
i

University of Central Florida

Department of Electrical and Computer
Engineering

KittyBot

Stephen Barth - EE

Bryen Buie - CpE

Carlos Garzon - CpE

Trenton Williams - EE

ii

Table of Contents
1 Executive Summary .. 1

2 Project Description.. 2

2.1 Project Motivation and Goals .. 2

2.2 Objectives ... 2

2.3 Requirements Specifications ... 3

2.3.1 Structural Requirements .. 3

2.3.2 Performance Requirements ... 5

3 Research related to Project Definition ... 6

3.1 Existing Similar Projects and Products .. 7

3.1.1 Autonomous Ball Collector ... 7

3.1.2 Puppy Pal .. 8

3.1.3 Hexbug .. 9

3.1.4 Rotundus GroundBot ... 9

3.1.5 Sphero ..10

3.1.6 Remote Controlled Basketball Robot ..11

3.1.7 Product Research Conclusions ...12

3.2 Relevant Technologies .. 13

3.2.1 Motor ..13

3.2.2 Microcontroller ..14

3.2.3 Power Supply ..18

3.2.4 Protection Circuits ...21

3.2.5 Over-current Protection ...22

3.3 Strategic Components ... 22

3.3.1 Communication Hardware Considerations ..22

3.3.2 Sensors ...29

3.3.3 Voltage Regulation ..39

iii

3.3.4 Gyroscope ..47

3.4 Possible Architectures and Related Diagrams .. 56

3.4.1 Design Choice: Spherical vs. Dual Motor ..56

3.4.2 PCB, Sensor, and Power of Spherical Design ...58

3.4.3 Dual Hemisphere Structure ...59

3.4.4 The Containers’ Battery Pack and PCB Design ...60

3.4.5 3D Modeling to consider PCB Implications ..61

3.4.6 Incorporating Useful parts of unused rapid prototype to our new design.64

3.4.7 Why we chose the Spherical Design over the Cylindrical Design.66

4 Identification and Review of Applicable Standards ...69

4.1 Research and Identification of Standards ... 69

4.1.1 Research on Standards ..69

4.1.2 Identification of Applicable Standards ...70

4.2 Design Impact of Relevant Standards ... 71

5 Realistic Design Constraints ...72

5.1 Economic and Time Constraints ... 72

5.2 Environmental, Social, and Political Constraints 73

5.3 Ethical, Health, and Safety Constraints ... 73

5.4 Manufacturability and Sustainability Constraints 74

6 Hardware Design ..76

6.1 Voltage Regulation .. 76

6.1.1 Linear Regulators ..77

6.1.2 Switching Regulator ..78

6.1.3 Regulator Trade-offs ...79

6.2 Amplifier Circuit Design ... 80

6.3 Embedded System .. 85

6.3.1 Microcontroller ..85

6.4 Sensors ... 86

iv

6.4.1 GP2Y0A41SK0F ...86

6.4.2 PING))) ...87

6.4.3 Piezo Element ...88

6.5 Printed Circuit Board (PCB) Design .. 91

6.5.1 HC-05 Bluetooth Module Layout ...92

6.5.2 Programming Microcontroller on PCB ...92

6.5.3 Soldering ...93

7 Software Design ...96

7.1 IDE Options ... 96

7.1.1 Potential IDE and our Choice of Energia ...97

7.2 Development Structure ... 99

7.2.1 Git Repositories over SVN ..99

7.2.2 Agile over Waterfall ... 100

8 Project Prototype Testing .. 102

8.1 Rapid prototyping approach .. 102

8.2 Design considerations derived from prototyping 104

8.3 Breadboarding... 107

8.4 Conclusions reached ... 108

9 Administrative Content .. 109

9.1 Team Management ... 109

9.2 Project Milestones ... 110

9.3 Budget and Financing ... 112

10 Conclusion .. Error! Bookmark not defined.

Appendices .. 116

Appendix A - Copyright Permissions ... 116

Appendix B – Code Snippets .. 116

1

1 Executive Summary
The purpose of this document is to detail the design and development of the project
by Group 5 of Senior Design 1 (EEL 4914) undergraduate course at the University

of Central Florida (UCF) during the Summer 2016 semester. For the course,
Electrical and Computer Engineering students of the University of Central must

join together in teams to conceptualize, design, and finally, build a system or

device that displays the engineering knowledge and skills we have gained. This

document will also discuss the research that went into the project, review the

applicable standards and constraints, detail the hardware and software design

decisions, as well as detail the prototyping process.

Group 5 has decided to work on a project that would not only challenge us, but

also be useful and fun. The project will be a robotic device whose primary function

is to interact and play with cats. Cats are often times curious and playful creatures.
Their interactions with the robot would be entertaining for both the cats and their

owners. The robot, affectionately dubbed “Kitty-Bot”, will function as an advanced

robotic toy for cats. It will be able to autonomously roam about an indoor space. It
will also be able to sense its surrounds so it will not run into people, pets, or objects

like walls, tables, couches, etc.

Since the primary target for the robot is cats, it will be designed with this animal in

mind. It will be of a small enough size (no more than 10 inches in height) as to be

an appropriately-sized plaything for the average household cat. The robot will need

to be durable enough to withstand rough contact from the animal. Cats have sharp

claws and teeth, so the outer shell of Kitty-Bot must be scratch resistant, and the

sensitive components such as microcontrollers, printed circuit boards (PCB), and

wiring will need to be housed in durable compartments. Kitty-Bot may potentially

be turned over while a cat is playing with it. If this happens, Kitty-Bot will be able

to set itself upright again. This will be achieved by Kitty-Bot’s spherical design. It
will, in essence, be a “smart ball”, an autonomous, self-rolling sphere.

The project’s nature of being a device for pets means that it will interact with living

beings. Because of this safety is of the upmost importance. Group 5 will design

Kitty-Bot to not cause physical harm to pets or their owners. It will be an indoor

device as well, so very high-power will be avoided to lessen the chances of

physical harm and damage to property.

Throughout this document we will explore the potential capabilities of KittyBot.

2

2 Project Description

2.1 Project Motivation and Goals
Every six in 10 Americans is a pet owner. Census done by the Humane Society of

the United States shows that there are 86.4 million cats in households around the

United States. That alone is a large population, but combined with the hundreds

of millions of cats living in households across the global the numbers become

staggering. Pet owners love their animals, and while they strive to meet their pets’

basic needs of food, shelter, and health, they also want to fulfill the pets desire for

play. A variety of pet toys exist, but with such a large population that is capable of

a sustainable market, technology will continue to be pushed forward in said

market.

Cats can be very playful creatures. Even though they are domesticated animals,
they still display natural predatory instincts that often manifest through play. They

run, they climb, they jump, chase, pounce, and leap, whether it be outside or all

throughout their owner’s home. Cats love the thrill of the chase. They will chase

objects and run from them. KittyBot will be a mobile device. This mobility will

engage the animal to play.

Our group consists of two electrical engineers and two computer engineers. Our

electrical engineers will give KittyBot life through designing circuits and power

systems, while our computer engineers will give KittyBot brains by developing the

programs and algorithms that will influence KittyBot’s behavior.

2.2 Objectives

The overall goal of this project is to produce a robotic pet toy. The main function

of the robot will be to interact with pets, mainly cats. More specific goals for the

robot include:

 Durability: This project will need to be durable. The robot is intended to

interact with animals which can be, to say the least, unpredictable. Outer

casings of aluminum or plastic should have sufficient durability to withstand

even the roughest contact with a cat. The main durability concern is the

electronic components of the robot. Components such as breadboard

circuits, printed circuit boards, and microcontrollers can be severely

damaged by cats clawing and biting them. These components need to be

protected.

3

 Maneuverability: The robot will need a concern degree of maneuverability.
The robot will primarily operate in an indoor space. The robot will move

across common household flooring surfaces such as wood, tile, and low

carpet.

 Size: The robot is meant for indoor use with household cats. Because of

this, the size of the project has to be kept to dimensions reasonable for this

sort of environment. The robot should not exceed 60 cubic centimeters in

overall size.

2.3 Requirements Specifications

This section will go over the requirement specifications of this project. These

requirements detail what KittyBot needs to be capable of in order to be

successful. The appropriate values and constraints will be detailed for each

requirement in order to properly access said requirement.

2.3.1 Structural Requirements
This section details the requirements and specifications regarding the structural

and physical aspects of the project. The size and weight of every element must be

carefully consider in order to keep within the desired small form factor. A key

component is the motors. The motor should be small enough to within a central

compartment or chassis. They should also not be too heavy.

 Next is the chassis itself. The principle design for this project is a spherical robot

design. This means it will need an inner chassis to which the motors and all other

essential electronics will be mounted, as well as an outer spherical shell. The outer

shell will determine the overall size of KittyBot, but it will also dictate what the sizes

of all the other components need to be because they all have to fit within the outer

shell in a reasonable fashion. The inner chassis should be the second largest

single component of KittyBot, and will have to be small enough to fit inside the

outer spherical shell, but large enough to hold all the electronic components. In

keeping with the interest of maintaining as low a weight as possible this piece

should be made from a lightweight material. Two common structural materials are

metal and plastic. Both are durable enough for this project and malleable enough

to form a shape small enough for this component. A metal like aluminum is a great

choice of metal for example. The advantage of plastic however is that will metals

like aluminum are more durable and the chances of finding a pre-made piece that
suits the projects needs and specifications are certainly much higher than other

4

less adequate materials, it is harder to alter metal in general than it is plastic

because it is stronger. In all likelihood we won’t find a pre-made piece that perfectly

fits our needs and it would need alterations of some kind. That would require

sawing, shaving, and machining relatively small parts; a bothersome task. Plastics

have the advantage of 3D printing. With 3D printing we won’t have to worry about

alterations because we can create fully customized pieces to suit our needs. A

common 3D printed polymer is acrylonitrile butadiene styrene (ABS). This polymer

is sufficient in providing the level of durable needed for the inner chassis, but more

important it will allow us to print a piece in the desired shape.

Probably the heaviest single component is the power supply. This project is a

mobile platform so it will need to run off battery power. Batteries can come in pre-

assembled packs or in single cells. The single cells need to be housed in a battery

holder.

Specification Value Constraint/Comment

Maximum Weight 1 kg This is including all
components and
accessories assembled
into the final product

Maximum Overall Size 60 cm long
30 cm wide

The maximum size the
group deemed acceptable
for a common household

Figure 2.3.1: Overall Structural Requirements

Specification Value Constraint/Comment

Maximum Weight 60 g The weight of a single
motor should not exceed
this in order to keep
overall weight down

Maximum Overall Size 7 cm long
3 cm wide
3 cm tall

The profile of an individual
has to not exceed this in
order to fit the center
chassis

Figure 2.3.2: Motor Structural Requirements

Specification Value Constraint/Comment

5

Maximum Weight 75 kg Material could be metal or
plastic to give desired
function and weight

Maximum Overall Size 10 cm long
10 cm wide
10 cm tall

The maximum size to
keep the inside of the
sphere reasonable

Figure 2.3.3: Inner Chassis Structural Requirements

Specification Value Constraint/Comment

Maximum Weight 200 kg Battery pack may reach
this level of weight if an
external battery holder
with wire connectors and
on/off switch is used

Maximum Overall Size 7 cm long
7 cm wide

Overall size of battery
pack

Figure 2.3.4: Power Supply Structural Requirements

2.3.2 Performance Requirements
This section details the requirements and specifications pertaining to the

performance aspects of the project. A major determining factor in the systems

performance is the motor. Since a small motor is preferable we can use a lower

current. The speed of the motors does not need to be that fast since this is an

indoor pet toy. The torque just needs to be high enough to carry the overall load

of the entire structure. This project will operate at a relatively low power. To this

end, the voltage will be low enough to facilitate this, but not be too low as to where

the torque would fall to unacceptable levels.

