
1

University of Central Florida

Department of Electrical and Computer
Engineering

KittyBot

Stephen Barth - EE

Bryen Buie - CpE

Carlos Garzon - CpE

Trenton Williams - EE

2

Table of Contents

1 _ Executive Summary

2 _ Project Description

2.1 Project Motivation and Goals

2.2 Objectives

2.3 Requirements Specifications

2.3.1 Structural Requirements

2.3.2 Performance Requirements

3 _ Research related to Project Definition

3.1 Existing Similar Projects and Products

3.1.1 Autonomous Ball Collector

3.1.2 Puppy Pal

3.1.3 Hexbug

3.1.4 Rotundus GroundBot

3.1.5 Sphero

3.1.6 Remote Controlled Basketball Robot

3.1.7 Product Research Conclusions

3.2 Relevant Technologies

3.2.1 Motor

3.2.2 Microcontroller

3.2.3 Power Supply

3.2.4 Protection Circuits

3.2.5 Over-current Protection

3.3 Strategic Components

3.3.1 Communication Hardware Considerations

3

3.3.2 Sensors

3.3.3 Voltage Regulation

3.3.4 Gyroscope

3.4 Possible Architectures and Related Diagrams

3.4.1 Design Choice: Spherical vs. Dual Motor

3.4.2 PCB, Sensor, and Power of Spherical Design

3.4.3 Dual Hemisphere Structure

3.4.4 The Containers’ Battery Pack and PCB Design

3.4.5 3D Modeling to consider PCB Implications

3.4.6 Incorporating Useful parts of unused rapid prototype to our new design.

3.4.7 Why we chose the Spherical Design over the Cylindrical Design.

3.4.8 Creating a Second Robot

4 _ Identification and Review of Applicable Standards

4.1 Research and Identification of Standards

4.1.1 Research on Standards

4.1.2 Identification of Applicable Standards

4.2 Design Impact of Relevant Standards

5 _ Realistic Design Constraints

5.1 Economic and Time Constraints

5.2 Environmental, Social, and Political Constraints

5.3 Ethical, Health, and Safety Constraints

5.4 Manufacturability and Sustainability Constraints

6 _ Hardware Design

6.1 Voltage Regulation

6.1.1 Linear Regulators

4

6.1.2 Switching Regulator

6.1.3 Regulator Trade-offs

6.2 Amplifier Circuit Design

6.3 Embedded System

6.3.1 Microcontroller

6.4 Sensors

6.4.1 GP2Y0A41SK0F

6.4.2 PING)))

6.4.3 Piezo Element

6.5 Printed Circuit Board (PCB) Design

6.5.1 Layout and Design

6.5.2 Programming Microcontroller on PCB

6.5.3 Soldering

7 _ Software Design

7.1 IDE Options

7.1.1 Potential IDE and our Choice of Energia

7.2 Development Structure

7.2.1 Git Repositories over SVN

7.2.2 Agile over Waterfall

8 _ Project Prototype Testing

8.1 Rapid prototyping approach

8.2 Design considerations derived from prototyping

8.3 Breadboarding

8.4 Conclusions reached

9 Administrative Content

5

9.1 Team Management

9.2 Project Milestones

9.3 Budget and Financing

10 _ Conclusion

Appendices

Appendix A - Copyright Permissions

Appendix B – Code Snippets

1 Executive Summary
The purpose of this document is to detail the design and development of the
project by Group 5 of Senior Design 1 (EEL 4914) undergraduate course at the

University of Central Florida (UCF) during the Summer 2016 semester. For the

course, Electrical and Computer Engineering students of the University of

Central must join together in teams to conceptualize, design, and finally, build a

system or device that displays the engineering knowledge and skills we have

gained. This document will also discuss the research that went into the project,
review the applicable standards and constraints, detail the hardware and

software design decisions, as well as detail the prototyping process.

Group 5 has decided to work on a project that would not only challenge us, but

also be useful and fun. The project will be a robotic device whose primary

function is to interact and play with cats. Cats are often times curious and playful

creatures. Their interactions with the robot would be entertaining for both the cats

and their owners. The robot, affectionately dubbed “Kitty-Bot”, will function as an

advanced robotic toy for cats. It will be able to autonomously roam about an

indoor space. It will also be able to sense its surrounds so it will not run into

people, pets, or objects like walls, tables, couches, etc.

Since the primary target for the robot is cats, it will be designed with this animal

in mind. It will be of a small enough size (no more than 10 inches in height) as to

be an appropriately-sized plaything for the average household cat. The robot will

need to be durable enough to withstand rough contact from the animal. Cats

have sharp claws and teeth, so the outer shell of Kitty-Bot must be scratch

6

resistant, and the sensitive components such as microcontrollers, printed circuit

boards (PCB), and wiring will need to be housed in durable compartments. Kitty-

Bot may potentially be turned over while a cat is playing with it. If this happens,
Kitty-Bot will be able to set itself upright again. This will be achieved by Kitty-

Bot’s spherical design. It will, in essence, be a “smart ball”, an autonomous, self-

rolling sphere.

The project’s nature of being a device for pets means that it will interact with

living beings. Because of this safety is of the upmost importance. Group 5 will

design Kitty-Bot to not cause physical harm to pets or their owners. It will be an

indoor device as well, so very high-power will be avoided to lessen the chances

of physical harm and damage to property.

Throughout this document we will explore the potential capabilities of KittyBot.

7

2 Project Description

2.1 Project Motivation and Goals
Every six in 10 Americans is a pet owner. Census done by the Humane Society

of the United States shows that there are 86.4 million cats in households around

the United States. That alone is a large population, but combined with the

hundreds of millions of cats living in households across the global the numbers

become staggering. Pet owners love their animals, and while they strive to meet

their pets’ basic needs of food, shelter, and health, they also want to fulfill the

pets desire for play. A variety of pet toys exist, but with such a large population

that is capable of a sustainable market, technology will continue to be pushed

forward in said market.

Cats can be very playful creatures. Even though they are domesticated animals,
they still display natural predatory instincts that often manifest through play. They

run, they climb, they jump, chase, pounce, and leap, whether it be outside or all

throughout their owner’s home. Cats love the thrill of the chase. They will chase

objects and run from them. KittyBot will be a mobile device. This mobility will

engage the animal to play.

Our group consists of two electrical engineers and two computer engineers. Our

electrical engineers will give KittyBot life through designing circuits and power

systems, while our computer engineers will give KittyBot brains by developing

the programs and algorithms that will influence KittyBot’s behavior.

2.2 Objectives
The overall goal of this project is to produce a robotic pet toy. The main function

of the robot will be to interact with pets, mainly cats. More specific goals for the

robot include:

● Durability: This project will need to be durable. The robot is intended to

interact with animals which can be, to say the least, unpredictable. Outer

casings of aluminum or plastic should have sufficient durability to

8

withstand even the roughest contact with a cat. The main durability

concern is the electronic components of the robot. Components such as

breadboard circuits, printed circuit boards, and microcontrollers can be

severely damaged by cats clawing and biting them. These components

need to be protected.

● Maneuverability: The robot will need a concern degree of maneuverability.
The robot will primarily operate in an indoor space. The robot will move

across common household flooring surfaces such as wood, tile, and low

carpet.

● Size: The robot is meant for indoor use with household cats. Because of

this, the size of the project has to be kept to dimensions reasonable for

this sort of environment. The robot should not exceed 60 cubic

centimeters in overall size.

2.3 Requirements Specifications
This section will go over the requirement specifications of this project. These

requirements detail what KittyBot needs to be capable of in order to be

successful. The appropriate values and constraints will be detailed for each

requirement in order to properly access said requirement.

2.3.1 Structural Requirements
This section details the requirements and specifications regarding the structural

and physical aspects of the project. The size and weight of every element must

be carefully consider in order to keep within the desired small form factor. A key

component is the motors. The motor should be small enough to within a central

compartment or chassis. They should also not be too heavy.

 Next is the chassis itself. The principle design for this project is a spherical robot

design. This means it will need an inner chassis to which the motors and all other

essential electronics will be mounted, as well as an outer spherical shell. The

outer shell will determine the overall size of KittyBot, but it will also dictate what

the sizes of all the other components need to be because they all have to fit

within the outer shell in a reasonable fashion. The inner chassis should be the

9

second largest single component of KittyBot, and will have to be small enough to

fit inside the outer spherical shell, but large enough to hold all the electronic

components. In keeping with the interest of maintaining as low a weight as

possible this piece should be made from a lightweight material. Two common

structural materials are metal and plastic. Both are durable enough for this

project and malleable enough to form a shape small enough for this component.
A metal like aluminum is a great choice of metal for example. The advantage of

plastic however is that will metals like aluminum are more durable and the
chances of finding a pre-made piece that suits the projects needs and

specifications are certainly much higher than other less adequate materials, it is

harder to alter metal in general than it is plastic because it is stronger. In all

likelihood we won’t find a pre-made piece that perfectly fits our needs and it

would need alterations of some kind. That would require sawing, shaving, and

machining relatively small parts; a bothersome task. Plastics have the advantage

of 3D printing. With 3D printing we won’t have to worry about alterations because

we can create fully customized pieces to suit our needs. A common 3D printed

polymer is acrylonitrile butadiene styrene (ABS). This polymer is sufficient in

providing the level of durable needed for the inner chassis, but more important it

will allow us to print a piece in the desired shape.

Probably the heaviest single component is the power supply. This project is a

mobile platform so it will need to run off battery power. Batteries can come in pre-

assembled packs or in single cells. The single cells need to be housed in a

battery holder.

Specification Value Constraint/Comment

Maximum Weight 1 kg This is including all

components and

accessories assembled

into the final product

Maximum Overall Size 60 cm long

30 cm wide

The maximum size the

group deemed acceptable

for a common household

Figure 2.3.1: Overall Structural Requirements

10

Specification Value Constraint/Comment

Maximum Weight 60 g The weight of a single

motor should not exceed

this in order to keep

overall weight down

Maximum Overall Size 7 cm long

3 cm wide

3 cm tall

The profile of an

individual has to not

exceed this in order to fit

the center chassis

Figure 2.3.2: Motor Structural Requirements

Specification Value Constraint/Comment

Maximum Weight 75 kg Material could be metal or

plastic to give desired

function and weight

Maximum Overall Size 10 cm long

10 cm wide

10 cm tall

The maximum size to

keep the inside of the

sphere reasonable

Figure 2.3.3: Inner Chassis Structural Requirements

Specification Value Constraint/Comment

Maximum Weight 200 kg Battery pack may reach

this level of weight if an

external battery holder

with wire connectors and

on/off switch is used

Maximum Overall Size 7 cm long

7 cm wide

Overall size of battery

pack

Figure 2.3.4: Power Supply Structural Requirements

11

2.3.2 Performance Requirements
This section details the requirements and specifications pertaining to the

performance aspects of the project. A major determining factor in the systems

performance is the motor. Since a small motor is preferable we can use a lower

current. The speed of the motors does not need to be that fast since this is an

indoor pet toy. The torque just needs to be high enough to carry the overall load

of the entire structure. This project will operate at a relatively low power. To this

end, the voltage will be low enough to facilitate this, but not be too low as to

where the torque would fall to unacceptable levels.

Specification Value Constraint/Comment

Minimum Battery Life 60 minutes On a full charge, the

system should be able to

operate for this long

Minimum Speed 60 cm long

30 cm wide

The maximum size the

group deemed acceptable

for a common household

Maximum Speed 5 mph In order to maintain a safe

operating speed, this

speed should not be

exceeded

Minimum Speed 1 mph The device should at the

very least reach these

speeds

Figure 2.3.5: Overall Performance Requirements

Specification Value Constraint/Comment

Minimum Torque 2 kg-cm This is what is needed to

move the system

Maximum Torque 10 kg-cm This amount of torque is

adequate for the scope of

the project, anymore

could possibly be

dangerous

Minimum Speed 30 rpm This is the speed (in

12

rotations per minute) a

single motor needs to be

able to reach

Maximum Speed 50 rpm This is an adequate

speed for the project.

Spinning any faster is

unnecessary and

potentially dangerous

Minimum Voltage 4 V Baseline voltage required

for operation

Maximum Voltage 6 V The most needed to keep

the project in a low

voltage range

Figure 2.3.6: Motor Performance Requirements

3 Research related to Project Definition
The following section will detail the research performed for the development of

Kitty-Bot. Once the initial concept, goals and requirements were all created the

research process of Kitty-Bot could begin. The process began with searching for

similar projects and products that already exist. Since Kitty-Bot is intended to be

a cat toy, robotic pet toys were some of the first products looked at. One of the

principle overall designs of Kitty-Bot is to make it spherical in shape. With that in

mind, many spherical robot projects and toys were researched. Information

gathered from these existing devices helped to focus the design of Kitty-Bot.
Next, the technologies of the individual components that will make up Kitty-Bot

needed to be researched. These components are the building blocks of Kitty-Bot,
so the attributes of different technologies needed to be accessed in order to

determine what would best fulfill the requirements of Kitty-Bot, and what would

best work together to create a cohesive whole in the final product.

13

3.1 Existing Similar Projects and Products

3.1.1 Autonomous Ball Collector
This project, the autonomous ball collector, is from an Engineering team of

students here at University of Central Florida. The idea was to make an

autonomous ground bot that would detect loose balls and automatically scoop

them to make it easier for tennis players to deal with picking up balls. The plastic

casing holds the tennis balls and protects the circuitry as seen below in Figure

3.1.1. The plastic is durable enough to withstand oncoming tennis balls.
KittyBot also needs a strong plastic casing to withstand cats playing with it.
Another similarity is that KittyBot will be fully autonomous as well which made

this project a good reference for general robotics.

Figure 3.1.1: Autonomous Ball Collector

The Autonomous Ball Collector was made with mindset to convenience the user.
The user turns it on and lets the robot do the work while they play tennis.
KittyBot will be similar in the sense that a user turns it on and will be something a

cat can play with, without the user having to step in and help it get unstuck from

corners of rooms.

The project’s software interface is an AVR programmer made by Atmel. This

Atmel chip is a good reference to look at because it is relatively cheap and easy

to use which are good specifications for our KittyBot project. The chip utilizes a

flash memory and will execute the program that is written inside. Their chip runs

at the speed about 10MHz with built-in 1KB of RAM and 10KB of storage. The

idea is to consume the least amount of energy as possible because tennis

14

matches can last over an hour which was one specification this group set out to

do.

3.1.2 Puppy Pal
The Puppy Pal is a senior design project done in 2014 by project members Scott

Smith, Afzal Schafi, Anson Contrares, and Cameron Riesen. Their project is

similar to the KittyBot in the sense that it was made to be an interactive toy with

animals. Shown in Figure 3.1.2, they have a very similar idea with the round

casing to one of the design considerations for KittyBot. The Puppy Pal was

created to have a user interface to control the ball with an Android device. The

creators wanted to add additional components to the inside like LEDs and an

amp. Flashing lights and random sounds were creative ideas in coming up with

other ways to attract an animal’s attention to play.

Figure 3.1.2: Puppy Pal

The intended function of KittyBot is to be a robotic cat toy, so we looked at

similar products that are current in the market. A common type of product that

relates to our project is a motorized chase ball. This type of product is made and

sold by several companies. The product mainly consists of a battery-powered

motor encased in a plastic ball that can be separated in half down the middle.

15

Attached to the outside of the ball is usually a tail coated in synthetic fur so that it

resembles a small furry animal. Once turned on, the motor inside the ball rotates

causing the ball to begin rolling on its own. As the ball rolls the tail flips and flops

around along with it. The rolling ball along with the erratic movement of the tail

are meant to engage the cat in play. As stated prior these are common products,
but we have also researched a few more specific products developed by their

own companies. Here is a more in-depth look at them.

3.1.3 Hexbug

Hexbug is a company that sells toys and robots ranging from small R/C toys

aimed at children to larger, more complex robots for builders and hobbyists. They

also spot a line of electronic cat toys. They currently have a few designs. First is

the Hexbug Nano Robotic Cat toy which is a small robot designed to look like an

insect. The Nano has five legs on each side and scurries around, mimicking a

bug’s movement. There is also a furry tail attached by a string to the back of the

Nano to entice cats to chase it. Hexbug’s other design is the Hexbug Mouse

Robotic Cat toy. This product is a bit bigger than the Nano cat toy and as its

name would suggest it is decorated to look like a mouse. This toy comes in two

variants, a remote-controlled version and a fully robotic version. The products are

shown in Figure 3.1.3.

Figure 3.1.3: Hexbug Nano and Hexbug Mouse

(From hexbug.com)

16

3.1.4 Rotundus GroundBot
Since our robot has a spherical design, we researched other spherical robots.
One product we looked at was the Rotundus GroundBot. GroundBot is a robotic

mobile platform with a spherical shape and two cameras on the sides of the

sphere. It is primarily a mobile surveillance platform intended for use at large

secure locations such as airports, warehouses, harbors, and power plants. The

spherical and robust design allows for GroundBot to better traverse the rough

terrain some of these locations can have. GroundBot can be remote controlled or

set to a path using GPS. Internally the GroundBot has a pendulum attached to a

motor. The motor moves the pendulum arm. When the pendulum leans in a

certain direction the center of gravity of the sphere shifts. This causes the sphere

to roll in that direction. The motor keeps the pendulum arm up in a certain

direction which allows for continuous movement. Figure 3.1.4 shows the

GroundBot and the internal schematic of how the pendulum arm mechanism

works.

Figure 3-4: Rotundus GroundBot and Internal Schematic

3.1.5 Sphero
Sphero is a robotic ball toy. Owners control the toy’s motion and the LED color

displayed with a smartphone application. Sphero uses Bluetooth communication

to receive its commands. In addition to the basic control app, Sphero’s creators

developed a series of programming environments to encourage Sphero owners

17

to be creative and make their own apps. Some of the apps let the user create a

path for Sphero to follow. To track movement, a three-axis accelerometer and a

gyroscope were installed. One impressive feature is Sphero’s ability to charge

wirelessly.

KittyBot is heavily leaning towards the spherical shape design. The great variety

of apps developed for Sphero shows that there are many applications for this

type of toy. At first thinking about how the KittyBot will function and move

autonomously was difficult to picture. Sphero has given us some guidance

towards the first step in making KittyBot autonomous. Figure 3.1.5 shows the

Sphero.

Figure 3.1.5: Sphero

(From www.sphero.com)

Another fun product on the market is the Sphero 2.0, made by the company of

the same name. Sphero 2.0 is their latest model and it is a small spherical robot,
about 7.5cm in diameter. It is incased in a sealed plastic shell. This makes

Sphero waterproof, giving it the ability to traverse bodies of water. The highlight

feature of this product however, is its ability to work in tandem with smartphones.
It connects with smartphones through Bluetooth allowing user to interact with
Sphero through a plethora of smartphone applications available on digital

marketplaces. These range from changing the lighting of Sphero’s LEDs, directly

controlling Sphero’s movements, or pre-programming directions for Sphero to

follow. A scaled up version of this toy can be seen in BB-8, the android character

featured in the 2015 film Star Wars: The Force Awakens. Sphero is responsible

for both the robot used in the films and the mass-produced toy versions of BB-8.

18

BB-8 has a stationery head that sits on top of the rolling ball as it moves. This is

because the ball proportion has an internal gyroscope. The gyroscope helps in

maintaining stability in the ball as it moves.

3.1.6 Remote Controlled Basketball Robot
In this project, a basketball moves along the ground based on input from a two-

channel radio and receiver. Inside of the basketball, a hamster ball holds the

chassis. The sides of the chassis are attached to the outside of the ball. This

holds the chassis in the middle of the ball. A drive motor, servo, and steering arm

are used for drive and steering. A gyroscope was also included.

The bottom of the steering arm holds the batteries and weights. With enough

weight, the chassis is kept parallel to the ground despite the ball’s motion. As the

motor and servo rotate the steering arm in the desired direction, the rest of the

ball is pulled forward to keep up with the new center of mass. The gyro senses

the changes in rotation, allowing for control. Figure 3.1.6 shows an internal

schematic of the project.

Figure 3.1.6: Remote-Controlled Basketball Schematic

This robot’s mechanical system could be a straight-forward solution to the

mechanical design of KittyBot. The main obstacles of this design are the weight

used, the construction or purchase of the chassis, and control. The use of only a

gyroscope in this project left much to be desired in precision. If KittyBot had used

this method, it would also include an accelerometer to achieve a more clear-cut

sense of maneuverability than the basketball robot.

19

3.1.7 Product Research Conclusions
The myriad of products researched gave great insights into the design of Kitty-

Bot. After researching these robots and toys, the spherical design became much

more preferred. Comparing the main two spherical products researched, Sphero

and GroundBot, elements of both provide good inspiration. When it comes to

their internal movements designs, Groundout’s pendulum arm design is an

elegant solution to spherical movement. Sphero’s innards are more akin to a

scooter stuffed in a ball. Rotating wheels and gear shafts of the internal car-like

unit move inside the spherical casing causing it to roll. Sphero’s design falls more

in line with the desired design of Kitty-Bot. It is a toy, which means it is a smaller

scale project. GroundBot is a much larger orb-like robot than Sphero and the

intended size of Kitty-Bot. It is meant to be an all-terrain robot that can cover

large distances. Sphero and Kitty-Bot are meant for use in the small controlled

environments of homes. Sphero’s internal car design is more applicable in this

smaller scale than GroundBot’s pendulum.

As a pet toy, Hexbug’s line of toy robots greatly inspire Kitty-Bot. These products

give insight into making the devices appealing and eye-catching to pets. Things

like the bright colors, lights, and sounds all help to entice the animals to interact

with the device. The Puppy Pal greatly resembles how KittyBot is intended to

look. The internal mechanisms are very different from what will be considered for

KittyBot.

3.2 Relevant Technologies
The following section details the research of the relevant technologies to the

primary components of Kitty-Bot. First will be a look at motors, which are

foundational because they are the primary movers of the device. That will be

followed by an in-depth look at microcontroller. The microcontroller’s importance

is paramount because it will act as the “brain” of Kitty-Bot. It will direct all of Kitty-

Bot’s motions and actions. Lastly, power supply research will be examined. The

power supply’s importance is obvious; it will give Kitty-Bot the power to function.

