure 4.3.1.5: LM35 Error Depending on Temperature - Recreated with data

provided from the datasheet

Figure 4.3.1.6: TM36 Error With Respect to Temperature - Recreated with data

provided from the datasheet

44

Figure 4.3.1.7: TMP102 Temperature Error with respect to Temperature -

Recreated with data provided from the datasheet

After reviewing all the data, we decided to use DHT11 for the design of the project
since it combines temperature and humidity sensing and is not dependent of the
size of the Printed Circuit Board as well as its accuracy. The TMP102 sensor was
not considered since it the cost of the component is about 4 times more than the
DHT11.

For the Temperature Controller in the Smart Mirror we are going to need a voltage
comparator to determine if the fan will turn ON in order to keep the internal
temperature of the system in the operational range. In to implement this
comparator we are going to need the temperature sensor, one Operational
Amplifier, one NPN Bipolar Junction Transistor, one fan, three Diodes, and six
Resistors. The components will needed to implement a Schmitt Trigger to evaluate
the voltage. If the voltage goes reaches the upper bound of the Hysteresis Window,
it will turn the fan on, acting as a switch. Figure 4.3.1.7 illustrates the schematic
designed for the temperature control, and Figure 4.3.1.8 illustrates the Layout for
the Printed Circuit Board (PCB). While designing the Printed Circuit Board Layout,
Surfer Mounted components were not being considered, since this will facilitate
the prototyping portion of the project.

45

Figure 4.3.1.7: Temperature Control Schematic

46

Figure 4.3.1.8: Printed Circuit Board (PCB) Layout

Figure 4.3.1.9 shows the final printed circuit board. You can see where the
microcontroller from the Arduino Uno, the ATmega328p will sit. From further
research an alternative solution to regulate the fan was found, the Printed Circuit
Board would only need one NPN transistor, to minimize expenses we decided the
alternative option. Figure 4.3.1.10 illustrates the setup of the alternative option.

Figure 4.3.1.9: Final Printed Circuit Board (PCB)

47

Figure 4.3.1.10: Layout of Fan control circuit

4.3.2 Motion Sensor

Since we are not looking for a lot of precision on the Motion sensor we have
decided to select a motion sensor that can detect motion in a range of up to 150
cm, which is around 5 feet away from the mirror. While searching for a motion
sensor it was determine that those sensors that had an analog output had a
distance range with a longer range. Table 4.3.2.1 compares four sensors that meet
the range of the distance that we are interested in: GP2Y0A02YK0F,
GP2Y0A60SZxF, GP2Y0A700K0F, and GP2Y3A003K0F. It’s important to note
that sensors GP2Y0A700K0F and GP2Y3A003K0F are not in stock while the
research portion of the paper was being completed. When comparing the four
sensor using the table we can point out that they share the same range for the
Operating Temperature as well as the Recommended Supply Voltage needed for
proper operation.

48

GP2Y0A02YK

0F

GP2Y0A60SZ
xF

GP2Y0A700K
0F

GP2Y3A003K
0F

Output
Type

Analog Analog Analog Analog

Distance
Range

20 cm to 150
cm

10 cm to 150
cm

100 cm to 550
cm

40 cm to 300
cm

Supply
Voltage

-0.3 V to 7.0 V -0.3 V to 5.5 V -0.3 V to 7.0 V -0.3 V to 7.0 V

Maximum
Supply
Current

50 mA 50 mA 50 mA 50 mA

Voltage
Difference

at a
Distance

2.05V at
Range

1.6V at Range 1.6V at Range 1.6V at 40C to
100C

Operationa
l

Temperatu
re

-10C to 60C -10C to 60C -10C to 60C -10C to 60C

Typical
Output
Voltage

.4V .35V 2.7V 2.3V

Cost $14.95 $8.94 Not Available Not Available

Table 4.3.2.1: Motion Sensor Comparison

The following figures will compare the relationship of the output voltage that each
one of the sensors produce depending on the distance from the reflective object.
After comparing all four figures we can see that as the object moves away from
the sensor, the lower the output voltage becomes. The motion sensor that would
work better for our project would be the GP2Y0A700K0F, but at the moment this
sensor is not available, therefore the second option for our project would need to
be the GP2Y0A60SZxF since it’s more cost effective and we could provide a
smaller voltage supply.

For the final design of the Printed Circuit Board it was decided that three motion
sensors will be used. Two short range sensors were added to the side of the mirror

49

to control the media player with gestures. The sensors that were used for the
gesture controls were the Sharp GP2Y0A21YK. A longer range sensor was also
used to determine the presence of the user when they walk into the room. Motion
sensor HC-SR501 was used for our final design, this sensor was economically
efficient compared with the aforementioned sensors. The sensor has a digital
output of 3.3 V and an operating temperature of -15 C to about 70 C. The range
for this sensor can be adjusted from three to seven meters and requires a voltage
between 5V and 20V. The cost for this component was $1.80. Compared to the
previously mentioned sensors, this was the best economical choice. We decided
not to use this particular sensor for the gesture recognition because this particular
sensor would sometimes trigger erroneously, deeming it too sensitive for our
application. The following figure corresponds to the GP2Y0A02YK sensor.

Figure 4.3.2.1: GP2Y0A02YK Sensor Output Voltage vs Distance to Object

The following figure corresponds to the GP2Y0A60SZ sensor.

Figure 4.3.2.2: GP2Y0A60SZ Sensor Output Voltage vs Distance to Object

50

The following figure corresponds to the GP2Y0A700K0F sensor.

Figure 4.3.2.3: GP2Y0A700K0F Sensor Output Voltage vs Distance to Object

The following figure corresponds to the GP2Y3A003K sensor.

Figure 4.3.2.4: GP2Y3A003K Sensor Output Voltage vs Distance to Object

51

4.3.3 Light Sensor

After reviewing the different type of Light sensor is was determine that a highly
precise sensor will not be needed, since the primary purpose of the sensor will be
to determine if there is light in the room, if so it will “turn on” the mirror. The search
was narrowed down to a photodiode and a phototransistor. Table 4.3.3.1
compares 3 commonly used sensors: Gl5528, NORP12, and TEMT6000. After
reviewing the temperature, it was determine that the GL5528 sensor will be chosen
for the design of our project since it has a low power dissipation and it has the
lowest cost.

 GL5528 NORP12 TEMT6000

Light Resistance at 10 Lux
(25 C)

8 kohms to 20
kohms

5.4 to 12.6
kohms

-

Collector Light Current - - 16 uA

Dark Resistance at 0 Lux 1.0 Mohms 1.0 Mohms -

Collector Dark Current - - 50 nA

Power Dissipation (25C) 100mW 250mW 100mW

Max Voltage (25C) 150 V 250V -

Operating Temperature

-30 C to +70 C -60C to 75C -40C to
85C

Spectral Response Peak
(25C)

540 nm 550 nm 570 nm

Cost $1.50 $6.66 $4.95

Table 4.3.3.1: Light Sensor Comparison

4.3.4 Humidity Sensor

After researching the different type of humidity sensors, we can compare the
capacitive and resistive sensor, since the thermal conductivity humidity sensors
will be more precise without the need to be and it will be more expensive than the
Relative Humidity. Table 4.3.4.1 compares the Capacitive and Resistive Humidity
sensors.

52

Type of Humidity Sensors

Capacitive Resistive Thermal

Conductive

Cost Low Low High

Size Small Small Small

Accuracy (+/-) 1% RH 2% RH +/- 5% RH at 40 C
and +/- 0.5% at

100 C

Long-term Stability Yes Yes Yes

Interchangeable Yes (only if
laser trimmed)

Yes No

Response Time for a 63%
RH step Change

30 to 60
seconds

10 to 30
seconds

20 seconds

Operating Temperature Up to 200 C -40C to
140C

Up to 300 C

Uncertainty (from 5% to
95% RH with two-point

calibration)

+/- 2% RH +/- 1 to 2
%

-

Linearity Yes No -

Calibration Needed Yes (Computer
Based)

No Yes

Sensitivity (for every 1%
change in RH %)

0.2 to 0.5 4pf -

Humidity Range 0 to 100% RH 5 to 95%
RH

-

Resistance to Chemical
Vapors

Reasonable No Yes

Resistance to temperature
fluctuations

Yes No Yes

Table 4.3.4.1: Humidity Sensor Comparison

53

After reviewing previous projects and researching online, the most frequently used
sensors for humidity are the innovative sensor technology sensors P-14 and
MK33. Table 4.3.4.2 compares these two sensors.