Specification Value Constraint/Comment

Minimum Battery Life 60 minutes On a full charge, the

system should be able to
operate for this long

Minimum Speed 60 cm long
30 cm wide

The maximum size the
group deemed acceptable
for a common household

Maximum Speed 5 mph In order to maintain a safe

operating speed, this

6

speed should not be
exceeded

Minimum Speed 1 mph The device should at the
very least reach these
speeds

Figure 2.3.5: Overall Performance Requirements

Specification Value Constraint/Comment

Minimum Torque 2 kg-cm This is what is needed to
move the system

Maximum Torque 10 kg-cm This amount of torque is
adequate for the scope of

the project, anymore

could possibly be
dangerous

Minimum Speed 30 rpm This is the speed (in
rotations per minute) a
single motor needs to be
able to reach

Maximum Speed 50 rpm This is an adequate

speed for the project.
Spinning any faster is
unnecessary and
potentially dangerous

Minimum Voltage 4 V Baseline voltage required
for operation

Maximum Voltage 6 V The most needed to keep
the project in a low
voltage range

Figure 2.3.6: Motor Performance Requirements

3 Research related to Project Definition
The following section will detail the research performed for the development of

Kitty-Bot. Once the initial concept, goals and requirements were all created the

research process of Kitty-Bot could begin. The process began with searching for

similar projects and products that already exist. Since Kitty-Bot is intended to be a

cat toy, robotic pet toys were some of the first products looked at. One of the

principle overall designs of Kitty-Bot is to make it spherical in shape. With that in

mind, many spherical robot projects and toys were researched. Information

gathered from these existing devices helped to focus the design of Kitty-Bot. Next,
the technologies of the individual components that will make up Kitty-Bot needed

to be researched. These components are the building blocks of Kitty-Bot, so the

attributes of different technologies needed to be accessed in order to determine

7

what would best fulfill the requirements of Kitty-Bot, and what would best work

together to create a cohesive whole in the final product.

3.1 Existing Similar Projects and Products

3.1.1 Autonomous Ball Collector
This project, the autonomous ball collector, is from an Engineering team of

students here at University of Central Florida. The idea was to make an

autonomous ground bot that would detect loose balls and automatically scoop

them to make it easier for tennis players to deal with picking up balls. The plastic

casing holds the tennis balls and protects the circuitry as seen below in Figure

3.1.1. The plastic is durable enough to withstand oncoming tennis balls. KittyBot

also needs a strong plastic casing to withstand cats playing with it. Another

similarity is that KittyBot will be fully autonomous as well which made this project

a good reference for general robotics.

Figure 3.1.1: Autonomous Ball Collector

The Autonomous Ball Collector was made with mindset to convenience the user.
The user turns it on and lets the robot do the work while they play tennis. KittyBot

will be similar in the sense that a user turns it on and will be something a cat can

play with, without the user having to step in and help it get unstuck from corners

of rooms.

The project’s software interface is an AVR programmer made by Atmel. This Atmel

chip is a good reference to look at because it is relatively cheap and easy to use

which are good specifications for our KittyBot project. The chip utilizes a flash

memory and will execute the program that is written inside. Their chip runs at the

speed about 10MHz with built-in 1KB of RAM and 10KB of storage. The idea is to

consume the least amount of energy as possible because tennis matches can last

over an hour which was one specification this group set out to do.

8

3.1.2 Puppy Pal
The Puppy Pal is a senior design project done in 2014 by project members Scott

Smith, Afzal Schafi, Anson Contrares, and Cameron Riesen. Their project is

similar to the KittyBot in the sense that it was made to be an interactive toy with

animals. Shown in Figure 3.1.2, they have a very similar idea with the round

casing to one of the design considerations for KittyBot. The Puppy Pal was created

to have a user interface to control the ball with an Android device. The creators

wanted to add additional components to the inside like LEDs and an amp. Flashing

lights and random sounds were creative ideas in coming up with other ways to

attract an animal’s attention to play.

Figure 3.1.2: Puppy Pal

The intended function of KittyBot is to be a robotic cat toy, so we looked at similar

products that are current in the market. A common type of product that relates to

our project is a motorized chase ball. This type of product is made and sold by

several companies. The product mainly consists of a battery-powered motor

encased in a plastic ball that can be separated in half down the middle. Attached

to the outside of the ball is usually a tail coated in synthetic fur so that it resembles

a small furry animal. Once turned on, the motor inside the ball rotates causing the

ball to begin rolling on its own. As the ball rolls the tail flips and flops around along

with it. The rolling ball along with the erratic movement of the tail are meant to

engage the cat in play. As stated prior these are common products, but we have

also researched a few more specific products developed by their own companies.
Here is a more in-depth look at them.

9

3.1.3 Hexbug

Hexbug is a company that sells toys and robots ranging from small R/C toys aimed

at children to larger, more complex robots for builders and hobbyists. They also

spot a line of electronic cat toys. They currently have a few designs. First is the

Hexbug Nano Robotic Cat toy which is a small robot designed to look like an insect.
The Nano has five legs on each side and scurries around, mimicking a bug’s

movement. There is also a furry tail attached by a string to the back of the Nano

to entice cats to chase it. Hexbug’s other design is the Hexbug Mouse Robotic Cat

toy. This product is a bit bigger than the Nano cat toy and as its name would

suggest it is decorated to look like a mouse. This toy comes in two variants, a

remote-controlled version and a fully robotic version. The products are shown in

Figure 3.1.3.

Figure 3.1.3: Hexbug Nano and Hexbug Mouse

(From hexbug.com)

3.1.4 Rotundus GroundBot
Since our robot has a spherical design, we researched other spherical robots. One

product we looked at was the Rotundus GroundBot. GroundBot is a robotic mobile

platform with a spherical shape and two cameras on the sides of the sphere. It is

primarily a mobile surveillance platform intended for use at large secure locations

such as airports, warehouses, harbors, and power plants. The spherical and

robust design allows for GroundBot to better traverse the rough terrain some of

these locations can have. GroundBot can be remote controlled or set to a path

10

using GPS. Internally the GroundBot has a pendulum attached to a motor. The

motor moves the pendulum arm. When the pendulum leans in a certain direction

the center of gravity of the sphere shifts. This causes the sphere to roll in that

direction. The motor keeps the pendulum arm up in a certain direction which allows

for continuous movement. Figure 3.1.4 shows the GroundBot and the internal

schematic of how the pendulum arm mechanism works.

Figure 3-4: Rotundus GroundBot and Internal Schematic

3.1.5 Sphero
Sphero is a robotic ball toy. Owners control the toy’s motion and the LED color

displayed with a smartphone application. Sphero uses Bluetooth communication

to receive its commands. In addition to the basic control app, Sphero’s creators

developed a series of programming environments to encourage Sphero owners to

be creative and make their own apps. Some of the apps let the user create a path

for Sphero to follow. To track movement, a three-axis accelerometer and a

gyroscope were installed. One impressive feature is Sphero’s ability to charge

wirelessly.

KittyBot is heavily leaning towards the spherical shape design. The great variety

of apps developed for Sphero shows that there are many applications for this type

of toy. At first thinking about how the KittyBot will function and move autonomously

was difficult to picture. Sphero has given us some guidance towards the first step

in making KittyBot autonomous. Figure 3.1.5 shows the Sphero.

11

Figure 3.1.5: Sphero

(From www.sphero.com)

Another fun product on the market is the Sphero 2.0, made by the company of the

same name. Sphero 2.0 is their latest model and it is a small spherical robot, about

7.5cm in diameter. It is incased in a sealed plastic shell. This makes Sphero

waterproof, giving it the ability to traverse bodies of water. The highlight feature of

this product however, is its ability to work in tandem with smartphones. It connects

with smartphones through Bluetooth allowing user to interact with Sphero through

a plethora of smartphone applications available on digital marketplaces. These

range from changing the lighting of Sphero’s LEDs, directly controlling Sphero’s

movements, or pre-programming directions for Sphero to follow. A scaled up

version of this toy can be seen in BB-8, the android character featured in the 2015

film Star Wars: The Force Awakens. Sphero is responsible for both the robot used

in the films and the mass-produced toy versions of BB-8. BB-8 has a stationery

head that sits on top of the rolling ball as it moves. This is because the ball

proportion has an internal gyroscope. The gyroscope helps in maintaining stability

in the ball as it moves.

3.1.6 Remote Controlled Basketball Robot
In this project, a basketball moves along the ground based on input from a two-

channel radio and receiver. Inside of the basketball, a hamster ball holds the

chassis. The sides of the chassis are attached to the outside of the ball. This holds

the chassis in the middle of the ball. A drive motor, servo, and steering arm are

used for drive and steering. A gyroscope was also included.

The bottom of the steering arm holds the batteries and weights. With enough

weight, the chassis is kept parallel to the ground despite the ball’s motion. As the

motor and servo rotate the steering arm in the desired direction, the rest of the ball

12

is pulled forward to keep up with the new center of mass. The gyro senses the

changes in rotation, allowing for control. Figure 3.1.6 shows an internal schematic

of the project.

Figure 3.1.6: Remote-Controlled Basketball Schematic

This robot’s mechanical system could be a straight-forward solution to the

mechanical design of KittyBot. The main obstacles of this design are the weight

used, the construction or purchase of the chassis, and control. The use of only a

gyroscope in this project left much to be desired in precision. If KittyBot had used

this method, it would also include an accelerometer to achieve a more clear-cut

sense of maneuverability than the basketball robot.

3.1.7 Product Research Conclusions
The myriad of products researched gave great insights into the design of Kitty-Bot.
After researching these robots and toys, the spherical design became much more

preferred. Comparing the main two spherical products researched, Sphero and

GroundBot, elements of both provide good inspiration. When it comes to their

internal movements designs, Groundout’s pendulum arm design is an elegant

solution to spherical movement. Sphero’s innards are more akin to a scooter

stuffed in a ball. Rotating wheels and gear shafts of the internal car-like unit move

inside the spherical casing causing it to roll. Sphero’s design falls more in line with

the desired design of Kitty-Bot. It is a toy, which means it is a smaller scale project.
GroundBot is a much larger orb-like robot than Sphero and the intended size of

Kitty-Bot. It is meant to be an all-terrain robot that can cover large distances.
Sphero and Kitty-Bot are meant for use in the small controlled environments of

homes. Sphero’s internal car design is more applicable in this smaller scale than

GroundBot’s pendulum.

13

As a pet toy, Hexbug’s line of toy robots greatly inspire Kitty-Bot. These products

give insight into making the devices appealing and eye-catching to pets. Things

like the bright colors, lights, and sounds all help to entice the animals to interact

with the device. The Puppy Pal greatly resembles how KittyBot is intended to look.
The internal mechanisms are very different from what will be considered for

KittyBot.

3.2 Relevant Technologies
The following section details the research of the relevant technologies to the

primary components of Kitty-Bot. First will be a look at motors, which are

foundational because they are the primary movers of the device. That will be

followed by an in-depth look at microcontroller. The microcontroller’s importance

is paramount because it will act as the “brain” of Kitty-Bot. It will direct all of Kitty-

Bot’s motions and actions. Lastly, power supply research will be examined. The

power supply’s importance is obvious; it will give Kitty-Bot the power to function.

3.2.1 Motor
An essential piece of technology for this project is a motor. A motor will be needed

to move the robot. A few different types of motors have been researched in order

to determine which would be the best fit for the project. Some motor types under

consideration are stepper motors, direct current (DC) motors, and servo motors.

The stepper motor is a very precise motor. It can allow for sharp starting, stopping,
and reversing. Stepper motors also tend to run cheaper than the other types of

motors under consideration. There are several advantages that the stepper motor

may provide KittyBot. One advantage is that the stepper motor is extremely

meticulous in calculating its motion. The extreme accuracy of the stepper motor

allows for immediate acceleration and deceleration, both forwards and backwards.
The stepper motor provides a strong level of control to the user. Another

advantage of the stepper motor is that it is inexpensive when compared to the

servo motor and the direct current motor. However, there are certain drawbacks

to the stepper motor. There are drawbacks to the stepper motor. Firstly, they are

slow. They are also noisy. It could potentially scare animals with its excessive

noise. The servo motor and the direct current motor both provided a higher rate of

acceleration when compared to the stepper motor. Our team felt that this may

cause a problem if KittyBot was found being used in an outside environment.
However, being that KittyBot is only meant for indoors, our team concluded that

this drawback was not crucial to its success. A drawback to the stepper motor that

could hinder the usefulness of KittyBot was its noise level. The stepper motor is

14

the loudest motor when compared to the other two, which might frighten the animal

that is trying to play with the device.