20

3.2.1 Motor
An essential piece of technology for this project is a motor. A motor will be

needed to move the robot. A few different types of motors have been researched

in order to determine which would be the best fit for the project. Some motor

types under consideration are stepper motors, direct current (DC) motors, and

servo motors.

The stepper motor is a very precise motor. It can allow for sharp starting,
stopping, and reversing. Stepper motors also tend to run cheaper than the other

types of motors under consideration. There are several advantages that the

stepper motor may provide KittyBot. One advantage is that the stepper motor is

extremely meticulous in calculating its motion. The extreme accuracy of the

stepper motor allows for immediate acceleration and deceleration, both forwards

and backwards. The stepper motor provides a strong level of control to the user.
Another advantage of the stepper motor is that it is inexpensive when compared

to the servo motor and the direct current motor. However, there are certain

drawbacks to the stepper motor. There are drawbacks to the stepper motor.
Firstly, they are slow. They are also noisy. It could potentially scare animals with

its excessive noise. The servo motor and the direct current motor both provided a

higher rate of acceleration when compared to the stepper motor. Our team felt

that this may cause a problem if KittyBot was found being used in an outside

environment. However, being that KittyBot is only meant for indoors, our team

concluded that this drawback was not crucial to its success. A drawback to the

stepper motor that could hinder the usefulness of KittyBot was its noise level.
The stepper motor is the loudest motor when compared to the other two, which

might frighten the animal that is trying to play with the device.

DC motors allow for higher speed continuous rotations. Such high speeds may

be excessive for this project. KittyBot is meant to be an indoor cat toy, so very

high speeds are unnecessary. Servo motors generally seem to be a happy

medium between DC motors and stepper motors. They offer more precise

movement than DC motors. They produce less noise than stepper motor and can

reach higher speeds. A drawback of the servo motor is that it has a limited

rotational range. This can be tuned however. The first characteristic our team

noticed was that the servo motor was not as loud as the stepper motor. The

servo motor was also able to function at a faster speed than the stepper motor.

21

When it came to comparing the movement of the servo motor with the stepper

motor, there was very little difference in timing. The stepper motor proved to be

more precise than the servo motor. As a team, we concluded the difference to

be trivial. There was one disadvantage to the servo motor that was unnoted with

the stepper motor: rotational range. In the end, after researching whether or not

our team could fix this flaw within KittyBot, we concluded that a simple tune-up

would suffice.

Lastly, our team analyzed the findings of the previous motors to those of the direct

current motor. The direct current motor was lower in volume when compared to the

stepper motor, and was around the same decibel level when compared to the servo

motor. The direct current motor was the fastest motor out of all three motors. Our team

found that the major difference between the direct current motor and the other two

motors was the precision in its movement. The direct current motor was recognizably

slower in its timing.

Our team felt that accuracy in timing and detection was crucial to the success of

the project. Therefore, the direct current motor was eliminated as a possibility.
When deciding between the stepper motor and the servo motor, our team

decided that the servo motor provided a nice balance between precision and

noise level. Although the stepper motor was slightly more accurate, we

determined the miniscule difference to be negligible. In the end, our team chose

the Parallax Standard servo motor.

3.2.2 Microcontroller
The microcontroller is responsible for controlling the entire system. When

selecting one factors such as processor speed, memory capacity, power

consumption, and number of available ports must be considered. Besides the

microcontroller’s specifications, its cost must also be taken into account.

A plethora of considerations came into play when deciding what microcontroller

to use. This small computer will hold the processing power memory,
programmable in and outputs and essentially be the brains of our entire system.
Also, the microcontroller will be the base of what will eventually become our

printed circuit board. Without this vital piece instructions cannot be compiled into

an executable logic that will execute our algorithm. We were mindful of things but

certain things were less important than others. For example, processing speed

22

might be a vital nerve for a gigantic system. However, keeping in mind that our

system will be relatively simple processing power will not be something that

greatly consider. For the same reason, memory wasn’t something that was of

grave importance. Power consumption on the other hand was a considered a

pillar to our success. Our device does not have allot of breathing space to be

abundant with space or energy. Being that everything has to fit into a spherical

container we need the entire system to consume as little power as possible and

also take up as little space as possible. The number of digital pins however was

important for us and was a factor of importance for our consideration. Analog

pins were not an important factor being that we don’t at this stage believe that we

use the analog side. That being said having good analog to digital converters

would be a useful tool to have in our back pocket should we need it. Lastly, how

the output ports were organized for motors and what software we would consider

to reconcile the two was of grave importance for us.

Many different microcontrollers were researched. The following figures will list

the microcontrollers as well as their pros and cons.

Arduino UNO Rev3: $25

Pros Cons

● Cheaply Priced
● Native IDE

● Programmable in C, C++

● Slow Clock - 16 MHz

Figure 3.2.1: Arduino UNO Rev3 Pros and Cons Table

BASIC Stamp 2: $49

23

Pros Cons

● Small Physical Size
● Low Power Consumption
● Native IDE

● Programmable in C, C++

● PBASIC Language

● Slow Clock - 20 MHz
● Small Memory Capacity - 32-

byte RAM

Figure 3.2.2: BASIC Stamp 2 Pros and Cons Table

BeagleBone Black: $55

Pros Cons

● Fast Processor - 1 GHz ARM
Cortex Processor

● Large Storage Capacity
● Native IDE

● Compatible with Android,
Debian, etc.

● Requires knowledge of Linux
● High Power Consumption - 5 V

at 200 - 450 mA

Figure 3.2.3: BeagleBone Black Pros and Cons Table

Raspberry Pi: $40

Pros Cons

● Fast Clock - 700 MHz
● Programmable in multiple

languages
● Very impressive quad core

processor ARMv7
● Possible to integrate Ubuntu

and other Operating Systems

● High Power Consumption - 5V at 2
A

● Requires knowledge of Linux
● Designed to process video and

audio more efficiently than other

microcontrollers. Could be a pro

depending on what we want.

Figure 3.2.4: Raspberry Pi Pros and Cons Table

24

TI Tivia C: $13

Pros Cons

● Very inexpensive
● Energia - An Arduino based

IDE
● Compatible with Texas

Instruments software libraries

● Less native libraries than more
commonly used microcontrollers

Figure 3.2.5: TI Tivia C Pros and Cons Table

TI MSP430: $12 - $24

Pros Cons

● Very inexpensive
● Energia - An Arduino based IDE

● Low Power Consumption - 1.8 - 3.6

V at 200 uA

● Needs peripheral for prototyping
● Relatively low memory

Figure 3.2.6: TI MSP430 Pros and Cons Table

Wiring S: $35

Pros Cons

● An abundance of AD pins and
PWM outputs for sensors and

motors.
● Allot of memory SRAM and Flash

to store code and increase process
speed

● More memory than needed
● Very little documentation and not

much of an online community for
problem solving support

● Very high operating voltage

Figure 3.2.7: Wiring S Pros and Cons Table

25

990.005 MuIn - Multi Interface Board with PIC18F2520: $35

Pros Cons

● Many components, ADC

Channels, GPIO/SERVO,
EE/EXPORT/USB SOCKET,
LEDs, I2C BUS

● Up to 12 sensors can be
connected

● Can attach more motors than other
devices

● Very little documentation and not
much of an online community for
problem solving support

● Native Instruction Set

Figure 3.2.8: 990.005 MuIn - Multi Interface Board with PIC18F2520 Pros and

Cons Table

Given the pros and cons of each microcontroller based off of their technical
specifications and the group’s prior experience with some of the systems in

question, the TI MSP430 was chosen. The MSP430 has low power consumption

which will allow for extended operating times and longer periods of interaction

with pets. Also with the MSP430 consuming less power, KittyBot will be under

less stress. Considering that our motors need to be able to move the weight of

the microcontroller, power supply, and spherical chassis; weight must be cut

down wherever possible to ensure proper functionality. The MSP430 also

supports many peripherals. Interfacing Texas Instruments brand peripherals will

be easier because of greater compatibility. The most important reason TI

MSP430 was chosen is our familiarity with the hardware. Similar features can be

found in some of the other microcontrollers, but our past experience with the

MSP430 will make it easier to use for the group.

3.2.3 Power Supply
KittyBot’s power supply is will consist of two or four AA batteries.

Component Input Voltage Current

26

Microcontroller 3.3V 330 μA

Motors 5V 90-190 mA

Sensors 5V 22 mA

Figure 3.2.9: Power Overview

Batteries

Four types of batteries were researched: nickel cadmium, nickel metal hydride,
and lithium ion batteries and alkaline batteries. The kitty-bot will run on 2-4 AA

sized batteries and be able to run for at least an hour nonstop. The battery pack

will sit on top of the PCB board within the KittyBot ball casing.

The batteries will need to be able to supply enough power to all the components.
The project is small and compact so the goal is to keep it as low power as

possible. The servo motors use about 5 volts and 90 mA to 190 mA each. The

batteries will need to be able to supply power also to the proximity sensors which

use 5 volts and draw around 12 mA of current.

NiCd

Nickel-cadmium (NiCd) used to be the cheapest of the batteries, but a rise in

popularity of NiMH and lithium ion batteries caused them to become cheaper and

closer in price. The NiCd battery has highest current output among the three

types but is outperformed by NiMH and lithium ion batteries. NiCd takes around

one to two hours to fully recharge. The battery needs to be fully discharged

before recharging to prevent memory effect in which the battery holds less

charge over time.

NiMH

Nickel-metal hybrid (NiMH) batteries are a newer technology than NiCd. It’s

known to have limited memory effect and higher energy density than NiCd.
NiMH battery has good current output and is more environmentally friendlier than

NiCd. Rechargeable NiMH batteries are available in 1.2 V per cell. An

advantage NiMH has is its ability to discharge a constant 1.2 V until the battery is

depleted.

27

Lithium ion

Lithium ion batteries are the most advanced technology among the three. It is

environmentally friendly and has the same energy as NiMH battery but weighs

less. Li-Ion has higher energy density than the other two rechargeable batteries.
A great advantage lithium ion batteries have over NiMH is that they have no

memory loss effect. Rechargeable Li-Ion single cell’s nominal value is 3.6 V,
which means it would require three times as many nickel batteries. If lithium-ion

batteries are used, a protection circuit must be created to use them safely.

Alkaline

Alkaline batteries were researched as well to have an alternative possibility other

than rechargeable batteries. Even though it’s the only disposable battery here,
the alkaline battery has 4 times the capacity of NiCd or NiMH. The nominal cell

voltage for an alkaline battery is 1.5V. Alkaline disposable batteries are readily

available, commonly used, and cheap. Some negatives about alkaline batteries

are that they are heavy and have low power capacities.

Battery Selection
The battery selection came down to two choices in the end. The lithium iron
phosphate(LiFePO4) batteries or the alkaline batteries. We compared the two to
figure which one we would choose. Since the alkaline batteries provide 1.5 volts
each, a pack of 4 would give around 6 volts, and we measured it to provide 5.3
volts which was well within the range for our components. Two lithium batteries
would provide 6.4 volts but we measured it to be 5.5 volts which is the maximum
acceptable voltage for the voltage regulator, not the motors. Since the pendulum
counterweight is mostly the battery pack it proved to roll better with more
batteries to stabilize the chassis that’s holding our circuit and motors. The
current draw from KittyBot is only 600 milliamps and each battery provides over
1200 mAh which would give KittyBot at least 2 hours of run time. This meets our
goal set for run time of at least one hour. In table 3.2.11 the two batteries were
compared using specifications important to KittyBot’s design.

 Specification LiFePO4 Alkaline

Price ✓

28

Weight ✓

Size ✓

How long they last ✓ ✓

Efficiency ✓

Overall ✓

Table 3.2.11 Used to show which specifications were more desired in each
battery

Overall the 4 alkaline batteries were a better selection than the 2 lithium iron
phosphate batteries for KittyBot. The biggest factor was the weight for the
pendulum. On more frictional surfaces like carpet, the inside chassis sometimes
spins itself once to create momentum to start rolling the hamster ball. If the
weight was lighter it would be slower to start gaining momentum.

29

30

Figure 3.2.12

Lithium ion batteries provide the most energy and are rechargeable and are the

best option for the kitty-bot’s design. Since the battery pack is small and can

only fit two batteries there needs to be most possible energies from the ones

researched. There’s a clear advantage that the lithium ion battery has over the

NiMH battery, the nominal voltage is 3 times as much. The small casing

everything is fitting in causes another design constraint due to the size of the

housing, although lithium-ion batteries are the superior batteries to NiCd, NiMH

or alkaline batteries.

3.2.4 Protection Circuits

A protection circuit is important to protect your power supply and all the
components from either a power surge or a component is drawing more current

than the power provided. Fuses act as a short when too much current is running

through a system. The fuse triggers when there’s too much current in a circuit.
Once the current burns through its seal, the fuse blows and cuts off the current

from going back into the power supply. The fuse prevents current from going

through the power supply which is connected to the motor, microcontroller, and

PCB, and protects them from becoming damaged.

Another good way to protect components is with a protection diode. The safety

diode protects the circuit or device from the harm that a reverse voltage or

current can cause. The protection diode only allows current to flow in one

direction. When a diode is placed in parallel with a component, as shown in

figure 3-6.1 it is typically placed in reversed bias mode because of current

potentially flowing backwards through the circuit. Figure 3-6.1 shows the second

arrow which is the reverse current flowing through the diode, instead of possibly

damaging the motor. The first arrow is correct current flowing into the motor.

31

Figure 3.2.13

3.2.5 Over-current Protection

Another important feature for a motor controller is the fact they provide protection

to the SERVO motors. While testing KittyBot or an autonomous vehicle in

general it is important to protect your components so you can work on testing it

rather than waiting to replace fried parts. Components can be protected with the

motor controller rather than be exposed to overheating during testing. Heat

overloads, shorts and over-current faults can occur for a number of reasons and

it’s highly valuable to stop the motor controller before damage can be done to

itself or the connected circuitry. The device must have current limits set on the

internal field effect transistors. If a fault of any kind is detected, a surge protector

will be able to prevent damage to the motor controller and power supply. The

feedback will cause the circuit to be open disallowing the motor to pass too much

current through and protecting the circuit.

3.3 Strategic Components
This section will detail strategic components that can be attached to Kitty-Bot.
The content seen below will delve into the components outside of the main

32

components needed for the project. These devices will serve to refine Kitty-Bot’s

abilities and functionality to allow for a better product.

3.3.1 Communication Hardware Considerations

Remote Control

KittyBot is first and foremost a robot. We want it to be autonomous and make

decisions based off of inputs from its sensors. Another option for KittyBot to give

it more flexibility as an entertainment item is to add some form of remote control.
While operating autonomously KittyBot can fully engage with the pet, but the

owner is limited to only the role of a spectator. With a remote control option

KittyBot changes from merely being interactive for the pet and observatory for the

owner to being interactive for both. Remote control would bridge the gap

between pet and owner allowing for an interaction between the two.

There are a few ways to achieve remote control with KittyBot. The first would be

through a transmitter and receiver kit. The receiver would connect to the internal

central unit of the system while the user would transmit commands with the RC

transmitter. Many transmitter/receiver set are available. All that is necessary is a

2-Channel transmitter is all that would be necessary, one for forwards and

backwards and the other for left and right rotation. The most common style of

transmitter is the two joystick design; the left joystick controls front and back

movement while the right stick controls left and right rotation. An example of this

design is shown in Figure 3.3.1.

33

Figure 3.3.1: Spektrum DX-7 Transmitter

The Spektrum DX-7 shown has quite a bit more features than necessary, but it

displays the style of controller we would consider, the common dual-joystick

style.

Another option for remote control is through Bluetooth, more specifically

Bluetooth control through a smartphone application. A Bluetooth module can be

attached to the central control unit to allow for communication between the

device and a smartphone or tablet. A module like the HC-05 or HC-06 could

accomplish this. The HC-05 (Figure 3.3.2) is capable of slave or master

(receiving or transmitting) settings while the HC-06 is only capable of slave

settings. They are both physically the same measuring only 3 cm long. Oddly the

HC-06 is normally not cheaper than the HC-05.

34

Figure 3.3.2: HC-05 Bluetooth Module

The HC-05 would have to work in tandem with a smartphone application. This

comes with many choices. The first would be which mobile operating systems to

develop for, Apple IOS, Google Android, or Windows Phone. While slowly

growing, the share of the mobile phone market Windows holds is very small; and

while their Windows 10 integration on their very successful line Surface tablet
computers would allow for an increased plethora of choice in programming

languages, IDEs, etc., we feel the best course of action for the Bluetooth control

option would be to focus on smartphones as the primary transmit device and let

tablets be secondary. Apple IOS is a much more widely used operating system.
The fact that it is limited to the Apple iPhone line of smartphones is not an issue

because of the brands staggering popular and widespread use. Market and

familiarity would not be a problem. When it comes to programming the options

become quite a bit less. IOS apps have classically been mostly coded in

Objective C, which is a very robust language fully capable of delivering the

desired results. Apple has also introduced the Swift programming language to

allow for a more user-friendly coding experience. iOS would present a challenge

with the use of the app. Will the app would be able to be tested on an iPhone in

developer mode, the process of trying to get an app on their app store requires a

$100 developer fee. The Android operating system is incredibly widespread. It is

very popular and used on a multitude of different devices. Android development

is mostly done in Java. The other good part of Android app development is

getting your app up and running for testing and on the Google Play store is

completely free.

35

The best fit for developing an app would be the Android operating system. The

main reason for this is simply familiarity. Our group has much more prior

experience developing for Android. We have little to none developing for iOS.
While Windows can utilize a wide variety of programming languages, we don’t

readily have access to a Window Surface or similar product. That also takes

away the mobile element we’d wish to achieve. An Android application would

allow us to interface with the Bluetooth module inside KittyBot. Nearly all modern

smartphones include Bluetooth technology. This would mean nearly all cell

phone user have a remote to KittyBot in the palm of their hands. This is a design

element inspired by Sphero which uses Bluetooth and a variety of Sphero

developed apps to control the robot.

Infrared Communication

Infrared communication is a very popular communication technology for many

applications such as remote control, robotics, etc. Infrared communication has

been used in applications such as remotes effectively since around the 1950’s; it

is an effective way to wirelessly transmit data. There are many aspects of

infrared communication that can make it a suitable means of transferring data

given the right conditions.

It is a very low power option that generally requires no more than a couple of AA

batteries. Since infrared is a very popular technology, it is also well established

and has existed in the market place for many years now. Due to this widespread

market utilization it is also a very inexpensive technology and has many

resources on the fundamentals of its operation. The data transfer rate of infrared

is not as fast as some other technologies (around 4 MB per second), but that is

fast enough for this project and therefore is not an appreciable problem.

Unfortunately, infrared communication also has some serious drawbacks. Due to

the high frequency with which infrared operates, about 100-214 THz for low

range telecommunications, infrared cannot pass through solid objects such as

walls or any other solid material. This means that to effectively utilize infrared

technology the receiver must be visible to the transmitter or the signal will be

totally reflected and not be transmitted/received at all.

36

RF Communication

Radio frequency (RF) communication is the most popular form of communication
in modern technology today; Bluetooth is actually a specialized form of RF

communication designed to operate over short distances. Most RF

communication technologies are designed to operate over greater distances than

technologies like Bluetooth or Infrared with ranges of up to a few kilometers. RF

communication technologies are generally classified by the frequency with which
they transmit information; the two that will be addressed here are two frequencies

in the ISM (industrial, scientific, medical) frequency band, 2.4 GHz and sub-GHz

technology. Instead of separating them into two different categories they will be

compared side by side due to many commonalities in their operation as well as to

highlight some of their differences.
2.4 GHz

2.4 GHZ technology is the most popular frequency in most wireless internet

routers today; it has been the chosen frequency in the ISM band for some time

due to the IEEE standards. This frequency has a balance between range and

penetrability. If allowed to transmit through free space, it has a range that is

higher than a 900 MHZ system and also allows for smaller antennas due to the

shorter wavelength of a 2.4 GHz RF signal. Unfortunately, signals are not

transmitted in free space so there will be greater transmission loss for a 2.4 GHz

signal if obstructions are encountered such as walls and other solid objects.
Another important feature of 2.4 GHz technology compared to 900 MHz

technology is the data rate associated with each; 2.4 GHz technology allow for

higher data transfer rates.

Sub GHz (900 MHz)

Sub GHz technology has become increasingly popular over the last few years for

a number of reasons. It is still a part of the unlicensed ISM band making it

suitable for industrial applications. It has some of the same advantages of 2.4

GHz technology with some vast improvements. While 2.4 GHz experiences

better range in free space transmission, sub GHz technology is vastly superior in
transmission through environments where obstructions are encountered resulting

in an overall better range for sub GHz transmission. This is due to a number of

factors, one of which is path loss. Path loss is a mathematical model describing

how much of a signal is lost over a certain distance for a certain wavelength. It is

given as:

37

Path Loss(dB)=20∗log10 [(4∗π∗d)/λ]

Where d is the distance and λ is the wavelength of the transmitted signal. Since

wavelength is inversely proportional to frequency it can be seen that a 900 MHz

signal would have far superior range compared to a 2.4 GHz signal. As a matter

of fact, a 900 MHz signal would have approximately 2.67x increase in range

compared to a 2.4 GHz signal. A 2.4 GHz device would have to increase its

power by nearly 8.5 dB to match the range of a 900 MHz signal operating at

lower power. A graph comparing the path loss of a 2.4 GHz signal to a 900 MHz

signal is shown below in Figure 3.3.3.

Figure 3.3.3: 2.4 GHz vs 900 MHz

Bluetooth Communication

Bluetooth is another potential design to utilize wireless communication. It is a

relatively new technology that has many advantages over infrared and other

technologies. Bluetooth was invented in 1994 by the telecommunication

company, Ericsson. Bluetooth utilizes radio frequencies in the 2.4 GHz range to

transmit data.

38

As with any technology, Bluetooth has some positive attributes as well as some

shortcomings. Bluetooth technology is actually a radio frequency standard that

employs a protocol which means that any device operating on Bluetooth
technology will operate using that specific frequency range and will also send

information in a uniform format. This is one of the biggest benefits to using

Bluetooth technology, it can automatically connect. If any two Bluetooth devices

are within the operating range and they are both enabled, they will connect and

transmit data automatically. This adds a level of convenience for the user since

they do not have to worry about formatting how they transmit data or whether or

not they are connected.