Component Comparison

 P-14 MK33 DHT11

High Chemical Resistance Yes Yes Low

Humidity Operating Range 0 to 100% RH

0 to 100%
RH

20 to 95% RH

Operating Temperature Range -50 C to 150 C

-40 C to
190 C

0 C to 50 C

Capacitance 150 pF +/- 50 pF

300 pF +/-
40 pF

-

Sensitivity per RH% 0.25 pf 0.45 pf -

Loss Factor <0.01 <0.01 -

Linearity error < 1.5% RH < 2.0% RH 5.0% RH

Hysteresis < 1.5% RH%

< 2.0%
RH%

1.0% RH%

Response Time < 5 seconds

< 6
seconds

6 seconds

Frequency Range (KHz) 1 - 100 1 - 100

Maximum Operating Voltage < 12 Vpp < 12 Vpp

Table 4.3.4.2: Comparison between P-14 and MK33 and DHT11.

4.3.5 Temperature Controller

For the Temperature Controller in the Smart Mirror we are going to need a voltage
comparator to determine if the fan will turn ON in order to keep the internal
temperature of the system in the operational range. In to implement this
comparator we are going to need the temperature sensor, one Operational
Amplifier, one NPN Bipolar Junction Transistor, one fan, three Diodes, and six
Resistors. The components will needed to implement a Schmitt Trigger to evaluate
the voltage. If the voltage goes reaches the upper bound of the Hysteresis Window,
it will turn the fan on, acting as a switch. Figure 4.4.1 illustrates the schematic
designed for the temperature control, and Figure 4.4.2 illustrates the Layout for the

54

Printed Circuit Board (PCB). While designing the Printed Circuit Board Layout,
Surfer Mounted components were not being considered, since this will facilitate
the prototyping portion of the project.

4.4 MCU

After researching microcontrollers and comparing previous projects regarding
similar projects, the 3 microcontrollers that will be considered for this project will
be the Arduino Uno, Arduino Due, and TI MSP430. While researching the
microcontrollers units, it was difficult to find information on the Texas Instruments
website. Table 4.4.1 compares the mentioned 3 microcontrollers.

Arduino Uno TI MSP 430 Arduino Due

Microcontroller ATmega328P MSP430FR5969 AT91SAM3X8E

Operating Voltage 5 V 1.8 V to 3.6 V 3.3 V

Input Voltage 7 to 12 V - 7 to 12 V

Digital I/O Pins 14 - 54

PWM Digital i/O Pins 6 - 12

Analog Pins 6 15 14

DC Current Per I/O Pin 20 mA +/- 2 mA 130 mA

DC Current for 3.3 V Pin 50 mA - 800 mA

Flash Memory 32 KB 32 KB 512 KB

SRAM 2 KB 2 KB 96 KB

EEPROM 1 KB - -

Clock Speed 16 MHz 16 MHz 84 MHz

Table 4.4.1: Microcontroller Comparison

While researching the different type of microcontrollers, it was determine that the
Arduino Uno was the best fit for our project. The Arduino Uno has a large open-
sourced libraries, this will make the development process of the final product much
easier. Besides the open-sourced, Arduino has multiple products that can be
combined with the standard board, this will make the prototyping of the project
simpler. Arduino also has a massive amount of community support online, it’s
common to find threads of question and answers for common issues that arise
when doing projects using the Arduino boards. Some of these threads include

http://www.ti.com/product/MSP430FR5969

55

solutions for troubleshooting the board, and can even become more specific with
ways to fix common errors made while using the I2C, SPI, and UART interfaces.

Part of the requirements for the project is to create a schematic that will be used
for the final product. It was decided to create a PCB of the Microcontroller Unit
along with voltage regulators and components needed to run the MCU at the
desired clock rate since the sensors will be communicating with it and it’s
necessary for it to be costumed. The layout used for this printed circuit board was
also obtained from Arduino. Arduino is open source meaning their schematics and
boards are available to the public, making prototyping and customizing of the board
with the sensors more accessible.

The microprocessor that was chosen was from ATMEL, ATMega328P. Several
other models of ATMEL well also compared as well as microprocessors from other
providers such as Texas Instruments, and Raspberry Pi. The specifications and
reason why this processors was chosen are described in Table 4.4.2 below along
with pictures of the schematics and board layouts of the Arduino board with the
ATMEL processor.

ATmega328P

Flash 32 KB

CPU 8-bit AVR

Max Frequency 20 MHz

Max I/O Pins 23

ADC Channels 8

ADC Resolution 10 bit

ADC Speed 15 ksps

Analog Comparators 1

I/O Supply Class 1.8 to 5.5

PWM Channels 6

SPI 2

TWI (I2C) 1

UART 1

Table 4.4.2: ATmega328P Components

56

Figure 4.4.1: Schematic of Arduino Board

57

Figure 4.4.2: Printed Circuit Board Layout of Arduino Board

4.5 Audio System

The audio system on the Smart Mirror needs to include audio input as well as audio
output. The audio input system will be utilized to recognize any commands that the
user will instruct via voice control. While the audio output system will provide the
user with any information they may want such as music, current temperature and
number of events scheduled for the day.

4.5.1 Audio In

For the audio in, it has been decided to utilize a small, USB powered microphone
which will receive all voice commands the user gives. The USB microphone will be
selected based upon cost and quality of the unit. The unit needs to record quality
sound but at the same time, needs to remain in budget. The microphone will be
mounted into the face of the smart mirror to receive the best possible audio signal
to ensure the voice commands are clear.

58

Since this project is self-funded, a high quality microphone was out of budget. As
the voice commands are an integral part of the smart mirror, it is important that a
quality microphone was used. Due to this it was decided to utilize a webcam owned
by one of the members of the group. The webcam utilized is a Logitech C920 Pro.
This webcam has two microphones to provide full stereo audio capture. It also
includes built in automatic noise reduction to ensure the software is receiving the
clearest audio possible.

4.5.2 Audio Out

For an audio out system, there will be two possible options first is to utilize
speakers within the housing of the mirror while the second is to utilize external
speakers. The speakers within the housing may be connected to the television or
the Raspberry Pi itself. The television purchased for this project has built in
speakers which will be accommodated into the sides of the mirror. This will ensure
that the audio is projected away from the microphone in an attempt to interfere as
little as possible. External speakers could be utilized via a Bluetooth USB dongle
for the Raspberry Pi however that could potentially cause interference with the
microphone if the speaker’s face towards the mirror. Though all options will be
supported, it will be encouraged for the speakers housed within the mirror to be
utilized.

At the time of writing of this project it was known that Windows 10 IoT did not
support audio over HDMI. However, the hope was that this support would be
implemented by the time this project was completed. This did not prove to be true.
There is still no audio of HDMI on Windows 10 IoT. Due to this, it is required that
users utilize the 3.5mm auxiliary port on the Raspberry Pi to play their music on
external speakers. In the future, if Microsoft decides to implement audio over
HDMI, it will be possible to use the speakers within the housing.

4.6 Power

For power for the smart mirror system, it will be ensured that the user only has one
power cable that needs to connect to the wall. Unfortunately a battery is unfeasible
for an item of this size that will be permanently affixed in a household. This requires
a single power cable at the least. The 120V AC power will be brought into the
mirror housing utilizing a C13 Connector. The power will then be split into two lines,
one running directly to the television with the other intending to power the
Raspberry Pi and the MCU. The power to the Raspberry Pi and MCU will be
required to be converted to a 5V DC signal for the Pi and a 3.3V DC signal for the
MCU. To do this, a power converter will be purchased to convert from 120V AC to
5V DC power and it will be implemented within the mirror. From there, power will
be converted to a microUSB to power the Pi. Finally, power will be utilized from the
5V converter and passed through a step down circuit to step the power down to
3.3V for the MCU. This will provide power to all the necessary MCU systems

59

including all the sensors. On the final design we used 5V and 12V voltage
regulators to supply the voltage to the components that were used. The 12V
voltage regulator was used to power both fans that are part of the temperature
control. Figure 4.6.1 shows the setup of the voltage regulators. This is the same
setup that was used for experiment three in the Electronics II Laboratory Manual.

Figure 4.6.1: Voltage Regulator Configuration Circuit

5. Software Design

5.1 Design Discussion

Our user interface design will be simple and minimalistic, displaying the various
bits of information in an elegant fashion. We will utilize the screen real estate to
display the information in an optimal orientation that does not hinder the function
of the mirror, such as in the top corners of the display. The font, text size, and color
should be appropriate for its intended use location, accounting for the lighting
conditions of the room in which it operates. For aesthetic purposes, a
monochromatic theme is desirable but could become difficult to read in bright
environments.

Due to implementation of the software on Windows 10 IoT using the Universal
Windows Platform (UWP), the project will be constructed utilizing the standard
UWP design architecture; MVVM. The MVVM, Model-view-viewmodel architecture
is derived from the basic model-view-controller (MVC) pattern. One of the core
ideas of the MVVM model is separation of development of the graphical user
interface (GUI) and the the back end logic and data implementation. The ‘View’
component refers to the presentation layer and specifies the user interface. The

60

‘Model’ component of MVVM is the code that handles all logic and data required
by the system. The ‘View Model” component is used to convert information from
the Model to a format presentable in the GUI then bind it to the view.

