Smart Mirror

Group K

Hector Zacarias | EE

Justin Gentry | CpE

Michael Trivelli | CpE

Motivation

- Seamless integration of technology into people's daily lives
- Smart Home technology is a blooming new field
 - Google Home (Nest)
 - Amazon Echo
 - Windows 10 IoT?
- Extend the idea of a 'Digital Assistant' to a room people use every morning

What Is It

- One Way Mirror in front of TV
- White/Light Colored pixels bleed through mirror
- Dark pixels do not and mirror reflects

Goals and Objectives

- Quality of Life improvement in the mornings
- Provide users with information they utilize regularly
- Implement a convenient user interface
 - Voice Commands
 - Some Gesture Control

Specifications

Voice Recognition Range	Up to 5 Feet
Voice Recognition Success Rate	>80%
Display Auto-Off	After 2 Minutes of No Motion Detection
Temperature Sensor Accuracy	+/- 1 °C error
Humidity Sensor Accuracy	+/- 2.5% error
Motion Detection Distance	5 Feet
Gesture Recognition Success Rate	>90%

Overall Hardware Diagram

Raspberry Pi

Raspberry Pi 2

Raspberry Pi 2 Model B				
CPU	Broadcom 900MHz	Quad-Core	ARM7	
Memory	1GB SDRAM			
Storage	8GB microSD			
Power Supply	5V microUSB			
Wi-Fi Module	802.11b/g/n			
Video	HDMI 1.4			
Audio	3.5mm Audio Port			
USB	4x USB 2.0			
GPIO	40 pin extended GPIO			
OS	Windows 10 – IoT Core			

MCU

MCU Specs

ATmega328-PU			
Operating Voltage	1.8 to 5.5 V		
Operating Temperature	-40 to 80 C		
EEPROM	1 KB		
SRAM	2 KB		
Digital Pins	14		
Analog Pins	6		
Clock Speed	16 MHz		

Sensors

Temperature & Humidity Sensor Specs

DTN11		
Voltage Supply	3 to 5.5 V	
Current Supply	o.5 mA	
Humidity Temperature Range	20 to 95%	
Operating Temperature Range	o to 50C	
Accuracy (Humidity)	+/- 5% RH	
Accuracy (Temperature)	+/-2C	
High Chemical Resistance	low	
Hysteresis	+/-1.0 % Rh	
Response Time	6 s	

Light Sensor Specs

- Converts light energy into an electrical signal output
- A piece of exposed semiconductor changes its electrical resistance

Close Range Motion Sensor Specs

Sensor	HC- SR501	GP2YoAo2YKoF
Voltage Supply	5 to 20 V	4.5 to 5.5V
Power Consumption	65 mA	33 mA
Output type	Digital	Analog
Output Voltage	3.3V	-0.3 to 5.7V
Maximum Sensing Distance	7m	150 cm
Operating Temperature	-15 to 70 C	-10 to 60 C

Fan

- Uxcell 12 VDC
- 92mm X 25mm

Other Hardware

- Display Device
 - Utilize a television behind one way mirror as earlier discussed
- Speakers
 - In our case, audio will be output via the speakers on the television. The Rpi has a 3.5mm auxiliary out jack for any other case
- Microphone
 - We will be using a webcam as the mic to save money, it is a Logitech C920 Pro
- There will be a single, 3W, LED on the bottom of the mirror for low light situations

Power Control

Linear Voltage Regulator

- Same as the ones used in Experiment # 3 in the EEL 4309
- 12 V
- 5 V

Single Pole Double Throw (SPDT)

- One common terminal and 2 contacts in 2 different configurations
- 12 VDC

Schematic

Mirror Housing

- Stained Wooden Frame
 - Frame backed by sturdy housing
- One-Way Mirror In Front of TV
- Motion Sensor Mounted on Bottom
- Speakers on Sides
- Raspberry Pi USB Access on Side
- Single LED Mounted on Bottom

Display Layout

- Offer information at all times
- Preserve mirror space
- Display important information closest to where your eyes fall
- Removable display elements for different use cases

Clock Possible Voice To-Do List Commands Currently Playing Music (only shows when requested) Commute Time Toggleable Text Based Items Twitter News Calendar Event Details Full Monthly Calendar View Calendar Weather

Software Design

Considerations

- Run on multiple platforms seamlessly
- Adaptable UI across platforms
- Modularity
 - For ease of creation with multiple developers
 - For future additional features

Results

- Universal Windows Platform
- Model-View-View Model Pattern

Universal Windows Platform (UWP)

- Standard Windows 10 runtime model
- GUI defined by XAML files using data binding for modularity
- Common API accessible by all Windows 10 devices
- Different API's accessible by individual platforms