DC motors allow for higher speed continuous rotations. Such high speeds may be

excessive for this project. KittyBot is meant to be an indoor cat toy, so very high

speeds are unnecessary. Servo motors generally seem to be a happy medium

between DC motors and stepper motors. They offer more precise movement than

DC motors. They produce less noise than stepper motor and can reach higher

speeds. A drawback of the servo motor is that it has a limited rotational range. This

can be tuned however. The first characteristic our team noticed was that the servo

motor was not as loud as the stepper motor. The servo motor was also able to

function at a faster speed than the stepper motor. When it came to comparing the

movement of the servo motor with the stepper motor, there was very little

difference in timing. The stepper motor proved to be more precise than the servo

motor. As a team, we concluded the difference to be trivial. There was one

disadvantage to the servo motor that was unnoted with the stepper motor:

rotational range. In the end, after researching whether or not our team could fix

this flaw within KittyBot, we concluded that a simple tune-up would suffice.

Lastly, our team analyzed the findings of the previous motors to those of the direct current

motor. The direct current motor was lower in volume when compared to the stepper

motor, and was around the same decibel level when compared to the servo motor. The

direct current motor was the fastest motor out of all three motors. Our team found that

the major difference between the direct current motor and the other two motors was the

precision in its movement. The direct current motor was recognizably slower in its timing.

Our team felt that accuracy in timing and detection was crucial to the success of

the project. Therefore, the direct current motor was eliminated as a possibility.
When deciding between the stepper motor and the servo motor, our team decided

that the servo motor provided a nice balance between precision and noise level.
Although the stepper motor was slightly more accurate, we determined the

miniscule difference to be negligible. In the end, our team chose the Parallax

Standard servo motor.

3.2.2 Microcontroller
The microcontroller is responsible for controlling the entire system. When selecting

one factors such as processor speed, memory capacity, power consumption, and

number of available ports must be considered. Besides the microcontroller’s

specifications, its cost must also be taken into account.

15

A plethora of considerations came into play when deciding what microcontroller to

use. This small computer will hold the processing power memory, programmable

in and outputs and essentially be the brains of our entire system. Also, the

microcontroller will be the base of what will eventually become our printed circuit

board. Without this vital piece instructions cannot be compiled into an executable

logic that will execute our algorithm. We were mindful of things but certain things

were less important than others. For example, processing speed might be a vital

nerve for a gigantic system. However, keeping in mind that our system will be

relatively simple processing power will not be something that greatly consider. For

the same reason, memory wasn’t something that was of grave importance. Power

consumption on the other hand was a considered a pillar to our success. Our

device does not have allot of breathing space to be abundant with space or energy.
Being that everything has to fit into a spherical container we need the entire system

to consume as little power as possible and also take up as little space as possible.
The number of digital pins however was important for us and was a factor of

importance for our consideration. Analog pins were not an important factor being

that we don’t at this stage believe that we use the analog side. That being said

having good analog to digital converters would be a useful tool to have in our back

pocket should we need it. Lastly, how the output ports were organized for motors

and what software we would consider to reconcile the two was of grave importance

for us.

Many different microcontrollers were researched. The following figures will list the

microcontrollers as well as their pros and cons.

Arduino UNO Rev3: $25

Pros Cons

● Cheaply Priced
● Native IDE

● Programmable in C, C++

● Slow Clock - 16 MHz

Figure 3.2.1: Arduino UNO Rev3 Pros and Cons Table

16

BASIC Stamp 2: $49

Pros Cons

● Small Physical Size
● Low Power Consumption
● Native IDE

● Programmable in C, C++

● PBASIC Language

● Slow Clock - 20 MHz
● Small Memory Capacity - 32-

byte RAM

Figure 3.2.2: BASIC Stamp 2 Pros and Cons Table

BeagleBone Black: $55

Pros Cons

● Fast Processor - 1 GHz ARM
Cortex Processor

● Large Storage Capacity
● Native IDE

● Compatible with Android,
Debian, etc.

● Requires knowledge of Linux
● High Power Consumption - 5 V

at 200 - 450 mA

Figure 3.2.3: BeagleBone Black Pros and Cons Table

Raspberry Pi: $40

Pros Cons

● Fast Clock - 700 MHz
● Programmable in multiple

languages
● Very impressive quad core

processor ARMv7
● Possible to integrate Ubuntu

and other Operating Systems

● High Power Consumption - 5V at 2
A

● Requires knowledge of Linux
● Designed to process video and

audio more efficiently than other

microcontrollers. Could be a pro

depending on what we want.

Figure 3.2.4: Raspberry Pi Pros and Cons Table

17

TI Tivia C: $13

Pros Cons

● Very inexpensive
● Energia - An Arduino based

IDE
● Compatible with Texas

Instruments software libraries

● Less native libraries than more
commonly used microcontrollers

Figure 3.2.5: TI Tivia C Pros and Cons Table

TI MSP430: $12 - $24

Pros Cons

● Very inexpensive
● Energia - An Arduino based IDE

● Low Power Consumption - 1.8 - 3.6

V at 200 uA

● Needs peripheral for prototyping
● Relatively low memory

Figure 3.2.6: TI MSP430 Pros and Cons Table

Wiring S: $35

Pros Cons

● An abundance of AD pins and
PWM outputs for sensors and

motors.
● Allot of memory SRAM and Flash

to store code and increase process
speed

● More memory than needed
● Very little documentation and not

much of an online community for
problem solving support

● Very high operating voltage

Figure 3.2.7: Wiring S Pros and Cons Table

990.005 MuIn - Multi Interface Board with PIC18F2520: $35

18

Pros Cons

● Many components, ADC

Channels, GPIO/SERVO,
EE/EXPORT/USB SOCKET,
LEDs, I2C BUS

● Up to 12 sensors can be
connected

● Can attach more motors than other
devices

● Very little documentation and not
much of an online community for
problem solving support

● Native Instruction Set

Figure 3.2.8: 990.005 MuIn - Multi Interface Board with PIC18F2520 Pros and

Cons Table

Given the pros and cons of each microcontroller based off of their technical
specifications and the group’s prior experience with some of the systems in

question, the TI MSP430 was chosen. The MSP430 has low power consumption

which will allow for extended operating times and longer periods of interaction with

pets. Also with the MSP430 consuming less power, KittyBot will be under less

stress. Considering that our motors need to be able to move the weight of the

microcontroller, power supply, and spherical chassis; weight must be cut down

wherever possible to ensure proper functionality. The MSP430 also supports many

peripherals. Interfacing Texas Instruments brand peripherals will be easier

because of greater compatibility. The most important reason TI MSP430 was

chosen is our familiarity with the hardware. Similar features can be found in some

of the other microcontrollers, but our past experience with the MSP430 will make

it easier to use for the group.

3.2.3 Power Supply
KittyBot’s power supply is will consist of two or four AA batteries.

Component Input Voltage Current

Microcontroller 3.3V 330 μA

Motors 5V 90-190 mA

Sensors 5V 22 mA

Figure 3.2.9: Power Overview

19

Batteries

Four types of batteries were researched: nickel cadmium, nickel metal hydride,
and lithium ion batteries and alkaline batteries. The kitty-bot will run on 2-4 AA

sized batteries and be able to run for at least an hour nonstop. The battery pack

will sit on top of the PCB board within the KittyBot ball casing.

The batteries will need to be able to supply enough power to all the components.
The project is small and compact so the goal is to keep it as low power as possible.
The servo motors use about 5 volts and 90 mA to 190 mA each. The batteries will

need to be able to supply power also to the proximity sensors which use 5 volts

and draw around 12 mA of current.

NiCd

Nickel-cadmium (NiCd) used to be the cheapest of the batteries, but a rise in

popularity of NiMH and lithium ion batteries caused them to become cheaper and

closer in price. The NiCd battery has highest current output among the three types

but is outperformed by NiMH and lithium ion batteries. NiCd takes around one to

two hours to fully recharge. The battery needs to be fully discharged before

recharging to prevent memory effect in which the battery holds less charge over

time.

NiMH

Nickel-metal hybrid (NiMH) batteries are a newer technology than NiCd. It’s

known to have limited memory effect and higher energy density than NiCd. NiMH

battery has good current output and is more environmentally friendlier than NiCd.
Rechargeable NiMH batteries are available in 1.2 V per cell. An advantage NiMH

has is its ability to discharge a constant 1.2 V until the battery is depleted.

Lithium ion

Lithium ion batteries are the most advanced technology among the three. It is

environmentally friendly and has the same energy as NiMH battery but weighs

less. Li-Ion has higher energy density than the other two rechargeable batteries.
A great advantage lithium ion batteries have over NiMH is that they have no

memory loss effect. Rechargeable Li-Ion single cell’s nominal value is 3.6 V,
which means it would require three times as many nickel batteries. If lithium-ion

batteries are used, a protection circuit must be created to use them safely.

Alkaline

20

Alkaline batteries were researched as well to have an alternative possibility other

than rechargeable batteries. Even though it’s the only disposable battery here,
the alkaline battery has 4 times the capacity of NiCd or NiMH. The nominal cell

voltage for an alkaline battery is 1.5V. Alkaline disposable batteries are readily

available, commonly used, and cheap. Some negatives about alkaline batteries

are that they are heavy and have low power capacities.

Figure 3.2.11

Lithium ion batteries provide the most energy and are rechargeable and are the

best option for the kitty-bot’s design. Since the battery pack is small and can

only fit two batteries there needs to be most possible energies from the ones

researched. There’s a clear advantage that the lithium ion battery has over the

NiMH battery, the nominal voltage is 3 times as much. The small casing

everything is fitting in causes another design constraint due to the size of the

housing, although lithium-ion batteries are the superior batteries to NiCd, NiMH

or alkaline batteries.

21

3.2.4 Protection Circuits

A protection circuit is important to protect your power supply and all the
components from either a power surge or a component is drawing more current

than the power provided. Fuses act as a short when too much current is running

through a system. The fuse triggers when there’s too much current in a circuit.
Once the current burns through its seal, the fuse blows and cuts off the current

from going back into the power supply. The fuse prevents current from going

through the power supply which is connected to the motor, microcontroller, and

PCB, and protects them from becoming damaged.

Another good way to protect components is with a protection diode. The safety

diode protects the circuit or device from the harm that a reverse voltage or current

can cause. The protection diode only allows current to flow in one direction. When

a diode is placed in parallel with a component, as shown in figure 3-6.1 it is typically

placed in reversed bias mode because of current potentially flowing backwards

through the circuit. Figure 3-6.1 shows the second arrow which is the reverse

current flowing through the diode, instead of possibly damaging the motor. The

first arrow is correct current flowing into the motor.

Figure 3.2.12

22

3.2.5 Over-current Protection
Another important feature for a motor controller is the fact they provide protection

to the SERVO motors. While testing KittyBot or an autonomous vehicle in general

it is important to protect your components so you can work on testing it rather than

waiting to replace fried parts. Components can be protected with the motor

controller rather than be exposed to overheating during testing. Heat overloads,
shorts and over-current faults can occur for a number of reasons and it’s highly
valuable to stop the motor controller before damage can be done to itself or the

connected circuitry. The device must have current limits set on the internal field

effect transistors. If a fault of any kind is detected, a surge protector will be able to

prevent damage to the motor controller and power supply. The feedback will cause

the circuit to be open disallowing the motor to pass too much current through and

protecting the circuit.

3.3 Strategic Components

This section will detail strategic components that can be attached to Kitty-Bot. The

content seen below will delve into the components outside of the main components

needed for the project. These devices will serve to refine Kitty-Bot’s abilities and

functionality to allow for a better product.