The majority of the program will be written utilizing the .NET framework and C# for
the model layer of MVVM. UWP programs generally utilize XAML to describe the
View with the thin view model layer behind it being written in the same language
as the model, in this case C#. Due to the use of a number of web APIs for a majority
of the applications, other languages will need to potentially need to be utilized
implement RESTful services or other web based services.

The general display status and layout of the applications on the mirror display will
be controlled by a single class which will hold the current state of the mirror at all
times. This class, MirrorState will have a number of strings and booleans to
indicate what is currently active as well as where it should be located on the
display. It will also include information about the status of each application such
was whether or not it is currently focused or running some specific functionality for
the user. This class will be the heart of the application and will essentially manage
everything going on. All sensor information will be fed into this class as well to be
sorted out so action may be taken. An overall block diagram of the architecture of
the application is shown in Figure 5.1.1.

Figure 5.1.1: Previous Application Block Diagram

61

Figure 5.1.2: Final Application Block Diagram

As you can see in Figure 5.1.2, we have simplified the Application Block Diagram
for the final version of the mirror software. Many of the subsystem components
have consolidated into a single entity. By doing so, the diagram becomes more
compact without losing any essential information pertaining to the architecture of
the mirror’s software.

The module class diagram of the final project can be seen in Figure 5.1.3. Voice
commands are an integral part of the interacting with the mirror. You can see from
the relative box sizes that the IVoiceControlModule is an essential interface that is
connected to many other parts of the software. It extends to the MainModule and
ModuleImplementation components while being fed GrammarXML and
Commands parameters.

62

Figure 5.1.3: Module Class Diagram

5.2 Voice Control

5.2.1 Requirements & Constraints

The voice controller is the primary component used to interact with the smart
mirror. Due to this, its implementation details are vital to the function of the mirror
overall. The requirements of the mirror’s voice commands need to be thoroughly
considered and tested to ensure that they work as desired in an efficient, user
friendly manner. Each command should be implemented in a number of ways to
account for different types of speech and phrases used. This is to ensure that each
user finds interaction with the mirror intuitive and unencumbered. To give a set list
of commands required for each application will simply have users needing to
continuously refer to the list of commands which will simply bog the user down in
minutia making the mirror ineffective in its use of saving time and providing easy
access to necessary information.

It is required that each application have a specific set of voice commands which
can be listed to the user depending on the context of the mirror currently. This list

63

will show the general commands the user may use however it should be possible
for the user to say things similar to these commands to the same effect. With a
relatively large set of voice commands to achieve this it will be necessary for some
to be active at certain times and inactive at other times. The reason for this is due
to potential errors in the voice recognition system if the user is unclear about their
command or the audio isn’t good enough. While the voice recognition software
may still be confused by an unclear phrase it is better for nothing to happen than
for an erroneous action to occur. Unloading certain grammar files based upon the
current state of the mirror can alleviate this issue to some extent. For example,
when no music is playing, then commands to change the volume, pause the music,
or skip a song are entirely unnecessary and simply offer more phrases for the voice
recognition software to be confused by. Setting the system up this way will offer
great benefits but will require in depth testing to ensure all operations that should
be possible are at any given moment while the only commands disabled are those
that make little sense in the current context.

The primary constraint with a voice recognition system is the unfortunate issue
with accents. Users with a heavy accent may have a hard time using the mirror
and there is honestly little that can be done about this issue aside from within the
voice recognition software itself. Since the voice recognition software for this
project is from an outside source it will simply have to be taken as is with hopes
that this issue is accounted for to some extent. Another constraint placed upon the
system by utilizing voice recognition is a language barrier. This system will only be
able to be utilized by people who speak English in its current state. That being
said, Microsoft Speech Recognition does offer support for different languages thus
it would simply be a matter of converting all text on screen as well as all commands
in the grammar file to support other regions.

5.2.2 Error Handling

Utilization of voice recognition software will likely always come with some errors.
Whether it be in the form of invalid commands, unclear speech, or bad audio
reception, errors will happen. The goal is to limit these issues as much as possible.
Two of these primary issues can be alleviated to some extent by developers while
the third is on the user. The input of invalid commands can be entirely avoided by
creating an extensive grammar file that accounts for all situations. Unfortunately,
this is an extremely difficult, time consuming task. However, as artificial intelligence
progresses, computers should be able to learn new commands themselves making
this issue an invalid point. At this point in time, for this project, computer learning
will not be utilized to increase commands as users interact with the mirror, we will
currently attempt to implement as many ways to phrase commands as possible in
the grammar files. The second issue with voice recognition, bad audio reception,
can be avoided by utilizing the highest quality microphone possible. There is a
tradeoff on this solution however due to the fact that microphones can get
expensive quickly as quality increases. For this project, a happy medium will be
met between microphone quality and price to ensure the mirror works well while

64

remaining in budget. The final issue, unclear speech, is simply an issue the user
must be accountable for. At the current level of technology, clear speech is
necessary when interacting with a computer via voice commands and fortunately
most users are aware of this limitation and will likely ensure they speak clearly and
concisely.

Acknowledging that there will be errors with voice commands, an effort will be
made to handle them in the most efficient and helpful manner. All commands will
begin with the keyword “Mirror” thus the mirror will know when users are attempting
to begin a voice command. If a voice command is started but does not match any
of the possible commands in the current context, the mirror will display on screen
what command it received as well as offer the user a list of potential commands it
believes they may have been attempting to use. It will then allow the user to repeat
the command or select one of the options it presented to ensure the user’s
intentions can be carried out. This incorrect command, along with the list of
options, will be displayed by default in the bottom right corner of the mirror and if
the layout is changed, will be displayed wherever the user set the location of
possible voice commands to display.

5.2.3 Implementation

The implementation of the voice recognition software will utilize the Microsoft
Speech Recognition API for all voice command processing. The object that listens
for voice commands is an implementation of the SpeechRecognizer class. This
class is run in a separate thread from the main program utilizing the C# async
keyword. The object raises interrupt events when speech begins and it listens to
the speech then determines if the commands that were spoken fit one of the given
rules in any of the grammar constraint files currently loaded. If the command
matches any of the rules in the constraint file then the SpeechRecognizer object
raises an interrupt and passes arguments of what words were spoken in the
parameter list to a method specified at the SpeechRecognizer initialization. It is
then expected for the developer to write code to handle the interrupt and determine
what speech command was given and execute the appropriate code.

Since a large number of commands will be implemented, all of which may not be
needed at the same time, the SpeechRecognizer will load and unload certain
grammar files as they become necessary to the program’s execution. Due to this
fact, a number of different grammar files will need to be implemented and loaded
and unloaded at appropriate times. To ensure modularity, the subsystems will not
call into the voice recognition code to load or unload systems, rather the voice
recognition system will have a class whose sole job is to monitor the state of the
mirror and load or unload grammar files depending upon values stored in
MirrorState. This will be implemented in the most minimalistic way possible to
ensure a low resource cost of loading and unloading files.

65

Figure 5.2.3.1: Voice Recognition Class Diagram

The voice recognition software will contain three primary classes to handle all voice
recognition events. The first will be a VoiceControlManager class which will handle
implementation of the SpeechRecognizer and load and unload all grammar files
as well as implementation of the method called at interrupt. This file will not call
any of the subsystems itself rather it will delegate interaction with all subsystems
to another class, the VoiceController class. When a voice command is given, the
VoiceControlManager will call methods within the VoiceController to raise flags for
the subsystems that a voice command was given. The subsystems will then check
with the voice manager to find out what command was given and then act upon
that command. This layout provides modularity between the subsystem classes
and the voice manager. This would allow for another system to be swapped in
place of, or supplement, the VoiceController if the need were ever to arise. The
final class, the GrammarController, will interact with the MirrorState class to
monitor the current state of the mirror. Depending on the state of the mirror, the
GrammarController will pass specific grammar files to the VoiceControlManager
to load or unload as needed. This information is summarized in a UML Class

66

Diagram of the voice recognition system in Figure 5.2.3.1 as well as in a State
diagram in 5.2.3.2.

Figure 5.2.3.2: Previous Voice Recognition State Diagram

The final voice recognition state diagram can be seen in Figure 5.2.3.3. It begins
by listening for voice data. If voice data is detected, then it is verified as a valid
voice command before the mirror determines which module it should be sent to.
After that, the need for optional commands to be loaded or unloaded is decided
and then satisfied if needed. Finally, the command is passed to the correct module
to complete the diagram. The process begins again by listening for new voice data.

The final diagram has again been simplified compared to the original diagram. The
final diagram focuses more on the software aspect of the process without involving
the physical state of the mirror such as whether or not it is powered on. It also does
away with the involvement of the grammar file. The initiation of the Speech
Recognizer is implicit in the process.

