
Smart Mirror

Justin Gentry, Michael Trivelli, and Hector

Zacarias

Dept. of Electrical Engineering and Computer

Science, University of Central Florida, Orlando,

Florida, 32816-2450

Abstract — A staple furniture piece found in every

bedroom and bathroom, the mirror has provided a means for

effective personal grooming for thousands of years. Our team

has brought it into the 21st century with Smart Mirror. While

preparing for the day, users will be able to glance at their

mirror and instantly retrieve important bits of information

such as the current time, date, weather, news, and more. Our

Smart Mirror is powered by the affordable yet powerful

Raspberry Pi single-board computer. Our suite of software

modules combined with a touchless UI ensures that you

remain at the forefront of the emerging smart-home

revolution.

Index Terms — Application software, Internet of Things,
Microcontrollers, Microcomputers, Smart Homes, Home
Automation, Smart Mirrors.

I. INTRODUCTION

Technological integration into homes, so called “Smart

Home Technology” is becoming increasingly popular in the

consumer electronics industry. The primary benefit of

smart home technology is to simplify our day to day lives

in any way possible. Some benefits include saving time,

relieving stress, or even saving money. These benefits can

be accomplished in a number of ways including automation

of tasks, improved access to media and information, as well

as varying degrees of personal comfort.

Smart Mirror will be a smart home implementation in the

bathroom, a room currently lacking technological

innovation. Smart Home technology has been integrated to

a number of rooms and interfaces throughout the home

however the bathroom has been left mostly untouched.

Almost every person spends some portion of their time

daily in the bathroom. As a result, there is ample

opportunity to present users with information that could

improve their daily lives.

The mirror will be able to present personalized

information to users every morning as they prepare for their

day. Ideally it will save users time by displaying

information they would likely check in the morning. This

includes information such as weather, daily schedule, news,

and the time so the user can keep on schedule. These simple

bits of information are commonly sought after in the

morning while preparing for the day or at night before

going to sleep. The information will be provided on the

mirror in an unobtrusive manner, leaving the majority of the

prime mirror real estate unaltered. This will allow the user

to easily absorb the displayed information while going

about their normal routine. User interaction will be

achieved primarily through voice commands with some

minimal additional interaction provided by side-mounted

motion sensors.

II. SYSTEM COMPONENTS

Smart Mirror is built on a platform consisting of an

assortment of components both purchased and designed to

work together. The assembly of these components results

in a cohesive product that is reflected in the user experience.

A. Primary Computer System

Smart Mirror utilizes a Raspberry Pi 2 Model B as the

primary computer. Weighing in at just 0.1 lb. and sporting

a Broadcom Quad-Core ARM7 900MHz processor, the

credit card-sized Raspberry Pi was the optimal choice when

selecting a powerhouse for the mirror. While similar

projects opted for full-fledged compact PC builds, the

Raspberry Pi provides all of the required processing power

and interfaces for under forty dollars. All of the sensor

information is transferred to the Pi via the 40 available

GPIO pins. The software for the mirror will be built on the

Universal Windows Platform allowing for execution on any

Windows 10 or Windows 10 IoT machine. Our Raspberry

Pi runs Windows 10 IoT as its operating system and will

boot directly into the Smart Mirror interface upon powering

up.

B. Microcontroller

The microcontroller is responsible for managing the

information received from the mirror’s various sensors. Our

custom designed MCU features the ATmega328p [1] chip

off of an Arduino Uno. We decided to feature the

ATmega328p for economic reasons, since we already had

an Arduino Uno board available for prototyping. Our

design included all digital and analog pins.

TABLE I
ATMEGA328P SPECIFICATIONS
Clock Speed 16 MHz
Operating Voltage 1.8-5.5 V
EEPROM 1 KB
SRAM 2 KB

C. Temperature & Humidity Sensor

The DHT11 [2] sensor is able to measure the relative

humidity (RH) and temperature. This digital sensor is

commonly used for inspection of equipment and humidity

regulation. This particular sensor was low-cost and had a

precise calibration.
TABLE II

DHT11 SPECIFICATIONS

Response time (1/e63%) 6 to10 Sec

Operating Voltage 3.5-5.5 V

RH Accuracy +/- 5%

Temperature Accuracy +/- 2 ○C

D. Light Sensor

Photo resistors will be used for the light sensor. The

photo resistors of interest are the GM55 series. The dark

resistance for this series of sensors is relatively high

compared to other sensors, typically between one and ten

mega ohms. The circuit for the light sensor will be a simple

voltage divider using said photo resistor. As the brightness

of the room increases, the resistivity of the photo resistor

will drop.