3.3.1 Communication Hardware Considerations

Remote Control

KittyBot is first and foremost a robot. We want it to be autonomous and make

decisions based off of inputs from its sensors. Another option for KittyBot to give it

more flexibility as an entertainment item is to add some form of remote control.
While operating autonomously KittyBot can fully engage with the pet, but the owner

is limited to only the role of a spectator. With a remote control option KittyBot

changes from merely being interactive for the pet and observatory for the owner to

being interactive for both. Remote control would bridge the gap between pet and

owner allowing for an interaction between the two.

There are a few ways to achieve remote control with KittyBot. The first would be

through a transmitter and receiver kit. The receiver would connect to the internal

central unit of the system while the user would transmit commands with the RC

transmitter. Many transmitter/receiver set are available. All that is necessary is a

23

2-Channel transmitter is all that would be necessary, one for forwards and

backwards and the other for left and right rotation. The most common style of

transmitter is the two joystick design; the left joystick controls front and back

movement while the right stick controls left and right rotation. An example of this

design is shown in Figure 3.3.1.

Figure 3.3.1: Spektrum DX-7 Transmitter

The Spektrum DX-7 shown has quite a bit more features than necessary, but it

displays the style of controller we would consider, the common dual-joystick style.

Another option for remote control is through Bluetooth, more specifically Bluetooth

control through a smartphone application. A Bluetooth module can be attached to

the central control unit to allow for communication between the device and a

smartphone or tablet. A module like the HC-05 or HC-06 could accomplish this.
The HC-05 (Figure 3.3.2) is capable of slave or master (receiving or transmitting)

settings while the HC-06 is only capable of slave settings. They are both physically

the same measuring only 3 cm long. Oddly the HC-06 is normally not cheaper than

the HC-05.

24

Figure 3.3.2: HC-05 Bluetooth Module

The HC-05 would have to work in tandem with a smartphone application. This

comes with many choices. The first would be which mobile operating systems to

develop for, Apple IOS, Google Android, or Windows Phone. While slowly

growing, the share of the mobile phone market Windows holds is very small; and

while their Windows 10 integration on their very successful line Surface tablet
computers would allow for an increased plethora of choice in programming

languages, IDEs, etc., we feel the best course of action for the Bluetooth control

option would be to focus on smartphones as the primary transmit device and let

tablets be secondary. Apple IOS is a much more widely used operating system.
The fact that it is limited to the Apple iPhone line of smartphones is not an issue

because of the brands staggering popular and widespread use. Market and

familiarity would not be a problem. When it comes to programming the options

become quite a bit less. IOS apps have classically been mostly coded in Objective

C, which is a very robust language fully capable of delivering the desired results.
Apple has also introduced the Swift programming language to allow for a more

user-friendly coding experience. iOS would present a challenge with the use of the

app. Will the app would be able to be tested on an iPhone in developer mode, the

process of trying to get an app on their app store requires a $100 developer fee.
The Android operating system is incredibly widespread. It is very popular and used

on a multitude of different devices. Android development is mostly done in Java.
The other good part of Android app development is getting your app up and running

for testing and on the Google Play store is completely free.

The best fit for developing an app would be the Android operating system. The

main reason for this is simply familiarity. Our group has much more prior

experience developing for Android. We have little to none developing for iOS.
While Windows can utilize a wide variety of programming languages, we don’t

readily have access to a Window Surface or similar product. That also takes away

the mobile element we’d wish to achieve. An Android application would allow us

25

to interface with the Bluetooth module inside KittyBot. Nearly all modern

smartphones include Bluetooth technology. This would mean nearly all cell phone

user have a remote to KittyBot in the palm of their hands. This is a design element

inspired by Sphero which uses Bluetooth and a variety of Sphero developed apps

to control the robot.

Infrared Communication

Infrared communication is a very popular communication technology for many

applications such as remote control, robotics, etc. Infrared communication has

been used in applications such as remotes effectively since around the 1950’s; it

is an effective way to wirelessly transmit data. There are many aspects of infrared

communication that can make it a suitable means of transferring data given the

right conditions.

It is a very low power option that generally requires no more than a couple of AA

batteries. Since infrared is a very popular technology, it is also well established

and has existed in the market place for many years now. Due to this widespread

market utilization it is also a very inexpensive technology and has many resources

on the fundamentals of its operation. The data transfer rate of infrared is not as

fast as some other technologies (around 4 MB per second), but that is fast enough

for this project and therefore is not an appreciable problem.

Unfortunately, infrared communication also has some serious drawbacks. Due to

the high frequency with which infrared operates, about 100-214 THz for low range

telecommunications, infrared cannot pass through solid objects such as walls or

any other solid material. This means that to effectively utilize infrared technology

the receiver must be visible to the transmitter or the signal will be totally reflected

and not be transmitted/received at all.

RF Communication

Radio frequency (RF) communication is the most popular form of communication
in modern technology today; Bluetooth is actually a specialized form of RF

communication designed to operate over short distances. Most RF communication

technologies are designed to operate over greater distances than technologies like

Bluetooth or Infrared with ranges of up to a few kilometers. RF communication

technologies are generally classified by the frequency with which they transmit
information; the two that will be addressed here are two frequencies in the ISM

(industrial, scientific, medical) frequency band, 2.4 GHz and sub-GHz technology.
Instead of separating them into two different categories they will be compared side

26

by side due to many commonalities in their operation as well as to highlight some

of their differences.
2.4 GHz

2.4 GHZ technology is the most popular frequency in most wireless internet routers

today; it has been the chosen frequency in the ISM band for some time due to the

IEEE standards. This frequency has a balance between range and penetrability. If
allowed to transmit through free space, it has a range that is higher than a 900
MHZ system and also allows for smaller antennas due to the shorter wavelength

of a 2.4 GHz RF signal. Unfortunately, signals are not transmitted in free space so

there will be greater transmission loss for a 2.4 GHz signal if obstructions are

encountered such as walls and other solid objects. Another important feature of

2.4 GHz technology compared to 900 MHz technology is the data rate associated

with each; 2.4 GHz technology allow for higher data transfer rates.

Sub GHz (900 MHz)

Sub GHz technology has become increasingly popular over the last few years for

a number of reasons. It is still a part of the unlicensed ISM band making it suitable

for industrial applications. It has some of the same advantages of 2.4 GHz

technology with some vast improvements. While 2.4 GHz experiences better

range in free space transmission, sub GHz technology is vastly superior in
transmission through environments where obstructions are encountered resulting

in an overall better range for sub GHz transmission. This is due to a number of

factors, one of which is path loss. Path loss is a mathematical model describing

how much of a signal is lost over a certain distance for a certain wavelength. It is

given as:

Path Loss(dB)=20∗log10 [(4∗π∗d)/λ]

Where d is the distance and λ is the wavelength of the transmitted signal. Since

wavelength is inversely proportional to frequency it can be seen that a 900 MHz

signal would have far superior range compared to a 2.4 GHz signal. As a matter

of fact, a 900 MHz signal would have approximately 2.67x increase in range

compared to a 2.4 GHz signal. A 2.4 GHz device would have to increase its power

by nearly 8.5 dB to match the range of a 900 MHz signal operating at lower power.
A graph comparing the path loss of a 2.4 GHz signal to a 900 MHz signal is shown

below in Figure 3.3.3.

27

Figure 3.3.3: 2.4 GHz vs 900 MHz

Bluetooth Communication

Bluetooth is another potential design to utilize wireless communication. It is a

relatively new technology that has many advantages over infrared and other

technologies. Bluetooth was invented in 1994 by the telecommunication company,
Ericsson. Bluetooth utilizes radio frequencies in the 2.4 GHz range to transmit

data.

As with any technology, Bluetooth has some positive attributes as well as some

shortcomings. Bluetooth technology is actually a radio frequency standard that

employs a protocol which means that any device operating on Bluetooth
technology will operate using that specific frequency range and will also send

information in a uniform format. This is one of the biggest benefits to using

Bluetooth technology, it can automatically connect. If any two Bluetooth devices

are within the operating range and they are both enabled, they will connect and

transmit data automatically. This adds a level of convenience for the user since

they do not have to worry about formatting how they transmit data or whether or

not they are connected.

Bluetooth technology also has the advantage of being a low power transmission

option for wireless communication; it transmits about 1 mW per transmission. This

would work well with the lower power goal set for KittyBot. Also, Bluetooth can

incorporate multiple devices at once due to its frequency hopping which allows up

to 79 devices on as many different frequencies communicate with one another.

28

This would be advantageous for this project if multiple robots were to be created

and added in the future. Bluetooth is both low power and an easy to use

technology. Bluetooth has a limited range of use, but it is roughly 30 meters in all

the Bluetooth models that were researched, and the range is long enough for

KittyBot.

Although there are many advantages to using Bluetooth technology, there are also

some disadvantages that must be taken into account. This would not be a huge

problem except that, as mentioned before, this project is supposed to be designed

to operate over a substantial distance, ideally much farther than ten meters.
Bluetooth is also capable of fast data transfer, up to 2-3 megabits per second which

is slower than IR but still fast enough for the for this project.

Decision on Which Type of Communication to Use

A couple Bluetooth chips were researched and many of the specifications were

compared such as: cost, operating voltage, size, and the complexity of interfacing

the module to the system. Figure 3-1 provides a table comparing the different

specifications of potential Bluetooth modules. Observing the table, it appears that

all the modules require around the same operating voltage to run. The module

RN-42 has a potential of 6 volt operating voltage due to the ability to change its

max data rate. The largest module appears to be the HC-06 Bluetooth module,
while the RN-42 and the WT11i are approximately the same size. Size is important

due to the fact that the components all need to be enclosed in a small round casing.
The table shows that the signal distance specification. The HC module has the

lowest standard in comparison of the other two modules with 30 feet, the RN-42

ranging from 50 to 60 feet, and the Bluegiga WT11i with a significant line of sight

range of 328 to 984 feet. This feature is not as important for KittyBot as it is an

inside cat toy and if a controller was made for KittyBot, the user would most likely

be in a 30 feet range. The max data rate value for all three potential Bluetooth

modules are around the same of around 2 to 3 Mbps. The HC-06 module will be

the cheapest of the 3 modules, with the RN-42 and WT11i costing about 30-40

dollars. The KittyBot needs to be cheap in order to ever be profitable so HC-06 is

good for this.

With all the specifications taken into consideration, the HC-06 module would be

the best potential choice for KittyBot’s hardware in integrating a Bluetooth

communication device. This would only be considered for a user control design

only. It is the best possible choice with this design consideration because the 30

feet signal coverage is an acceptable range for KittyBot; the project was made to

29

be used in a house or room. The HC-06 module can connect to an Android or

iPhone device in a simple way by locating the module from the user’s phone and

entering a given password to connect. The HC module is larger in size in

comparison to the other two, but can be negated due to the price of the HC module

being much lower.

Bluetooth
Module

HC 06 Bluegiga WT11i RN-42

Operating
Voltage

3.3V 2.7 - 3.6V 3.3 - 6V

Size 4.3 x 1.6 x 0.7

cm

35.75 x 14.5 x 2.6

mm

38 x 17 mm

Signal Distance 30 ft. 328 -984 ft.
(L.O.S.)

50 to 60 ft

Max Data Rate 2.1 Mbps 2-3 Mbps 3 Mbps

Cost $10.00 $30.00 $40.00

Figure 3.3.4: Module Comparisons

3.3.2 Sensors

The kitty-bot’s sensors should be able to read and detect objects in its path in

milliseconds. The sensors need to be able to detect objects quickly enough to

process and send the signal back to the microcontroller and motors to be able to

adjust, and roll away to avoid an object. The sensor needs to be reading data

continuously. The settling time for the sensors should be in the millisecond range

as well when they are powered up.