Bluetooth technology also has the advantage of being a low power transmission

option for wireless communication; it transmits about 1 mW per transmission.
This would work well with the lower power goal set for KittyBot. Also, Bluetooth

can incorporate multiple devices at once due to its frequency hopping which
allows up to 79 devices on as many different frequencies communicate with one

another. This would be advantageous for this project if multiple robots were to be

created and added in the future. Bluetooth is both low power and an easy to use

technology. Bluetooth has a limited range of use, but it is roughly 30 meters in

all the Bluetooth models that were researched, and the range is long enough for

KittyBot.

Although there are many advantages to using Bluetooth technology, there are

also some disadvantages that must be taken into account. This would not be a

huge problem except that, as mentioned before, this project is supposed to be

designed to operate over a substantial distance, ideally much farther than ten

meters. Bluetooth is also capable of fast data transfer, up to 2-3 megabits per

second which is slower than IR but still fast enough for the for this project.

Decision on Which Type of Communication to Use

A couple Bluetooth chips were researched and many of the specifications were

compared such as: cost, operating voltage, size, and the complexity of

interfacing the module to the system. Figure 3-1 provides a table comparing the

different specifications of potential Bluetooth modules. Observing the table, it

appears that all the modules require around the same operating voltage to run.
The module RN-42 has a potential of 6 volt operating voltage due to the ability to

39

change its max data rate. The largest module appears to be the HC-06 Bluetooth

module, while the RN-42 and the WT11i are approximately the same size. Size

is important due to the fact that the components all need to be enclosed in a

small round casing. The table shows that the signal distance specification. The

HC module has the lowest standard in comparison of the other two modules with

30 feet, the RN-42 ranging from 50 to 60 feet, and the Bluegiga WT11i with a

significant line of sight range of 328 to 984 feet. This feature is not as important

for KittyBot as it is an inside cat toy and if a controller was made for KittyBot, the

user would most likely be in a 30 feet range. The max data rate value for all

three potential Bluetooth modules are around the same of around 2 to 3 Mbps.
The HC-06 module will be the cheapest of the 3 modules, with the RN-42 and

WT11i costing about 30-40 dollars. The KittyBot needs to be cheap in order to

ever be profitable so HC-06 is good for this.

With all the specifications taken into consideration, the HC-06 module would be

the best potential choice for KittyBot’s hardware in integrating a Bluetooth

communication device. This would only be considered for a user control design

only. It is the best possible choice with this design consideration because the 30

feet signal coverage is an acceptable range for KittyBot; the project was made to

be used in a house or room. The HC-06 module can connect to an Android or

iPhone device in a simple way by locating the module from the user’s phone and

entering a given password to connect. The HC module is larger in size in

comparison to the other two, but can be negated due to the price of the HC

module being much lower.

Bluetooth

Module

HC 06 Bluegiga WT11i RN-42

Operating

Voltage

3.3V 2.7 - 3.6V 3.3 - 6V

Size 4.3 x 1.6 x 0.7

cm

35.75 x 14.5 x 2.6

mm

38 x 17 mm

Signal Distance 30 ft. 328 -984 ft.

(L.O.S.)

50 to 60 ft

Max Data Rate 2.1 Mbps 2-3 Mbps 3 Mbps

Cost $10.00 $30.00 $40.00

Figure 3.3.4: Module Comparisons

40

3.3.2 Sensors

The kitty-bot’s sensors should be able to read and detect objects in its path in

milliseconds. The sensors need to be able to detect objects quickly enough to

process and send the signal back to the microcontroller and motors to be able to

adjust, and roll away to avoid an object. The sensor needs to be reading data

continuously. The settling time for the sensors should be in the millisecond

range as well when they are powered up.

The sensor should be able to accurately detect obstacles through the balls clear

shell, and sense them quickly enough to avoid what’s in the way. The sensor

should be able to detect any objects the KittyBot hits and the KittyBot will either

be able to avoid it or eventually move away from the object after hitting it. The

four sensors researched for all the possible designs for KittyBot were

photoelectric(infrared), image(webcam), ultrasonic, and piezoelectric(impact)

sensors. Piezoelectric sensors were the most popularly liked among the

group. Since KittyBot is continuously rolling the group realized how difficult

ultrasonic sensors or photoelectric sensors might be impractical to implement.

Photoelectric Sensors

One type of sensor that was considered is a photoelectric sensor. Since the

sensor is in a clear plastic housing, photoelectric sensors will not work with the

design because photoelectric sensors can detect transparent surfaces.
Photoelectric sensors are useful for other potential kitty-bot designs, they’re able

to sense objects in the kitty-bot’s path to a given distance.

The photoelectric sensor is good for detecting a fixed range which is useful for

this design. There are 3 main types of photoelectric sensors, through-beam,
reflective, and diffuse. Through-beam sensors are the most accurate of the 3 but

require a receiver and a transmitter and wait for the light beam between them to

41

break. This won’t work in the design because through-beam sensors wait for a

break in light rather than project and read what’s in front of the sensor.

Figure 3.3.5

The retro reflective mode of photoelectric sensors detects objects when the

signal is blocked. Retro reflective optic sensors also have a transmitter and a

receiver. The transmitter transmits a light beam off a reflective surface across

from it. When the light is blocked by a non-shiny surface and the light particles

can’t make it back through the polarization filter the retro reflective sensor detects

an object. This is also not the type of sensor that would good for this type of

project because the retro reflective sensor is stationary across from a shiny

surface, and the kitty-bot is mobile.

Figure 3.3.6

The 3rd mode of photoelectric sensors is diffused mode. In diffused mode, the

transmitter sends out light to an adjustable distance. A receiver reads the light

that scatters off the object in front of the sensor and triggers a command. Diffuse

mode photoelectric sensors can be used for other designs because it can detect

42

transparent walls or objects. This design requires a different sensor because the

sensors need to be protected in a clear plastic casing.

Figure 3.3.7

Image Sensors

Image sensors or webcams take in the light waves from particles bouncing off
objects and turn those photons into electrical signals which can be displayed as

an image on a screen. Complementary metal-oxide semiconductors (CMOS) are

a type of image sensor as well as charged-coupled devices (CCD). The

resolution on the image sensors needs to be good enough to have enough pixels

to present a clear image for navigation. The kitty-bot will usually be in tight

spaces so the image sensor will need to be able to detect and read the objects

it’s approaching, quickly and clearly. Since webcams rely on light, darkness

could be a design restraint to consider.

CMOS and CCD sensors both take in light through pixels shown in figure 3-4.
The sensors take in photons which build up in the highly light sensitive areas to

build an image. Using a positive charge, the electrons are separated from the

photons. Then the electrons are turned into a tiny voltage which is amplified and

can be connected and shown through a screen. For CCD sensors most of the

functions are done on the printed circuit board through output nodes. CMOS

sensors convert photons to electrons and then to voltage through a diode, all

right at the pixels. The diodes send the voltage into a MUX and after the voltage

is amplified, an analog to digital conversion is done for the CMOS sensor. This

43

process allows the CMOS sensor to be faster due to the pixels can be processed

at once. CCD sensors can only process one pixel at a time through their output

nodes so it takes much longer than CMOS sensors. CMOS chips are more low

powered than CCD chips, but

Figure 3.3.8

Ultrasonic Sensors

Ultrasonic sensors use high frequency sound waves to detect items that the

sound reflects off from. The sensor keeps track of time for the echo to return, as

well as the echo pulse width to determine the distance of the object in the way

which is important for KittyBot. Inexpensive ultrasonic sensors usually give off a

40±1000 Hz range of frequency as its sound wave to echo for detection. One

popular detection method is SONAR. It is used primarily for underwater because

the high frequency waves emitted, it’s less than 1 MHz though. SONAR emits

echo sound that travels through a medium (air) to detect an object. Upon contact

with an object emitted signal is reflected back towards the sensor that listens to

reflected sound waves. Reflected signal carries information about direct distance

to the object. This presents an ability to obtain a fairly quick response from the

object detected.

The ultrasonic sensors use of sound propagation is an advantage for accuracy of

distance over infrared sensors. Sound waves are capable of detecting an object

regardless of the color so this is good to detect glass surfaces. They are also

immune to external disturbance such as vibration, infrared radiation and

interference. There will be different scenarios that need to be addressed and

resolved by the KittyBot like corners or animals. Another example is when

KittyBot detects an object ahead, the sensors needs to detect it and turn away

instead of getting stuck in a corner of a house or anything.

44

The ultrasonic sensors have some drawbacks however that led to the group not

wanting to use them. In figure 3-5 it shows the sensor not working due to the

angle which is deflecting away the signal and not detecting the wall quickly

enough. The theta value for figure 3-5 is less than 45° which is a high value on

top of the limited space the sensors would be operating out of. Another reason

ultrasonic sensors can be disadvantageous is that they are unable to read small

objects in its path as shown in figure 3-6. The ear design for KittyBot would have

the sensors elevated and would have trouble rolling past an object long and low

to the ground like a branch for example. Another disadvantage of ultrasonic

sensors is ghost echo. This is where the sound can bounce off of several

objects and result in duplicate and reflected waves with a time interval delay.
Sound absorbing materials can also throw off the accuracy and lead to the
KittyBot not reading objects before it and getting stuck running into a wall

potentially. Ultrasonic sensors are expensive compared to the photoelectric

sensors, and our goal is to make it as cheap as possible since KittyBot is meant

to be a toy.

Figure 3.3.9

(From www.parallax.com)

Figure 3.3.10

(From www.parallax.com)

45

Figure 3-27

Piezoelectric Sensors

Piezoelectric sensors are usually small and very versatile sensor. This sensor is

also known as a transducer. The piezoelectric sensor can detect changes in

pressure, acceleration, temperature, or force which is important for KittyBot when

a cat swipes at the ball it will change direction and roll away. Also the

piezoelectric sensor will detect when the KittyBot hits a wall and be able to

maneuver away so it doesn’t get stuck.

Piezo sensors have their disadvantages however. Since they rely on contact,
they may be slow to signal the motors and KittyBot will turn away from objects or

animals slower. Another possible design constraint could be that the ball may

roll on top of the sensors causing them to trigger. Since the sensors will be

placed on the shell casing, which will be moving, wiring these sensors may prove

difficult. Based on how they were set up in a video, it may be hard to set the

piezo sensors up.

The piezoelectric sensors have their advantages as well. One example is that

they’re very lightweight and tough so they can withstand the impact of a wall over

and over or if an animal that is playing with it. Some useful characteristics of the

properties of the sensor are listed below:

• Wide frequency range—0.001 Hz to 109 Hz.

• Vast dynamic impact range (10-8 to 106 psi)

46

• Low acoustic impedance, close match to water, human tissue and adhesive

systems. These sensors can be used to detect signal in muscles and tissues.

• High elastic compliance which means it’s useful for KittyBot being able to

bend around the round surface of the round casing.

• A high output voltage is generated from a fair impact.

• High mechanical strength and impact resistance (109 —1010 Pascal

modulus).

• High stability—resisting moisture (moisture absorption), most chemicals,
oxidants, and intense ultraviolet and nuclear radiation.

• The piezoelectric film sensors can be fabricated into an unusual design like

the round shell casing of the KittyBot.

• Can be glued with commercial adhesives so the sensors can be applied

easily to the KittyBot.

The idea for using piezoelectric sensors is that the cat would swipe at KittyBot

and it would sense the force and react and roll away. The piezo element has a

12mm diameter which will allow them to be placed throughout KittyBot’s

casing. Some things to consider in setting these up inside KittyBot will be its

wiring and making sure they won’t trigger while rolling. This piezo sensor

provides too miniscule of a voltage when pressed and can’t be connected directly

to the microcontroller.

Figure 3.3.11

47

(From www.sparkfun.com)

One solution to this problem is to connect the piezo sensor to a pnp

transistor. The transistor 2N3906 was a good example seen used. The red lead

connects to the base, the black connects to the emitter and ground. The

collector is connected to the MSP430 to pin 3 like shown below in figure

6.1.4. The sensor provides enough voltage to turn on the transistor which is still

not enough voltage to power the microcontroller. In order to get the

microcontroller to read the piezo sensor, the MSP430 is set to trigger when it

reads low instead of high.

Figure 3.3.12

The previously researched sensors will be used based on the design approach

we take as a group. The best approach will be tested and multiple sensors could

end up in the final design or it could be just one of the choices. Even though

research was done for webcams, it was soon realized that they could not be

practical with any of the designs for KittyBot and no part was included.

Sensor Tradeoffs

The sensors that were considered in coming up with this kitty-bot design include:

photoelectric, image, infrared and ultrasonic sensors. Each sensor has its

48

positives about it, but the design constraints narrowed down which sensor the

kitty-bot would use to detect objects. The shell casing, which allows the ball to

roll and protects the circuitry, sensors, and motors, also limits design

possibilities, but creativity was needed to make some of the sensors

usable. Infrared sensors sense the light given off from objects but can detect

transparent surfaces. Infrared wasn’t a good option because of the sensors’

sensitivity to infrared lights and sunlight. Since the casing is plastic, a small hole

would have to be cut in order for the sensor to be usable for this kitty-bot

design. I compared the other sensors and looked at the pros and cons (as seen

in figure 6-5) to help decide which detection sensor will be used for kitty-bot.

Photoelectric sensors are very good for accuracy of the desired distance of

detection. However, these sensors may prove to be difficult to set up with

accuracy because of the movement. Since kitty-bot is a toy, it needs to be

relatively cheap if it were to ever sell and make a profit, and photoelectric

sensors can be pricy. The kitty-bot project is good to use some cheap sensors

because it only needs a sensing distance of less than 12 inches. Photoelectric

sensors are good because they use a laser or light so they’re very fast with

detection compared to sound also compared in figure 6-5. Setting a distance to

detect 5 inches in front of the plastic ball would be very easy. Laser sensors also

read objects in front of it very accurately without being affected a lot by outside

factors like brightness, or color of the object. Photoelectric sensors are the worst

for power out of the 3 types of sensors researched. The diffuse sensor could be

the only photoelectric sensor possible for this project, and for this design, they

may be the only sensors available.

Ultrasonic sensors use sound waves to detect items that the sound reflects off

from. The housing around the sensors for this design wouldn’t be able to work

well with ultrasonic sensors because of its inability to send a signal past the

plastic casing. Ultrasonic sensors are still a consideration for multiple casing

design ideas. These sensors are the lowest power of the 3 sensors as can eb

seen in the trade-off chart in figure 6-. These sensors are useful for detecting

range accurately, and can detect small objects better than a photoelectric

sensor. A big upside to ultrasonic sensors is its ability to detect surface while

disregarding brightness, color, or transparency unlike most proximity

sensors. The downsides of ultrasonic sensors are that they don’t work well with

49

the design and their response time is slower than photoelectric sensors, because

light is faster than sound. The ultrasonic sensor also can’t detect soft objects

that have trouble reflecting noise back well. It’s important the sensors stay

protected and a casing around them doesn’t allow for the ultrasonic sensors to

function how they’re needed.

The sensor design first considered was an image sensor, or a webcam. This

design is practical for the transparent casing around the webcams. The webcam

can’t be adjusted to sense or see a shorter distance like the diffused

photoelectric sensor can. Image sensors are low powered; the ones found

online were all less than 500 mW, slightly lower than the photoelectric sensors

found. A high resolution camera would be better at detecting objects and colors

more clearly but having 2 cameras limits the price and quality of the

sensors. The main reason image sensors are ideal for the kitty-bot is because of

its flexibility to detect objects through a transparent surface. The sensor needs

to be protected and durable to keep the kitty-bot running if an animal were to play

with it. Image sensors rely on sensing the colors around it which limits the

cameras accuracy to avoid any object in its path.

Sensor Tradeoff Table

Sensor Type Photoelectric Image Ultrasonic

Speed ↑↑ ↑ ↓

Accuracy ↑ ↑

Power ↓ ↑

Design Flexibility ↓ ↑ ↓

Weight ↑ ↓↓ ↑↑

Size ↓ ↑↑

50

Distance ↑ ↑

↑↑ = Very positive ↑ = Positive ↓ = Negative

↓↓ = Very negative

Figure 3.3.13

3.3.3 Voltage Regulation
Voltage regulators are important in electrical systems. They allow systems to run

higher voltages for more powerful components without out sending too much

voltage to more sensitive components. The two types of regulators that were

researched were the switching and voltage regulators. Voltage regulators don’t

use much power due to the tiny current that runs through it. The servo motors

could require a larger voltage to power them and therefore a voltage regulator

will be needed to regulate voltage for the microcontroller and sensors. Having a

large gap between Vin and Vout causes inefficiency in the regulator.

Sometimes motors can draw a huge amount of current that a battery source

could not handle. As a result, the whole system could experience a significant

voltage drop, causing the microcontroller to reset and not work properly or have

the sensor give bad readings. The solution to the problem is placing an

electrolytic capacitor parallel to the battery pack. One of the main functions of

capacitor is to store large energy quantity during idle periods and give up that

energy when other components need it. The higher the capacitance, the more

charge it can hold. Many capacitors are labeled with the maximum voltage that

the capacitors can handle without damaging them. It is recommended to get

capacitors that are rated at least twice the expected voltage drop across them to

ensure that they don’t explode when fully charged. Since a ceramic capacitor can

lose about 50 percent of its capacitance at a rated voltage, it’s best to leave a

large margin on the voltage rating.

Capacitors are typically connected to the input and output of a voltage regulator.
The input capacitors filter out system noise prior to regulation. The output

capacitors help the regulator deal with spikes created by the load. The regulator

may oscillate at certain temperatures if the capacitors are not present. The large

capacitors prevent low frequency interferences and keep the system powered

51

when sudden current surges occur. Small capacitors prevent high frequency

disturbances from motors. They have low equivalent series resistance (ESR) that

allow them to charge and discharge quickly.

Under faulty conditions such as short circuits and overload, a fuse should be

used to protect the motors from excessive current flowing from the battery. The

fuse would heat up and blow, therefore, interrupting the current flow and

preventing damage to the motors. Time-delay or slow-blow fuses are

recommended for inductive loads such as motors. Fast-acting fuses are used for

non-inductive loads. Fuse’s voltage rating indicates that the fuse can be used at

all voltages not exceeding the rating. An AC fuse can be used on a DC circuit but

its voltage should be rated at least twice that of the circuit. Fuses can be

connected in series or parallel. If there’re multiple power sources connected in

series, then only one fuse is needed to connect in series to the sources and load.
If there’re more than one battery connected in parallel, then there must be one

fuse for each battery in addition to one main fuse connected to a load. The

parallel configuration is obviously less advantageous than the series

configuration because it requires a higher number of fuses.

Large capacitors that are fully charged after the robot is turned off can cause

components to be accidently shorted and fried. A LED can be used to drain the

capacitors and also serves as a status indicator. A dim LED might indicate that

the circuit is low in power. The LED should be connected in series with a resistor

to prevent the LED from frying. There’re tradeoffs in selecting the resistance. The

higher the resistance, the more power it can drain but the LED’s brightness

would decrease.

A voltage regulator is needed to regulate the voltage to the microcontroller and

sensors. Increasing or decreasing the input voltage even for a fraction of a

second would result in the microcontroller resetting or sensor giving bad signals.
Even though batteries are specified to operate at a nominal voltage, they are not

always at the nominal value. A fully-charged battery can go higher than the

nominal voltage. A drained one would drop significantly from the nominal value.
Because the microcontroller and sensors consume low current, the wasted

power is not significant. As a result, either a linear regulator or switching

regulator can be used. On the other hand, motors require a lot of current. In this

case, switching regulator is ideal for the motors.

52

Multiple circuit protection and voltage regulation designs are considered. One

design uses two power sources. A battery pack is used exclusively to power the

motors. Another pack is used to power other electronics. The design divides the

system into two main subsystems. One subsystem consists of one battery pack,

motors, and fuses. The other subsystem includes the other battery pack,

microcontroller, sensor, and voltage regulator. If one subsystem fails, then it

would not affect the other subsystem. However, adding more battery packs

means more space is occupied and adding load burden on the whole system,

causing the motors to draw more current. Therefore, the design is unfit for our

robot. Another design would have only one power source. There is one major

drawback of this design, however. Since the whole system is interconnected, a

component’s failure may affect the other components. For this design, several

voltage regulators are taken into account including boost/buck, boost, and LDO

(low drop-out) regulators.
.
Boost Regulator Circuit Design

Figure 3.6 shows a circuit design with a TI TPS61232 boost converter.
TPS61232 is preferred over the TPS61230 and TPS61231 because it allows a 5
V fixed output voltage whereas the other two have adjustable outputs which

require additional resistors to adjust the voltage. The converter is ideal for our

project because its maximum efficiency is 96 percent. With an input ranging from

2.3 V to 5.5 V it’s able to regulate a fixed output voltage of 5 V that is

recommended by the sensors. The converter also delivers up to 2.1 A of current

with a 5 V output and 3.3 V input. This current is more than enough to power the

electronics in the system. The converter has additional built-in features including

output over voltage and thermal shutdown protections, power good output, and

power save mode for light load which typically consumes 1.5 uA. The converter

is optimized for a one-cell Li-Ion battery, which is usually rated at 3.7 V. Either a

single Li-Ion cell or three NiMH cells with a voltage of 3.6 V can be used. C1, C2,

C3, L, and R2 are required external components whose values are specified in

the TPS6123x datasheet. They help to stabilize the regulator. The inductor and

the output capacitor C3 serve as energy storage during conversion. Both the EN,

HYS and the power good, PG, pins can be left floating or unconnected if not

used. At moderate or heavy load currents, the converter would operate at a 2

MHz frequency pulse width modulation (PWM). At light load current, it reduces

the switching frequency and operates with pulse frequency modulation (PFM).