Fig. 1. Light Sensor Voltage Divider Diagram

E. Motion Sensors

The HC-SR501 is based on infrared technology, mainly

used for automatically sensing various electrical

equipment. This sensor will be used on the side of the

mirror to detect any of the users swiping gestures from top

to bottom. This close range sensor will be programmed to

perform certain actions within the user interface when

activated. For instance, swiping from top to bottom over the

sensors while music is playing will pause the music to allow

for voice commands. They can also be programmed as UI

element selection and navigation tools.

The second motion sensor is the GP2Y0A02YK0F. It is

a distance sensor that is composed of a combination of a

position sensitive detector, infrared emitting diode, and a

signal processing circuit. This sensor will be used to

determine the distance between the user and the mirror.

TABLE III
HC-SR501 SPECIFICATIONS

Sensing Range 7 m
Operating Voltage 5-20 V
Output Voltage 3.3 V
Temperature - 15 to 70 ○C

TABLE IV

GP2Y0A02YK0F SPECIFICATIONS

Sensing Range 20 to 150 cm
Operating Voltage 4.5-5.5 V
Output Voltage 0.25 to 0.55
Temperature - 15 to 60 ○C

III. SYSTEM OVERVIEW

In order to obtain a better understanding of Smart Mirror,

refer to the block diagrams for an effective overview of how

we merge software and hardware design.

A. Hardware Design

This project has two major components that will be

working together to accomplish the tasks required. The

Raspberry Pi 2 will control all software components and

handle all aspects of displaying information to the user. The

MCU will handle all sensory inputs excluding audio to

interact with the environment in the most helpful and

convenient way possible. Shown in Figure 2 is a block

diagram of the overall system.

The MCU will interface with a number of sensors to

monitor the environment around the mirror including

temperature, light, and motion. Each sensor will be

mounted onto the mirror appropriately to transmit

information to the MCU before being forwarded to the

Raspberry Pi for analysis. The Raspberry Pi will output

video to the display and receive voice commands from a

microphone. Both the Pi and the MCU are 5V-powered.

Fig. 2. Smart Mirror Hardware Block Diagram

Fig. 3. Custom Microcontroller Schematic

B. Software Design

The software block diagram provides an overview of all

the various software interactivity and how they manage

data input from the MCU. As seen in Figure 4, the MCU

will receive motion data from the distance sensors and then

forward the information to the gesture processor in

Order to perform the necessary action. Audio data from

the microphone is sent to the voice processor which is

linked to all of the software modules to provide persistent

voice recognition. Utilizing an MVVM software

architecture, the software modules and main module are set

up as Views. The Main View outputs the user interface to

the display.

Fig. 4. Smart Mirror Software Block Diagram

IV. HARDWARE DETAIL

This section provides a more detailed look into the

hardware aspect of the smart mirror which is comprised of

the primary computer system, the microcontroller, and its

various sensors.

A. Primary Computer System

As mentioned earlier, our primary computer system is the

Raspberry Pi 2 Model B. This microcomputer was selected

because of its small form-factor, adequate performance,

and low-cost. Moreover, it is capable of running Windows

10 IoT Core which is necessary for our Smart Mirror’s

UWP platform. The Minnowboard Max was also

considered; however, the Minnowboard was priced higher

with negligible returns in performance. With the Pi’s Quad-

core ARM7 processor and 1GB of SDRAM, it is more than

capable of being the powerhouse of Smart Mirror and

interfacing with the MCU.

B. Microcontroller

As previously mentioned, the ATmega328p will handle

all the input from the various sensors placed around the

housing of the mirror. It will be powered from a 5 V voltage

regulator.

C. Sensors

The mirror will have 3 motion sensors around its housing.

One will work as a proximity sensor on the façade of the

mirror and will be used to turn the display on and off

automatically based on whether there is motion detected in

the room. While the other two will be placed on the side of

the mirror to receive gestures as a simple form of gesture

control as mentioned in Section V, subsection C. Besides

the motion sensors, the mirror will use a temperature

and humidity sensor to ensure the electronics inside the

mirror will be at operational temperatures.

Fig. 5. Custom Microcontroller Eagle Layout

The mirror will also utilize a light sensor to determine

whether the user has turned the light in the room on. This

will be used in conjunction with the front facing motion

sensor to turn on an LED for the user for low light

situations. If the mirror senses movement but does not sense

the light turning on, it will turn on an LED on the mirror to

provide the user with a bit of light.