Model-View-View Model (MVVM)

- Two reasons
 - Works great with UWP
 - Supports Modularity
- Loose coupling with Data Binding allows information to be seamlessly switched
- Easily format different data into similar layouts
- Easily create multiple GUI layouts from the same data bindings

Voice Processor Class Diagram

- Singleton Class
- Runs in separate thread
- Contains reference to all voice controlled modules
- Passes control to appropriate module when command received

Voice Processor

- -Tags : List<String>
- -ActiveModules : List<IVoiceControlModule>
- -Recognizer: SpeechRecognizer
- +InitializeSpeechRecognizer(): void
- +LoadModulesAndStartProcessor(List<IVoiceControlModule>): void
- +IsModuleLoaded(IVoiceControlModule): boolean
- +CreateGrammarFromFile(String, String): SpeechGrammar
- +UnloadSpeechRecognizer(): void
- -RecognizerResultGenerated(SpeechSession, SpeechArgs)

<<Interface>>

IVoiceControlModule

- +IsVoiceControlLoaded : boolean
- +IsVoiceControlEnabled: boolean
- +VoiceControlKey: string
- +GrammarFilePath: string
- +Speech Recognition Grammar: string
- +ProcessVoiceCommand(): void

Gesture Controls

- Simple Gesture Controls
 - Use of the mirror itself
 - Hardware Limitations
 - Kinect: 3.1GHz Processor, USB 3.0, 4GB RAM
 - Leap Motion: 2GB RAM
- Uses
 - Pause music to give voice command.
 - Scroll through certain text based display items
 - News
 - Twitter
 - Next/Previous song

Main Module

- Boot into Main Module on startup
 - Win10 IoT boot option
- Maintains a reference to all submodules for information exchange
- Handles all sensory information from MCU

Software Modules

Clock

News

Weather

Twitter

Calendar

Music

To-Do List

Commute Time

Clock

- Digital Format
- Uses System Time
 - Raspberry Pi Windows 10 IoT
 - NTP server
- Stretch Goal:
 - Analog clock display

Weather

- OpenWeatherMap API
 - Returns JSON object
- Formats:
 - Current Weather
 - Today's Weather
 - 3 hour intervals Highs and Lows & Icon
 - Tomorrow's Weather
 - 3 hour intervals Highs and Lows & Icon
 - Week's Weather
 - 5-day forecast Highs and Lows & Icon

Calendar

- Google Calendar API | Microsoft Calendar | Other
- Today View
 - Upcoming Events
- Month View
 - Days with events will be bolded

To-Do List

- Todoist API
 - Returns JSON object
- Task Manager | Reminders
- Task List Syncing
 - Multiplatform

News

- News Headlines
 - List of 4 Headlines
- CNN
 - RSS2JSON API
 - Returns JSON object
- Request different categories via Voice Command
 - World News
 - Local
 - Politics

...

Twitter

- Twitter API
- Show latest 4 tweets
- Show/Hide module via Voice Command

Music

- Spotify | Pandora | Google Play | Local Media
- Now Playing View
 - Artist Song Album Cover
- Request music via Voice Command
- Sound output to integrated speakers

Commute Time

- User sets location
 - Work | School

Commute Time

- User sets location
 - Work | School
- Google Maps
 - Distance Matrix API
 - Fetch travel time from current location

Configuration & Setup

- Initial User Setup
 - User accounts
 - Twitter
 - Todoist
 - Music Library
 - Work/School Locations
- UWP app to configure these settings
- Stretch Goal: iOS/Android app

Administrative Content

Work Distribution

Name	Embedded Hardware	Voice Recognition	Software Modules	Frame Design
Hector Zacarias	Р			S
Justin Gentry	S	Р	S	Р
Michael Trivelli		S	Р	S

Budget

ltem	Quantity	Cost
MCU	0	\$O
Power Relay	1	\$1.41
Fan	2	\$20.48
Diodes	4	\$1.25
Proto Broad	2	\$0.76
Motion Sensor (Long-Range)	2	\$3.60
Motion Sensor		
(Short-Range)	1	\$21.95

Item	Quantity	Cost
Humidity and		
Temp	1	\$1.75
Transformer	1	\$18.99
Auria 32" 1080p HDTV	1	\$100
Raspberry Pi 2	1	\$114.95
Microphone	1	\$10.64
Speakers	1	\$0
Mirror Assembly/Frame	1	\$104.25
Total:		\$448.53

Progress

Issues

- OAuth
- Music Player
 - APIs
- Motion/Light sensor
- False voice recognition
- Eagle learning curve