53

Figure 3.6: Schematic for Boost Converter

Buck/Boost Regulator Circuit Design

If our team decides to use a buck/boost converter to regulate voltages, then a TI

TPS63061 converter will be selected. Out of all the other TI buck/boost

converters, it is one of the few that is able to regulate a fixed voltage of 5 V.
Besides, its 93 percent efficiency is high. It can also accept input voltage range

54

from 2.5 V to 12 V, making it ideal for low voltage supply. Nevertheless, it’s not

advisable to have a converter’s input voltage at the exact minimum and

maximum of the range since the input might deviate from the values. Going off

the input range would result in a damaged converter or one that doesn’t regulate

voltage at all.

Unlike the TPS61232 boost converter, the TPS63061 has additional pins with

special functions. The PS pin is used to enable/disable power save mode. A 1 is

disabled and a 0 means enabled. During power save mode, the switching

frequency and quiescent current is reduced to maintain high efficiency. Disabling

the PS would set the switching frequency at a fixed rate. Connecting a clock

signal at the PSY/SYNC pin would force the converter to synchronize to the

clock’s frequency. To enable the EN pin, set it to 1. Otherwise, set it to 0. In

many applications, the pin is tied to the supply voltage, which is on high. Hence,

the pin is always enabled. To shut down the device, the EN can be connected to

the ground. The battery and the load are disconnected during shutdown. The

power good or PG indicates whether the output voltage is regulated properly. For

the PG pin, setting to 1 means good, 0 means failure.

The converter has additional features including overvoltage protection, over
temperature protection, short circuit protection, under voltage lockout, and power

save mode. Once the temperature goes beyond a threshold, the IC stops its

operation. As the temperate decreased below the threshold, the device starts

operating. The under voltage lockout functions by automatically starting the

device only when the supply voltage on VIN is above a certain under voltage

lockout threshold. If the supply voltage goes below the threshold, then the IC

automatically enters shutdown mode. The overvoltage protection internally

monitors the output voltage so that it doesn’t exceed critical values. There is no

timer in the IC. As a result, the output voltage overshoot and current inrush occur

at startup but the device keeps the current and overshoot at minimum. When the

output voltage does not rise above 1.2 V the IC would assume a short circuit at

the output and protect itself by keeping the current limit low, typically under 2 A.
The efficiency rises as the output current increases. The output current depends

on the input current from the battery. As a result, the battery will be selected to

have the current rating as high as possible. Figure 3.7 shows a circuit design

with the TPS63061.

55

Figure 3.7: Buck/boost converter circuit with motors at output

An additional design for the buck/boost converter circuit would be separating the

microcontroller and sensor subsystem from the motors and placing the motors at

the input of the voltage regulator as opposed to the output. This configuration

56

could be more advantageous because if the voltage regulator fails, the motors

will not be affected. Figure 3.8 shows this configuration.

Figure 5.8: Buck/boost converter with motors at input

Linear Regulator Circuit Design

57

This circuit is better than the circuits that use switching regulators since it has a

smaller number of components. Since the regulator can only output a maximum

of 500 mA and its efficiency is low, it could be used to power the low-power

devices such as the sensor and microcontroller. For the components that require

higher current such as motors, they will be directly connected to the battery

instead of the regulator’s output. The LM2937-5 should be used because it has a

fixed output voltage of 5 V.

Unlike the TPS61232 and TPS63061 converters, the LM2937 has reverse

battery protection. As a result, a Schottky diode should be connected to the fuses

to protect the motors. The regulator’s reverse battery protection circuit

automatically protects the sensor and microcontroller. Therefore, a Schottky

diode is not needed at the regulator’s input. Though the typical minimum dropout

voltage is 0.5 V, the input voltage should be at least 2 V higher than the output

voltage for optimal performance. In other words, the input voltage is required to

be at least 5.5 V but should be 7 V or higher. Because it’s harder to find a 5.5 V

than a 6 V NiMH or Li-Ion battery, a 6 V battery would be used with the LM2937

regulator. The regulator’s quiescent current is typically 10 mA if the regulator is

under full load and the input and output voltage difference is greater than 3 V.

The LM2937 has additional features including thermal shutdown, short circuit

current limit, and overvoltage shutdown. The thermal shutdown circuitry is not

intended to replace the heat sink. Running the IC at thermal shutdown is not

advisable because the device’s reliability may be degraded as the junction

temperature rises above the allowed absolute maximum junction temperature

rating. In cases the output is shorted to ground or the load impedance is

extremely low, the device would limit the current. If the LM2937 operates

continuously at the current limit, then the IC would transition into thermal

shutdown mode. Since our project would not use any power supply that exceeds

26 V we have no need to be concerned about the overvoltage shutdown. The

LM2937 lacks the under voltage lockout and enable functions. The output only

tracks the input voltage until the input rises above 6 V where the device remains

58

in linear operation. Figure 3.9 shows circuitry using a LM2937 LDO (low-dropout)

linear regulator.

Figure 3.9: Schematic for LDO Regulator Circuit

Voltage Regulator Selection
The choice for the voltage regulator was between the LM317 and the LM3940.

They are both linear regulators because they are simpler to use than switching

regulators. Initially the LM317 regulator was going to be used because of its

simplicity and familiarity using them before in past labs. All it needs is one

resistor to set the current output. Then the regulator LM3940 was discovered by

the group. The LM3940 is even more simple to set up than the LM317 and it was

59

perfect for KittyBot. The LM3940 takes in 4.5-5.5 volts and steps it down to 3.3

volts. The max voltage is important to note because the batteries measured

supply voltage was around 5.3 volts. No resistors were required to adjust the

current, the LM3940 outputs 1 amp which is more than enough for the MSP430

microcontroller. Capacitors were placed in parallel to ground on the input and

output to reduce noise in the signal as seen in figure 6.1.4.2 below. In the end

the LM3940 was chosen because its input takes the same voltage as the motors

and ultrasonic sensor as well as its output is the perfect amount for our

microcontroller.

Figure 3.10 (From www.ti.com)

3.3.4 Gyroscope
An exciting strategic component we researched is the gyroscope. A gyroscope is

a small electronic device, many are no larger than a quarter, that measures

rotational motion. Figure 3.3.14 display what this type of module looks like.
Gyroscopes can measure angles and angular velocity. Angular velocity is

measured in degrees per second or revolutions per second. Angular velocity is

the measurement of the speed of rotation. The process of gyroscopes

measurements is when the device is rotated, a tiny resonating object inside the

gyroscope is shifted as the angular velocity changes. The shift is converted into a

low-current electrical signal that is amplified and read

60

Figure 3.3.14: LPY503 Gyroscope

(From learn.sparkfun.com)

This can help our project because the gyroscope can detect changes in

orientation. The changes in direction can be measured from a set balanced

position and corrections can be sent to the motors. In 3D space, there are three

axes X, Y, and Z (Figure 3.3.15). Objects can rotate about any of the three.

Figure 3.3.15: XYZ Axes

Gyroscopes come in varieties that either measure rotation around a single axis,
two axes, or all three. The price difference on these varieties is minuscule these

61

days, but we may only need gyroscopic detection in one axis. Figure 3.3.14

displays a 3D representation of sphere rotation.

Figure 3.3.16: 3D Representation of Sphere Rotation

Forward motion is the primary focus. Figure 3.3.16 uses the same colored axes

as Figure 3.3.15. The yellow curved arrows indicate rotation about the blue Z-

axis. This rotation will cause the sphere to roll forward. The gyroscope, in this

cause, would detect rotation in the Z-axis. Most standard gyroscopes are not

meant for picking up very fast spinning objects. Luckily KittyBot is an indoor toy

so its rotations shouldn’t be too fast for a gyroscope to measure. The forward

linear velocity or acceleration won’t affect the gyroscope either, as it only picks

up and measures angular velocity.

Gyroscopes connect through power and through a communication interface. The

communication interface can either be analog or digital. Digital communication

can be through Serial Peripheral Interface or Inter-Integrated Circuit. Serial

Peripheral Interface, or SPI, is a type of interface bus used to send data between

62

a microcontroller and peripherals. SPI works synchronously as opposed to

asynchronously.

Communication

A standard serial port with RX and TX (think receiver and transmitter) lines,
typically works asynchronously. This means that the rate at which data is sent

and received is not controlled, and that lack of control comes from the two side

not running at the exact same clock rate. Computers have everything

synchronized to a single clock, but when you try to communicate between two

different computer systems, like a microcontroller and its peripherals, the clock

rates may be different. To make asynchronous serial communications work extra

bits are added to the end of the data-stream. A start bit at the beginning and a

stop bit at the end help to isolate the desired bits allowing the receiving system to

sync up with the data properly. The two separate systems must be set to the

same transmission speed beforehand for this to work properly. Figure 3.3.17

aids in displaying this method of serial communication.

Figure 3.3.17: Asynchronous Serial Communication

(From learn.sparkfun.com)

Asynchronous communications work but are tricky due to the number of

complications. The start and stop bits have to be sorted out in order to get the

correct data, and the transmission speed have to be the same, if they are not

than the data sent will be wrong.

63

SPI’s synchronous communication works differently. The data bus for a

synchronous serial uses separate wires for data sent and a clock that keeps the

communicators synced. The clock is sent out as an oscillating signal. This signal

tells the receiver when to sample bits from the stream of data. The receiver picks

up on the rising or falling edges of the clock signal. A rising edge is a shift from

low to high and a falling edge is from high to low. Whichever edge that is set to

be the “triggering” edge for sampling will tell the receiver that sample at that

moment. Below is Figure 3.3.18 displaying this type of communication.

Figure 3.3.18: Synchronous Serial Communication

With SPI, the side that generates the clock is called the “master” and the other is

called the “slave”. In the case of our embedded systems, the master will be the

microcontroller and the slave, peripherals such as a gyroscope. The

microcontroller is always controlling when data is sent, and sends commands to

the gyroscope so it will send its angular velocity data back to the microcontroller

for processing.

SPI offers these advantages and disadvantages.

SPI Advantages:

● Supports multiple slave receivers

● Receiving hardware can be as simple as a shift register

● Faster than asynchronous serial

64

SPI Disadvantages:

● Requires more wires than other communication interfaces

● Master must control all communications

● Communications must be defined in advance

● Usually requires separate SS lines attached to each slave.

Our other digital interface is the Inter-Integrated Circuit, or I2C. I2C allows

multiple slave systems to communicate with one or more master systems. I2C

has an advantage over SPI in that it requires less connections. SPI needs four

lines to connect a single master to a single slave, one for the clock, one for

sending data from the master to the slave called “Master Out/Slave In” (MOSI),
one for sending data from the slave to the master called “Master In/Slave Out”

(MISO), and the “Slave Select” line which acts as a sort of “wakeup” command

sent from master to slave readying the slave to send or receive data. Besides the

pins taken up on the master unit by these lines, additional slaves require an

additional chip select I/O pin. The SPI interface has a tendency of filling up

several pins very quickly. This is problematic if you have only one master and

multiple slaves. With KittyBot, our group wants to keep the internal space as

uncluttered as possible since it is limited and must all fit within a relatively small

form factor. That is why we would want to keep the number of microcontrollers to

just one. Budget is also a concern if we need to purchase additional

microcontrollers. The gyroscope is not the only slave our microcontroller would

have as we are considering other strategic components to add as well, so pin

space on a single microcontroller is limited.

 I2C’s required number of lines is merely two and that is for multiple slave

devices, up to 1008 to be exact. The two signals sent through I2C are SCL and

SDA. SCL acts as the clock signal while SDA is the data signal. Similar to the

principles discussed with SPI, I2C’s master device sends the clock signal which

controls the sending and receiving of data. With I2C however, the slave has an

extra ability. Let’s say the rising edge is the signal from the master to

send/receive data and one is approaching. That means the clock is currently low

and an oscillation up to high is coming. The slave has the option to force the

signal to remain low in order to delay the master if the slave is not yet ready to

65

send/receive. This ability is called “clock stretching”. The I2C bus operates on

what is called an “open drain”. Remember that the bus connection can be

between a single master and multiple slaves. All the slaves have this clock

stretching functionality. The idea behind the open drain is that any slave can

drive the clock signal low if it needs more time, but none can drive it high if they

are ready. This makes it so that the transmissions only go through when all the

devices in question are ready, preventing potential damage to the transmission.
A pull-up resistor on the signal lines are used to restore the signal back up to

high if no device is forcing a low signal. Figure 3.3.19 displays a representation

of this.

Figure 3.3.19 Generic Master/Slave Connection with Pull-up Resistors

(From learn.sparkfun.com)

Both SPI and I2C are intended for use over a short distance. Since all electronics

will be confined within the space of KittyBot’s chassis, distance should be an

issue. These two also have limitations on their sampling rates, with SPI reaching

higher rate than I2C. This could potentially lower the accuracy of the angular

velocity readings.
Those were the digital communication options. The alternative to digital is analog

communication. The gyroscope can register rotational velocity by raising and

lowering voltage between ground and the supply voltage. Analog gyroscopes

usually run cheaper than digital gyroscopes and can even be more accurate. The

accuracy depends on how the analog signals are read. Analog to Digital

Converters (ADC) need to be used to transfer those analog signals to digital

66

ones that a microcontroller can process. Voltage is the type of analog signal

detectable by microcontrollers. Only certain pins on a microcontroller are capable

of this as well. Figure 3.3.20 shows a comprehensive guide by Texas

Instruments to TI MSP430.

Figure 3.3.20 TI MSP430 Launchpad

(By Texas Instruments)

The TI MSP430 is our groups microcontroller of choice. This microcontroller has

8 pins, P1_0 through P1_7, that are capable of receiving analog voltage signals.
These signals can then be converted to digital. The ADC of the microcontroller

handles the actually conversion. TI MSP430’s ADC is 10-bit meaning it can

detect up to 1024, which is 210, discrete analog values. The actual conversion is

done by the analog voltage to be converted is used to charge an internal

capacitor that is then discharged across and internal resistor. The time of that

discharge is measured by the microcontroller counting the number of clock
cycles that pass between the time the capacitor began discharging to when it

stopped. The number of clock cycles is then returned to the microcontroller as

the new digital value. The maximum value of a 10-bit ADC is 1023 because it

can have 1024 different values ranging from 0 to 1023. The maximum value

67

digital value has a ratiometric relationship with the overall system voltage, or VCC.
This means that the digital value of any analog value sent to an ADC-capable pin

is a ratio of 1023 and the VCC. Assuming a VCC of 5 V and a measured voltage of

2.5 V, the digital value can be described by x in the following equation.

1023

5.00∗
=

∗

2.5∗

Solving for x we would get the following.

1023

5.00∗
∗ 2.5∗ = ∗

1023

2∗
= ∗

∗ = 511.5

The digital value would end up being 511.5. Notice that the measured voltage

value of the ADC was 2.5 V, which is half of 5 V. The converted value of 511.5 is

also half of 1023. In order for the microcontroller to pick up these values it would

to be programmed to do so. It would first need to define the pin it is receiving

input from. Let’s assume pin P1_0 is the receiving an input voltage for this

example.

pinMode(P1_0, INPUT);

Tell the microcontroller to convert the input from analog to digital with the

analogRead() command into in integer, x.

int x = analogRead(P1_0); //Reads the analog value on pin P1_0 into x

This is how the analog voltage values sent from a gyroscope can be processed

by our microcontroller.

Power

Gyroscopes are typically low power devices, so powering the device is not a

major concern. The levels of current to operate them fall in the milliAmp or even

the microAmp ranges. Digital gyroscopes can operate at the supply voltage or

68

have their own set logic levels of voltages. The digital gyros need to be

configured more carefully because they need set logically states to operate.
Digital signals are binary, 0 or 1, ON or OFF. The digital gyroscopes may seem

more finicky, but they can also have a low power and sleep mode. This can

converse more power in the long run versus an analog gyroscope. Since KittyBot

is a battery-powered unit, consuming less power will allow for longer operation

times.

Moving on, the specifications of the gyroscope are key. A few different

specifications to look at are the gyroscopes range, sensitivity, and bias. The

range, or full-scale range, of a gyroscope is simply the maximum angular velocity

a gyro can read. This does not need to be too drastically high for this project as

KittyBot will not be reaching very high speeds.
The sensitivity of a gyroscope is how much the voltage changes for a given

angular velocity. Sensitivity is measured in millivolts per degree per second

(mV/°/s). A gyroscope, just like any sensor, contains some degree of error. This is

called the bias of said sensor. Gyroscope bias can be seen when the gyroscope

is still. Instead of being exactly 0 degrees, the gyroscope will always read a slight

non-zero value in the output. This bias drift or bias instability can be caused by a

few different factors. Temperature can be a major factor. This is alleviated by

most gyroscopes by having a built in temperature sensor. This data can be read

and used to correct any temperature dependent changes. Calibrating a

gyroscope correctly is the best way to reduce error. This can be done by keeping

the gyro still and zeroing all the values and readings in the code on the

microcontroller.

3.4 Possible Architectures and Related
Diagrams

In this section the various architectural designs for Kitty-Bot are discussed. The

resulting research and conclusions based off of said research are also detailed.

3.4.1 Design Choice: Spherical vs. Dual Motor

When Designing the KittyBot we quickly realized considering several
architectural designs would be a crucial step in efficiently completing the

69

electrical and software model. When mentally visualizing our design in hopes of

arriving at an intelligent solution we had to consider all the advantages and
disadvantages of any system and especially the consequences they would inflict

on the hardware power supply and software. For example, one of our design

constraints stated the robot should be durable enough to withstand potential

damage from an animal. With this in mind any potential structural design that

included many moving parts and could potentially have damaged hardware

would have a negative weight towards its final consideration. We need a

structural design that is not vulnerable or fragile, being that the cat would quickly

devastate the structural integrity of our unit and its hardware if it was so.
Structural integrity is especially hard to maintain in terms of the sensors. A

sensor can very easily be disconnected or damaged so any structural design had

to take this into consideration. Another requirement was that our robot should be

maneuverable. That being said, the challenge lies in making the unit

maneuverable without having allot of moving parts. When considering how the

structural design would affect the hardware power supply and software, we found

many interesting and unique designs that were quickly disqualified because of
their complex attachments and multiple moving parts; These we found out would

be antagonistic towards our hardware simplicity. Also, from a purely practical

point of view, avoiding moving parts in particular was a hurdle to jump when

trying to ensure that the robot would erect itself upright if turned over. In short,
we quickly realized that any structural consideration would undoubtedly impact

the electrical design in either a positive or adverse way.

When we considered all of the previous design constraints in tandem with

potential structural designs we arrived at two final candidates, the Spherical

Design and the Dual Motor Controlled Wheel Navigation Design. We kept our

printed circuit board and Power Supply design at premium thoughtfulness when

deciding which route to choose. Both candidates satisfied our design limitations

within a reasonable margin. Both considerations, however, contained both

virtues and faults. Our challenge would now become deciding what design

consequences we were comfortable with enough to confront. One of the

candidates was the spherical design. This design would consist a spherical outer

shell encapsulating the inner hardware power supply and sensors. The hardware

would contain sensors on the inner part of the sphere that would create forces to

actually spin the structure. This architecture, we realized, would be far more

difficult to design in a structurally sound manner. This due to the fact that

everything would be rolling. This would mean that the microcontrollers battery

70

pack, fame and motors would somehow need to be stabilized. However, the final

product would present significant increase in elegance to our solution. The other

candidate was the dual motor controlled wheel navigation design. This design

implements a hardware simplicity driven structural architecture. The structural

architecture facilitates ease of wiring between the power source, microcontroller

and sensors.

In one of our group meetings we came up with the following brainstorming pros

and cons. The brainstorm resulted in Figure 3.4.1. This tree of pros and cons

was a great way to start considering which of the two designs we actually wanted

to invest more intellectual resources in. We would later, as demonstrate in the

figures following this paragraph, 3D models our designs to further consider them

and eventually even proto type both of them in a physical sense. But we started

out with this very simple brainstorm of pros and cons to each design. The Dual

motor controlled wheel navigation cylindrical design we reasoned would have a
relatively simple architectural design due

to the physical proximity of all the parts. The sensor would be on a stable

platform in this structural architecture as opposed to the spherical design where
we would have to design for a spinning structure where sensors would be

fundamentally less stable. Also with the dual wheel which we tested on a Bo-Bot

we found extremely precise maneuvering capabilities were within reach. The

disadvantages we reasoned started with the visually appealing and non-elegant

architectural structure upon which all of our electronics would rest on. This, as

opposed to the rolling sphere which most certainly had a “Cool” factor to it.
Another disadvantage we reasoned was the relative openness of the hardware.
With the cylindrical design, it would be harder to keep the hardware from being

dislodged during play with the cat. This, as opposed the Spherical design which

would by nature encapsulate all of the hardware in a sphere. With the sphere

there was the advantages of it being “Cool”, having the hardware enclosed and

also visually appealing. With all of the previous in mind we would eventually need

the help of 3D models to make our final decision. which would eventually be to

take the risk and implement our spherical design. The 3D model would help us

consider the electrical and power implications.

71

Figure 3.4.1 Pros and Cons Flowchart of Two Designs

3.4.2 PCB, Sensor, and Power of Spherical
Design

This pros and cons brains storm was of course a great tool to choosing our final

design. Our decision, by unanimous vote would be the Spherical Design. We

knew that it would be far more challenging than the dual motor controlled wheel

navigation design, but we were really excited about how cool a rolling sphere

would be. We decided to disregard our design fears of tackling a more complex

system and trust our University of Central Florida Engineering training to

hopefully get us through the problem solving difficulties. However, we needed

more to truly map out our design giving that our academic careers and countless
hours of intellectual resources that would be spent developing one what we

decided would be the Spherical Design. A couple of senior design meetings later

we arrived at the conclusion that we needed 3D models of our designs to further

investigate the electrical and power consequences of our conclusions. We did

not need to make them completely perfect but rather close enough to leverage

our imaginations. This way we could more closely consider the printed circuit

board implications of our chosen path.

3.4.3 Dual Hemisphere Structure

72

The core Electrical design advantage to this candidate was its spherical nature.
That being said, the core structural design disadvantage to this candidate was its

spherical nature.