V. SOFTWARE DETAIL

This section provides a more detailed look into the

software aspect of the smart mirror which is comprised of

the different software modules.

A. Software Architecture

Due to implementation of the software on Windows 10

IoT which requires the new Windows software platform;

the Universal Windows Platform (UWP). The project will

be constructed utilizing the standard UWP design

architecture; MVVM. The MVVM, Model-View-

ViewModel architecture is derived from the basic Model-

View-Controller (MVC) pattern. One of the core ideas of

the MVVM model is separation of development of the

graphical user interface (GUI) and the back end logic and

data implementation. The ‘View’ component refers to the

presentation layer and specifies the user interface. The view

layer is generally specified by XAML and elements are

bound to objects in the view model layer. The ‘View

Model” component is a thin layer used to convert

information to a format presentable in the GUI which is

then bound to the view. The ‘Model’ component of MVVM

is a large layer that encompasses all business logic and data

manipulation code required by the system.

This implementation allows designers to simply

understand XAML, or to work with the Visual Studio

Designer to develop the display without the need to burden

software developers with user interface coding. This also

allows software developers to make changes to the code

behind the XAML without effecting the display. As long as

the new code extends the same interface as the existing

ViewModel, the biding between the View and ViewModel

will still work.

The majority of the program will be written utilizing the

.NET framework and C# for the Model layer of

MVVM. UWP programs generally utilize XAML to

describe the View with the thin ViewModel layer behind it

being written in the same language as the model, in this case

C#. The majority of the data that will be displayed on the

mirror is coming from third party sources and it will thus

be required to implement HTTP GET requests to a number

of third party APIs. We will implement a RESTful interface

for each of these third party systems.

The software will utilize a modular system to implement

all the different pieces of data required. Each module will

be self-contained and should be able to be enabled or

disabled with no effect on other modules. The only required

module will be the main module which will handle all

general display status and layout of the applications on the

mirror display. This main module, will maintain the state of

the mirror at all times and all display elements will be

controlled by this module. It will also contain references to

each submodule in order to keep track of the status of each

application such was whether or not it is currently focused

or running some specific functionality for the user. This

class will be the heart of the application and will essentially

manage everything going on. All sensor information,

except audio, will be fed into this class as well to be sorted

out so action may be taken.

B. Voice Controller

The voice controller is the primary component used to

interact with the smart mirror. Due to this, its

implementation details are vital to the function of the mirror

overall. The requirements of the mirror’s voice commands

need to be thoroughly considered and tested to ensure that

they work as desired in an efficient, user friendly manner.

As people tend to phrase similar requests in different

ways, our mirror needs to understand what a user is

attempting no matter how they say it. To give a set list of

commands required for each application will simply have

users needing to continuously refer to the list of commands

which will simply bog the user down in minutia making the

mirror ineffective in its use of saving time and providing

easy access to necessary information. Thus, each command

should be implemented in a number of ways to account for

different types of speech and phrases used. This is to ensure

that each user finds interaction with the mirror intuitive and

unencumbered. To implement this in the best way possible

would be to utilize a neural network that learns phrases

different users use. Unfortunately, for this to work

correctly, a large user base, or large data set, is required.

Since we do not have access to either, for this project we

have decided to go with a different method. The windows

speech platform allows you to specify grammar files with

keywords to listen for. We will utilize this to set up a list of

keywords to be expected and will allow us to cover a large

number of different phrases for the same command.

The implementation of the voice recognition software

will utilize the Microsoft Speech Recognition API for all

voice command processing. There will be a specific module

that listens for voice command, the Voice Recognition

Module. This module will be run asynchronously and listen

Fig. 5. Voice Process Class Diagram

for voice commands then handle them appropriately. For

this to work seamlessly with any module we are

implementing an interface that each module is required to

extend if it is to use voice commands. This interface,

IVoiceControlModule, will specify all required methods

required by the Voice Recognition Module. This will also

allow the Voice Control Module to hold a list of the voice

controlled modules. This is important because when the

voice control module receives a command, it will check

which grammar file the command came from.

This grammar file will be able to be linked back to a

specific module and the Voice Recognition Module will

then pass the data to the correct module. This will allow the

voice recognition module to continue listening for more

user input while the submodule handles its command. A

UML class diagram demonstrating this point is shown in

Figure 5.