67

Figure 5.2.3.3: Final Voice Recognition State Diagram

5.3 Sensor Integration

5.3.1 Requirements & Constraints

68

For the implementation of the smart mirror, sensors will be required for certain
functionality. The mirror needs to be able to monitor specific aspects about its
environment to perform in the most suitable manner. There are a number of things
that need to be monitored in the environment including temperature, humidity,
motion, light, and audio. Each of these external stimuli are required for vital
functionality of the smart mirror. Below, each sensor will be discussed in detail
about requirements, use, and constraints.

The first requirement is that the mirror be able to sense temperature and humidity
in the mirror housing. To meet this requirement, a temperature and humidity sensor
need to be housed within the smart mirror. This will allow the mirror to protect itself
from environmental factors that could damage the electrical components of the
mirror. The temperature will be monitored to ensure the components of the mirror
do not overheat. Two temperature thresholds will be set, at the first threshold a fan
will be turned on to attempt to circulate air through the mirror housing to cool the
internal temperature. At the second temperature threshold, the mirror will simply
shut down to avoid overheating. The other sensor within the housing implemented
to protect the mirror will be a humidity sensor. As this item will be used in a
bathroom, humidity could present a real danger to the electrical components when
a user showers and the bathroom becomes humid from the hot water and confined
space. By monitoring the humidity in the housing of the mirror, it will be possible to
shut off the mirror if necessary to avoid permanent damage to the electrical
components.

The second requirement utilizing sensors is that the mirror will turn on and off if
users enter the area. This will be implemented utilizing a motion detector which will
send a signal if a user enters the room. This is an important utility to the mirror as
it will allow the mirror to have an auto on/off feature which increases convenience
for the user. The motion sensor will be able to sense movement up to a range of
five feet to ensure the mirror turns on as soon as the user is near it. The sensor
should have a field of view of, at minimum, ninety degrees. This will ensure that no
matter the location of mirror in the room, it will activate when a user enters.

The third requirement is a light sensor. This sensor is also tied to the auto on/off
functionality of the mirror. If the mirror detects motion and the light is off, the mirror
should illuminate and remain on until a designated time period when no motion
occurs. However, if the mirror senses motion and a light is on, then the mirror
should turn off if the light in the room has turned off. Due to this requirement, a
light sensor is required. The light sensor does not need to be able to sense an
extremely accurate level of lighting simply whether or not a light in the room is on
or off.

The final sensor implementation required for the implementation of the smart mirror
is a microphone to record audio input for the voice recognition system of the mirror.
As the voice recognition system is the primary means of interaction with the mirror,

69

it is important that the microphone selected has good audio quality to ensure the
voice recognition functionality works efficiently. While the other sensors will be
implemented via a MCU which will process their data, this sensor will be connected
directly to the Raspberry Pi via a USB connection.

5.3.2 MCU to PC Communications

As four of the five external sensory inputs will be implemented utilizing sensors
connected to a MCU, it is important that the Raspberry Pi is able to communicate
with the MCU selected. The Raspberry Pi offers I2C implementation which will be
the most simple and efficient means of communication with the MCU.

The MCU will be required to transmit information to the Raspberry Pi on regular
intervals to ensure that the information from the sensors is always processed in an
efficient time period. Each sensor will implement different intervals at which the
MCU needs to communicate with the Raspberry Pi. These intervals will be
determined by the Pi which will act as the master in the I2C communication while
the MCU will act as the slave. These intervals, discussed in the implementation
section after this, will be determined based upon the importance of the information
as well as the rate at which the information might change. Once the information is
passed to the Raspberry Pi it will be utilized to perform specific tasks as deemed
necessary by the software.

In the end, it was decided to use UART serial communication between the
ATmega328 on the MCU and the Raspberry Pi. To accomplish this, you simply
connect the Tx pin on one to the Rx pin on the other and vice-versa. The
ATmega328 constantly reads the sensory information and then passes the
information to the Raspberry Pi every 200 milliseconds. The software on the
Raspberry Pi is reading this information and using it to process commands from
the gesture controller. It also utilizes the received sensory information to display
on the mirror itself if the user asks the mirror to show sensor info. This will show
the temperature in degrees Fahrenheit, the humidity percentage, the status of the
LED on top of the mirror, whether motion is currently detected or not, and finally it
will tell if a gesture control is received.

5.3.3 Implementation

The implementation of each sensor, excluding the microphone, will require
microcontroller code, written in C, as well as general Object Oriented code
implemented in the software of the mirror, written in C#. The C code should be
relatively simple for each sensor as each will simply be evaluating a bit word given
by the ADC implemented in the MCU. The C# code is where all the sensory
information will be handled once it is acquired.

For the temperature and humidity sensor, data will be passed to the Raspberry Pi
once every second. Temperature and humidity are unlikely to change much of the

70

span of a second thus this, relatively slow, read rate is acceptable for the
temperature and humidity sensor. The MCU will read more often than that and the
most recent information will be passed to the Pi. Once the Pi has the information
it will evaluate it with a simple if else block to determine if it is above the first or
second threshold, if so the code will execute to act accordingly.

The implementation of the light sensor and the motion detector are tied to the same
feature of the mirror, the auto on/off functionality. Thus they will be required to be
read simultaneously. The information from these sensors will be passed to the
Raspberry Pi five times a second to ensure that there is no lag between the time
motion is detected and the mirror display is turned on. The information for the
motion sensor will be passed to the Pi which will then activate the mirror display, if
it is not already active, if there was motion, otherwise it will do nothing. Once the
mirror is activated, the mirror will continue to check if a light is on in the room, if a
light is on then the mirror will remain active unless the user tells it to turn off. If the
light goes out after it was read as on by the sensor, then the mirror will wait a
designated time, less than a minute, and shut off the display. This functionality
serves a number of purposes. First, this implementation will be the most user
friendly for the user, to not have to worry about turning the mirror on or off. Second,
this will save power by ensuring the television is off when the user leaves the room,
and lastly the television is the element that produces the most heat in the mirror
housing, thus shutting it off whenever possible will help to keep the temperature
down.

5.4 Applications

5.4.1 Clock

The clock will be implemented as a customizable display on the GUI and will be
controlled by a simple C# class to update the time appropriately. It will utilize the
C# DateTime class to update the time appropriately. The time will be checked on
regular intervals, half a millisecond long, to ensure that the time is updated every
second. The C# DateTime class uses the system time to get the date and time so
the correct date and time will need to be set on the computer utilized for the project.
This will be handled via the external application created for setup and configuration
of the mirror.

The clock implementation for a digital display will be a simple matter of utilizing the
built in DateTime element of C#. However, the analog clock implementation will be
moderately more difficult and require some math to rotate the hands accordingly.
The time and all settings will be implemented in a model layer class used to hold
and manipulate the data appropriately. A view model class will be created on top
of this to manipulate the data into a format for display via the view component. This
design is shown as a UML class diagram in Figure 5.4.1.1.

71

Figure 5.4.1.1: Clock Class Diagram

5.4.2 Calendar

The calendar application will be created using the .NET framework written in C#.
The application will utilize the Google Calendar API along with the main classes
created by Google that go with the API. The API will provide calendar events to
the application and the application will submit new events to the API to be stored
as a google calendar event if a user creates a new event. The user will be required
to login to their google account on the external application to allow authentication
via a web browser for the mirror to access the user’s calendar. The first calendar
class, which will be a singleton, which will handle all interaction with the Google
API. Aside from that, helper classes will be created to store and manipulate the
data as appropriate for display on the mirror. The state of the calendar will be
controlled by another class and its display information will be passed to a view
model component which will bind all the given data to the view elements.

Voice commands will be created and stored in a grammar file to allow the user to
interact with the calendar. Any time a user command is given, if the calendar has
not been refreshed within the last five minutes it will be refreshed then the
command will run. This is to ensure any changes are implemented before allowing
the user to attempt to create or modify existing events. The user will have a number
of options to control the calendar including scrolling the display to hours in the
future, seeing the next day’s calendar, or creating or modifying calendar events as
they see fit.

The google calendar API utilizes its own classes and objects to implement all
interaction with the service. These will be used to push and pull information from
the web. Once we have to objects, the necessary data will be extracted from the
objects provided by the API to be converted into a format appropriate for the mirror
display. Only the upcoming eight hours’ worth of events will be stored to save
resources. The sacrifice this requires is in computation time when the user asks to
see another portion of the calendar. To alleviate some of this cost, at a designated
time if there are no events left on the calendar, the calendar will automatically shift
to the next day’s view so that the user will not have to wait to see tomorrow’s
calendar during the evening.

72

5.4.3 To-do List

The to-do list implementation on the smart mirror will be created utilizing the
Todoist software currently available to users of multiple platforms, including
Android, IOS, and Windows. Todoist will be extended to the smart mirror, enabling
users another avenue to plan and prep for their day in the most efficient way
possible. The main functionality of the Todoist application is to create reminders,
show them at the appropriate times, and enable the user to delete them once they
are completed. All this functionality will be extended to the mirror utilizing voice
commands.