Figure 3.4.2 3D Model of Right and Left Hemisphere

We imagined a structural architecture composed of a hollowed out sphere. We

3D modeled this idea in Figure 3.4.2. This idea was birthed as result of all the

structural shortcomings of the our first prototyped dual motored control navigation

design. We imagined a hollowed out sphere that would have two hemispheres, a

left hemisphere and a right hemisphere. The two hemispheres would be

manually detachable allowing us to access the hardware inside if necessary. We

imagined this sphere being approximately one hundred and seventy-eight

millimeters in diameter. This would give us enough room to insert electronic

hardware, disassemble parts and still be within the limitations of our system

requirements. The next question would then become, how do we put hardware in

a sphere and make it roll?

3.4.4 The Containers’ Battery Pack and PCB
Design

In order to have hardware in the sphere we would need a frame to place it on.
This frame would have to be small enough to fit in the sphere and large enough

to hold all of the electronics. We decide to call this frame our “container.” On top

73

of this container we also needed to place our electronics and microcontrollers

that would eventually become our printed circuit board. And, of course, we would

need a power supply to power the entirety of the system. We realized that we

would have another layer of complexity in trying to make certain things don’t fall

apart. This due to the fact that everything would be rolling. This would mean that

the microcontrollers battery pack, fame and motors would somehow need to be

stabilized. However, the final product would present significant increase in

elegance to our solution so the levels of difficulty would be worth it.

Figure 3.4.3 3D Model of Center Container

Figure 3.4.3 is the 3D model representation of what we imagined would be a

good design for the inner electrical and power devices. Notice the “C”, “P” and

“B” on the AutoCAD model these were placed to assist us as well as the reader.
The “C” is the container. This is what holds all of the electronics. The “P” is the

printed circuit board. This is what would be powered by the battery and control all

of the sensors. The “B” is the battery pack, this, of course, powers the entire

system. We reasoned this was a good structural design. It could be fit inside of

the sphere and operate in an elegant fashion. This was the basic blueprint of our

design. Functionally, however, we still needed to spin the entire unit in order for

the ball to roll. During our group meetings we had many suggestions as to how to

actually accomplish this. One of the suggestions was very practical yet

simultaneously silly. A group member suggested that we put wheels at the

bottom of the container and turn the entire platform into what could essentially be

described as an RC car in a sphere. This would turn the entire sphere and propel

our system. This idea, though practical and potentially easy to implement had

74

many drawbacks. For one we didn’t like the lack of preciseness and instability.
We would have no way of precisely knowing how much we would turn.
Furthermore, the inner structure would need an entirely separate design to

withstand the impact. It would be rolling around inside the sphere in a completely

unstable fashion not fastened to anything at all. Needless to say, we quickly

dismissed this suggestion. We brainstormed and conversed amongst each other

contemplating different solutions and finally decided we should simply have the

motors spin the sphere itself.

3.4.5 3D Modeling to consider PCB Implications

When designing and thinking about our printed circuit boards, power supply and

hardware in the spherical model we needed to give careful consideration to the

structural designs effect on the printed circuit boards. Circuits, the most recent

sensors, and code are vital parts of a hardware venture and this spherical design

would undoubtedly affect how we designed these. Not considering how the

physical surface of your device effects the electronics power supply and Printed
circuit board design can bring about reliability problems and unwavering quality

issues.

For example, we took into consideration what the trace might be on our printed

circuit board. With an estimated current of twenty-five milliamps at an ambient

temperature of seventy-eight degrees Fahrenheit we might expect perhaps a

trace length of five inches and a required trace width of 0.000526 mil. With the

spherical architecture we realized we could keep all of the components

centralized limiting the trace of the printed circuit board. That being said it would

still be difficult to design in a structurally sound manner. However, the final

product would present significant increase in elegance to our solution. We plan

on using length width and thickness of trace to control resistance. The

centralized printed circuit board design of our spherical architecture will make

these calculations easier to handle. The electrical team will eventually have to

make calculations for the trace with beige that we can’t change the physical

properties of copper which creates resistance. Eventually we will want to aim for

about a five-degree temperature rise. This being said the amount of space that

the spherical design affords our PCB boards will help with making certain it

doesn't overheat. Also, Circles or Loops in the PCB could be made small with

75

this design. Little Loops have lower inductance and resistance. Putting circles

over a ground plane further diminishes inductance. We could, if needed, lessen

the voltage spikes in this way. Also, when the time comes if we were to use

decoupling capacitors, we could place them close to ground and power. This

would maximize decoupling efficiency by minimizing conductance. With this

design we could also, if needed, keep Digital and Noisy traces away from analog

traces. The centralized nature of all of our electronics and hardware would permit

us to more elegantly design the PCB board when the time is right. We could very

easily be mindful to course loud grounds from signs that should be quiet. Making

our ground traces sufficiently large to carry currents that will flow would lower the

impedance of the traces which would be ideal for us.

Figure 3.4.4 Angled View of Center Piece 3D Model

Consider the image displayed in Figure 3.4.4. Notice that now the Orange unit

has a “M” on it. This is representative of the servo motor. Of course there would

be another servo motor on the other side. The idea would be that the servo

motor would spin the rod which would in turn be attached to either the right or the

left hemisphere of the sphere which would then in turn rotate the entire unit. Now

if we redirect our attention towards the pink elements in Figure 3.4.5 and

envision them hugging the inner wall of either hemisphere we can quickly realize

how we plan on making the structure move.

76

Figure 3.4.5 Top-Down View of Center Piece 3D Model

Of course the pink element would need to be fixed to the side of the sphere and
the motors’ casing would have to be stationary in relation to the rod and the right

or left hemisphere in order for everything to turn. The force of the outermost pink

element against the left and right hemisphere would create torque which would

then create a force on the ground as a result of the weight of the unit and friction.
The entire sphere, we reasoned, would then be forced to rotate as a result of this

torque. We wrote our design thoughts down in the sketch in Figure 3.4.6.

Figure 3.4.6

We considered the forces described in Figure 3.4.6. Here F is the force the pink

unit in our simulation exerts on the sphere. The motor would be spinning the rod

which would in turn be connected to either hemisphere of the sphere. This force

would be the driving engine of our robot. r is the radius of our kitty-Bot. We were

intending on making the Kitty-Bot about one hundred and seventy seven

millimeters or seven inches so the radius would be about half of that. G is the

center of mass of the sphere, g is gravities acceleration, which is, of course, 9.8

m/s2 and P is the point of contact of our kitty bot with the ground.FPx would be

the x component of the force exerted on the our sphere by the ground, at point P.
This would be a frictional force. FPy is the y-component of the force exerted on

the our sphere by the ground, at point P. This would be a frictional force. Our

77

group reasoned that the force exerted by the motors on the rod, would then

create a force on either hemisphere of the sphere which would interact with FPx

and FPy causing the Kitty-Bot to roll. Essentially, the outer pink ends of figure

1.10 would be spun by the motors, these pink ends would be bolted to either

hemisphere of the sphere which would in turn cause a force “F” which would in

turn cause torque. This would in turn create a force FPx and FPy against the

ground “P” which would consequently rotate the sphere. This being said, when

further developing the idea we ran into some logical problems. For one, what

was going to keep our container stable?

If we observe Figure 3.4.4 we see the container. In our design the motors would

be attached but not fixed to the container which holds the printed circuit board

and the battery pack. The motors would then turn the rods which would in turn be

connected to the pink outer ligaments of Figure 3.4.4 which would consequently

turn each hemisphere. The key component to mention here however is that in

our design we would Ideally want the container to remain relatively stable in

conjunction with the rods being rotated by the servo motors. There are multiple

reasons why we wanted this to be so. Firstly, a rotating container would mean

rotating electronics, battery pack and printed circuit board. This would in turn

mean we would have to fasten the electrical circuits including the sensors,
printed circuit board and battery pack together so that none would fly off or

become dislodged due to the forces caused by the case rotating.

When considering these rotating forces coupled with the cat’s interaction with the

Kitty-Bot we arrived at many concerns. Secondly, if the container is designed in a

way where it does not remain stable inside the sphere then this would

undoubtedly cause a wobble in the sphere. This wobble would create

undesirable results including a loss in precision and control in terms of steering

the Kitty-bot. Thirdly, loss of stability in the container would mean our sensors

would also be unstable. This would of course mean loss of accuracy in decision

making. The nature of our Kitty-Bot involves the feline attacking the structural

architecture as aggressively as possible. The sheer force of the impact of a Cats’

strike coupled with the rotating forces of a spinning container culminated in a
plethora of concerns that resulted in us deciding to design a solution for this

potential problem. We needed to find a way to keep the container stable while

the motors turned the rods, this we would eventually decide to do with a counter

weight.

78

3.4.6 Incorporating Useful parts of unused rapid
prototype to our new design.

As mentioned before, the first candidate was the dual motor controlled wheel

navigation design. With this design the hardware would have a simple to

implement design. This simplicity driven structural architecture would make it

easy to wire the power source, microcontroller and sensors together. Also, we

could prototype it without too much 3D printing if necessary. Figure 3.4.7 shows

the essential parts of this structural architecture. The Cylinder, of course, would

encapsulate the frame, power supply, central Intelligence system and sensors.
The right, left, front wheel, Device Stabilizer and sensors would be ligaments

exterior to the cylindrical exoskeleton. However, we thought Image Figure 3.4.7

as more of a block diagram for the electronics and made decided to document
and prototype the actual structural architecture in a 3D model shown further

down in the document. Throughout the design process we actually prototyped

this model and found many good qualities of it that we thought would be valuable

assets to our final Spherical Design.

Figure 3.4.7 Block Diagram of Potential Design

79

In this design the entirety of our electronic hardware and sensor devices would

be encapsulated within a hard protective cylinder exoskeleton. This structural

design would ensure that the hardware was isolated from external forces. We

decided not to use this and instead go with the Spherical exoskeleton of Figure

3.4.2 and Figure 3.4.3 However, in prototyping this model we found the Central

Intelligence System frame right wheel and left wheel could be incorporated into

our new Spherical Design. In essence, by putting all of the hardware within a

protective Sphere we would defend from the cat’s predatory attacks invoked by

our kitty-bot movement algorithms. Secondly, the Power Supply, Device

Stabilizer, Sensors and Central Intelligence system would all be placed within

close physical proximities of each other in a stable position. This meant that

when prototyping our Spherical design, we could use the useful parts from the

old design so that we would not have to work twice. This would much simplify our

electrical design in the future we thought, which was later confirmed in our rapid

prototyping stage. We would also create a frame to hold all of these components

that would be used in our Sphere. This frame would have to have two rods

attached where the wheels used to be to direction the Sphere and propel it. In

our original prototype each wheel would be controlled by a motor and would
make decisions based our system of microcontrollers which would later be

interwoven into a PCB design which we called our Central Intelligence System.
The device stabilizer and sensors would as well be programed to react to input

data or take data in and analyze it based on this system. In our new system all

we had to do is replace the wheel with a rod that attaches to the inner part of

either hemisphere and we could keep all of our work from the first prototype. This

of course made us happy because we saved time. One of the drawbacks our

original rapid prototype design was that we would have to program sensors to

recognize when our devices has be knocked over and needs to be re-stabilized.
These sensors would also have to recognize when the device is upright so as to

not tip it back over by the Device Stabilizer. The device stabilizer itself which

would be constructed as somewhat of a L shaped rigid tail that spins when the

robot senses that the unit has been destabilized. The spinning motion of the

device stabilizer would make it so that the L shape would make contact with the
ground and the force between itself and the ground would propel our unit to an

upright position. The point is, with our new Design we did not have to consider

any of this. Our spherical structure made it so that our device would never be

knocked down.

80

3.4.7 Why we chose the Spherical Design over
the Cylindrical Design.
Our cylinder based design have other consequences we were

uncomfortable with. In order to further consider them we modeled our ideas. By

3d modeling our ideas we were able to critically think through potential design

flaws and or advantages. This model was created and referenced so that we

could see what the structural architecture would cause us to consider in terms

hardware design. In this rough AutoCAD 3D model sketch we noticed several

things that we would have to overcome. Firstly, notice the green appendage in

Figure 3.4.9. We called this item the device stabilizer. In order for this structural

architecture to work the Device Stabilizer would have to be promptly adjusted to

the rest of the unit. The device stabilizer would rotate clockwise or

counterclockwise in the event our Kitty-Bot was knocked over by the playful

feline. This means we would have to add another motor to the unit which would

further increase overall complexity of the Kitty-Bot. Also the motor would have to

be strong enough to propel the entire system upright in the event it was knocked

over. This in turn, would mean we would have a further power consideration

variable to add to our ever increasing complexity equation. With the Spherical

design we would not have to consider any of these difficulties.

Figure 3.4.8 3D Model of Cylindrical Design

Secondly, when trying to 3D model our our Structural Design we found ourselves

having a hard time deciding how to design the wheels and the motors that

attached to these wheels. Functionally, the way we mentally imagined things

working before the 3D model was our central intelligence unit controlling the

servo motors which would in turn spin the wheel. However, our Cylindrical

structural design made it so that that would be difficult.

81

Figure 3.4.9 View of Cylindrical Design’s Wheel

The 3D model made us notice that we would have to cut into the Cylinder in such
a way that the wheels would not touch it while simultaneously keeping the

hardware encapsulated. Also, after further considering this design we became

concerned about the safety of the animal. The point of this device is to have a cat

attack it from as many angles as possible. This being said we imagined a

scenario where the cat would try to attack the wheel of our robot, get a nail stuck

in one of the moving parts, specifically one of the motors or wheels, and

potentially get hurt. This, of course was a grave concern for our team and highly

weighed on the negative end of the scale in terms of our final judgment of this

structural design.

Next we considered what our encapsulated parts would look like in this design.
One of the main selling point to further consider, 3D model and evaluate this

structural design was the Cylinder outer shell that protected all of the hardware

on the inside. Figure 3.4.10 shows the very basic 3D model we used to further

explore this design. However, with the Spherical design we had an even better

and more complete encapsulation of all our hardware.

Figure 3.4.10 Internal View of Cylindrical Design

The Blue and red boxes in this figure represent the Central Intelligence unit, any

electrical connections to it, the physical structure holding this including the

82

connections to the two motors controlling the wheels outside the cylinder and the

battery pack. The green elongated triangular pyramid represents the location

where we would have decided to place our sensors. We would have decide to

place our sensors here because of several reasons. Firstly, concentrating all the

sensors at the front of any unit seems to be the best solution evolution came up

with so we figured we would copy nature. In essence we wanted to mimic some

kind of counterfeit rodent or prey that the cat would pounce on. The prey would

react to the cat based on algorithms we programed into it. The sensors in the

front of our Kitty-Bot would act as the input to our Central Intelligence System
that would then make decisions that would further incite the cat's playful nature

based on our coding algorithms. The sensor system was one of the few

advantages the Cylindrical system had over the Spherical system. However, the

advantages never outweighed the disadvantages.

Our 3D modeling also made it clear that that the Cylinders encapsulation of our

hardware would perhaps not be as thorough as one would like. As we all know

cats can be very creative in their mischief. It would be very easy for the cat to

stick its paw inside the Cylinder and cause a destructive force to be applied

towards our hardware, power supply and electronics. This would, of course, also

cause a great safety concern to the animal. If the cat stuck its paw inside the

cylinder and got its nail stuck or even worse somehow managed to electrocute

itself this would be an extremely unfortunate event. In the end this candidate had

many virtues, but also many faults.

It was made clear to us after modeling the structural design that this candidate
would have to overcome the shortcomings an undesirable amount of the design

flaws. Further design would be necessary to overcome the safety issues

embedded in this structure. Perhaps, we reasoned, we could have some kind of

netting covering the back and front ends of the cylinder. However, if we did

choose that approach we would then have to find a way to let the sensors still

peek through. Maybe a mesh of some sort. Overcoming the safety issues

revolving the motors and wheels however was more challenging to think about.
At best we could make the wheels have hub caps that covered its dangerous

parts. However, if the unit was tilted over these dangerous parts would still be

exposed. Other concerns the team had related to the Device Stabilizer needing

substantial torque. The force created by this torque would means the Device

Stabilizer would be prone to break. Also, the Device Stabilizer itself could

potentially be a risky element for the predator cat. This cylindrical dual motor

83

controlled wheel navigation design was the first thing we came up with. However,
after imagining the design and its challenges in the more mature versions of its
prototype we became even more confident in our decision to choose the

Spherical Design.

3.4.8 Creating a Second Robot
Our decision to implement a spherical design solved many issues, but it also

presented new challenges. We soon discovered that with a spherical robot it

would be very challenging to implement sensors. All the sensors we considered

presented challenges when it came to attaching them to a spherical robot. No

sensor could be attached to the outside shell as that shell would be constantly

rotating, meaning no good readings could be taken, not to mention possible

damage to the sensor. What about placing them inside? With an internal

counterweight some level of stability could be applied to central chassis. Whether

it would be stable enough is questionable, but there loomed a bigger problem

with this idea. No sensor would be able to work properly through the inside of the

shell. Ultrasonic sensors would constantly go off because sound wave would just

bounce off the inside of the shell and trigger. Any type of light sensor would not

pass through a solid shell, and if the shell was transparent the light signal would

be distorted. Another type of sensor we considered was a touch sensor. Since

they just register contact, we wouldn’t need to worry about line-of-sight with this

sensor. They could potentially be affixed to the shell and register any external

physical contact with the shell. Whether or not the rotation of the sphere itself

would set off the sensor would need testing. Besides that potential roadblock is a

much bigger one, the wiring. The sensors would have to be wired to the control

unit in the central chassis, and the best place to put the touch sensors would be

on the sphere. If the sensors are on the sphere, which is constantly rotating, the

wiring would get tangled around the center chassis.

Implementing sensors that allow the robot to respond to an external stimulus was

a part of our requirements so we had to create a solution. Our solution became to

create a second robot. Utilizing elements from our original design, this second

robot would take on a more traditional design, akin to that of a bo-bot, with two

motorized wheels and third unpowered wheel for stability. With this type of

design, we now had the freedom to attach sensors. We decided upon an

84

ultrasonic sensor. When the sensor detects an object, a “meow” sound plays

through an attached 8-ohm speaker.

Playing audio presented us with unique challenges. Usually playing audio files

requires them to be stored. Since most microcontrollers have low memory,

especially the TI MSP430, external such as an SD card is needed. Considering

the limitations of the MSP430, we decided to implement an Arduino Uno for this

task instead. Our original circuit design for the Arduino is shown in Figure 3.4.11.

Figure 3.4.11 Original Arduino Circuit

As you can see in this circuit, we still thought we needed an SD card to store the

audio file. This would require more components which brings more

complications. Instead we found another solution that would simplify our circuit.

Since our sound effect was meant to be a short meow sound it wouldn’t be that

large of a file, so we down-sampled the audio to a short playback of about 4

second with a low-bitrate (8 KHz) to increase space. Inside the custom settings,

select “Stereo Bit Rate” of 16 KHz, a “Sample Rate” of 8 KHz, and Mono

“Channels”. Then, it was converted to a series of numbers that could be passed

into the Arduino program Figure 3.4.12.

85

Figure 3.4.12 Number Encoding for Audio

This robot needed the use of two microcontrollers. Due to the libraries we wanted

to use for our parts, we needed two separate clocks, one for the motors and one

for the ultrasonic sensor. Two microcontrollers were the quickest solution due to

time constraints. Our final circuit for this robot is shown in Figure 3.4.13.

Figure 3.4.13 2nd Robot Circuit

Order to fit all of our components we wanted to try a 3D printed chassis. We

modeled a chassis in SolidWorks, Figure 3.4.14.

86

Figure 3.4.14 SolidWorks 3D Model

This model was then printed, taking a total of 10 hours to complete. Once

finished printing, we assembled the chassis which was in 4 parts, the front wall,

the two side wheel walls, and the overall base. Once assembled, the

components were placed inside. The 3D model was designed in a way to fit

everything tightly without wasting any space. For this prototype, the wheel we

utilized was the third, ball-like wheel of a bo-bot. The final prototype of this robot

is shown in Figure 3.4.15.

87

Figure 3.4.15 Second Robot Prototype

4 Identification and Review of Applicable
Standards

4.1 Research and Identification of Standards

4.1.1 Research on Standards

Engineering standards are documents that specify characteristics and technical
details that must be met by the products, systems and processes that are being

developed. These include details such as dimensions, safety aspects and

performance requirements. The purpose of developing and adhering to

standards is to ensure minimum performance, meet safety requirements, make
sure that the product/system/process is consistent and repeatable, and can

ensure compatibility with other standard-compliant equipment. A code is a law or

88

regulation that specifies minimum standards to protect public safety and health

such as codes for construction of buildings.

Standards may be referenced or included in the specifications, which are a set of
conditions and requirements of precise and limited application that provide a
detailed description of a procedure, product or service for use primarily in

procurement and manufacturing.

Our project must follow certain standards, codes and requirements in order to be

able to be developed and deemed safe. As it stands, we must meet certain

requirements in order to ensure the security of ourselves, those around us while

demo-ing and our test subject, the kitten. We must make sure sensitive parts

aren’t exposed that the kitten could get into and end up electrocuting itself. Our

PCB and protective circuits must remain under a certain temperature as to not

overheat causing product failure and/or a fire.

4.1.2 Identification of Applicable Standards

IEC 61249-2-23 Ed. 1.0 b:2005

Title: Materials for printed boards and other interconnecting structures - Part 2-
23: Reinforced base materials, clad and unclad - Non-halogenated phenolic
cellulose paper reinforced laminated sheets, economic grade, copper clad"
Scope: This part of IEC 61249 gives requirements for properties of non-
halogenated phenolic cellulose paper copper-clad laminated sheets, economic

grade, in thicknesses of 0,8 mm up to 3,2 mm. This standard covers material

with different requirements on flammability and is designated according to the
following: Material 61249-2-23-1: general purpose grade, requirement on
flammability not specified; Material 61249-2-23-2: materials of defined

flammability (vertical burning test). These grades of material provide for one of

two flammability requirements and designated as FV0 or FV1.

