Wireless Applications of a Refactored Prosthesis

"W.A.R.P."

Group 9 - Fall 2016

Daniel MorCpENiko TubachCpET. Brandon AshleyCpE

Motivation

- Research & Development
- Ease of Access
- Wireless Integration
- Additional Sensors
- Reduce Power Consumption
- Reduce Cost
- Toolkit for future Limbitless Engineers

Goals and Objectives

• Electronics

- Update regulator to reduce cost and increase efficiency
- Update EMG Sensor
 - Lower operating voltage
 - Digitally controlled hardware threshold
 - Reduce Cost
- Control 2 RGB LEDs
- Control 2 Servos
- Add IMU
- Add external flash memory for wireless reprogramming

• Embedded Software

- Utilize TI-Real Time Operating System for multithreaded processing
- I²C and SPI Interface
- Utilize Bluetooth Low Energy Stack

Mobile & Server Development

- Transmit configuration data to and from PCB
- Remote Data logging and diagnostics
- Request assistance from Limbitless team in real time

Project-Scope Block Diagram

Electronics

PCB Specifications

Description	Specification
Price	Under \$100 for the final design
Input Voltage	6.5v - 8.5v (7.4v Nominal)
Operating Time	8 - 10 hours
Min Trace Width / Clearance / Via Size	8 mils / 8 mils / 13 mils
Layers	2 - 4
Dimensions (Max)	100mm x 100mm x 25mm (Approximately 4in x 4in x 1in)

SaBLE-x Module

- Integrated CC2640 with integrated passive components
- Includes FCC approved PCB Trace Antenna
- Dimensions <11.63 x 17.86>

CC26xx

Main Features:

- ARM Cortex-M3 processor (System Core)
- 128 KB of Main Flash Memory
- 28 KB of SRAM (8KB cache)
- Compatible with all common transfer protocols
- ARM Cortex-M0 processor (Radio Core)
- 15 GPIO pins
- 12 Bit ADC
- Dedicated Sensor Controller

PCB Layout Digital Logic Board

PCB Layout

PCB Layout

Prototyping

Prototyping

SaBLE-x

EMG Sensor

GPIO Expander

1 MB External Flash Memory

Accelerometer / Gyroscope (IMU)

EMG Breadboard Output

Processed Signal (1v Scale)

Raw EMG Signal (500mV Scale)

Average of +/- 50mV Ripple

Embedded

Embedded Software

- TI-RTOS
 - Interface with external peripherals through I²C and SPI
 - Utilize ADC to digitize EMG Sensor Output
 - Schedule tasks and allocate system resources
 - Design multi-threaded application software
 - Thread Synchronization (semaphores, monitor, queues, mailbox)
- Bluetooth Low Energy (BLE) Stack
 - Manage BLE Pairing / Profiles / Services
 - Transfer data between low level RTOS and mobile apps
 - Provide read/write functionality to external application
- Boot Image Manager (BIM)
 - Over the Air Download image management for wireless reflashing

Top Level Embedded Diagram

P

- Hardware interrupt fires
- Kernel processes interrupt
- TI-RTOS evaluates interrupt and sends to BLE Manager
- ICall function transfers data to BLE process
- BLE Stack wraps and passes data to RF Core for wireless transmission
- Return data processed in reverse

TI-RTOS Architecture *System Initialization*

P

- Boot Image Manager (for Over the Air Download handling)
- TI-RTOS Reset Calls (on init)
- Main function calls (utilizes Driver configs)
- All Tasks are started and interrupts are enabled

TI-RTOS Architecture Main Loop

- SYS/BIOS Scheduler for multi-threaded event handling
- Main functions run from Tasks; called by SWIs and HWIs
- Power down mode can be planned or accidental

BLE Architecture

Key Features:

- Utilize wireless data
- Defines the general topology of the BLE network stack
- Describes in detail how attributes (data) are transferred once devices have a dedicated connection
- Allows for reads and/or writes to certain attributes exposed in a non-complex, low-power manner
- Internal interpretation of data to/from HCI
- Manages main Controller types and generic host information
- Transports Bluetooth packets between devices on the piconet (connection)
- The actual device hardware

Simplified Generation of BLE Profile

- 1. Have data needed to be sent through BLE connection
- 2. Decide how you want that data packaged (Boolean, uint8, etc.)
- 3. After making a general profile, add a service with a characteristic to fit your data (BDS a plus)
- 4. Implement this service in code as a library called by your main function
- 5. Add any relevant handling of your data (pre/post processing)
- 6. Turn on your host device and pair with BLE profile