C. Gesture Controls

For the Smart Mirror, gesture controls were a heavily

discussed and debated feature. In the initial design it was

intended to have full gesture control support utilizing a

Microsoft Kinect or a Leap Motion. Due to the decision to

utilize a Raspberry Pi 2 as the main computer for the

project, both of these option were eliminated. This was

determined to be acceptable as when a user is utilizing a

mirror their hands tend to be busy anyways thus the loss of

gesture control is not an issue. However, it was decided that

some very simple gesture controls would be implemented

due to the music playback capability of the Smart Mirror.

Since Kinect and Leap Motion were not possible due to

the hardware limitation of the Raspberry Pi, it was decided

to implement a system of gesture control with three possible

commands by utilizing two motion sensors. Using two

motion sensors we will be able to perform three options

based upon the timing at which the sensors detect motion.

If a user puts their hand straight in front of both sensors,

they will sense motion simultaneously and that will be one

command. The other two commands will be implemented

as a waving motion up or down, which will allow the

microcontroller to see if one sensor was triggered before the

other and interpret which type of swipe was performed, up

or down.

D. User Interface

The goal with the user interface is to provide as much

information as possible with minimal user interaction. It is

important to maintain the right balance of information and

unobstructed mirror space, specifically the upper and center

areas; it is in these areas where your eyes naturally fall. In

order to support all of the various software modules while

maintaining an appropriate amount of mirror space. Due to

this, we have put careful consideration into how the

elements are arranged on the mirror. All the main display

data will be limited to the corners of the mirror while the

center areas on the top and the bottom will have optional

Fig. 6. User Interface Layout

display based upon user interaction. It was determined that

if the user is asking the mirror for additional information, it

is acceptable to utilize a bit more of the valuable mirror

space. The decided upon layout for the mirror is shown in

Figure 6.

E. Software Module Design

As mentioned earlier, Windows 10 IoT Core allows you

to specify a program to boot upon startup. When you power

up Smart Mirror, the main module is loaded and the user

interface appears consisting of the date, time, and weather.

Each software module will be self-contained and have no

dependency on other modules besides the main module

and, if it uses voice controls, the voice recognition module.

While each module has a different functionality, they all

have a similar list of required classes. Every module will

have a Model which will be the class that will handle all

business logic required and any manipulation of data.

Almost every module utilizes data from a third party

source. This data will be fetched using HTTP GET requests

to retrieve the information. All code related to accessing

third party data will be in its own class. This class will

implement only a single public method per type of data the

module requires. For instance, the weather module service

class will have methods to retrieve current weather, today’s

weather, tomorrow’s weather, and the week’s weather.

These method will be required to parse the received data

and return the data in the form of a specified POCO (Plain

Old C# Object). This implementation will allow us to

change the third party API of any module with little to no

effect on the functionality of the module itself. Each

module will also have a Voice Processor class, this class

will implement the IVoiceControlModule interface

mentioned in the voice control section. The voice processor

class of each module is the class that will receive the

commands from the Voice Recognition module. Once the

voice processor has the command, it will determine what

type of voice command was received, and pass this

information to the main model class to handle the logic

required to execute the voice command. Each module will

also contain it’s own individual view and viewmodel. The

module will specify the layout of its own data within its

view and this will be referenced by the main view and

placed into the correct location on the mirror display.

Finally, each module will contain its own helper POCO’s

for manipulation and handling of data.

Although these modules could likely be implemented in

a simpler manner, this extra bit of work allows for easy

changes in the future. Modularity in code is extremely

important as it makes developers lives easier in a number

of ways. Firstly, if the pieces of code as individual as

possible, changes can be made easily with less potential

effect on the rest of the software. Also, with independent,

well segmented code like this, once the developer is

familiar with the architecture, it is much easier for them to

follow what is going on and to know exactly what to expect

from each class.

Shown in Figure 7 is a simplified UML representation of

a module and its interaction with the rest of the system. The

module must implement the IVoiceControlModule, which

requires a grammar xml, if it wishes to use voice

commands. It is also required that every module must be

referenced by the main module which will handle all

management of the display itself.

F. Software Modules

The clock module is persistent and will always be visible

in the upper left corner of the display. To ensure everlasting

accuracy, the time module reflects the system time which is

synced with an NTP server managed by the OS.
The weather module will be located in the bottom right

corner of the display and will provide the user with the

current temperature at all times. The weather is denoted

Fig. 7. Module Class Diagram

with the temperature along with a corresponding icon.

Weather information will be provided by

OpenWeatherMaps which offers a number of APIs with

different weather information. All weather information will

be displayed in the same location on the mirror but only one

type of information at a time. Voice commands will be

created to allow users to allow the user to request that the

mirror show four different types of weather reports. The

first will be the current weather, the second will be a 3 hour

forecast for the current day, the third will be a 3 hour

forecast for tomorrow, and finally the last will be a 5 days

forecast showing some basic information about each day.