The to-do list application is one of the option applications in the mirror and thus, it
will have its own set of extra voice commands to cut down on the total number of
commands available at any given time. The user will be able to utilize simple voice
commands such as show/hide to-do or clear to-do. The third default command for
the to-do list will be “Open To-Do” which will open the to-do list into the ‘Extras’
section of the mirror where all extra voice commands such as creating, modifying
and deleting to-do list items will be available

The to-do list utilizes HTTP Post functionality to retrieve information from the web
API. Utilizing Post requires a specialized API token which will be passed to the
mirror when the user logs in on the external setup application. Once the application
has the API token tied to the user’s account, pulling information from and passing
information to the web service is a matter of utilizing JSON with HTTP to pass data.
Every time the to-do list software refreshes, the mirror will check all new to-do
items against those currently saved on the mirror and update everything
accordingly. This will ensure that items created, modified, or deleted on other
devices are changed appropriately on the mirror as well.

The to-do application will utilize a simple singleton class to handle all business
logic tied to the to-do implementation. This singleton will store and manipulate
information utilizing a simple POCO created specifically to store the to-do
information required for efficient display on the mirror. A list of these to-do objects
will be created every time the mirror receives information from the API and then it
will be ensured that the contents of the current display are the same as what was
received from the API. If not it will be updated accordingly.

5.4.4 Weather

The weather elements of the smart mirror will be implemented utilizing C# to
manage all data and perform all required logic. The visual representation will be
managed by an XAML view item which will specify all layout implementation
details. All weather information will be provided by OpenWeatherMaps which offers
a number of APIs with different weather information. Three APIs will be user from
OpenWeatherMaps, the first is an API that gives the current weather. The second

73

is an API that gives the upcoming five days weather information in three hour
increments. From this second API, the next days weather will be reported in three
hour increments. It will report six different sets of information varying over the hours
of five A.M. to ten P.M. The final API will provide a weather summary of the next
five days.

All weather information will be displayed in the same location on the mirror but only
one type of information at a time. In the morning, the current days weather will be
shown while in the evening, the next days weather will be shown. Voice commands
will be created to allow users to allow the user to request that the mirror show any
of the types of weather reports. This will allow the user to glean the most useful
information at a glance while checking others with a simple command.

The weather information is retrieved from the website using a simple HTTP request
and it reported back as a JSON file. This JSON file will be converted to C# objects
with data which will be further converted into a custom C# object that is easier to
work with. Once the weather information is obtained it is a simple matter of
converting it to a viewable format and displaying it on the mirror. Error handling will
be implemented in case the mirror loses connection to the internet in which case
the weather information will simply be turned off entirely. The overall design of the
mirror element is shown as a UML class diagram in Figure 5.4.4.1.

Figure 5.4.4.1: Weather Class Diagram

74

5.4.5 News

In order to give the user a glimpse at what is going on in the world at that moment,
our mirror will provide a section of the display dedicated to serving up world news
headlines. The source of the news is CNN’s World News RSS feed. In order to
parse the data in the same fashion as the weather data, we will convert the RSS
feed into a JSON format using the online API rss2json [10]. From a programming
perspective, the news data is retrieved from the website using a simple HTTP
request and it is reported back as a JSON file. Just as is done with the weather
information, this JSON file will be converted to C# objects with data which will be
further converted into a custom C# object that is more easily manipulated.

After the news information is obtained, our functions will parse the file for
information to be displayed using the keywords “title” and “thumbnail” to fetch the
news headline and image preview, respective. Afterwards, it is a simple matter of
converting it to a viewable format and displaying it on the mirror programmatically
by linking the objects to the Image panels in the XAML. We will set the news
headlines to refresh every 30 minutes. Error handling will be implemented in the
event of a loss of internet connectivty in which case the news information will
simply be turned off completely. The overall design of the news element is shown
as a UML class diagram in Figure 5.4.5.1.

Figure 5.4.5.1: News Headline Class Diagram

5.4.6 Music

It will be required for the smart mirror to be able to play music specified by the user.
Initially, the plan was to implement this utilizing one of the numerous music
streaming software options. The options considered included Spotify, Google Play
Music, Microsoft Groove, and Pandora. Unfortunately, none of these services offer
an official web API that allows playback of music. Spotify offers full music playback
for Android and iOS devices, Google Play Music and Pandora have no official API
to speak of, and the Microsoft Groove API is still in the early stages and is in a
closed beta. Permission may be requested to utilize the Microsoft Groove API but
a system needs to be established with Microsoft Azure in order to request access.
An attempt will be made to gain access to Microsoft Groove’s API for web

75

streaming playback however, if this is unable to be accomplished, it will be required
to use a standard music playing application.

If a standard music playing application is utilized, users will be able to upload music
from their computer to the mirror utilizing the external application used for set up.
Then the mirror will implement a simple playback option for the user to play the
music in the specified folder stored on the mirror. Unfortunately, the Raspberry Pi
currently has an 8GB microSD card so only a small amount of the music will be
able to be stored by default. It would be up to the user to purchase a larger microSD
card, flash the Windows 10 IoT image to it, then install the smart mirror application.
As most users would not want to be inconvenienced by such a task the goal will
be to allow the user to create playlists which we can pass over internet connection
to the Pi depending upon which playlist the user requests. To implement this
smoothly, only the first couple songs of each playlist would be stored on the mirror
while the rest would begin streaming to the mirror once playback of the selected
playlist begins. Once the music stops, all but those few initial songs would be
removed to keep as much space free as possible.

The code architecture design of this portion of the smart mirror will vary drastically
depending upon which method is used. To do this, this portion of design will not
be completed until it is determined that access to the Microsoft Groove API will not
be possible. At which point the secondary option will be pursued. For now, only the
general functionality of this portion will be established.

It will be required that the user is able to give voice commands to the mirror to tell
it to play music, change volume, stop or pause music playback, or change the
playlist. The mirror music playback functionality will utilize only playlists to simplify
the amount of potential commands required as well as the potential for
misunderstood voice commands related to unique artist, album, and song names.
The playback of music is an added bonus for users of the smart mirror as a number
of people enjoy listening to music in their morning and nightly routines.
Incorporating this functionality into an existing element of their morning, their new
smart mirror, offers them another step towards ease of use and functionality.

5.5 PC/Mobile App

All customizable components of the mirror will be configurable from a simple
computer or mobile application. This will allow the user to interact with the mirror
for simple tasks such as changing the time without over-encumbering them with
too many voice commands. The voice commands will be utilized primarily for daily
use to perform tasks such as expanding applications and getting more info. While
any configuration tasks will be accomplished at setup, or any time thereafter, using
an external application.

This external application will be written for Windows 10 which will be a required
application alongside the mirror. In this application, users will set vital information

76

such as location and time. Here the user will also be required to log in to all
accounts tied to the mirror so that the mirror is able to pull information from the
APIs.

This external application will also be created as a Universal Windows Platform
program. This will allow the user to utilize the mirror as a means of configuring the
device if they desire by connecting a mouse and keyboard. The external
application will carry a number of features tied to the functionality of the mirror. The
first requirement is that the application will be required to perform authorization of
any account information required by the web APIs. The second is that it will allow
users to set information about preferences as well as current location and any
other information required for any part of the mirror application. Lastly, it will be
required for the application to allow users to create accounts for any of the software
tied to the mirror if they do not currently have one. This will allow the user to get
the entire mirror up and running utilizing this single application rather than having
to go to the companies’ websites to create accounts.

6. Project Prototype Construction & Coding

For the prototyping of the project a breadboard set up was used. Each individual
component was tested and coded, after all the components worked as intended
they were paired up in relative manners. For example, the light sensor and front
motion sensor where tested together, and if the mirror was meant to be “ON”, the
LED would light up. The gestures were also prototyped and tested using LEDs, if
one sensor was trigger before the other, it turned one sensor and a different sensor
if the opposite statement was true, this simulated the swiping motion. After all the
sensors were tested and worked properly, the final Printed Circuit Board was
designed and router to be send for printing. Figure 6.0.1 shows the Printed Circuit
Board schematic, and Figure 6.0.2 illustrates the routing of the final Printed Circuit
Board. On the final Printed Circuit Board, it was decided to leave all the Pins to be
accessible in the case we would have to work around any possible problems. A
second temperature sensor header was added in the case that the chosen
temperature sensor, DHT11, was unable operate properly, this was not problem
that we ran into while testing the final PCB. Also for a better reading on the humidity
and temperature, the DHT11 sensor was placed as close as possible to the MCU.
Also, while prototyping we noticed that the voltage regulators were dissipating too
much heat into the board. Due to the voltage regulator’s heat, it was decided to
place them away from the MCU to prevent any overheating. last note regarding
the design of our final PCB, if there would have been a second revision of the
board, the routing would of being done again since the team was informed that
usually using 90 degree angles for signal tent to cause some inaccurate readings.