High Level Software

Mobile Application

- Remote firmware updates
- User selected gestures
- LED color changer
- Data logging, pushed to server
- Diagnostics
- Real time communication with Limbitless Solution
- Social Networking

iOS vs Android

iOS

• Is a phone? true

Android

• Is a phone? true

iOS and Android (Love is Love)

Developing for both platforms

- Facebook's React Native
- Functional and Declarative UI
- State management with Redux
- Side Effect handling with Redux-Saga
- ~80% Code reuse

State Management

```
const initialState = fromJS({
     isScanning: false,
     connectedDevice: false,
     availableDevices: [],
19 });
   function deviceScreenReducer(state = initialState, action) {
     switch (action.type) {
       case START_SCANNING:
         return state.set('isScanning', true);
       case STOP_SCANNING:
         return state.set('isScanning', false);
       case SET_CONNECTED_DEVICE:
         return state.set('connectedDevice', action.payload);
       case ADD DEVICE:
         return state.update(
           'availableDevices',
           List(),
           list => list.push(action.payload)
         );
       default:
         return state;
     }
```

Sagas - What the Fork?

```
function createBleChannel() {
  return eventChannel(emitter => {
    const events = NativeAppEventEmitter.addListener(
        'BleManagerDiscoverPeripheral',
        (data) => {
        emitter(data);
        }
    );
    BleManager.scan([], 5, false)
    .catch((err) => {
        console.log('*** ble error ***', err);
        emitter(END);
    });
```

```
return () => {
    BleManager.stopScan();
    events.remove();
  }
});
```

```
export function* closeChannelLater(channel) {
    // Debounce the same amount of time as BLE scan
    yield call(delay, 5000);
    channel.close();
    yield put(stopScanning());
```

export function* startScanning() {
 const bleChannel = yield call(createBleChannel);
 yield fork(closeChannelLater, bleChannel);

```
while(true) {
   const payload = yield take(bleChannel);
   yield put(addDevice(payload));
}
```

export function* watchScanRequest() {
 while(true) {
 yield take(START_SCANNING);
 yield fork(startScanning);
}

Layered Software Architecture

State Relation Flowchart

State Relation Flowchart

GUI pics

</>warp Ξ Home A 🛠 Device Settings Get Help <mark>;;</mark>

Entity Relationship Diagram

Administrative Content

Work Distribution

	Electronics	Embedded Software (TI-RTOS)	Embedded Software (BLE-Stack)	<i>Mobile Software Development</i>	Server Development
Daniel Mor	Lead	Co-Lead	2nd	2nd	
Niko Tubach	2nd	Co-Lead	Lead	2nd	
Brandon Ashley			2nd	Lead	Lead

Budget

Part Name	Manufacturer	Part Number	Quantity	Unit Cost	Total Cost
SaBLE-x (Trace Antenna)	LSR	450-0119	1	\$16.52	\$16.52
Push-Button	Panasonic	EVQ-PNF04M	1	\$0.72	\$0.72
1MB Flash Memory	Macronix	MX25R8035FM1IL0	1	\$0.63	\$0.63
Accelerometer / Gyroscope	ST	LSM6DS3	1	\$3.93	\$3.93
GPIO Expander	Semtech Corp	SX1509BIULTRT	1	\$2.60	\$2.60
RGB LED	Broadcom Limited	ASMB-TTB0-0A3A2	2	\$1.31	\$2.62
Voltage Inverter	ТІ	TL7660CDGKR	1	\$1.43	\$1.43
Instrumentation Op-Amp	ТІ	INA826AIDGKR	1	\$3.01	\$3.01
Quad Op-Amp	ТІ	LMV614MTX/NOPB	1	\$0.92	\$0.92
Digital Potentiometer	ТІ	TPL0102-100RUCR	1	\$1.76	\$1.76
3.5mm Jack	CUI Inc.	SJ-3524-SMT-TR	1	\$1.37	\$1.37
High Power Voltage Regulator	ТІ	TPS62130RGTR	1	\$2.93	\$2.93
Logic Level Voltage Regulator	ТІ	TPS62745DSSR	1	\$2.6	\$2.60
Male JST Connector	JST	BM02B-GHS-TBT	1	\$0.43	\$0.43
PCB Creation and Part Placement					\$40
Non-Discrete Total Cost					
	Total Cost				\$103.36

Percent Complete (%)

Future Dates

Challenges

Electronics

Embedded Software

High-Level Software

- Offering improved capabilities at a reduced size and lower price
- High speed PCB layout
- Mix of sensitive analog and digital components in close proximity

- Steep Learning Curve for TI-RTOS & BLE Stack
- High level Software
 Development Concepts
- Size Considerations for BLE Profile using OAD

- Creating a UI that is cross-platform friendly
- Making native calls to the Bluetooth Module without memory leaks
- DevOps

Q & A