In the morning, the current day’s weather will be shown

while in the evening, the next day’s weather will be shown.

This will allow the user to glean the most useful

information at a glance while checking others with a simple

command.

The calendar module will provide users with a look at any

events they planned for that day. A month view can be

requested with a voice command and days that contain

events will be highlighted.

The news module will be provided three news headlines.

The source of the news is the CNN Top News RSS feed.

Users will be able to request different preset news

categories such as World News, U.S., Politics, Technology,

among others.

The to-do-list module will utilize the Todoist API to

provide the user with task managing and reminder

functionality. Todoist also supports task list syncing to

provide a seamless multiplatform experience.

The Smart Mirror will offer a commute time module.

This module will require that the user enter information at

mirror initialization, the first time it is booted up. The user

will be asked to enter their home address and work address

as well as the time they arrive at work each day. The module

will utilize Google Maps Distance Matrix API and

determine what time the user needs to leave in order to

make it to work on time. This will allow the user to

recognize and account for any delays in their normal traffic

route before even leaving the house.

VI. MIRROR HOUSING

The way the mirror works is by utilizing a one-way

mirror which is placed directly in front, flush with the

screen of a television. This will allow light to shine through

the mirror wherever the television is lit but it will simply

reflect like a mirror wherever there are black pixels on the

display. To accomplish this, the one-way mirror will be set

Fig. 8. Mirror Housing

into the face panel slightly and the television will be

mounted directly behind it.

The housing of the Smart Mirror will be designed in a

way that is cost effective but also displays the mirror and

software in the clearest way possible. The housing will be

built from wood with a face panel made of four miter cut

boards. The wood will be done with a burned finish then

stained for a nice presentation that people might like to have

in their homes. It is important that this is presented as a

quality display piece otherwise most people would have

little interest in having it in their home. All sensors will be

as hidden as possible to present the image of a regular

mirror.

VII. CONCLUSION

The Smart Mirror project was born out of the desire to

introduce smart home technology to a piece of furniture that

had not yet been thoroughly explored, the mirror. Smart

Mirror is our attempt at transforming mundane tasks, such

as checking the weather or your calendar, into a high-tech

and engaging experience. Moreover, Smart Mirror is

capable of improving your overall time management by

consolidating all of the information you need in the

morning or night into a single user interface. Built on the

Universal Windows Platform, Smart Mirror provides a

unique and intuitive user interface that is achieved by

harnessing the power and flexibility of the Raspberry Pi. By

combining a microcontroller with various sensors and

clever programming, Smart Mirror is able to intelligently

wake itself up or provide a guiding light in a dark room.

The overall cohesion between the hardware and software

adds up to a solid prototype that is indicative of where smart

home technology is headed in the years to come.

ACKNOWLEDGEMENT

Justin would like to acknowledge Steven Barkdull,

without his mentorship, my code would be much less

organized, clear, and concise. Without his teaching, I would

understand little of how to efficiently architect software for

reusability and modularity. I would also like to thank him

for teaching him how to write good if statements.

Justin would also like to acknowledge John Vaccariello

who forced me to learn that detailed planning of a software

project is more efficient, and produces better software, than

jumping straight into coding.

REFERENCES

[1] Atmel Corporation (2016). Retrieved November 2016,

World Wide Web: http://www.atmel.com/Images/Atmel-

42735-8-bit-AVR-Microcontroller-ATmega328-

328P_datasheet.pdf
[2] Adafruit (2016). Retrieved November 2016, World Wide

Web: http://www.micropik.com/PDF/dht11.pdf

THE ENGINEERS

Michael Trivelli is a

senior at the University of

Central Florida and will

be receiving his Bachelors

of Science in Computer

Engineering in the Fall of

2016. After graduating,

Michael plans to continue

working at the Orlando

Utilities Commission in

the NERC Standards Compliance department where he is

programming a Raspberry Pi to monitor the electric grid

networks.

Justin Gentry is a senior

at the University of

Central Florida and will

be receiving his

Bachelors of Science in

Computer Engineering in

the Fall of 2016. After

graduating, he aspires to

work for a large software

corporation such as

Microsoft or Google.

Hector Zacarias is a

senior at the University of

Central Florida and will

be receiving his

Bachelors of Science in

Electrical Engineering in

the Fall of 2016. After

graduating, he plans to

continue working at the

Orlando Utilities

Commission where he

plans transmission systems using Siemens energy software.