77

Figure 6.0.1: Schematic Design

78

Figure 6.0.2.: PCB Routing

6.1 Parts Acquisition & BoM

Table 6.1.1 reports the names, quantities, individual cost, total cost, and vendor
from which all parts for this project were purchased. The table also reports which
parts have already been acquired. Anything that has not been purchased will be
purchased as soon as it is needed for that parts implementation. As you can see
from the table, the Microsoft IoT Pack for Raspberry Pi was the single most costly
entry in the bill of materials. The kit comes with some wires and other components
that you might use when just getting started with simple Pi-based do-it-yourself
projects, but we could have easily saved eighty dollars by purchasing the
Raspberry Pi by itself. The next most costly item was the display which we
purchased on Craigslist for one hundred dollars. This was a relatively fair price
considering the cost of 1080p displays at this size is still around double what we
paid. The pine wood for the frame of the mirror was purchased at Home Depot. In
the final project, we did not use the glass panes. The mirror-like finish was
achieved by placing the BDF S05 window film on the TV display. We also were
able to consolidate the temperature and humidity sensor into a single package with
the DHT11. No money was spent on the microphone because we utilized a
Logitech Pro webcam which already belonged to us. The microcontroller was taken
from an Arduino Uno and the printed circuit boards were very affordable. Although
we only used one board, Elecrow sells them in bundles of ten for fourteen dollars.

79

Part Quantity Unit
Cost

Total
Cost

Vendor Acquired

Microsoft IoT Pack for
Raspberry Pi 2 - w/
Raspberry Pi 2

1 $114.95 $114.95 Adafruit Yes

Auria 32” 1080p TV 1 $100 $100 Craigslist Yes

Select Pine Board 1” x 4” x
8’

2 $10.83 $21.66 Home Depot Yes

Select Pine Board
1” x 5” x 8’

2 $14.82 $29.64 Home Depot Yes

Glass Pane 3/32” x 30” x
24”

2 $11.48 $22.96 Lowes Yes

BDF S05 Window Film
One Way Mirror Silver

1 $19.99 $19.99 Amazon Yes

Miscellaneous Wood and
Hardware

1 $10.00 $10.00 Home Depot Yes

Temperature Sensor 1 $18.19 $18.19 Texas
Instruments

No

Humidity Sensor 1 $11.39 $11.39

No

Motion Sensor 1 $8.94 $8.94 Digi-Key No

USB Microphone 1 $9.99 $10.64 Amazon No

MCU 1 $9.99 $9.99 Amazon No

USB Wifi Dongle 1 $0.00 $0.00 Adafruit Yes

PCB 10 $1.40 $14.00 Elecrow No

Table 6.1.1: Bill of Materials

6.2 Final Coding Plan

The plan for coding is to begin by setting up a number of simple UWP programs
that will allow prototyping of all the potential parts of the application. Once a simple
form of each piece of the application has been implemented in its own program,
then the process of bringing the project together into a single, cohesive unit will
begin. Prototyping the different aspects of the application in separate projects at
the beginning will be important as it will allow the developers to acquaint
themselves with the external APIs in an environment where they can write ‘dirty’

80

code while they stumble around with the new API. Once the developers are familiar
with the API, they can import it into the final project utilizing the cleanest, most
efficient coding practices possible.

When the project is started, a skeleton will be set up including all classes and
methods deemed important to the function of the project as a whole. Then, as the
individual applications are prototyped, they will be transferred into this skeleton
application created allowing all the parts to begin to work together. This will allow
the developers to focus on separate tasks yet work on them simultaneously while
causing the least amount of issue with other parts being worked on by other
developers. By having all the vital methods in place at the start, the interface of
each class will be known from the beginning and it will simply be a matter of
implementing the correct information behind the interface in place of the stubbed
values that the program skeleton will begin with.

One of the first aspects that will be implemented is the voice recognition. This will
be an important aspect to have up and running at the beginning of the project so
that the developers will be able to ensure all interaction with the mirror is suited to
voice commands in the most seamless way possible. By implementing voice
controls early on, the developers will also know exactly what to expect from the
voice control interface as it will seem different from a normal user interaction
interface with buttons and text boxes. Implementing these key aspects of software
construction will allow the process to flow as smoothly as possible and allow
multiple developers to work simultaneously on a single project.

The coding will be performed using Visual Studios 2015 as the IDE for this project.
This is the required IDE for UWP applications and it offers a number of efficient
tools for development. Resharper will be used as an extension to Visual Studios
as it allows a simpler interface for interacting with Visual Studios including more
user friendly shortcuts and better automation of tasks within the editor windows. A
number of other tools will be utilized in addition to visual studios. The primary three
items that will be included for development include a subversion software, a bug
tracking software, a group messaging application specific to the project, and also
a task tracking application. While the first two of these are specific to coding and
will be discussed here, all are important aspects to aid the team in development of
a project of this scale.

A subversion system will be utilized to keep track of revision history as well as to
allow multiple users to work on code simultaneously without fear of messing things
up to much as a reversion is always possible. The subversion system being looked
at primarily is TortoiseSVN which offers an interesting feature of allowing multiple
users to work on the same file simultaneously. Typical SVN systems require users
to check out, and lock, a file they are working on while tortoise scans changes
made to a file to verify if there were conflicting changes made since the last update.
If no changes were made the lines the current developer edited, the changes can
be committed while if a conflict is found, tortoise offers the option to choose which

81

of the changes to utilize. This software allows the most seamless work between
multiple developers possible, easing one potential issue and allowing the
developers to focus on others.

At time of implementation it was decided to use GitHub as source control for the
project. This is because in order to implement Tortoise SVN the users need to be
on the same network or have a server hosted for users to connect to. GitHub allows
web based source control which allows all users to work from their own desired
locations and push code from anywhere there is internet.

A bug tracking software is an important tool when developing as it allows
developers to keep track of all issues found thus far. This is important as
occasionally, a bug is found but could be forgotten about later if it is not tracked
efficiently. By utilizing a system that all developers can access, all issues can be
stored in one location with their symptoms, notes, current state, and people
working on it easily accessible. It is not clear which bug tracking software will be
utilized at this point in time however it is likely an attempt will be made to find one
that can interface with Visual Studios specifically to simplify the process of
reporting and tracking bugs.

7. Project Prototype Testing

7.1 Hardware Testing

Testing the hardware is a crucial phase of project development that allows you to
assess what you have accomplished and see what areas you need to improve
upon. The testing process is what ensures that the final product performs to the
specifications and requirements as they were drawn up before the design phase.
It is critical to test the hardware because there are so many different components
that must be compatible with each other and sometimes this is not apparent in the
research. Each of the different hardware component systems will be subjected to
different test criteria in order to determine that they perform their intended function
and achieve a passing status.

7.1.1 Temperature / Humidity Sensors

We tested the temperature and humidity sensors in order to determine how
accurately they perform in various conditions. The sensors must be able to perform
accurately to a certain margin of error in order to be considered for our use in the
project. The tests completed for temperature sensor are outlined in Table 7.2.1.1
below. The tests completed for the humidity sensor can be seen in Table 7.2.1.2
below.

82

Test Procedure Expected
Outcome

Low temperature sensor
accuracy

Acquire results from low
temperatures (<10 °C)

+/- 1 °C error
margin

Room temperature sensor
accuracy

Acquire results from room
temperatures (~25 °C)

+/- 1 °C error
margin

High temperature sensor
accuracy

Acquire results from high
temperatures (>40 °C)

+/- 1 °C error
margin

High humidity temperature
sensor accuracy

Acquire results in a high-
humidity environment (>90%)

+/- 1 °C error
margin

Table 7.2.1.1: Temperature Sensor Tests

Test Procedure Expected
Outcome

Low humidity sensor
accuracy

Acquire results from area of low
humidity (<40%)

+/- 2% error
margin

Medium humidity sensor
accuracy

Acquire results from area with
moderate levels of humidity (40%-
70%)

+/- 2% error
margin

High humidity sensor
accuracy

Acquire results from area with high
levels of humidity (>70%)

+/- 2% error
margin

High temperature
humidity sensor
accuracy

Acquire results in a high-
temperature environment (>40 °C)

+/- 2% error
margin

Table 7.2.1.2: Humidity Sensor Tests

7.1.2 Microcontroller Signal Control

The testing of the microcontroller unit (MCU) signal control is aimed at determining
how it behaves with the temperature sensor from the PCB. The system is
controlled by analog pins which allow the test to prove that the pins were being
activated and produce the correct value. These tests are outlined in Table 7.2.2.1
below. The analog pins allow us to receive significantly more information from the
sensor compared to the digital pin. As stated previously, it is imperative that the
temperature and humidity sensor is properly configured and transfers accurate
information so that we may set a proper threshold to alleviate concerns of safety
hazards.

83

Test Procedure Expected Outcome

Specific
Pin

Enable the highest active
setting to the specific desired
pin.