The sensor should be able to accurately detect obstacles through the balls clear

shell, and sense them quickly enough to avoid what’s in the way. The sensor

should be able to detect any objects the KittyBot hits and the KittyBot will either be

able to avoid it or eventually move away from the object after hitting it. The four

sensors researched for all the possible designs for KittyBot were

photoelectric(infrared), image(webcam), ultrasonic, and piezoelectric(impact)

sensors. Piezoelectric sensors were the most popularly liked among the

group. Since KittyBot is continuously rolling the group realized how difficult

ultrasonic sensors or photoelectric sensors might be impractical to implement.

30

Photoelectric Sensors

One type of sensor that was considered is a photoelectric sensor. Since the

sensor is in a clear plastic housing, photoelectric sensors will not work with the

design because photoelectric sensors can detect transparent surfaces.
Photoelectric sensors are useful for other potential kitty-bot designs, they’re able

to sense objects in the kitty-bot’s path to a given distance.

The photoelectric sensor is good for detecting a fixed range which is useful for this

design. There are 3 main types of photoelectric sensors, through-beam, reflective,
and diffuse. Through-beam sensors are the most accurate of the 3 but require a

receiver and a transmitter and wait for the light beam between them to break. This

won’t work in the design because through-beam sensors wait for a break in light

rather than project and read what’s in front of the sensor.

Figure 3.3.5

The retro reflective mode of photoelectric sensors detects objects when the signal

is blocked. Retro reflective optic sensors also have a transmitter and a receiver.
The transmitter transmits a light beam off a reflective surface across from it. When

the light is blocked by a non-shiny surface and the light particles can’t make it back

through the polarization filter the retro reflective sensor detects an object. This is

also not the type of sensor that would good for this type of project because the

retro reflective sensor is stationary across from a shiny surface, and the kitty-bot

is mobile.

31

Figure 3.3.6

The 3rd mode of photoelectric sensors is diffused mode. In diffused mode, the

transmitter sends out light to an adjustable distance. A receiver reads the light that

scatters off the object in front of the sensor and triggers a command. Diffuse mode

photoelectric sensors can be used for other designs because it can detect

transparent walls or objects. This design requires a different sensor because the

sensors need to be protected in a clear plastic casing.

Figure 3.3.7

Image Sensors

Image sensors or webcams take in the light waves from particles bouncing off
objects and turn those photons into electrical signals which can be displayed as

an image on a screen. Complementary metal-oxide semiconductors (CMOS) are

32

a type of image sensor as well as charged-coupled devices (CCD). The resolution

on the image sensors needs to be good enough to have enough pixels to present

a clear image for navigation. The kitty-bot will usually be in tight spaces so the

image sensor will need to be able to detect and read the objects it’s approaching,
quickly and clearly. Since webcams rely on light, darkness could be a design

restraint to consider.

CMOS and CCD sensors both take in light through pixels shown in figure 3-4. The

sensors take in photons which build up in the highly light sensitive areas to build

an image. Using a positive charge, the electrons are separated from the photons.
Then the electrons are turned into a tiny voltage which is amplified and can be

connected and shown through a screen. For CCD sensors most of the functions

are done on the printed circuit board through output nodes. CMOS sensors

convert photons to electrons and then to voltage through a diode, all right at the

pixels. The diodes send the voltage into a MUX and after the voltage is amplified,
an analog to digital conversion is done for the CMOS sensor. This process allows

the CMOS sensor to be faster due to the pixels can be processed at once. CCD

sensors can only process one pixel at a time through their output nodes so it takes

much longer than CMOS sensors. CMOS chips are more low powered than CCD

chips, but

Figure 3.3.8

Ultrasonic Sensors

Ultrasonic sensors use high frequency sound waves to detect items that the sound

reflects off from. The sensor keeps track of time for the echo to return, as well as

the echo pulse width to determine the distance of the object in the way which is

important for KittyBot. Inexpensive ultrasonic sensors usually give off a 40±1000

Hz range of frequency as its sound wave to echo for detection. One popular

detection method is SONAR. It is used primarily for underwater because the high

frequency waves emitted, it’s less than 1 MHz though. SONAR emits echo sound

that travels through a medium (air) to detect an object. Upon contact with an object

emitted signal is reflected back towards the sensor that listens to reflected sound

33

waves. Reflected signal carries information about direct distance to the object.
This presents an ability to obtain a fairly quick response from the object detected.

The ultrasonic sensors use of sound propagation is an advantage for accuracy of

distance over infrared sensors. Sound waves are capable of detecting an object

regardless of the color so this is good to detect glass surfaces. They are also

immune to external disturbance such as vibration, infrared radiation and

interference. There will be different scenarios that need to be addressed and

resolved by the KittyBot like corners or animals. Another example is when KittyBot

detects an object ahead, the sensors needs to detect it and turn away instead of

getting stuck in a corner of a house or anything.

The ultrasonic sensors have some drawbacks however that led to the group not

wanting to use them. In figure 3-5 it shows the sensor not working due to the angle

which is deflecting away the signal and not detecting the wall quickly enough. The

theta value for figure 3-5 is less than 45° which is a high value on top of the limited

space the sensors would be operating out of. Another reason ultrasonic sensors

can be disadvantageous is that they are unable to read small objects in its path as

shown in figure 3-6. The ear design for KittyBot would have the sensors elevated

and would have trouble rolling past an object long and low to the ground like a

branch for example. Another disadvantage of ultrasonic sensors is ghost echo.
This is where the sound can bounce off of several objects and result in duplicate

and reflected waves with a time interval delay. Sound absorbing materials can also

throw off the accuracy and lead to the KittyBot not reading objects before it and

getting stuck running into a wall potentially. Ultrasonic sensors are expensive

compared to the photoelectric sensors, and our goal is to make it as cheap as

possible since KittyBot is meant to be a toy.

Figure 3.3.9

(From www.parallax.com)

34

Figure 3.3.10

(From www.parallax.com)

Figure 3-27

Piezoelectric Sensors

Piezoelectric sensors are usually small and very versatile sensor. This sensor is

also known as a transducer. The piezoelectric sensor can detect changes in

pressure, acceleration, temperature, or force which is important for KittyBot when

a cat swipes at the ball it will change direction and roll away. Also the piezoelectric

sensor will detect when the KittyBot hits a wall and be able to maneuver away so

it doesn’t get stuck.

Piezo sensors have their disadvantages however. Since they rely on contact, they

may be slow to signal the motors and KittyBot will turn away from objects or

animals slower. Another possible design constraint could be that the ball may roll

on top of the sensors causing them to trigger. Since the sensors will be placed on

the shell casing, which will be moving, wiring these sensors may prove difficult.
Based on how they were set up in a video, it may be hard to set the piezo sensors

up.

The piezoelectric sensors have their advantages as well. One example is that

they’re very lightweight and tough so they can withstand the impact of a wall over

35

and over or if an animal that is playing with it. Some useful characteristics of the

properties of the sensor are listed below:

• Wide frequency range—0.001 Hz to 109 Hz.

• Vast dynamic impact range (10-8 to 106 psi)

• Low acoustic impedance, close match to water, human tissue and adhesive

systems. These sensors can be used to detect signal in muscles and tissues.

• High elastic compliance which means it’s useful for KittyBot being able to bend

around the round surface of the round casing.

• A high output voltage is generated from a fair impact.

• High mechanical strength and impact resistance (109 —1010 Pascal modulus).

• High stability—resisting moisture (moisture absorption), most chemicals,
oxidants, and intense ultraviolet and nuclear radiation.

• The piezoelectric film sensors can be fabricated into an unusual design like the

round shell casing of the KittyBot.

• Can be glued with commercial adhesives so the sensors can be applied easily

to the KittyBot.

The idea for using piezoelectric sensors is that the cat would swipe at KittyBot and

it would sense the force and react and roll away. The piezo element has a 12mm

diameter which will allow them to be placed throughout KittyBot’s casing. Some

things to consider in setting these up inside KittyBot will be its wiring and making

sure they won’t trigger while rolling. This piezo sensor provides too miniscule of a

voltage when pressed and can’t be connected directly to the microcontroller.

36

Figure 3.3.11

(From www.sparkfun.com)

One solution to this problem is to connect the piezo sensor to a pnp transistor. The

transistor 2N3906 was a good example seen used. The red lead connects to the

base, the black connects to the emitter and ground. The collector is connected to

the MSP430 to pin 3 like shown below in figure 6.1.4. The sensor provides enough

voltage to turn on the transistor which is still not enough voltage to power the

microcontroller. In order to get the microcontroller to read the piezo sensor, the

MSP430 is set to trigger when it reads low instead of high.

Figure 3.3.12

The previously researched sensors will be used based on the design approach we

take as a group. The best approach will be tested and multiple sensors could end

up in the final design or it could be just one of the choices. Even though research

was done for webcams, it was soon realized that they could not be practical with

any of the designs for KittyBot and no part was included.

Sensor Tradeoffs

The sensors that were considered in coming up with this kitty-bot design include:

photoelectric, image, infrared and ultrasonic sensors. Each sensor has its

positives about it, but the design constraints narrowed down which sensor the kitty-

bot would use to detect objects. The shell casing, which allows the ball to roll and

37

protects the circuitry, sensors, and motors, also limits design possibilities, but

creativity was needed to make some of the sensors usable. Infrared sensors

sense the light given off from objects but can detect transparent surfaces. Infrared

wasn’t a good option because of the sensors’ sensitivity to infrared lights and

sunlight. Since the casing is plastic, a small hole would have to be cut in order for

the sensor to be usable for this kitty-bot design. I compared the other sensors and

looked at the pros and cons (as seen in figure 6-5) to help decide which detection

sensor will be used for kitty-bot.

Photoelectric sensors are very good for accuracy of the desired distance of

detection. However, these sensors may prove to be difficult to set up with

accuracy because of the movement. Since kitty-bot is a toy, it needs to be

relatively cheap if it were to ever sell and make a profit, and photoelectric sensors

can be pricy. The kitty-bot project is good to use some cheap sensors because it

only needs a sensing distance of less than 12 inches. Photoelectric sensors are

good because they use a laser or light so they’re very fast with detection compared

to sound also compared in figure 6-5. Setting a distance to detect 5 inches in front

of the plastic ball would be very easy. Laser sensors also read objects in front of

it very accurately without being affected a lot by outside factors like brightness, or

color of the object. Photoelectric sensors are the worst for power out of the 3 types

of sensors researched. The diffuse sensor could be the only photoelectric sensor

possible for this project, and for this design, they may be the only sensors

available.

Ultrasonic sensors use sound waves to detect items that the sound reflects off

from. The housing around the sensors for this design wouldn’t be able to work

well with ultrasonic sensors because of its inability to send a signal past the plastic

casing. Ultrasonic sensors are still a consideration for multiple casing design

ideas. These sensors are the lowest power of the 3 sensors as can eb seen in the

trade-off chart in figure 6-. These sensors are useful for detecting range

accurately, and can detect small objects better than a photoelectric sensor. A big

upside to ultrasonic sensors is its ability to detect surface while disregarding

brightness, color, or transparency unlike most proximity sensors. The downsides

of ultrasonic sensors are that they don’t work well with the design and their

response time is slower than photoelectric sensors, because light is faster than

sound. The ultrasonic sensor also can’t detect soft objects that have trouble

reflecting noise back well. It’s important the sensors stay protected and a casing

around them doesn’t allow for the ultrasonic sensors to function how they’re

needed.

38

The sensor design first considered was an image sensor, or a webcam. This

design is practical for the transparent casing around the webcams. The webcam

can’t be adjusted to sense or see a shorter distance like the diffused photoelectric

sensor can. Image sensors are low powered; the ones found online were all less

than 500 mW, slightly lower than the photoelectric sensors found. A high

resolution camera would be better at detecting objects and colors more clearly but

having 2 cameras limits the price and quality of the sensors. The main reason

image sensors are ideal for the kitty-bot is because of its flexibility to detect objects

through a transparent surface. The sensor needs to be protected and durable to

keep the kitty-bot running if an animal were to play with it. Image sensors rely on

sensing the colors around it which limits the cameras accuracy to avoid any object

in its path.