IEC/TS 62657-1 Ed. 1.0 en:2014

Title: Industrial communication networks - Wireless communication networks -
Part 1: Wireless communication requirements and spectrum considerations
IEC TS 62657-1:2014 (en) provides the wireless communication requirements
dictated by the applications of wireless communication systems in industrial

automation, and requirements of related context. The requirements are specified

89

in a way that is independent of the wireless technology employed. The

requirements are described in detail and in such a way as to be understood by a
large audience, including readers who are not familiar with the industry

applications. Social aspects, environmental aspects, health aspects and market

requirements for wireless communication systems in industrial automation are

described to justify the wireless communication requirements. This Technical

Specification describes requirements of the industrial automation applications

that can be used to ask for additional dedicated, worldwide unique spectrum.
This additional spectrum is intended to be used for additional wireless

applications while continuing using the current ISM bands.

CISPR/TR 28 Ed. 1.0 b:1997

Title: Industrial, scientific and medical equipment (ISM) - Guidelines for emission
levels within the bands designated by the ITU (International Telecommunication
Union)
This technical report provides the guidelines for emission levels within the bands
designated by the International Telecommunication Union (ITU) for industrial,

scientific and medical (ISM) application.

IEC 62115 ED. 1.0 b:2011

Title: Electric toys – Safety – Deals with the safety of toys that have at least one

function dependent on electricity. Examples of toys within the scope of this

standard are constructional sets; experimental sets; functional toys (having a

function similar to an appliance or installation used by adults) and video toys

(toys having a screen and means of activation, such as a joystick or keyboard.

4.2 Design Impact of Relevant Standards
A quick review of the standards above shows that this project is not directly

affected by many standards, however, it is subject to a few. The first standard

that is relevant is IEC 61249-2-23 Ed. 1.0 b:2005 which is a standard that

90

governs flammability characteristics of PCB materials. This is obviously important

to the project since we employ a multi-layer PCB in our project. The board must

conform to this standard since it is built using industrial materials. The next two

documents are used to set standards for wireless communication. Our project

has wireless communication using the HC-05 Bluetooth module, and it turns out
to be a good fit because it conforms to the FCC standards listed as well as the

ITU standard.
The final standard listed is related to electric toys. Technically, our project is a toy

(for kittens) and it runs on electricity, therefore, this standard is applicable to our

design. Even though the robot is being made for kittens to play with, it is being

operated and maintained by humans, so it must meet this standard which is

necessary for it to be developed. Our protective circuits must be secure so that

wires or other components will not be exposed which can cause electrical burns
and/or electrocution to the human handling Kittybot or the kitten that is playing

with it.

91

5 Realistic Design Constraints
The following sections will discuss possible challenges faced in the development

of this project. These include monetary, time, and environmental constraints, as

well as the factors relating to health, safety, and practical use.

5.1 Economic and Time Constraints

The project’s total cost will be relatively low. Based off of our estimations the

project shouldn’t exceed $500 in total cost. It should fall around $250 to $300.
The project must be completed by December of 2016. We will begin rapid

prototyping with old parts and personal items we previously owned as early as

June 2016 to help during the designing phase. This will help in the building

phase as well. After the rapid prototyping and design is near completion we can

see what components can be salvaged from the prototype for use in the final

build of KittyBot. With previously owned components we are saving time and

money. However, some parts will eventually need to be ordered. While this

obviously presents an economic constraint; that is planned for, we priced items

and parts in our initial report. A more nebulous problem is possible delivery time

for certain parts. Items that can be found in local retail and hardware stores

(Walmart, Home Depot, Pet Supermarket, etc.) can be occurred anytime if the

item is in stock. We purchased a hamster ball from a local Petland pet store to

test early prototypes with; and hardware items such as screws, nuts, and

polyvinyl chloride (PVC) piping can be purchased at store like Home Depot and

Lowe’s. Some other items may only be available online and with this comes

potential complications when it comes to shipping times. The best case scenario

for online ordering would be if the desired item was available on Amazon. More

specifically, since we have access to an Amazon Prime account, if the item is

available under the Amazon Prime banner we can get free two-day shipping. A

small calibration was purchased for early prototype testing using this service.
Amazon Prime has a continuously expanding library of goods, but some of the

more sensitive electronics needed for KittyBot will not be available with the Prime

service. Most other goods providers will not be able to provide free shipping, and

if it is free it will most likely be very slow delivery ranging from one to three

weeks. Having to wait long periods of time for components can halt

92

development, cause milestones to be missed, and deadlines to be pushed back.
Getting faster delivery would then mean paying more for express shipping,
thereby increasing the costs. The time constraint of shipping can become an

economic constraint as well.

5.2 Environmental, Social, and Political
Constraints

KittyBot will be meant for interaction with indoor cats. It will move best on smooth

surfaces like wood or tile floors and even low carpet, basically common flooring

surfaces found in most everyday homes. KittyBot is not meant to be used

outdoors; i. It is not recommended to operate the device in grass, sand, mud,
snow, etc. because it is not designed as an all-terrain device. Also it will not be

water-proof, water-tight, or water-resistant and will malfunction if allowed to is

soaked or submerged in water. Cats are meant to interact with KittyBot, so it will

be able to withstand potential damages from household cats. Animals

comparable to the size of a cat could also interact with KittyBot, certain breeds of

small dogs for instance. Larger animals like large dogs could cause damage to

KittyBot; as such, it is not recommended for these animals to play with the

device.

5.3 Ethical, Health, and Safety Constraints

Since KittyBot is meant to interact with pets we have a responsibility to design

and construct KittyBot in a manner that will in no way harm the animal. The

casing housing all internal electronics for KittyBot will be smooth with no sharp

edges that could cause scrapes or lacerations to the intended animals. KittyBot

will be of a weight and size that shouldn’t hurt or crush the animal if bumped into.
Again, cats are the intended audience for play with this device. If smaller animals

like hamsters, mice, lizards, or snakes are allowed to interact with the device

they could potentially be harmed by its size and weight. On the other hand,
animals larger than cats could also potentially be harmed KittyBot. If a large dog

were too rough and cracked open the device, they could cut themselves on the

93

fractured shell or damaged electronics. This is a pet toy, as such it not meant for

use with children. Depending on the age of the child they could break KittyBot

and cut themselves or even swallow any broken off pieces of the device. The

best course of action for any user of our device is to always maintain adult

supervision when allowing your pets or children to play with KittyBot.

5.4 Manufacturability and Sustainability
Constraints

Kitty-Bot will be made from majority inexpensive components, with the most

expensive single piece being the printed circuit board. The structural components

are all inexpensive. The outer shell is a plastic hollow ball. A common hamster

ball found in most pet stores for under $10 would work just fine for this casing.
An internal chassis will be 3D printed. Fortunately for our group, as University of

Central Florida students we have access to free 3D printing. Since this will be

made from acrylonitrile butadiene styrene, or ABS, plastic which is one of the

cheapest 3D printing materials, and it will be no larger than 10 cm in width,
length, or height, this chassis can be cheaply reproduced. Any additional screws,
bolts, or brackets for construction are all inexpensive items. Microcontrollers and

sensors are price comparable to the printed circuit board while still not being as

expensive. These electronics fall within the $20 to $40 range. Motors can also be

around $30 a piece. Batteries plus potential cases and battery holders can total

upwards of $20. With the right combination of components, found at the right

prices, KittyBot could be manufactured for well under $150.

When it comes to long term sustainability, that can be difficult to determine

exactly. Starting from the outside, the integrity of the outer shell should hold for

quite some time, years in fact, if operated in the intended ways. KittyBot should

be used to play with cats primarily, so it can withstand regular play from cats.
With the average number of cats in a single household being two or three,
KittyBot shouldn’t be overwhelmed by the number of feline participants in the

vast majority of households. KittyBot may ram into walls or other objects. For the

top speeds KittyBot will be able to reach, this ramming should cause no

significant damage after extended periods of time. When it comes to the other

structural components, the screws, nuts, and brackets holding KittyBot together

94

should all be able to withstand a cat’s activity as well as bumping into things. The

overall structural integrity is not meant to be able to take activity beyond this. As

stated early, larger pets such as large dogs are not recommended for KittyBot.
These types of pets may be able to damage KittyBot with their paws,
bodyweight, or jaws. Unsupervised children of a certain age can pose a danger

to KittyBot’s structure as well. KittyBot can withstand bumping into objects while

moving at its top speed but acts that can cause KittyBot to collide into objects at

speeds surpassing that like rolling, throwing, or dropping KittyBot can most

certainly cause severe damage to the structural elements of the project.

The internal elements of the KittyBot are much more sensitive. Putting these

components inside an outer casing can will help in keeping them safe. The

mechanisms and components fastening the electronics in place will hold under

the intended uses of KittyBot. Unintended use can cause damage to these

internal components as well. Excessive force can knock the central chassis out

of place, or at worst the shocks can cause damage to the printed circuit board or

microcontroller. Extreme heat and sun exposure, extreme cold or snow, and rain

and water can cause danger. An indoor environment is best. KittyBot should be

operated in temperatures ranging from 65 to 75 degrees Fahrenheit.

95

6 Hardware Design
The kitty-bot is made using both mechanical and electrical hardware. These

systems need to work together through sensors, motors, embedded systems,
printed circuit boards, and microprocessors. The power supply systems need to

accommodate all these hardware components with enough power to run the

kitty-bot correctly.

6.1 Voltage Regulation

Voltage regulators are important in electrical systems. They allow systems to run

12V batteries without out sending too much power to more sensitive

components. Voltage regulators don’t use much power due to the tiny current

that runs through it. The servo motors could require a larger voltage to power

them and therefore a voltage regulator will be needed to regulate voltage for the

microcontroller and sensors. Having a large gap between Vin and Vout causes

inefficiency in the regulator.

Capacitors are used to filter noise input prior to regulation. Another capacitor is

placed on the output of the voltage regulator to deal with voltage spikes from the

regulator on the load resistor. Different sized capacitors are used in the figure

below to filter different ranges of frequency. The smaller capacitor prevents large

frequency signals to interfere with the motor. Figure 6.1.1

96

Figure 6.1.1

6.1.1 Linear Regulators

A linear voltage regulator is a technological device that acquires a certain amount
of input voltage and then helps to govern a predetermined amount output

voltage. They are advantageous when being applied to a circuit board due to

their compact size and ability to produce both positive and negative output

voltages. Linear voltage regulators come in multiple voltage types, such as

either fixed voltages or adjustable voltages. An example of a fixed voltage linear

regulator is the 78xx series. An example of an adjustable voltage linear regulator

is shown in LM317, below in Figure 6.1.2.

Figure 6.1.2

97

(From www.ti.com)

Our team has found linear regulators that can provide output voltages ranging

from 1 to 40 volts. The current from the load is at less than 1 to 1.5 amperes.
However, there are input voltage requirements for linear voltage regulators. The

input voltage must fall between a minimum and a maximum range. The

minimum voltage requirement is determined by the dropout voltage, which is

found on the datasheet of the linear regulator. This dropout voltage is generally

between 2-3 volts. Therefore, a 10 volt regulator would usually have a minimum

voltage requirement of 12-13 volts. The maximum input voltage is dependent on

the part selected and generally yields up to 40 volts.

For KittyBot, a linear voltage regulator is an adequate piece of technology. Our

required voltage level falls within the range of the minimum and maximum

requirements of a linear voltage regulator. The ampere level is thoroughly

covered by the average level of a linear voltage regulator and thus is more than

within reason. Our team’s battery will provide input voltages at a considerably

higher level than the desired regulator output. Therefore, the dropout voltage

requirement will also be met. Linear regulators meet the requirements of our

team’s project and in conclusion can be used for most voltage regulation needs.

Another advantage of a linear voltage regulator is the practicality in its design.
The voltage regulation is performed entirely within KittyBot’s integrated circuit.
Therefore, no add-ons are needed when implementing the regulator. The linear

regulator usually has 3 pins, which allows it to be applied easily to KittyBot’s

printed circuit board. However, there is one disadvantage of a linear voltage

regulator: its efficiency. There can be certain cases where the input voltage is

much higher than the regulated output voltage, in which the linear regulator is

inefficient in trying to banish the extra power as heat. For this project, the input

voltage will be 5V typically which is not a large drop off to supply the 3.3 V

needed for the microcontroller therefore it will be approximately 90% efficient.

6.1.2 Switching Regulator
Switching regulators have the ability to take a higher voltage and it brings it down

to a lower voltage as well as linear regulators. Switching regulators have the

http://www.ti.com/
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/
http://www.ti.com/

98

ability to transform a lower voltage to a higher voltage. Switching regulators can

also be very efficient with their power output, looking at some datasheets we saw

that some regulators have an efficiency of 90-95%. Switching regulators also

create very little heat when being used.

The downsides of using the switching regulators are that they cost more and are

little more complex. Another downside is that switching regulators are noisier

than linear regulators. Another obstacle switching regulators present is that they

tend to have an output current greater than 1 amp. The regulator will be

powering our microcontroller which has a very low input current. The MSP430

has an input current in the micro amp range.

Switching regulators have three different abilities which have names they are

common for. Those three names they’re known for are buck (step down), boost

(step up), and buck-boost (step up/step down) regulators. Our battery will be

supplying anywhere from 5-6 volts to loads which require a range of 3.3 to 5

Volts. A buck regulator was found courtesy of Texas Instruments, they had a

voltage regulator which met our group’s specifications. The LM2594 step-down

buck converter is an adjustable regulator which works well with battery

applications. The pin level diagram of this chip is pictured below in Figure 6.1.3.

Figure 6.1.3

(From www.ti.com)

99

Switching voltage regulators use a combination of transistors acting as switches
and inductors or capacitors acting as storage devices to provide a constant

output voltage. Switching regulators can further be divided into categories such

as buck, boost, and buck/boost regulators. A buck regulator takes a higher input

voltage and steps it down to a constant lower output voltage. For this project, a

buck type regulator will be required. Switching regulators are available as

complete integrated circuits just like linear regulators. Typically used parts handle

supply voltages of up to 40 volts or higher and can handle currents up to about 3

amperes. Switching regulators do not convert the difference in power to heat like

linear regulators and therefore have power efficiencies of up to 95%.

6.1.3 Regulator Trade-offs

The benefits of using switching regulators over linear regulators are mainly

because of their power efficiency. KittyBot needs to be efficient in order to work

for as long as possible. Switching regulators are also available online as

complete integrated circuits and would therefore be easy to integrate and

implement into KittyBot’s circuit design. Switching regulators have the ability to

step down or up giving more versatility, but for the KittyBot only step down is

needed. Switching regulators produce very little heat compared to a linear

regulator.

There are a few key advantages linear regulators have over switching regulators

however. Linear regulators are less noisy because switching regulators can

produce electric interference due to their utilization of inductors and can have a

ripple voltage. Ripple voltage can also be caused from a high switching

rate. The switching in the regulator causes it to be much noisier than its linear

counterpart. Linear regulators benefit from being smaller due to switching

regulators requiring additional components to build the desired switching

regulator circuit. Although linear regulators can be quite large if a heatsink is

necessary. This design’s case wouldn’t require a heatsink.

This project would be able to meet the requirements set out for KittyBot with

either a switching regulator or a linear regulator. The input power supply and

output power requirements fit into the specifications of readily available switching

regulator parts. Many of today’s electronic devices using microprocessors also

use switching regulators. This makes finding existing circuit designs easy and

100

allows us to be able to change the designs to help benefit this project. Linear

regulators can only regulate voltage lower but for the design, as mentioned

before, they still work out. Figure 6.1.4 was created below to see the

advantages or disadvantages between the regulators easier

Figure 6.1.4

(Used from Digikey.com)

6.2 Amplifier Circuit Design

Amplifier

One of the reasons we wanted to design a decent amplifier is because. For

example, our censor output voltage range might not match up well with the

msp430. Also the msp430 might not output enough current to correctly power the

motors. Being that we want to avoid these issues we wanted to design an

amplifier that would give us flexibility. We wanted to put the input values into a

computer program that would give us the output values desired, and that’s

exactly what we did. There are advantages and disadvantages, however. For

example, a common emitter amplifier might have low impedance and is inverting.
These are all things that we would like. These are characteristics of, for example,
a common emitter amplifier. The high output impedance and current gain might

be ok as well. However, the high voltage gain is what we really desire. That will

improve the quality of our device. We figured an average voltage for the circuit

101

board that we want to provide power supply to might be two volts. We would

want an input resistance of about 15,000 ohms and an output resistance of about

100 ohms.

At the end we decided a multi stage Common emitter amplifier would be our best

bet. Our major point of focus was a high gain. After a lot of math and a very

crafty computer program written in C we arrived at the following specs.

Design Procedure:

1. To design the amplifier circuit, we need to break the specifications down

into two parts: a high input resistance that produces a large gain, and a

low output resistance. Two amplifier circuits fit the bill only somewhat. A

common emitter amplifier can amplify the voltage by a great factor, but

moves the phase of the output such that it is 180 degrees out of sync with

the input - basically, inverting the output along the real axis. A common

collector has a low output resistance, but does not negate the phase shift

of the output. As such, a third component is added: a common emitter

amplifier with no bypass capacitor.

2. To calculate the proper values, the circuit must first be transcribed into its

DC and small signal equivalent circuits. For practicality, capacitors are

taken as relatively large values between 10 micro farads and 100 micro

farads. When the impedances of these components are calculated, these

values will result in a short circuit when considering small signal values,
and an open circuit for direct current values. Therefore, the equivalent

circuits can be shown in Figure 6.2.1 and Figure 6.2.2.

Figure 6.2.1 Circuit diagram of Small Signal equivalent of the

amplifier circuit

102

Figure 6.2.2 Diagram showing the DC equivalent circuit of the

amplifier

3. From the above circuits, one can estimate several resistance values

based on the requirements set forth in the lab. Once these values are

obtained, the rest of the resistance values can be obtained through

calculation and estimation.

4. In order to simplify the construction of the circuit, the obtained values can

be rounded to the nearest available physical resistor value.

103

After analyzing the circuit, these equations which were used to bias the circuit.

Stage 2 and Stage 3

 RE3 = (Vcc - VCE3) / IC3;

 RC2 = (Vcc - VBE - IC3*RE3) / (IC2 + IC3/B);

 RE2 = (Vcc - RC2*(IC2 + IC3/B) - VCE2) / IC2;

 RC1 = (Vcc - IC2*RE2 - VBE) / (IC1 + IC2/B);

 RE1 = (Vcc - RC1*(IC1 + IC2/B) - VCE1) / IC1;

Stage 1

Rth = 0.1*(1+B)*RE1
Vth = (Rth/B + RE1)*IC1 + VBE

R1 = Vcc*Rth/Vth;
R2 = Vth*R1/(Vcc - Vth);

Rib = rpi1 + (1+B)*RE1;
Ri = 1/(1/Rib + 1/Rth);

104

Small Signal

Derived Small Signal Equations

● rpi1 = B*VT/IC1;
● rpi2 = B*VT/IC2;
● rpi3 = B*VT/IC3;
● ro1 = VA/IC1;
● ro2 = VA/IC2;
● ro3 = VA/IC3;

● gm1 = IC1/VT;
● gm2 = IC2/VT;
● gm3 = IC3/VT;
● Rib = rpi1 + (1+B)*RE1;
● Ri = 1/(1/Rib + 1/Rth);

After trying several values these worked best.

Input values

IC1 = 1mA
IC2 = 1mA
IC3 = 1mA
VCE1 = 2V
VCE2 = 2V
VCE3 = 4V
RL = 5K
RS = 100

Resulting Values A

105

● RC1 = 4569.536621

● RC2 = 3278.145508

● RE1 = 2399.999512

● RE2 = 3699.999512

● RE3 = 5000.000000

● Rth = 36239.992188

● Vth = 3.341599

● R1 = 97605.937500

● R2 = 57641.718750

● Rib = 366299.937500

● vbe2 = -0.864712

● ib3 = 0.000281

Resulting Values B

● VCE1 = 2.000000

● VCE2 = 2.000000

● VCE3 = 4.000000

● RAC1*IC1 = 4.504151

● RAC2*IC2 = 3.249525

● RAC3*IC3 = 2.455285

● Ri = 32977.367188

● Ro = 46.391895

● Gain = 103.575066

● Maximum unclipped voltage = 2.000000

6.3 Embedded System

6.3.1 Microcontroller

Our senior design group has chosen to utilize the MSP430 microcontroller family
for this project subsequent to contrasting every one of the models that we

compared above and numerous others. We thought long and hard about this but

in the end this choice depended on various elements. Some elements being

more important to us than others. Primarily, we require low power. A high power

microcontroller would mean less space for other components and more weight to

lug around. However, beyond that, we require low power utilization for three

reasons: to augment the time we can have the KittyBot rolling around before

waiting be revived and recharged. Furthermore, we have to minimize the

measure of weight and size as mentioned earlier. To diminish the weight on the

engines that will move our sphere and to minimize the dependencies of the

sphere on large energy sources. To do this we needed to find a microcontroller

106

that would facilitate this goal. Maintaining a strategic distance from a

cumbersome battery would be a great design accomplishment for our team. A

microcontroller that conveys a considerable measure of weight and requests a

great deal of board space, is needless to say not what we want. We also wanted

a microcontroller with sufficient peripherals and proficient I/O ports.

We did not start by considering which is the best microcontroller but rather which

is the best microcontroller for our project. We researched far more than the

microcontrollers referred to above and considered many advantages and

disadvantages of devices. For example, we considered a PIC and thought that

maybe it might be best for our group because of its minimum size. We found out

they have incredibly small ones, but later saw to many complexities in

implementation. If we needed a more potent processing power, on the other

hand, we might have chosen to go with a cortex. Minimum power consumption,
however, was an important aspect for us, hence the MSP430.

Another reason we have chosen the msp430G2 is the flexibility we have with the

compilers. Texas Instruments provides a whole family of compilers to assist us in

corralling a logical elegance of one and zero bits on the Printed Circuit Board.
Texas Instruments Select the IDE you’re comfortable with. To learn more about

our software offerings such as Energia, CCS Cloud, and Code Composer

Studio™

In order to achieve certain goals with our second robot design, we decided to
implement the Arduino Uno microcontroller as well.

6.4 Sensors

6.4.1 GP2Y0A41SK0F

The Sharp GP2Y0A41SK0F analog distance sensor is a possible choice for the

KittyBot to detect objects. The proximity sensor is especially desirable because

they’re cheap for photoelectric sensors and only cost 10 dollars. Considering the

ear design calls for 2 of these sensors, they will save us more money than many

of the other researched sensors. The range for this distance sensor can be set

to a desired range of 4-30 centimeters.