The sample serial output should
demonstrate the value from the pin.

Pin Value Connect the pin to the
temperature sensor on the
PCB in order to modulate its
value.

The pin should correctly transmit its
value to the receiver over a serial
connection.

Code
Behavior

Manually simulate
temperature and humidity
sensor readings.

The MCU should correctly transmit
the temperature and humidity
values to the receiver over a serial
connection.

Table 7.2.2.1: MCU Signal Control Tests

7.2 Software Test Plan

The initial software tests will confirm that we will have a bug-free system before
considering its release. The initial test will help identify any flaws with the smart
mirror and help us make any improvements that we see necessary. Lastly, beta
testing will allow us to determine if there are any features that could be
implemented in different ways to improve functionality to the user.

There will be two testing processes, both done by the group members. First, we
will test the individual features of the mirror for performance compliance using our
development computers with Visual Studio 15 installed on Windows 10. These
tests will be performed with mouse and keyboard connected so that set up of the
mirror and manual refreshing can be tested. Second, there is one mirror prototype
that will be used daily by a group member as a beta test to ensure the mirror
provides the intended functionality. The environment for this second round of
testing will be the same as the the live environment.

We will keep a running document of all bugs found thus far and as developers work
they will select bugs from this document to fix. There are three members so if
member A finds the bug in testing, member B fixes the bug, then member C will
be the one to do testing after the fix to ensure any new bugs introduced in the fix
will could be caught. As testing progresses, we will also maintain a document of
tests to perform, this will allow us to run multiple test periods after every set of bug
fixes to ensure no new bugs were introduced.

During testing we will rate the bugs on a level of impact to the system. They will
be rated 1 - 5 where 1 is a critical level bug that breaks the system entirely and 5
is a minor cosmetic bug. Once there are no level 1 - 3 bugs we will consider the

84

product “sufficient for user operation” but will continue to remove as many of the
other bugs as possible and produce a polished finished product.

7.3 Software Testing

Throughout the development and testing phases, the smart mirror functionality was
constantly being tested using the Debug features within Visual Studio in order to
build the application for local execution on our machines. This was made possible
by the fact that our smart mirror software is built on the Universal Windows Platform
(UWP), allowing us to build a native version that is identical to the version loaded
onto the mirror, apart from its processor architecture. A majority of the testing was
performed on our local machines because compiling and building the project for
the local machine is far quicker than remotely deploying it to the mirror; however,
we deployed the project to the mirror when necessary in order to evaluate how the
UI was displayed and to make adjustments. Once development was complete, all
of the test cases were finally performed on the actual mirror in order to confirm
proper functionality for the end user.

7.3.1 Graphical User Interface

The graphical user interface displays all of the various software features that are
built into the smart mirror and must conform to a set of requirements on both a
functional and nonfunctional level. The functional requirements are comprised of
the specific feature set that we implemented into the mirror. Each of the
requirements is expected pass an objectively determined goal in order to be
considered functional. Conversely, the nonfunctional requirements demonstrate a
level of quality assurance that must be subjectively assessed. The expected
outcome of these requirements was the culmination of our discussions and
experiences while using the smart mirror.

7.3.2 Functional

The functional tests of the graphical user interface encompasses all of the
requirements that can be objectively determined as a success or failure. These
tests cover proper mirror boot behavior, general user interface function as well as
voice recognition behavior. The tests have been divided into the two tables below.
Table 7.3.1.1 provides details on the tests and results for assorted functions while
Table 7.3.1.2 demonstrates all of the speech recognition-related tests. It is
important to test the quality of service measures such as the application refresh
and loss of internet connectivity tests because if we mishandle these cases, the
user experience will diminish greatly. Another case would be if the GUI were to
become hidden on its own. This situation could cause the user to become confused
or irritated. The excessive temperature and humidity test is also a vital concern
from a health and safety perspective.

85

Test Procedure Expected Outcome

Smart Mirror GUI on
boot

Power up the mirror
by plugging in the
power cable.

The Smart Mirror app should
load upon boot rather than
the Windows 10 IoT Core
Dashboard utility.

Initial application data
fetch

Boot up the mirror
and ensure that the
Smart Mirror app is
booted.

The various software features
should fetch their respective
data such as the weather
conditions and news
headlines.

Application data
refresh

Observe whether the
various software
features update their
content according to
their set refresh
cycles. Reduce the
refresh intervals in
the code to expedite
the testing.

Each software feature should
update within 5 seconds after
their specified refresh
intervals have passed (given
that the data from the API is
different from the existing
data).

Excessive
Temperature/Humidity
Warning

Manually initiate the
code path that will
trigger the warning
associated with
exceeding a
favorable operating
threshold.

The mirror will display a
warning message to user to
indicate that the
humidity/temperature sensor
has detected unfavorable
operating conditions.

GUI becomes hidden
automatically

With the GUI visible,
step away from the
motion sensors and
wait a moment.

Once the mirror has not
detected any motion after 60
seconds, the UI elements will
become hidden.

Loss of Internet
Connectivity Test

Remove the USB
WiFi dongle to force
a loss of internet
connectivity.

In the event of internet
connectivity disruption, the
software features that rely on
the internet connection should
respond as programmed
without compromising total
system functionality.

Table 7.3.2.1: Assorted Functional Smart Mirror Tests

86

Test Procedure Expected Outcome

Different
weather
views

Use speech recognition to access
the different weather view options.
Available voice prompts:

 Show/hide tomorrow’s
weather

 Show/hide this week’s
weather

 Show today’s weather

The voice commands
should successfully display
the requested weather
conditions in at least 75%
of all attempts.

Show/Hide
GUI

Use speech recognition to show
or hide all of the software feature
elements by saying “Mirron On” or
“Mirror off” respectively.

The voice commands
should show or hide the
GUI successfully in at least
75% of all attempts.

Music
Control

Use speech recognition to initiate
music searches and control
playback. Available voice
prompts:

 Search Pandora for ‘Song,
Artist, Genre’

 Pause music
 Next track

The voice commands
should successfully perform
the music-related functions
in at least 75% of all
attempts.

Table 7.3.2.2: Speech Recognition Smart Mirror Tests

7.3.3 Non-Functional

The non-functional tests of the graphical user interface were determined in order
to test the requirements that cannot be strictly determined as a success. These
subjective tests were determined with our combined thoughts and discussions
pertaining to our desired smart mirror behavior. Table 7.4.1.2.1 outlines all of these
non-functional tests including the procedure for each as well as the “passing”
criteria. These tests are equally important as the functional tests and attribute to
the overall quality of the user experience. Although we have designed the mirror
to remain powered on at all times, in the event that the mirror is rebooted or
powered off abnormally, we want the boot time to be as quick as possible to allow
the user to resume operation of the mirror. Because voice commands are an
integral part of the mirror’s operation, the voice recognition success rate is another
metric that is extremely important to benchmark and ensure that it leads to a
positive user experience. The motion detection reaction needs to be calibrated
properly so that the LED illuminates the dark area at night and does not leave the
user in the dark for too long.

87

Test Procedure Expected Outcome

Boot-up time Boot up the mirror by
plugging in the power
cable.

The Smart Mirror app should
boot within 30 seconds of
providing power.

Shutdown
time

Shut down the mirror
properly by initiating a
shutdown with the
companion app.

The Smart Mirror should shut
down completely within 20
seconds of issuing the
command.

Speaker
Volume Level

Initiate Pandora music
playback using speech
recognition and assess the
volume level.

All group members should
agree that the volume level is
appropriate and audible for the
mirror.

Speech
Recognition
Consistency

Have all group members
perform the multitude of
speech recognition
prompts, and variations of
each, and observe the
mirror’s response.

The mirror should appropriately
respond to the voice
commands and variations with
a 75% success rate.

Display
Brightness

Place the mirror in a bright
environment and power it
up.

The user interface elements
should still be visible despite
the unfavorable lighting
conditions. The rest of the
screen real estate should
retain its mirror-like finish as
provided by the display’s
reflective tint.

Motion
Detector
Reaction

Put the mirror into an
inactive state with the user
interface hidden and then
trigger the motion sensor
by walking in front of its
line of sight. Repeat this
process 10 times.

The mirror should become
active with its user interface
elements visible within 5
seconds of stepping into its line
of sight.

Table 7.3.3.1: Non-Functional Smart Mirror Tests

7.4 Final Prototype

An entire year’s worth of hard work has culminated in the Smart Mirror that you
see in the image above. Notice the craftsmanship of the frame and the user

88

interface layout that maximizes information without comprising the precious mirror
real estate. The information is relegated to the corners of the display while the user
is front and center. Not pictured are the motion sensors on the side which provide
gesture control. The hole at the bottom is where the long range motion sensor sits
to activate the LED hiding on top when the user enters a dark room.