Sensor Tradeoff Table

Sensor Type Photoelectric Image Ultrasonic

Speed ↑↑ ↑ ↓

Accuracy ↑ ↑

Power ↓ ↑

Design Flexibility ↓ ↑ ↓

Weight ↑ ↓↓ ↑↑

Size ↓ ↑↑

Distance ↑ ↑

↑↑ = Very positive ↑ = Positive ↓ = Negative ↓↓ = Very negative

Figure 3.3.13

39

3.3.3 Voltage Regulation
Voltage regulators are important in electrical systems. They allow systems to run

higher voltages for more powerful components without out sending too much

voltage to more sensitive components. The two types of regulators that were

researched were the switching and voltage regulators. Voltage regulators don’t

use much power due to the tiny current that runs through it. The servo motors

could require a larger voltage to power them and therefore a voltage regulator will

be needed to regulate voltage for the microcontroller and sensors. Having a large

gap between Vin and Vout causes inefficiency in the regulator.

Sometimes motors can draw a huge amount of current that a battery source could

not handle. As a result, the whole system could experience a significant voltage

drop, causing the microcontroller to reset and not work properly or have the sensor

give bad readings. The solution to the problem is placing an electrolytic capacitor

parallel to the battery pack. One of the main functions of capacitor is to store large

energy quantity during idle periods and give up that energy when other

components need it. The higher the capacitance, the more charge it can hold.
Many capacitors are labeled with the maximum voltage that the capacitors can

handle without damaging them. It is recommended to get capacitors that are rated

at least twice the expected voltage drop across them to ensure that they don’t

explode when fully charged. Since a ceramic capacitor can lose about 50 percent

of its capacitance at a rated voltage, it’s best to leave a large margin on the voltage

rating.

Capacitors are typically connected to the input and output of a voltage regulator.
The input capacitors filter out system noise prior to regulation. The output

capacitors help the regulator deal with spikes created by the load. The regulator

may oscillate at certain temperatures if the capacitors are not present. The large

capacitors prevent low frequency interferences and keep the system powered

when sudden current surges occur. Small capacitors prevent high frequency

disturbances from motors. They have low equivalent series resistance (ESR) that

allow them to charge and discharge quickly.

Under faulty conditions such as short circuits and overload, a fuse should be used

to protect the motors from excessive current flowing from the battery. The fuse

would heat up and blow, therefore, interrupting the current flow and preventing

damage to the motors. Time-delay or slow-blow fuses are recommended for

inductive loads such as motors. Fast-acting fuses are used for non-inductive loads.
Fuse’s voltage rating indicates that the fuse can be used at all voltages not

exceeding the rating. An AC fuse can be used on a DC circuit but its voltage should

be rated at least twice that of the circuit. Fuses can be connected in series or

40

parallel. If there’re multiple power sources connected in series, then only one fuse

is needed to connect in series to the sources and load. If there’re more than one

battery connected in parallel, then there must be one fuse for each battery in

addition to one main fuse connected to a load. The parallel configuration is

obviously less advantageous than the series configuration because it requires a

higher number of fuses.

Large capacitors that are fully charged after the robot is turned off can cause

components to be accidently shorted and fried. A LED can be used to drain the

capacitors and also serves as a status indicator. A dim LED might indicate that the

circuit is low in power. The LED should be connected in series with a resistor to

prevent the LED from frying. There’re tradeoffs in selecting the resistance. The

higher the resistance, the more power it can drain but the LED’s brightness would

decrease.

A voltage regulator is needed to regulate the voltage to the microcontroller and

sensors. Increasing or decreasing the input voltage even for a fraction of a second

would result in the microcontroller resetting or sensor giving bad signals. Even

though batteries are specified to operate at a nominal voltage, they are not always

at the nominal value. A fully-charged battery can go higher than the nominal

voltage. A drained one would drop significantly from the nominal value. Because

the microcontroller and sensors consume low current, the wasted power is not

significant. As a result, either a linear regulator or switching regulator can be used.
On the other hand, motors require a lot of current. In this case, switching regulator

is ideal for the motors.

Multiple circuit protection and voltage regulation designs are considered. One

design uses two power sources. A battery pack is used exclusively to power the

motors. Another pack is used to power other electronics. The design divides the

system into two main subsystems. One subsystem consists of one battery pack,

motors, and fuses. The other subsystem includes the other battery pack,

microcontroller, sensor, and voltage regulator. If one subsystem fails, then it would

not affect the other subsystem. However, adding more battery packs means more

space is occupied and adding load burden on the whole system, causing the

motors to draw more current. Therefore, the design is unfit for our robot. Another

design would have only one power source. There is one major drawback of this

design, however. Since the whole system is interconnected, a component’s failure

may affect the other components. For this design, several voltage regulators are

taken into account including boost/buck, boost, and LDO (low drop-out) regulators.
.
Boost Regulator Circuit Design

41

Figure 3.6 shows a circuit design with a TI TPS61232 boost converter.
TPS61232 is preferred over the TPS61230 and TPS61231 because it allows a 5
V fixed output voltage whereas the other two have adjustable outputs which

require additional resistors to adjust the voltage. The converter is ideal for our

project because its maximum efficiency is 96 percent. With an input ranging from

2.3 V to 5.5 V it’s able to regulate a fixed output voltage of 5 V that is

recommended by the sensors. The converter also delivers up to 2.1 A of current

with a 5 V output and 3.3 V input. This current is more than enough to power the

electronics in the system. The converter has additional built-in features including

output over voltage and thermal shutdown protections, power good output, and

power save mode for light load which typically consumes 1.5 uA. The converter

is optimized for a one-cell Li-Ion battery, which is usually rated at 3.7 V. Either a

single Li-Ion cell or three NiMH cells with a voltage of 3.6 V can be used. C1, C2,

C3, L, and R2 are required external components whose values are specified in

the TPS6123x datasheet. They help to stabilize the regulator. The inductor and

the output capacitor C3 serve as energy storage during conversion. Both the EN,

HYS and the power good, PG, pins can be left floating or unconnected if not

used. At moderate or heavy load currents, the converter would operate at a 2

MHz frequency pulse width modulation (PWM). At light load current, it reduces

the switching frequency and operates with pulse frequency modulation (PFM).

42

Figure 3.6: Schematic for Boost Converter

Buck/Boost Regulator Circuit Design

If our team decides to use a buck/boost converter to regulate voltages, then a TI

TPS63061 converter will be selected. Out of all the other TI buck/boost converters,

it is one of the few that is able to regulate a fixed voltage of 5 V. Besides, its 93

percent efficiency is high. It can also accept input voltage range from 2.5 V to 12

V, making it ideal for low voltage supply. Nevertheless, it’s not advisable to have a

converter’s input voltage at the exact minimum and maximum of the range since

the input might deviate from the values. Going off the input range would result in a

damaged converter or one that doesn’t regulate voltage at all.

43

Unlike the TPS61232 boost converter, the TPS63061 has additional pins with

special functions. The PS pin is used to enable/disable power save mode. A 1 is

disabled and a 0 means enabled. During power save mode, the switching

frequency and quiescent current is reduced to maintain high efficiency. Disabling

the PS would set the switching frequency at a fixed rate. Connecting a clock signal

at the PSY/SYNC pin would force the converter to synchronize to the clock’s

frequency. To enable the EN pin, set it to 1. Otherwise, set it to 0. In many

applications, the pin is tied to the supply voltage, which is on high. Hence, the pin

is always enabled. To shut down the device, the EN can be connected to the

ground. The battery and the load are disconnected during shutdown. The power

good or PG indicates whether the output voltage is regulated properly. For the PG

pin, setting to 1 means good, 0 means failure.

The converter has additional features including overvoltage protection, over
temperature protection, short circuit protection, under voltage lockout, and power

save mode. Once the temperature goes beyond a threshold, the IC stops its

operation. As the temperate decreased below the threshold, the device starts

operating. The under voltage lockout functions by automatically starting the device

only when the supply voltage on VIN is above a certain under voltage lockout

threshold. If the supply voltage goes below the threshold, then the IC automatically

enters shutdown mode. The overvoltage protection internally monitors the output

voltage so that it doesn’t exceed critical values. There is no timer in the IC. As a

result, the output voltage overshoot and current inrush occur at startup but the

device keeps the current and overshoot at minimum. When the output voltage

does not rise above 1.2 V the IC would assume a short circuit at the output and

protect itself by keeping the current limit low, typically under 2 A. The efficiency

rises as the output current increases. The output current depends on the input

current from the battery. As a result, the battery will be selected to have the current

rating as high as possible. Figure 3.7 shows a circuit design with the TPS63061.

44

Figure 3.7: Buck/boost converter circuit with motors at output

An additional design for the buck/boost converter circuit would be separating the

microcontroller and sensor subsystem from the motors and placing the motors at

the input of the voltage regulator as opposed to the output. This configuration could

be more advantageous because if the voltage regulator fails, the motors will not

be affected. Figure 3.8 shows this configuration.

45

Figure 5.8: Buck/boost converter with motors at input

Linear Regulator Circuit Design

This circuit is better than the circuits that use switching regulators since it has a

smaller number of components. Since the regulator can only output a maximum

of 500 mA and its efficiency is low, it could be used to power the low-power

devices such as the sensor and microcontroller. For the components that require

higher current such as motors, they will be directly connected to the battery

46

instead of the regulator’s output. The LM2937-5 should be used because it has a

fixed output voltage of 5 V.

Unlike the TPS61232 and TPS63061 converters, the LM2937 has reverse

battery protection. As a result, a Schottky diode should be connected to the fuses

to protect the motors. The regulator’s reverse battery protection circuit

automatically protects the sensor and microcontroller. Therefore, a Schottky

diode is not needed at the regulator’s input. Though the typical minimum dropout

voltage is 0.5 V, the input voltage should be at least 2 V higher than the output

voltage for optimal performance. In other words, the input voltage is required to

be at least 5.5 V but should be 7 V or higher. Because it’s harder to find a 5.5 V

than a 6 V NiMH or Li-Ion battery, a 6 V battery would be used with the LM2937

regulator. The regulator’s quiescent current is typically 10 mA if the regulator is

under full load and the input and output voltage difference is greater than 3 V.

The LM2937 has additional features including thermal shutdown, short circuit

current limit, and overvoltage shutdown. The thermal shutdown circuitry is not

intended to replace the heat sink. Running the IC at thermal shutdown is not

advisable because the device’s reliability may be degraded as the junction

temperature rises above the allowed absolute maximum junction temperature

rating. In cases the output is shorted to ground or the load impedance is

extremely low, the device would limit the current. If the LM2937 operates

continuously at the current limit, then the IC would transition into thermal

shutdown mode. Since our project would not use any power supply that exceeds

26 V we have no need to be concerned about the overvoltage shutdown. The

LM2937 lacks the under voltage lockout and enable functions. The output only

tracks the input voltage until the input rises above 6 V where the device remains

in linear operation. Figure 3.9 shows circuitry using a LM2937 LDO (low-dropout)

linear regulator.

47

Figure 3.9: Schematic for LDO Regulator Circuit

3.3.4 Gyroscope
An exciting strategic component we researched is the gyroscope. A gyroscope is

a small electronic device, many are no larger than a quarter, that measures

rotational motion. Figure 3.3.14 display what this type of module looks like.
Gyroscopes can measure angles and angular velocity. Angular velocity is

measured in degrees per second or revolutions per second. Angular velocity is the

measurement of the speed of rotation. The process of gyroscopes measurements

is when the device is rotated, a tiny resonating object inside the gyroscope is

shifted as the angular velocity changes. The shift is converted into a low-current

electrical signal that is amplified and read

48

Figure 3.3.14: LPY503 Gyroscope

(From learn.sparkfun.com)

This can help our project because the gyroscope can detect changes in

orientation. The changes in direction can be measured from a set balanced

position and corrections can be sent to the motors. In 3D space, there are three

axes X, Y, and Z (Figure 3.3.15). Objects can rotate about any of the three.