107

The proximity sensors are low power which was wanted for design specification

purposes. The proximity sensor requires a 4.5V - 5.5V input and the max current

is 22 mA. The sensor draws current in short bursts and it’s recommended to

place a 10µF capacitor by the sensor across Vcc and ground in figure 6-1. The

capacitor will stabilize the power supply from too large of a burst of current.

Figure 6-1

6.4.2 PING)))
The PING))) sensor from Parallax was heavily considered due to the groups

familiarity working on other projects which included Parallax devices. It meets

the requirements for the range as the sensor can work up to 3 meters. I found

this sensor to work with the microcontroller being chosen, the MSP430. This

works well with the KittyBot design because it is also 5V like the previous sensor

and the motors. The PING))) sensor is simple to use considering the 3 pins and

their functions. This sensor works using a 40 kHz signal. The frequency is burst

out for 200 µs and can sense the object between 115 µs and tmax which is 18.5

ms, and has a 200 µs delay before another signal is sent out.

108

The PING))) ultrasonic sensor ultimately has some drawbacks that made the

group come to a decision that it would be hard to do. First, it would be hard to

implement with the design on the mobile KittyBot toy. If the design with ears

were used, there would be large holes making the sensors vulnerable to the cat

swiping in at the sensors and possibly causing damage. The other designs for

KittyBot don’t allow for these types of sensors since all the parts will be confined

in a spherical casing.

6.4.3 Piezo Element

So after much research, we decided to use a Piezo element to detect any impact

that the feline might inflict on our unit. Firstly, of course, we would have to figure

out how to use the Piezo sensor. This sensor could be used for a large variety of

reasons; be it to detect a knock on the door or the vibrations of a solid table. We

are using to detect attacks from a cat. After researching the device we

discovered that the piezo device is able to make a voltage after being physically

altercated or irregularly touched. This could be due to a vibration from a physical

element like a cat attack, a sound wave or any sort of a mechanical strain on the

device.

When we say Piezo sensor, we are really using a short name for piezoelectric

sensor. In essence, a piezoelectric sensor that measures changes. It has the

ability to use the piezoelectric effect. This is basically a manipulation of the

electric charge that might accumulate in solid materials. The piezoelectric sensor

uses this effect to detect the changes in certain things. It can detect the changes

in anything from temperature, strain, force pressure or electric charge. Where it

is useful for us is in measuring the changes in charge and vibration. We will use

this effect and the Piezoelectric sensor that leverages it to detect vibrations on

the outside of our sphere. These will, of course, be applied due to the predatory

felines attacks on our device.

This is a very useful tool for us because it captures the moment of interface

between our unit and the predator feline. In addition to this, you can also place a

voltage across a piezeo. If we do this the device will actually vibrate as well as

109

create a tone of our liking. In essence our plan is to run a signal to an audio

output when the kitty-bot is attacked. When rapid prototyping the unit we were

able to scan and evaluate the output of the device using the analogRead()

function provided by the library we are using. Next we had to encode the voltage.
What we decided to do is to slice the voltages into different physical values.

We encoded the values to vary between the range of zero to five volts. In

addition to this we assign an integer value that ranged from zero to one thousand

and twenty-three. By splitting everything into these values we were able to apply

an analog to digital conversion otherwise known as an ADC. Our goal was to be

able to control when our sensor would react and when it wouldn’t. First, as a

proof of concept, we connected the entire unit to the computer. If the sensor was

more powerful than a certain threshold our msp430 microcontroller would then

send the command “React” to the computer. This would be done over the serial

port. If we refer to the diagram we can see that one of the sensors’ cords is

connected to ground and the other to the microcontroller. The wire that’s

connected to the microcontroller is the serial port of the msp430.
Musical output added to our circuit.

Multiple Piezo sensors

As can be seen from figure 3.4.17 we at this point in Agile rapid prototyping

sprint only have one sensor working. This one sensor, simply will not be

sufficient for what we need. We need enough sensor coverage on the sphere

where if any part of the our kitty bot is attacked we can take it as an input and

react accordingly. Hence at this stage in our rapid prototyping process we

decided it would be worth our while build multiple sensors into our core electrical

design. What we came up with can be analyzed in the following figure.

Figure 6.4.18

Notice Figure 6.4.18 it contains the final outline of our prototyping session with

sensors. During our research process we realized that Piezo sensors are

polarized. This sounds complicated but it basically means that any voltage that

passes through their circuit will do so in one specific direction. This is in contrast

110

to a bipolar sensor. In order for us to get many Piezos to work we found out that

we must connect the black wires to ground in series and the red wires to the

analog pins. However, we found out a quirk when getting in the other sensors.
We must additionally to our previous design Also connect a one Mega Ohm

resistor in parallel to each Piezo device. This serves a very important service to

the totality of our device. It limits the voltage and current produce. The Piezo

might not react well to the fluctuations we found so it was safer to do this. This

also serves to protect the analog input from potential damage. We prefered to

purchase the piezo sensors that looked like a metallic disc because it was less

overhead and allowed us to deal directly with the sensor. Alos it doesn’t have

anything to impede it so it is easier to use as an input sensor. We also found

other small but useful discoveries. If the Sensor is not firmly placed against the

wall of our sphere it does not work as efficiently. In our final implementation we

will build the sensor into our actual device for best production.

Using our sensor to play musical notes

When creating the project one of our main goals was to make it as fun as

possible. After all we are making a toy for cats and humans. Throughout our

process we began to find things that would help us actually implement this vision.
One of the ideas we came up with was to make the unit so that it reacts with a

unique or entertaining sound. No one can deny that we all like things that sound.
For example a piano or a flute. But we dont like things that sound in an annoying

way. For example a door bell. Well it turns out we can do this using the piezo

and it works out great. In this way we can save by not putting extra components

on our unit. As long as we have the tones and the durations of each tone we will

be able to create what we want. Actually we can code the msp430 to play what

we want.

For prototyping purposes we decided to have the sensor play happy birthday. To

do so we went to a web site and grabed the notes necessary to create the

melody which were as follows.

The notes were:

c c d c f e

111

c c d c g f

c c highc a bflat g

a a bflat f g f

The first time we did it we used the traditional delay to code what we wanted. We

wanted a better way of doing this so later we figured out how to get the delay that

we want using the PWM pule width modulation hardware. In order to get this to

work we had to figure out that all notes correlate to a particular frequency. What

we were able to do was to reset the channel duration for the second half and set

the channel to use only half of the duration. Using other references, we were

able to get a Pulse Width Modulation of fifty percent Duty cycle at our particular

frequency. With the previously described set of logical steps we were able to

accomplish something very impressive. We were able to make a square wave

from the sine wave. After that, we, of course, encountered more problems. One

of these being the ability to seize a Tone. We wanted to stop the Tone. The

problem was that since, we were using PWM and software bit-banging we were

now unable to simple zero out the output by zeroing the bit. That being said we

also knew that we can make the period zero if we want. With all of this in mind,
we coded the function and initialized our PWM pulse width modulation and were

able to accomplish our goals. With this modification in place we will be able to

accomplish a very nifty thing. Now every time the cat attacks our unit, the unit will

sing a different musical note. When we consistently attack the unit it the unit

creates a melody that we all can enjoy.

Sensor Selection
The initial plan for KittyBot’s design included piezoelectric sensors. It was quickly
realized that they would not be suitable to use. It would be impossible for the
wires to stay untangled with the ball constantly rotating if the sensors were on the
inside casing of the hamster ball. Therefore the KittyBot’s hamster ball design
didn’t include a sensor. A second bot was created to show the ability to have a
working sensor on a robot. A Parallax PING ultrasonic sensor was used for
another KittyBot robot that would trigger a cat noise when it detected an object.
The sound element was another component the team wanted show they were
capable of adding to KittyBot for complexity. The ultrasonic sensor runs on 5
volts so it fits in with the power specifications well. The group decided to use an
ultrasonic sensor over another similar sensor, a photoelectric sensor, because of
the simplicity. The PING sensor is made from Parallax which is the same

112

company that KittyBot’s motors are from so the team was more familiar with the
equipment. The GP2Y0A41SK0F photoelectric sensor was also highly
considered because it was cheaper but the unfamiliarity with the product made
us stray away from it. In the end the ultrasonic sensors worked with great
success.

6.5 Printed Circuit Board (PCB) Design

A printed circuit board is a circuit board that electronically connects and

mechanically supports electronic components using tracks, pads and other

conductive features made from coppers sheets laminated onto a non-conductive

substrate. The substrate is usually a semiconductor such as silicon, silicon

dioxide or gallium arsenide that serves as a foundation upon which electronic

devices like transistors, diodes and integrated circuits are deposited.
Components are soldered onto the PCB in either a single sided, double sided or

multi-layered layout. Our group decided that using a double-sided layout for our

PCB would be most effective because it would allow us moderately high

component density while keeping costs relatively low.

113

6.5.1 Layout and Design
For our PCB we decided to go with a basic double-layer design with mostly
through-hole components to make soldering less difficult. Our overall design
consists of a battery, a voltage regulator, three servo motors, a microcontroller
and two sensors. The following figure shows our schematic which demonstrates
how are circuit will be laid out on the PCB and how each component will be
connected to each other.

Figure 6.5.1: Schematic

We decided that ordering all the parts and soldering them on ourselves would be
the best course of action. Due to this, it was imperative that we made sure there
was enough room on the board for proper soldering because we are novices
when it comes to that skill.

114

Figure 4.2: Board Layout

As you can see from the image above, in our board layout we tried to give our

components as much room as possible while keeping our board size within our

specifications. The largest board we could have that could fit in our chassis was

3in by 2.5in and we were able to make our board 2.95in by 2.2 inches.

6.5.2 Programming Microcontroller on PCB

During the prototyping and initial testing phases the project will be implemented

using an MSP430F5529LP LaunchPad. This will provide the design team with a

quick method of implementing the robot movement algorithm and interfacing the
major components of the robot such as the MCU, Servos, Sensors, and Wireless

Communication. One of the advantages of using the LaunchPad to prototype the

project is that it has an emulator board on it that is used to program the

microcontroller. The microcontroller cannot be programmed properly without this.

115

However, for the final design the project will obviously not be using a LaunchPad,
but rather a custom designed PCB with the microcontroller and all other

components surface mounted. The emulator board is not a simple set of

components but rather a complex and high level emulator module that is beyond

the scope of the design team. Also, the emulator board physically takes up a

considerable amount of board space. The design team has made a decision to

use the emulator board on the LaunchPad to program the MCU on the custom

PCB for the final design. This seemed to be the most cost, time, and space

efficient way to implement the design without having to redesign a Texas

Instruments Emulation board.

To use the emulator board from the LaunchPad to program the custom PCB the
design team must isolate the emulator board from the LaunchPad and replace

the on board MCU with the MCU on the custom PCB. Instead of constructing the

entire emulation board the design team will simply design the PCB so that jumper
wires from the jumper block can be attached temporarily to set the MCU on the

PCB as the target device for the emulation board. After considering different

options and time constraints it seems that this will be the most efficient method to

be able to use the emulator without having to reinvent it.

6.5.3 Soldering

While soldering may seem minor to the experienced engineer or hobbyist, none

of the design team members have ever done it before. Since it is such a

fundamental skill in electrical engineering and none of the team members have

done it before, time will be taken here to gain some knowledge about how to

solder.

Soldering is a process used to join different metal components together. This is

accomplished by using a metal alloy (solder) to connect the different pieces by

melting the solder onto the components and allowing it to cool. This creates a

bond that is strong enough to hold the components together and also conduct

electricity. Soldering is different from other methods used to fuse metals together

such as welding because it occurs at a lower temperature (around 400 degrees

Fahrenheit). Also, soldering melts a filler material between two metals to create

contact unlike welding which actually melts the independent metals and fuses

them together. Soldering can be “undone” for this reason by melting away the

solder when it is desired to do so.

116

Soldering Tools

1. Soldering Iron

The size of the soldering iron depends on the application. A 15-40 watt

soldering iron is good for circuit board soldering while 60-140 watt iron is

better for thicker materials. Using a higher power iron on small

components can result in overheating and damage to the components.
Some soldering irons have variable temperature so that most applications
can be accomplished with one iron however they are much more

expensive.

2. Solder

Solder comes in a variety of thicknesses depending on what it is needed

for. For circuit board applications thinner solder is better since it is more

detailed work. Most solder material is combination of lead and tin but

nowadays lead is being phased out of design due to health concerns.
Some solder contains silver as well which results in a higher melting

temperature which can result in burning components if care is not taken.
Apparently solder with rosin core is better to use because it acts as a flux

and helps the connection.

3. Soldering iron tips

Soldering irons come with tips but it is good to know what tips are better

suited for certain applications. For detailed work, it is better to use a

conical shaped tip while a flat larger tip is good for joining wires together.
Also, the tip should be slightly smaller than whatever is being soldered.

4. Soldering iron holder and cleaning sponge

This just provides a safe place to hold the iron while not in use and a safe

means of cleaning the tip.

5. Tools for wires and clips to hold work

Wire clippers and wire strippers for cutting and stripping wire. Also good

clips to give extra hands while soldering pieces together are necessary

117

such as “helping hands” or just alligator clips, anything to help make the

soldering process easier.

6. Safety equipment

These include exhaust fans so that fumes are not being inhaled and safety

goggles.

Soldering Procedure

1. Heat up soldering iron and clip all components together onto clips in the

proper orientation such that the board can be flipped upside down and not

have everything fall off.

2. Clean tip of soldering iron with a wet sponge.

3. (Soldering Wires Together) Strip about half an inch away from the ends

of the wires and twist them together to form your joint. Touch the soldering

iron to the joint (not the solder) and begin to heat the wires. Touch the

solder to the wires (not the iron) and wait until it melts into the joint. If you

touch the iron directly to the solder it will melt around and not into the

wires and will form a “cold joint” and results in a poor connection.

4. (Soldering on a PCB) Place the leads of whatever component is

needed through the hole in the PCB then bend it slightly so that it does fall

out when flipped over. Touch the tip of the soldering iron to the led and

metal pad on the PCB making sure that too much heat is not added that

would damage anything. Once the lead and pad are hot touch the tip of

the solder to the crack in paying careful attention to how much solder is

applied. Too much solder can pool over connections and cause short

circuits while not having enough can cause a poor connection. The right

amount of solder will form an “ant hill” like mound. If this is not the case,
make sure that all leads and pads are clean first. Remove the solder 1 or

2 seconds before the iron is removed so the tip of the solder does not stick
to the connection; next cut off the excess lead as close to the PCB as

possible with sharp wire cutters.

5. (Surface Mounting Components onto a PCB) The first step to surface

mounting components onto a PCB is to “tinning” the pad. This is

118

accomplished by heating up the pad where you want to mount the
component and applying a small amount of solder to it to create a small

pool. Next you lower the component onto the solder and pad with

tweezers and heat up the solder again to form the connection; hold the

component in place for an additional few seconds to allow it to cool. Last,
connect the other end of the component to the other pad by soldering the

two contacts together.

6. (Desoldering and Fixing Mistakes) Desoldering is done using either a

solder pump or desoldering braid. It is basically just reheating the joint,
removing the solder and removing the component or resoldering the

connection correctly. Fixing mistakes can be done by just reheating the

connection and adjusting the component so that it is placed properly and

has a good connection/ enough solder.

119

7 Software Design
When creating our project, it was necessary carefully analyze how to approach

every aspect of our Software. Our project is an interwoven mesh of Electronics

controlled by embedded systems. That being said our development

environments were crucial to the outcome of our project. Essentially, the

software team’s job is to be the brains of the unit. We considered many

frameworks along this process but came to solid reason based solutions to our

processing needs. Firstly, it was necessary to consider what would be our

Integrated Programming Environment. Many options were available, however,
we came to the conclusion that it would be intelligent to come to a conclusion
about what microcontroller we wanted to use before we decided on the

Integrated Development Environment. After much deliberation, which was

specified in detail in our section on microcontrollers we decided that the msp430

would be the ideal microcontroller for our purposes. We wanted a lightweight low

energy high in community resource solution to meet our processing needs. The

MSP430 was able to provide that. Additionally, it provided a plethora of

integrated development environments to choose from.

7.1 IDE Options
The TI MSP430 line of microcontrollers is usually programmable through Texas
Instruments’ proprietary integrated development environment (IDE) Code

Composer Studio. Code Composer Studio is a very robust IDE.

An alternative to using Code Composer Studio is Energia. Energia is an IDE for

TI Launchpad microcontrollers that is very similar to the Arduino IDE. This will

allow for us to use Arduino libraries.

A critical thought for this development is the way the hardware will be

programed. Hence, we considered many Integrated development environments

to fulfill our tasks. To efficiently integrate logic and intelligence into our hardware

there must be a path for the equipment to be modified, tried and fixed as fast and

productively as could be expected under the circumstances. In a perfect world

the task would have been customized utilizing an environment that takes into
account larger amount calculations to be actualized without focusing on

controlling individual bits and registers. For example, MatLab might have a good

consideration if we only needed to analyze data but unfortunately we needed to

120

control hardware at its most fundamental level. To fulfill this, the software

integration developers decided to use the Energia Integrated Development

Environment. The choice to utilize the Energia Integrated Development

Environment depended on various elements that were meticulously considered

and evaluated.

In particular, one of the reasons that stand out amongst the most vital reasons

our group picked Energia is that it is intended to use the Arduino programming
algorithms and consolidates the plenty of libraries that can be actualized for any

of the problems that we may encounter. This IDE has libraries committed to

everything that our hardware programmed intelligence needs to execute. For

example, Energia has a plethora of libraries that can drive engines dealing with

the heartbeat of our PCB, that is the (PWM) Pulse width modulation required to

do tasks. There are additionally libraries to peruse sensor information which will

be unbelievably essential to facilitating the basic leadership process required to

effectively execute the fundamental calculations we need. To efficiently navigate

the labyrinths paths of development and expand the effectiveness with which
they can be unraveled this integrated development environment will be highly

useful.

Another helpful component that is connected with the Energia Integrated
Development Environment is that coding representations can be transported in
into Code Composer Studio which additionally accelerates the advancement of

our compiler time. Our group can build up the essential calculation utilizing the

Arduino framework and libraries at first. After that it can be transported and

translated into the Code Composer environment. if more exact refinements are

required, for example, advancement of register and control of individual bits, both

calculations that are more difficult those can be done in Energia. Group five

trusts that utilizing Energia in conjunction with Code Composer Studio will help

expedite the aggregate of our teams programming and improvement abilities.

7.1.1 Potential IDE and our Choice of Energia
After careful consideration we came to the conclusion that the Energia Integrated

Development Environment was best suited to meet our needs. One of the things

we really liked about this development environment is that it is open sourced.
This means that anybody can look at the code. Also, a community of people

developed the environment so it is geared to real life practical needs. This

121

software framework was exactly what we needed. The software framework is

based on a Wiring framework and is capable of providing a non-technical easy to

follow development workbench. When researching the codebase, we also

realized that it is very robust and beyond that simple. Common sense is all that’s

really required in terms of training to use the Environment. The open source

community provides a lot of benefits to its end users. Other IDE considerations

are listed below. Though we were able to find a multitude of Integrated

Development Environments that would could work conjointly with the msp430 we

only truly considered the two considered below.

IAR Embedded Workbench:

Description

IAR Embedded Workbench has a C and

C++ compiler. It also has a debugger tool

suite for applications. It can be used for

MSP430 and TI ARM-based

microcontrollers.

● Completely integrated
development environment

including a project manager,
editor, build tools and

debugger

● Highly optimizing C and C++
compiler for ARM;
Compatible with other ARM

EABI compliant compilers.

● Ready-made device

configuration files, flash

loaders and over 2800

example projects.

Mentor Graphics Sourcery Tools (formerly Code Sourcery, Inc.):

Description

IAR Embedded Workbench is the world-
leading C/C++ compiler and debugger tool

suite for applications based on 8-, 16-, and

32-bit MCUs, including MSP430 and TI

ARM-based microcontrollers.

● Completely integrated
development environment
including a project

manager, editor, build tools

and debugger

122

● Highly optimizing C and
C++ compiler for ARM;
Compatible with other ARM

EABI compliant compilers.

● Ready-made device

configuration files, flash

loaders and over 2800

example projects.

Though we considered the two previously mentioned Integrated Development

environments they really didn’t compare to Energia. We were astonished as to

how easy to use Energia was. It doesn’t have allot of options which is actually a

good thing when you are getting used to a new Integrated Development

Environment. Another amazing feature was the integrated Serial Monitor. This

terminal extremely useful when testing sensors. We were able to see the TX and

RX input and output real time. Also there are allot of API’s that are plenty useful

to us. These do advanced features with the sensors as well as helping us with

controlling the microcontroller and peripherals. A feature which saved us

countless numbers of hours we would have used developing low level elements.
These included functions like digitalRead/Write and Serial.print amongst many

others. We also found that this Integrated Development Environment was

compatible with other devices we wanted to fiddle with. For example, the c2000

or the TM4C. Above all though we loved that the code was open source and

hosted in the same GitHub server where we are holding our code where we can

find higher level libraries for different applications we might use. If we ever

needed a more professional environment we could also transition seamlessly into
the Integrated Development Environment Code Composer Studio v6

7.2 Development Structure

7.2.1 Git Repositories over SVN

We decided to use Git repositories to maintain our code instead of Subversion.
We came to the conclusion that git is better fit for our needs. We like the fact that

Git is decentralized in its structure. With Subversion we can’t have localized

123

copies of our code. Also, with Subversion we might encounter a problem. We

might be in a place where for example we might not have internet in which case
we would have to literally copy and paste the code we would not be able to

commit it. With git we don't have this problem our copy of the code is a local

repository and we will be able to commit it whenever we please. That being said

there is an added complexity to this approach. With git there is an entire

language that we have to learn to track of our code. We also have to know the

structure of the git system and how the branch structure works. Also we have to

understand the difference between the local repository and hte actual branch that

in our case would be kept on a server like github.