Figure 7.4.1: Final Mirror Prototype

89

8. Administrative Content

8.1 Milestones

Task Name Duration Start Finish

Display Research 1 week Mon 2/8/16 Fri 2/12/16

Voice Recognition Software Research 2 weeks Mon 2/8/16 Fri 2/19/16

Two-way mirror Research 2 weeks Mon
2/15/16

Fri 2/26/16

Application Control Program Research 2 weeks Mon
2/15/16

Fri 2/26/16

PC Component Research 2 weeks Mon
2/22/16

Fri 3/4/16

Temperature, Light & Motion PCB Research 4 weeks Mon
2/29/16

Fri 3/25/16

GUI Research 3 weeks Mon
2/29/16

Fri 3/19/16

Application Control Program Design 6 weeks Mon 3/7/16 Fri 4/15/16

Temperature, Light & Motion PCB Design 5 weeks Mon
3/14/16

Fri 4/15/16

Lighting Control System Research 2 weeks Mon
3/14/16

Fri 3/25/16

Voice Software & Webcam Design 6 weeks Mon
3/21/16

Fri 4/29/16

Frame & Housing Research 2 weeks Mon
3/21/16

Fri 4/1/16

GUI Design 7 weeks Mon
3/21/16

Fri 4/29/16

Lighting Control System Design and
Prototyping

4 weeks Mon
3/28/16

Fri 4/22/16

Display and Mirror Design 2 weeks Mon
3/28/16

4/8/16

Temperature, Light & Motion Processing
Design

4 weeks Mon 4/4/16 Wed
4/27/16

Table 8.1.1 - Senior Design I Milestone Schedule

90

When attempting to take on a project like our Smart Mirror, it is imperative to set
realistic and attainable milestones in order to maintain an effective pace and
accomplish all of our goals for the project. The majority of our time in Senior Design
I has been spent researching and designing the various components that our
mirror will consist of. There are hundreds of different sensors to choose from and
we have to make sure we choose an MCU that is versatile enough to be compatible
with all of the extra external hardware we intend to implement within the mirror.
Table 8.1.1 lays out all of the milestones that we created for Senior Design I along
with their start and end dates. Each task had varying degrees of intensity and
naturally some tasks require more time than others to effectively complete. We
followed this milestone table fairly close and were able to accomplish each task in
a timely manner.

Table 8.1.2 below outlines our prospective milestones for Senior Design II.
Whereas Senior Design I focuses on the research and design aspects of the
project, Senior Design II will consist primarily of the actual construction of our smart
mirror. The culmination of twelve weeks’ worth of research and design will allow
us to begin putting the pieces together and fabricate a working prototype.

Task Name Duration Start Finish

Voice Software & Webcam Prototyping 3 weeks Mon
8/22/16

Fri 9/9/16

Display and Mirror Prototyping 2 weeks Mon
8/29/16

Fri 9/16/16

Temperature, Light & Motion Processing
Prototyping

4 weeks Mon
8/29/16

Fri 9/23/16

PCB Prototyping 4 weeks Mon 9/5/16 Fri 9/30/16

Housing & Frame Prototyping 2 weeks Mon 9/5/16 Fri 9/16/16

Application Control Program Prototyping 6 weeks Mon
9/12/16

Fri
10/21/16

Order PCB 1 week Mon
9/12/16

Fri 9/16/16

PCB Testing 2 weeks Mon
9/26/16

Fri 10/7/16

Mirror construction complete 1 week Mon
10/3/16

Fri 10/7/16

Mirror debugging 10 weeks Mon
10/3/16

Fri 12/9/16

Table 8.1.2 - Potential Senior Design II Milestone Schedule

91

8.2 Budget & Finances

The budget for our Smart Mirror was drawn out early on in the overall scheme of
our project’s development. Our original budget was slightly overestimated to allow
for some leeway in each category and to move some of the funds around to
different components. Compared to other smart mirror projects, our project takes
advantage of the relatively low cost of the Raspberry Pi 2 as the main computer
rather than building a diminutive, yet full-fledged desktop machine. We were also
able to save costs by utilizing a reflective tint for the display rather than purchasing
an expensive two-way glass mirror pane.

One of the primary reasons that there isn’t a commercial smart mirror product on
the market is because of the costs associated with the research & design,
marketing, and materials to build such a product. We aimed to keep our product at
a relatively low-cost. Because the software portion of our Smart Mirror was built as
a UWP (Universal Windows Platform) for Windows 10, the source code can
actually be compiled for any platform that support UWP apps such as Windows 10
x86/x64, Windows 10 Mobile, and of course Windows 10 IoT (Internet of Things)
which is the system being employed on the Raspberry Pi 2. As a result, should
someone acquire the source code to our Smart Mirror, or if we end up submitting
it to the Windows Store, they would only need to construct the mirror portion of the
project and our code would execute flawlessly on their version of the mirror.

With our original budget, we intentionally overestimated each of the categories as
shown in Table 8.2.1 which compares our original and final budgets. It should be
made clear that this isn’t truly a final budget just yet as we won’t know the final cost
of some of the components or services until we undergo the processes in Senior
Design II. As a result of overestimating each component, our final spending was
less than we originally planned in every category. Overall, we have managed to
spend just around half of the original budget. You can see that we were able to
save the original $50 allocated for speakers by utilizing the built-in speakers from
the TV.

The true final cost of the project is within a couple of dollars from the budget shown
in Table 8.2.1. Even though we found out late in development that Windows 10 IoT
Core did not support audio out over HDMI, we have a pair of external speakers
available to us which does not impact the budget. As mentioned earlier, we could
have saved an additional eighty dollars had we skipped the Raspberry Pi Windows
10 IoT starter kit and opted for the Pi alone. There were also a few extra sensors
that were purchased but never utilized. We feel that although you may start to see
Smart Mirrors become available on the market from big companies, the initial
releases will sell for a substantial amount of money. A similar product such as our
Smart Mirror could be created for less than two hundred and fifty dollars if you
select your hardware wisely.

92

Item Original
Budget

Final
Budget

Difference

Auria 32” 1080p HDTV $200 $100 $100

Microsoft IoT Pack for Raspberry Pi 2 -
w/ Raspberry Pi 2

$150 $114.95 $35.05

Microphone $50 $10.64 $39.36

Speakers $50 $0 $50

Mirror Assembly/Frame $200 $104.25 $95.75

MCU & Sensors $100 $48.51 $51.49

Total: $750 $378.35 $371.65

Table 8.2.1 - Original Budget vs Final Budget

8.3 Work Distribution

By following the milestone chart closely and with enough diligence, we have been
able to make tremendous progress on our smart mirror project through the end of
Senior Design I. The work distribution for this project has been split fairly amongst
the three members with each member tasked with working the area that suits them
best. With Hector being the sole electrical engineer, he focused hardware aspects
of the mirror which included researching and designing the PCB and sensors. Both
Justin and Michael focused on the software portion of the smart mirror, exercising
their software engineering skills as computer engineer majors. All of the members
worked closely together while implementing the sensors into the MCU and testing
their functionality through the Raspberry Pi’s GPIO pins. The final work distribution
followed the example set forth the preceding paragraph. Hector was primarily
responsible for the embedded hardware. Justin was in charge of the voice
recognition and the software architecture. Michael contributed by coding most of
the software modules. All three members contributed to the design and
construction of the frame.

9. Standards

9.1 Standards

As part of this senior design project, is important to research and incorporate
various standards into the project. A standard is a document that defines the

93

characteristics of a product, process or service such as dimensions safety aspects,
and performance requirements.

Standards Description

IEEE 802.11 Wireless communications standard
provides the basis for wireless network
products using the Wi-Fi brand.

Bluetooth The Bluetooth core specification
defines the technology building blocks
that developers use to create the
interoperable devices that make up the
thriving Bluetooth ecosystem of
wireless transmission devices.

UL Underwriters Laboratories: UL
provides safety-related certification,
inspection, and testing related to fire
and smoke safety standards.

Appendix A: Copyright Permissions

Microsoft

94

Appendix B: References

[1] https://msdn.microsoft.com/en-us/windows/uwp/get-started/whats-a-uwp
[2] https://msdn.microsoft.com/en-us/windows/uwp/get-started/universal-
application-platform-guide
[3] http://www.electronics-tutorials.ws/io/io_3.html
[4] http://www.omega.com/prodinfo/Integrated-Circuit-Sensors.html
[5] http://www.electronics-tutorials.ws/io/io_4.html
[6] http://www.engineershandbook.com/Components/proximitysensors.htm
[7] http://www.sensorsmag.com/sensors/humidity-moisture/choosing-a-humidity-
sensor-a-review-three-technologies-840
[8]http://www.amazon.com/VAlinks-Flexible-Microphone-Compatible-
Recording/dp/B014MASID4?ie=UTF8&psc=1&redirect=true&ref_=ox_sc_act_title
_1&smid=A3JUJR0KZ89KR2
[9] https://www.elprocus.com/microcontrollers-types-and-applications/
[10] rss2json.com