Figure 3.3.15: XYZ Axes

Gyroscopes come in varieties that either measure rotation around a single axis,
two axes, or all three. The price difference on these varieties is minuscule these

days, but we may only need gyroscopic detection in one axis. Figure 3.3.14

displays a 3D representation of sphere rotation.

49

Figure 3.3.16: 3D Representation of Sphere Rotation

Forward motion is the primary focus. Figure 3.3.16 uses the same colored axes

as Figure 3.3.15. The yellow curved arrows indicate rotation about the blue Z-

axis. This rotation will cause the sphere to roll forward. The gyroscope, in this

cause, would detect rotation in the Z-axis. Most standard gyroscopes are not

meant for picking up very fast spinning objects. Luckily KittyBot is an indoor toy so

its rotations shouldn’t be too fast for a gyroscope to measure. The forward linear

velocity or acceleration won’t affect the gyroscope either, as it only picks up and

measures angular velocity.

Gyroscopes connect through power and through a communication interface. The

communication interface can either be analog or digital. Digital communication can

be through Serial Peripheral Interface or Inter-Integrated Circuit. Serial Peripheral

Interface, or SPI, is a type of interface bus used to send data between a

microcontroller and peripherals. SPI works synchronously as opposed to

asynchronously.

50

Communication

A standard serial port with RX and TX (think receiver and transmitter) lines,
typically works asynchronously. This means that the rate at which data is sent and

received is not controlled, and that lack of control comes from the two side not

running at the exact same clock rate. Computers have everything synchronized to

a single clock, but when you try to communicate between two different computer

systems, like a microcontroller and its peripherals, the clock rates may be different.
To make asynchronous serial communications work extra bits are added to the

end of the data-stream. A start bit at the beginning and a stop bit at the end help

to isolate the desired bits allowing the receiving system to sync up with the data

properly. The two separate systems must be set to the same transmission speed

beforehand for this to work properly. Figure 3.3.17 aids in displaying this method

of serial communication.

Figure 3.3.17: Asynchronous Serial Communication

(From learn.sparkfun.com)

Asynchronous communications work but are tricky due to the number of

complications. The start and stop bits have to be sorted out in order to get the

correct data, and the transmission speed have to be the same, if they are not than

the data sent will be wrong.

SPI’s synchronous communication works differently. The data bus for a

synchronous serial uses separate wires for data sent and a clock that keeps the

communicators synced. The clock is sent out as an oscillating signal. This signal

tells the receiver when to sample bits from the stream of data. The receiver picks

up on the rising or falling edges of the clock signal. A rising edge is a shift from low

to high and a falling edge is from high to low. Whichever edge that is set to be the

“triggering” edge for sampling will tell the receiver that sample at that moment.
Below is Figure 3.3.18 displaying this type of communication.

51

Figure 3.3.18: Synchronous Serial Communication

With SPI, the side that generates the clock is called the “master” and the other is

called the “slave”. In the case of our embedded systems, the master will be the

microcontroller and the slave, peripherals such as a gyroscope. The

microcontroller is always controlling when data is sent, and sends commands to

the gyroscope so it will send its angular velocity data back to the microcontroller

for processing.

SPI offers these advantages and disadvantages.

SPI Advantages:

 Supports multiple slave receivers

 Receiving hardware can be as simple as a shift register

 Faster than asynchronous serial

SPI Disadvantages:

 Requires more wires than other communication interfaces

 Master must control all communications

 Communications must be defined in advance

 Usually requires separate SS lines attached to each slave.

Our other digital interface is the Inter-Integrated Circuit, or I2C. I2C allows multiple

slave systems to communicate with one or more master systems. I2C has an

52

advantage over SPI in that it requires less connections. SPI needs four lines to

connect a single master to a single slave, one for the clock, one for sending data

from the master to the slave called “Master Out/Slave In” (MOSI), one for sending

data from the slave to the master called “Master In/Slave Out” (MISO), and the

“Slave Select” line which acts as a sort of “wakeup” command sent from master to

slave readying the slave to send or receive data. Besides the pins taken up on the

master unit by these lines, additional slaves require an additional chip select I/O

pin. The SPI interface has a tendency of filling up several pins very quickly. This

is problematic if you have only one master and multiple slaves. With KittyBot, our

group wants to keep the internal space as uncluttered as possible since it is limited

and must all fit within a relatively small form factor. That is why we would want to

keep the number of microcontrollers to just one. Budget is also a concern if we

need to purchase additional microcontrollers. The gyroscope is not the only slave

our microcontroller would have as we are considering other strategic components

to add as well, so pin space on a single microcontroller is limited.

 I2C’s required number of lines is merely two and that is for multiple slave devices,
up to 1008 to be exact. The two signals sent through I2C are SCL and SDA. SCL

acts as the clock signal while SDA is the data signal. Similar to the principles

discussed with SPI, I2C’s master device sends the clock signal which controls the

sending and receiving of data. With I2C however, the slave has an extra ability.
Let’s say the rising edge is the signal from the master to send/receive data and

one is approaching. That means the clock is currently low and an oscillation up to

high is coming. The slave has the option to force the signal to remain low in order

to delay the master if the slave is not yet ready to send/receive. This ability is called

“clock stretching”. The I2C bus operates on what is called an “open drain”.
Remember that the bus connection can be between a single master and multiple

slaves. All the slaves have this clock stretching functionality. The idea behind the

open drain is that any slave can drive the clock signal low if it needs more time,
but none can drive it high if they are ready. This makes it so that the transmissions

only go through when all the devices in question are ready, preventing potential

damage to the transmission. A pull-up resistor on the signal lines are used to

restore the signal back up to high if no device is forcing a low signal. Figure 3.3.19

displays a representation of this.

53

Figure 3.3.19 Generic Master/Slave Connection with Pull-up Resistors

(From learn.sparkfun.com)

Both SPI and I2C are intended for use over a short distance. Since all electronics

will be confined within the space of KittyBot’s chassis, distance should be an issue.
These two also have limitations on their sampling rates, with SPI reaching higher

rate than I2C. This could potentially lower the accuracy of the angular velocity

readings.
Those were the digital communication options. The alternative to digital is analog

communication. The gyroscope can register rotational velocity by raising and

lowering voltage between ground and the supply voltage. Analog gyroscopes

usually run cheaper than digital gyroscopes and can even be more accurate. The

accuracy depends on how the analog signals are read. Analog to Digital

Converters (ADC) need to be used to transfer those analog signals to digital ones

that a microcontroller can process. Voltage is the type of analog signal detectable

by microcontrollers. Only certain pins on a microcontroller are capable of this as

well. Figure 3.3.20 shows a comprehensive guide by Texas Instruments to TI

MSP430.

54

Figure 3.3.20 TI MSP430 Launchpad

(By Texas Instruments)

The TI MSP430 is our groups microcontroller of choice. This microcontroller has 8

pins, P1_0 through P1_7, that are capable of receiving analog voltage signals.
These signals can then be converted to digital. The ADC of the microcontroller

handles the actually conversion. TI MSP430’s ADC is 10-bit meaning it can detect

up to 1024, which is 210, discrete analog values. The actual conversion is done by

the analog voltage to be converted is used to charge an internal capacitor that is

then discharged across and internal resistor. The time of that discharge is

measured by the microcontroller counting the number of clock cycles that pass

between the time the capacitor began discharging to when it stopped. The number

of clock cycles is then returned to the microcontroller as the new digital value. The

maximum value of a 10-bit ADC is 1023 because it can have 1024 different values

ranging from 0 to 1023. The maximum value digital value has a ratiometric

relationship with the overall system voltage, or VCC. This means that the digital

value of any analog value sent to an ADC-capable pin is a ratio of 1023 and the

VCC. Assuming a VCC of 5 V and a measured voltage of 2.5 V, the digital value can

be described by x in the following equation.

1023

5.00𝑉
=

𝑥

2.5𝑉

Solving for x we would get the following.

55

1023

5.00𝑉
∗ 2.5𝑉 = 𝑥

1023

2𝑉
= 𝑥

𝑥 = 511.5

The digital value would end up being 511.5. Notice that the measured voltage

value of the ADC was 2.5 V, which is half of 5 V. The converted value of 511.5 is

also half of 1023. In order for the microcontroller to pick up these values it would

to be programmed to do so. It would first need to define the pin it is receiving input

from. Let’s assume pin P1_0 is the receiving an input voltage for this example.

pinMode(P1_0, INPUT);

Tell the microcontroller to convert the input from analog to digital with the

analogRead() command into in integer, x.

int x = analogRead(P1_0); //Reads the analog value on pin P1_0 into x

This is how the analog voltage values sent from a gyroscope can be processed by

our microcontroller.

Power

Gyroscopes are typically low power devices, so powering the device is not a major

concern. The levels of current to operate them fall in the milliAmp or even the

microAmp ranges. Digital gyroscopes can operate at the supply voltage or have

their own set logic levels of voltages. The digital gyros need to be configured more

carefully because they need set logically states to operate. Digital signals are

binary, 0 or 1, ON or OFF. The digital gyroscopes may seem more finicky, but they

can also have a low power and sleep mode. This can converse more power in the

long run versus an analog gyroscope. Since KittyBot is a battery-powered unit,
consuming less power will allow for longer operation times.

Moving on, the specifications of the gyroscope are key. A few different

specifications to look at are the gyroscopes range, sensitivity, and bias. The range,
or full-scale range, of a gyroscope is simply the maximum angular velocity a gyro

56

can read. This does not need to be too drastically high for this project as KittyBot

will not be reaching very high speeds.
The sensitivity of a gyroscope is how much the voltage changes for a given angular

velocity. Sensitivity is measured in millivolts per degree per second (mV/°/s). A

gyroscope, just like any sensor, contains some degree of error. This is called the

bias of said sensor. Gyroscope bias can be seen when the gyroscope is still.
Instead of being exactly 0 degrees, the gyroscope will always read a slight non-

zero value in the output. This bias drift or bias instability can be caused by a few

different factors. Temperature can be a major factor. This is alleviated by most

gyroscopes by having a built in temperature sensor. This data can be read and

used to correct any temperature dependent changes. Calibrating a gyroscope

correctly is the best way to reduce error. This can be done by keeping the gyro still

and zeroing all the values and readings in the code on the microcontroller.

3.4 Possible Architectures and Related
Diagrams
In this section the various architectural designs for Kitty-Bot are discussed. The

resulting research and conclusions based off of said research are also detailed.

3.4.1 Design Choice: Spherical vs. Dual Motor

When Designing the KittyBot we quickly realized considering several architectural
designs would be a crucial step in efficiently completing the electrical and software

model. When mentally visualizing our design in hopes of arriving at an intelligent

solution we had to consider all the advantages and disadvantages of any system
and especially the consequences they would inflict on the hardware power supply

and software. For example, one of our design constraints stated the robot should

be durable enough to withstand potential damage from an animal. With this in mind

any potential structural design that included many moving parts and could
potentially have damaged hardware would have a negative weight towards its final

consideration. We need a structural design that is not vulnerable or fragile, being

that the cat would quickly devastate the structural integrity of our unit and its

hardware if it was so. Structural integrity is especially hard to maintain in terms of

the sensors. A sensor can very easily be disconnected or damaged so any

structural design had to take this into consideration. Another requirement was that

our robot should be maneuverable. That being said, the challenge lies in making

the unit maneuverable without having allot of moving parts. When considering how

the structural design would affect the hardware power supply and software, we

found many interesting and unique designs that were quickly disqualified because

57

of their complex attachments and multiple moving parts; These we found out would

be antagonistic towards our hardware simplicity. Also, from a purely practical point

of view, avoiding moving parts in particular was a hurdle to jump when trying to

ensure that the robot would erect itself upright if turned over. In short, we quickly

realized that any structural consideration would undoubtedly impact the electrical

design in either a positive or adverse way.