Git was at first a little confusing to us admittedly. We had to understand what it

meant to work decentralized. What is a remote branch and also how to initialize

and set up a repository? We were able to set up a centralized root branch of

code. From that centralized root branch of code we set up development

branches for each member on the software team. Each member now has his

own branch to work on. When there is a change that the individual wants to keep

he simply commits the change. The great thing is that this change still hasn’t

made it to the root branch. When the individual developer is ready to commit the

changes to the main changes root branch he can do so. Then the administrator

of the code can decide to pull the development branch into the root branch

therefore updating the code. This as you could imagine is incredibly useful for

our team.

7.2.2 Agile over Waterfall
When choosing our coding construct and framework of organization we had to

think very carefully. From personal experience, if you don’t properly map out your

thoughts and plan the logical road map to success your logic will fail. Our main

options for programing structures were agile and waterfall, we choose to use

Agile. Some decades ago some programmers thought the waterfall methodology

was not flexible enough to meet the needs of modern coding challenges. I

happen to be of the opinion that they were right. That being said, many

companies still use waterfall. They like the sequential and incremental approach

of it. However, agile provides us more flexibility and potential for fast progress.
We plan on starting off with a very simple algorithm design. Which we did in our

prototypes. After that we began working on small portions of the code. We have

organized ourselves for the work to be done on weekly and sometimes monthly

124

sprints. When we complete the sprint we can then reevaluate the priorities of our

coding approach. We then run our tests to ensure that our code is at optimum

quality. The great thing about this approach is that this system helps us discover

bugs as well as get feedback from our peers. This feedback can then be

incorporated into the design and readjusted to create a better system for the next

sprint. Some say that this is a very inappropriate approach because it lacks a

serious initial design and sequential steps. However, the flexibility and creativity

afforded to us by this approach suits our end goals perfectly.

In the end there were five main reasons why we chose the Agile approach over

waterfall. Firstly, we need to be allowed to make changes to the code after the

initial planning. This way we can rewrite things we found does not make sense.
Secondly, because we are afforded the flexibility of making changes we will

easily be able to add features to the code that will improve the excellence of our

project. Thirdly at the finally of each sprint, we can then evaluate and reconsider

our priorities. This will allow us to easily make adjustments to the project if our

supervisor so desires. Fourthly, we believe strongly in testing and making

excellence an integral part of our process. We need our code to run flawlessly

when demoed. Failure could be catastrophic for our team. The infrastructure of

Agile calls for testing to be complete at the end of each sprint. This ensures that

the bugs that could derail our project are caught and preemptively disposed of at

the end of each development cycle. Lastly, which is kind of tied to the previous

advantage; because our code will be so thoroughly tested we could basically be

ready to present working code at the end of any given month. This assures us

and gives us security when crunch time comes around that worst case scenario

we will be able to deliver a working product on demo day.

125

8 Project Prototype Testing

8.1 Rapid prototyping approach
The design phase of this project takes place during the UCF Summer semester

of 2016. In order to improve our design, we put together a quick prototype during

this time. We wanted to try and achieve a proof of concept on a motorized rolling

ball to better understand the concept. Members of our group had a bo-bot

complete with wheels and two servo motors from past personal projects. Our

team also had a battery pack, breadboards, and multiple TI Launchpad MSP430

microcontrollers.

The first step was programming the MSP430 to rotate our servo motors. We

achieved this with a simple program coded in Energia. The circuit was

assembled on a breadboard and was powered by an external battery pack. We

stacked the breadboard, microcontroller, and battery pack on the back of the bo-

bot and turn it on. The bo-bot could successfully move. We then went about

transferring this movement to a spherical object.

A hollow sphere that we could snap open and shut again was needed. In fitting

with the pet theme of KittyBot, a hamster ball, 9 inches in diameter, was

purchased. Our desire was to attach the two servo motors to the insides of the

hamster ball so that the rotations of the servos could rotate the entire ball

causing it to roll. We decided use the bo-bot’s chassis in order to hold the servo

motors. The bo-bot chassis was too large to fit in the hamster, so we sawed it in

half. Figure 8-1 shows the internal components of KittyBot.

126

Figure 8-1 Internal Components of KittyBot

With the bo-bot chassis sawed, we had a good-sized housing for the two servo

motors that could fit in the hamster ball. The chassis needed to be suspended in

the center of the hamster ball with the servos attached to the opposite ends of

the inside of the ball. Our quick solution to this was to drill holes into the bo-bots

wheels and align them with holes drilled in the hamster ball. We would then

insert a screw through the holes attaching the wheels to the hamster ball. A

picture of the prototype at this stage is shown in Figure 8-2.

127

Figure 8-2: Chassis first attached to inside of hamster ball

With the chassis intact the microcontroller, breadboard, and battery pack needed

to be placed inside the ball as well. The quick solution to firmly holding these

components was rubberbands. In order to assembly the prototype for operation

the code needed to be modified. The program was set to delay for one minute.
This provided enough time to turn on the battery, reassemble the prototype, and

place it on the floor in a ready position. After the minute delay, the servo motors

kick in and rotate forward for another minute. This causes the ball to move.
Finally, the servos are “detached” in the code, causing the system to stop. Below

is a picture of the prototype at this stage (Figure 8-3).

128

Figure 8-3 Prototype with electronics strapped to chassis

8.2 Design considerations derived from
prototyping

Based on our prototyping approach, new design options needed to be

considered. With the prototype displayed in Figure 8-3, the ball is able to roll due

to the servos turning. Both servos turn forward, rotating the ball, however when

the ball turns the center chassis ends up sloping forward. The components

strapped to the top of the chassis combined with the torque of the wheels turning

may cause the center unit to tip over. As the servos continuously turn, the center

eventually tilts back upright just to move and fall back over again. Internally the

center piece rocks back and forth. The instability of the central unit causes the

movements of the entire system to be erratic. The system does not move straight

or at a steady pace. When the central unit tips over, the prototype is halted

129

because the servo motors’ torque is moving the central unit back upright instead

of rotating the ball forward. When the ball halts for that brief moment, it slumps

over on one of its sides because the combined torque of the servo motors that

keep the ball rolling on its vertical center axis stops momentarily. When the

servos begin propelling the system forward again, the ball is starting from a

leaning position causing the ball to veer off in the direction it was leaning. On one

hand, this erratic, random movement is an interesting prospect for playing with

cats. The random movement could potentially excite and entice the animals.
Random movement patterns are desired for Kitty-Bot, but the group would rather

achieve this through algorithms programmed into the microcontroller. The

desired movement of Kitty-Bot is meant to be more controlled, because of this

the physical instability of the prototype needed to be dealt with.

In order to stabilize the movement, the idea of a counterweight was introduced.
Inspired by the schematic of the Rotundus GroundBot, the idea was to hang a

weight under the central unit inside the ball. The weight should hang freely

underneath and not connect to or touch the bottom of the inside of the ball. The

free hanging weight should keep the central unit upright while the servos turn,
allowing for straighter, more controlled movement. The central unit, consisting of

the sawed bo-bot chassis, two servo motors, MSP430 microcontroller,
breadboard circuit, and battery pack, was weighed; it measured 308g. A

calibration weight weighing 500g (Figure 8-4) was tested first.

Figure 8-4 500g Calibration Weight

This weight was 2.5in tall. This made it worrisome as to whether it would fit inside

the prototype without touching the bottom. Upon inspection, the weight was able

to hang from the center chassis with just enough clearance. This weight however

proved to be too heavy for the motors to handle. A valuable lesson was learned

130

from this experiment. Weight is very important to consider. KittyBot needed to be

as light as possible to avoid the need for larger motors. This would also keep the

costs down and keep the overall size of KittyBot small enough to be acceptable

as a household item.

With the limited supplies of this earlier stage we decided to test further levels of

performance through programming. We decided to add turning to the prototype.
By making the left wheel stop and rotating the right, the torque from the right

wheel would cause the sphere to spin to the left. Pausing the left motor for about

one to three seconds should give enough time to cause a 90 degree left turn.
The inverse can be done to cause a right turn. We also programmed an about-

face 180 degree turn and a reverse movement. To reverse the angles of spin of

the motors are simply swapped causing the device to rolling in the opposite

direction. Achieving 180 degree rotations are very similar to the 90 degree ones.
The stopped motor just needs to be paused for longer and the active motor

should run longer. Three to five seconds is enough to cause a complete about-

face in the prototype. Figure 8-5 and Figure 8-6 show visual representations of

the left and right rotations in 90 degree and 180 degree respectively. The views

are from a top-down perspective. The yellow line indicates the forward facing

direction of the prototype and the red arrows are the direction of rotation.

Figure 8-5: Visual Representation of 90 degree Left and Right Rotation

131

Figure 8-6: Visual Representation of 180 degree Left and Right Rotation

Figure 8-7 will provide a more detailed look at the movements.

Action Turning Angle

(in degrees)

Left Wheel

Direction

Right Wheel

Direction

Move Forward 0 Clockwise Clockwise

Move Backward 0 Counterclockwise Counterclockwise

Turn Left 90 Stopped Clockwise

Turn Right 90 Clockwise Stopped

About-face

Clockwise

180 Clockwise Stopped

About-face

Counterclockwis

e

180 Stopped Clockwise

Figure 8-7: Movement Details

132

8.3 Breadboarding

A good practice for testing and prototyping is to take notes of observations and

data so that if a problem occurs, our team can go back and resolve it quickly.
Using breadboard for prototyping allows the team the flexibility to swap resistors

and other components in and out on the fly. It is smart to prototype this way

because it allows the opportunity to make mistakes and learn from them before

investing in a PCB. Of course, our final design will use a custom-made PCB

tailored to the specifications of our project because it is more reliable and

practical.

Before a resistor is placed on a breadboard, our team should ensure that the

resistance value is determined by an online resistor calculator. If a component is

a surface mount device (SMD) that has pins sticking out of its sides, then

alligator clip shall be used to connect it with other components.

Using a multimeter and we can measure the amount of current drawn to the
servos in the presence of no load and full load to understand how much the

practical values deviate from datasheet values. We must make sure that the full

load does not draw more current than the battery pack can supply. In case it

does, we can replace it with another battery pack that can support higher current

draw. The group will power the motors using a power supply in the lab before

actually testing with a battery pack. It is best to set the current as low as possible

then verify that the motors draw the right amount of current before slowly

increasing the current.

Measuring the input and output voltage as well as the input and output current of
the voltage regulator, we can then calculate the wasted power using Equation 8-

1. If the power loss is within 1 watt, then no heat sink is required. If a linear

regulator wastes more than 1 watt of power, then it should be replaced by a

switching regulator.

Wasted power = (input voltage – output voltage) x output current (8-1)

Next, we calculate the voltage regulator’s efficiency based on Equation 8-2,

Efficiency = (output power/input power) × 100 = [(output current × output

voltage) / (input current × input voltage)] × 100 (8-2)

133

8.4 Conclusions reached

After observing the full movement capabilities of the programmed prototype, we

decided we liked the movement. The movement was originally thought to be too

unstable and erratic. The turning protocols programmed into the prototype

provided an adequate degree of mobility. This dramatically helped us in

determining if we wanted to pursue the spherical design fully. It is a design that

can facilitate all of our requirements. The plastic outer shell is durable enough to

withstand rough play from cats. It houses all the sensitive electronics inside

behind a scratch resistant shell. Because it is a sphere even if it is turned over or

tossed around it can still roll.

134

9 Administrative Content

9.1 Team Management

We developed a timeline for our periodic meetings throughout the semester once

we decided on what wanted to do for our project. We generally try to meet up at

least once every week to report to other members what we are currently working

on, share some of the things we learn and new ideas that we may have. We also

assign new tasks for the upcoming weeks. Our goal is to keep the project simple

at first. As we research more, we’ll add improvements to the robot and change

our objectives if necessary.

The first two months is for research and prototyping. The last two months is for

prototyping and testing as shown in Figure 10-1a. The research is very important

so we knew we had to spend a lot of time on it. We have to write a report of 120

pages so each of us will write 30 pages. As we research, we write down what we

learn in the report. We found out that writing everything down after all the

research is done will take more time. The majority of the second semester of

Senior Design will be spent purchasing components, designing the PCB and

testing our algorithm. We know that it is important to order parts early and design

a few working PCBs so that when the deadline approaches we can focus most of

our attention testing our algorithm and troubleshooting. We are aware that

system integration is important so time will be spent on that to make sure

everything runs smoothly. When we created the table of contents, we also

assigned areas of specialty to each member using a Divide and Conquer

approach, as shown in Figure 10-2. We collaborated on some parts of the project

as well.

May June July August
Documentation

Research
 Prototyping

Figure 10-1a: Project Timeline for SD1

135

August September October November Decembe
r

Purchase Components
PCB Layout, Design and Soldering

 Algorithm Testing and Troubleshooting
 Final System Integration and

Testing

Figure 10-1b: Project Timeline for SD2

Divide and Conquer

Bryen Buie Carlos Garzon Stephen Barth Trenton
Williams

Communication
protocols

Microcontrollers Motors System
Protection

System
Integration

Movement
Algorithms

Sensors PCB Research

Data processing Pseudocode Communication
Hardware

Schematic
Design

PCB Design

Circuit troubleshooting
Code testing
Error testing

Bill of materials

Figure 10-2: Divide and Conquer

9.2 Project Milestones

Most of us are pretty new to this project since we did not have any experience in

robotics. Ideally, we aim to prototype and test in the second half of this semester.
We overestimate the time needed to complete each task so that if an unexpected

problem comes up, we still have enough time to fix. However, 75% of the time is

already dedicated to research. We spend so much time on research because not

all information we read about is related to what we are working on. Sometimes

when we are building a part of the robot, we have to go back and research for

more information.

While doing our own research, we have to keep in mind the other members’

research too. For instance, if one member works on protection circuits and the

other two are working on sensors and the microcontroller, the first member has

to keep in mind of the specifications of the sensors and microcontroller. The

136

research part is very crucial. It eventually determines how our product will turn

out. One wrong step can lead to a series of problems in the future. Therefore, we

pay very particular attention to our research. Initially, we wanted to finish the

research part as soon as possible so that we have more time on the designing

and prototyping. However, we are slightly behind schedule. Nevertheless, we all

have solid understanding of where we are heading so we can be on track pretty

quickly. If necessary, we’ll spend more time on the project to speed things up. To

increase productivity, we decide that each member should specialize in certain

topics. This method saves time and prevents confusion due to overloaded

information. Then we share what we learn with each other. However, we’ll

collaborate on the designing, testing, and coding because they are too important

to leave to one member.

After we have finished a decent amount of research, we set out to acquire the

components. We are looking for two factors: price and quality. For the sensors,
the price is not too expensive so we should favor accuracy over price. For the

microcontroller, we have to consider the price and the functionality such as the

number of ports, the memory, and the processing power. Also, we need to know

what kind of communication technology is compatible with that processor or

launchpad. So far, we have acquired some of the material and just started with

prototyping. Connecting the components together won’t take too much time but

getting them to work will take a lot of time. Interfacing the microcontroller with the

sensors and motors are important to the robot’s proper functionality. Therefore,
this process will take a significant amount of time. We expect it to drag on for a

few months. The milestone of the group for both semesters is as follows:

Senior Design I:

137

● Week of May 30 - Decide on Initial Project Idea

● Week of June 06 - Research sensors, microcontrollers, motors and other

electronic parts.
● Week of June 13 - Design protective circuits & power supply (Hardware

Team)
● Week of June 20 - Design protective casing/outer shell (Hardware Team)

● Week of June 27 - Design, simulate, & capture schematics (Software

Team)
● Week of July 11 - Research and design algorithms (Software Team)
● Week of July 18 - Final Report
● Week of July 25 - Final Report
● Week of August 01 - Continue modifying and improving algorithm

(Software Team)
● Week of August 08 - Continue modifying and improving algorithm

(Software Team)

Senior Design II:

● Week of August 15 - Purchase hardware components (Hardware Team)

● Week of August 22 - Build chassis, connect motors (Hardware Team)

● Week of August 29 - Build pcb and other protective circuits (Hardware
Team)

● Week of Sept 05 - Build protective casing and outer shell components
(Hardware Team)

● Week of Sept 12 - Build power supply (Hardware Team)
● Week of Sept 19 - Interface components and test for proper connectivity

(Software Team)

● Week of Sept 26 - Test sensors, collect and graph data (Software Team)

● Week of Oct 03 - Test and modify algorithm (Software Team)
● Week of Oct 10 - Test and modify algorithm (Software Team)
● Week of Oct 17 - Test and modify algorithm (Software Team)

● Week of Oct 24 - Build test area for kitten to play in.
● Week of Oct 31 - Test durability of play area and device with kitten
● Week of Nov 7 - Reinforce outer shell and play area if any weak spots are

discovered (Hardware Team)
● Week of Nov 14 - Make sure the project meets expectations and is

working as intended

● Week of Nov 21 - Make sure the project meets expectations and is
working as intended

138

● Week of Nov 28 - Dec 5 - Improve and fix any problems or issues before
presentation

9.3 Budget and Financing

As stated in the goals, the project’s cost should be low, we estimate it should be

around $200 but no more than $300. Texas Instruments’ distributors Digi-key

and Mouser have search filters that are simpler and easier to use than that of TI.
Besides, the distributors allow buyers to select the mounting style which is not

offered on Texas Instruments’ website. The team will utilize the distributors’

search filter to find TI products. We will also try to use websites such as

Amazon.com with an Amazon Prime account and Ebay to order certain parts

because we can get relatively fast shipping times and not have to wait two –

three weeks for shipping when ordering from companies such as Digi-key.

139

Since there might be a chance that a component might become defective or

break during testing and prototyping, electronic components will be purchased in

multiple quantities. Nonetheless, the group should keep the quantity at a

reasonable level, which is no more than 10, since it may be expensive to buy at

a large amount. Besides, the team might not use the leftovers after Senior

Design II. In order to save on shipping costs, our team will try to purchase only

from a few sellers. Our team will first look for the items at local stores where we

can pick up. If the items are not available locally, then we will look for them in

online stores.

Four Rayovac rechargeable AA NiMH batteries may be purchased as a backup
power supply besides the Energizer Lithium-ion batteries and charger combo

which will be used primarily for testing. The Rayovac batteries work in all

chargers so they can be charged using the Energizer charger, which is also

advertised to be compatible with rechargeable AA and AA NiMH batteries. The

Rayovac batteries are pre-charged so they are ready to use at any critical time

when we need it.

Chassis is usually sold as a kit that includes wheels, motors, and battery holder

as well as mounting parts. It may be more convenient and cheaper to purchase

the kit than to buy the parts in the kit separately. However, a kit offers limited

options. We have little choices in selecting the motors’ size and type or

dimensions and material of the chassis frame and wheels. Wheels can be

purchased or acquired from old toys.

Figure 9-3 will list all the components needed for building the robot. The figure

does not include the shipping fees. Therefore, the actual cost may exceed the

total in the figure. All of the cost comes from the hardware. The software part is

free. The list is subject to change in the future depending on the team’s budget

and when parts are ordered. Some materials may not be purchased if the team

deems them unimportant to the success of the project or they can be substituted

by another material.

140

Part Cost

PCB $50

Microcontroller $40

Casing $20

3D Print $90

Proximity Sensors $24

Power supply components and batteries $30

Chassis to hold system $10

Wheels $20

Total $284

Figure 9-3: Bill of Materials

141

10 Conclusion

The Kittybot consists of a robot that is designed to play with pets but it is mainly

focused on kittens/cats. Group 5 has decided to work on a project that would not

only challenge us, but also be useful and fun. Cats are often times curious and

playful creatures. Their interactions with the robot would be entertaining for both

the cats and their owners. The robot will be able to autonomously roam about an

indoor space. It will also be able to sense its surroundings so it will not run into

people, pets, or objects like walls, tables, couches, etc. Our goal is to create a

robot that is small, cheap and power efficient.

Since the primary target for the robot is cats, it will be designed with this animal

in mind. It will be of a small enough size (no more than 10 inches in height) as to

be an appropriately-sized plaything for the average household cat. The robot will

need to be durable enough to withstand rough contact from the animal. Cats

have sharp claws and teeth, so the outer shell of Kitty-Bot must be scratch

resistant, and the sensitive components such as microcontrollers, printed circuit

boards (PCB), and wiring will need to be housed in durable compartments. Kitty-

Bot may potentially be turned over while a cat is playing with it. If this happens,
Kitty-Bot will be able to set itself upright again. This will be achieved by Kitty-

Bot’s spherical design. It will, in essence, be a “smart ball”, an autonomous, self-

rolling sphere.

Mobility is achieved through mechanisms of motors and autonomy is
accomplished by the combination of custom codes designed by the team and

pre-established software libraries. During Senior Design II, we expect to spend a

lot of time-troubleshooting hardware problems and coding/software issues that

may arise. Senior Design I is the research, design and prototyping phase. Since

we are only prototyping in Senior Design I, some design areas will be lacking at

first but will come full circle in Senior Design II.

This report is not meant to be followed strictly but to serve as a guideline for our

design decisions and considerations when creating Kittybot. Adjustments and

improvements will be made if a design, prototyping or testing is deemed

142

inefficient, too costly or simply unfit for our goals. We have faced many obstacles

in completing this report but we overcame them through our teamwork,

perseverance and divide and conquer approach.

In the end, we succeeded in creating a system of robots that fulfill our
requirements. Figure 10.1

Figure 10.1 Final Project

143

Appendices

Appendix A - Copyright Permissions

Sparkfun.com

nssn.org (standards)

Ti.com

Hexbug.com

Rotundus.se

Digikey.com

Anaren.com

https://www.arduino.cc/en/Tutorial/Knock

https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/

Appendix B – Code Snippets

Prototype Bo-Bot code snippet

http://www.nssn.org/
http://www.nssn.org/
http://www.nssn.org/
https://www.arduino.cc/en/Tutorial/Knock
https://www.arduino.cc/en/Tutorial/Knock
https://www.arduino.cc/en/Tutorial/Knock
https://www.arduino.cc/en/Tutorial/Knock
https://www.arduino.cc/en/Tutorial/Knock
https://www.arduino.cc/en/Tutorial/Knock
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/

144

Prototype Code with Delay

145

KittyBot Sphere Code

146

Sensor Robot Movement Code