When we considered all of the previous design constraints in tandem with potential

structural designs we arrived at two final candidates, the Spherical Design and the

Dual Motor Controlled Wheel Navigation Design. We kept our printed circuit board

and Power Supply design at premium thoughtfulness when deciding which route

to choose. Both candidates satisfied our design limitations within a reasonable

margin. Both considerations, however, contained both virtues and faults. Our

challenge would now become deciding what design consequences we were

comfortable with enough to confront. One of the candidates was the spherical

design. This design would consist a spherical outer shell encapsulating the inner

hardware power supply and sensors. The hardware would contain sensors on the

inner part of the sphere that would create forces to actually spin the structure. This

architecture, we realized, would be far more difficult to design in a structurally

sound manner. This due to the fact that everything would be rolling. This would

mean that the microcontrollers battery pack, fame and motors would somehow

need to be stabilized. However, the final product would present significant increase

in elegance to our solution. The other candidate was the dual motor controlled

wheel navigation design. This design implements a hardware simplicity driven

structural architecture. The structural architecture facilitates ease of wiring

between the power source, microcontroller and sensors.

In one of our group meetings we came up with the following brainstorming pros

and cons. The brainstorm resulted in Figure 3.4.1. This tree of pros and cons was

a great way to start considering which of the two designs we actually wanted to

invest more intellectual resources in. We would later, as demonstrate in the figures

following this paragraph, 3D models our designs to further consider them and

eventually even proto type both of them in a physical sense. But we started out

with this very simple brainstorm of pros and cons to each design. The Dual motor

controlled wheel navigation cylindrical design we reasoned would have a relatively
simple architectural design due

to the physical proximity of all the parts. The sensor would be on a stable platform

in this structural architecture as opposed to the spherical design where we would
have to design for a spinning structure where sensors would be fundamentally less

stable. Also with the dual wheel which we tested on a Bo-Bot we found extremely

precise maneuvering capabilities were within reach. The disadvantages we

reasoned started with the visually appealing and non-elegant architectural

58

structure upon which all of our electronics would rest on. This, as opposed to the

rolling sphere which most certainly had a “Cool” factor to it. Another disadvantage

we reasoned was the relative openness of the hardware. With the cylindrical

design, it would be harder to keep the hardware from being dislodged during play

with the cat. This, as opposed the Spherical design which would by nature

encapsulate all of the hardware in a sphere. With the sphere there was the

advantages of it being “Cool”, having the hardware enclosed and also visually

appealing. With all of the previous in mind we would eventually need the help of

3D models to make our final decision. which would eventually be to take the risk

and implement our spherical design. The 3D model would help us consider the

electrical and power implications.

Figure 3.4.1 Pros and Cons Flowchart of Two Designs

3.4.2 PCB, Sensor, and Power of Spherical
Design

This pros and cons brains storm was of course a great tool to choosing our final

design. Our decision, by unanimous vote would be the Spherical Design. We knew

that it would be far more challenging than the dual motor controlled wheel

navigation design, but we were really excited about how cool a rolling sphere would

be. We decided to disregard our design fears of tackling a more complex system

and trust our University of Central Florida Engineering training to hopefully get us

through the problem solving difficulties. However, we needed more to truly map

out our design giving that our academic careers and countless hours of intellectual
resources that would be spent developing one what we decided would be the

Spherical Design. A couple of senior design meetings later we arrived at the

conclusion that we needed 3D models of our designs to further investigate the

electrical and power consequences of our conclusions. We did not need to make

59

them completely perfect but rather close enough to leverage our imaginations. This

way we could more closely consider the printed circuit board implications of our

chosen path.

3.4.3 Dual Hemisphere Structure

The core Electrical design advantage to this candidate was its spherical nature.
That being said, the core structural design disadvantage to this candidate was its

spherical nature.

Figure 3.4.2 3D Model of Right and Left Hemisphere

We imagined a structural architecture composed of a hollowed out sphere. We 3D

modeled this idea in Figure 3.4.2. This idea was birthed as result of all the

structural shortcomings of the our first prototyped dual motored control navigation

design. We imagined a hollowed out sphere that would have two hemispheres, a

left hemisphere and a right hemisphere. The two hemispheres would be manually

detachable allowing us to access the hardware inside if necessary. We imagined

this sphere being approximately one hundred and seventy-eight millimeters in

diameter. This would give us enough room to insert electronic hardware,
disassemble parts and still be within the limitations of our system requirements.
The next question would then become, how do we put hardware in a sphere and

make it roll?

60

3.4.4 The Containers’ Battery Pack and PCB
Design

In order to have hardware in the sphere we would need a frame to place it on. This

frame would have to be small enough to fit in the sphere and large enough to hold

all of the electronics. We decide to call this frame our “container.” On top of this

container we also needed to place our electronics and microcontrollers that would

eventually become our printed circuit board. And, of course, we would need a

power supply to power the entirety of the system. We realized that we would have

another layer of complexity in trying to make certain things don’t fall apart. This

due to the fact that everything would be rolling. This would mean that the

microcontrollers battery pack, fame and motors would somehow need to be

stabilized. However, the final product would present significant increase in

elegance to our solution so the levels of difficulty would be worth it.

Figure 3.4.3 3D Model of Center Container

Figure 3.4.3 is the 3D model representation of what we imagined would be a good

design for the inner electrical and power devices. Notice the “C”, “P” and “B” on

the AutoCAD model these were placed to assist us as well as the reader. The “C”

is the container. This is what holds all of the electronics. The “P” is the printed

circuit board. This is what would be powered by the battery and control all of the

sensors. The “B” is the battery pack, this, of course, powers the entire system. We

reasoned this was a good structural design. It could be fit inside of the sphere and

operate in an elegant fashion. This was the basic blueprint of our design.
Functionally, however, we still needed to spin the entire unit in order for the ball to

roll. During our group meetings we had many suggestions as to how to actually

accomplish this. One of the suggestions was very practical yet simultaneously silly.
A group member suggested that we put wheels at the bottom of the container and

61

turn the entire platform into what could essentially be described as an RC car in a

sphere. This would turn the entire sphere and propel our system. This idea, though

practical and potentially easy to implement had many drawbacks. For one we

didn’t like the lack of preciseness and instability. We would have no way of

precisely knowing how much we would turn. Furthermore, the inner structure

would need an entirely separate design to withstand the impact. It would be rolling

around inside the sphere in a completely unstable fashion not fastened to anything

at all. Needless to say, we quickly dismissed this suggestion. We brainstormed

and conversed amongst each other contemplating different solutions and finally

decided we should simply have the motors spin the sphere itself.

3.4.5 3D Modeling to consider PCB Implications

When designing and thinking about our printed circuit boards, power supply and

hardware in the spherical model we needed to give careful consideration to the

structural designs effect on the printed circuit boards. Circuits, the most recent

sensors, and code are vital parts of a hardware venture and this spherical design

would undoubtedly affect how we designed these. Not considering how the

physical surface of your device effects the electronics power supply and Printed
circuit board design can bring about reliability problems and unwavering quality

issues.

For example, we took into consideration what the trace might be on our printed

circuit board. With an estimated current of twenty-five milliamps at an ambient

temperature of seventy-eight degrees Fahrenheit we might expect perhaps a trace

length of five inches and a required trace width of 0.000526 mil. With the spherical

architecture we realized we could keep all of the components centralized limiting

the trace of the printed circuit board. That being said it would still be difficult to

design in a structurally sound manner. However, the final product would present

significant increase in elegance to our solution. We plan on using length width and

thickness of trace to control resistance. The centralized printed circuit board design

of our spherical architecture will make these calculations easier to handle. The

electrical team will eventually have to make calculations for the trace with beige

that we can’t change the physical properties of copper which creates resistance.
Eventually we will want to aim for about a five-degree temperature rise. This being

said the amount of space that the spherical design affords our PCB boards will

help with making certain it doesn't overheat. Also, Circles or Loops in the PCB

could be made small with this design. Little Loops have lower inductance and

resistance. Putting circles over a ground plane further diminishes inductance. We

could, if needed, lessen the voltage spikes in this way. Also, when the time comes

62

if we were to use decoupling capacitors, we could place them close to ground and

power. This would maximize decoupling efficiency by minimizing conductance.
With this design we could also, if needed, keep Digital and Noisy traces away from

analog traces. The centralized nature of all of our electronics and hardware would

permit us to more elegantly design the PCB board when the time is right. We could

very easily be mindful to course loud grounds from signs that should be quiet.
Making our ground traces sufficiently large to carry currents that will flow would

lower the impedance of the traces which would be ideal for us.

Figure 3.4.4 Angled View of Center Piece 3D Model

Consider the image displayed in Figure 3.4.4. Notice that now the Orange unit

has a “M” on it. This is representative of the servo motor. Of course there would

be another servo motor on the other side. The idea would be that the servo motor

would spin the rod which would in turn be attached to either the right or the left

hemisphere of the sphere which would then in turn rotate the entire unit. Now if we

redirect our attention towards the pink elements in Figure 3.4.5 and envision them

hugging the inner wall of either hemisphere we can quickly realize how we plan on

making the structure move.

63

Figure 3.4.5 Top-Down View of Center Piece 3D Model

Of course the pink element would need to be fixed to the side of the sphere and
the motors’ casing would have to be stationary in relation to the rod and the right

or left hemisphere in order for everything to turn. The force of the outermost pink

element against the left and right hemisphere would create torque which would

then create a force on the ground as a result of the weight of the unit and friction.
The entire sphere, we reasoned, would then be forced to rotate as a result of this

torque. We wrote our design thoughts down in the sketch in Figure 3.4.6.

Figure 3.4.6

We considered the forces described in Figure 3.4.6. Here F is the force the pink

unit in our simulation exerts on the sphere. The motor would be spinning the rod

which would in turn be connected to either hemisphere of the sphere. This force

would be the driving engine of our robot. r is the radius of our kitty-Bot. We were

intending on making the Kitty-Bot about one hundred and seventy seven

millimeters or seven inches so the radius would be about half of that. G is the

center of mass of the sphere, g is gravities acceleration, which is, of course, 9.8

m/s2 and P is the point of contact of our kitty bot with the ground.FPx would be the

x component of the force exerted on the our sphere by the ground, at point P. This

would be a frictional force. FPy is the y-component of the force exerted on the our

sphere by the ground, at point P. This would be a frictional force. Our group

reasoned that the force exerted by the motors on the rod, would then create a force

on either hemisphere of the sphere which would interact with FPx and FPy causing

the Kitty-Bot to roll. Essentially, the outer pink ends of figure 1.10 would be spun

by the motors, these pink ends would be bolted to either hemisphere of the sphere

64

which would in turn cause a force “F” which would in turn cause torque. This would

in turn create a force FPx and FPy against the ground “P” which would

consequently rotate the sphere. This being said, when further developing the idea

we ran into some logical problems. For one, what was going to keep our container

stable?

If we observe Figure 3.4.4 we see the container. In our design the motors would

be attached but not fixed to the container which holds the printed circuit board and

the battery pack. The motors would then turn the rods which would in turn be

connected to the pink outer ligaments of Figure 3.4.4 which would consequently

turn each hemisphere. The key component to mention here however is that in our

design we would Ideally want the container to remain relatively stable in

conjunction with the rods being rotated by the servo motors. There are multiple

reasons why we wanted this to be so. Firstly, a rotating container would mean

rotating electronics, battery pack and printed circuit board. This would in turn mean

we would have to fasten the electrical circuits including the sensors, printed circuit

board and battery pack together so that none would fly off or become dislodged

due to the forces caused by the case rotating.

When considering these rotating forces coupled with the cat’s interaction with the

Kitty-Bot we arrived at many concerns. Secondly, if the container is designed in a

way where it does not remain stable inside the sphere then this would undoubtedly

cause a wobble in the sphere. This wobble would create undesirable results

including a loss in precision and control in terms of steering the Kitty-bot. Thirdly,
loss of stability in the container would mean our sensors would also be unstable.
This would of course mean loss of accuracy in decision making. The nature of our

Kitty-Bot involves the feline attacking the structural architecture as aggressively as

possible. The sheer force of the impact of a Cats’ strike coupled with the rotating

forces of a spinning container culminated in a plethora of concerns that resulted in

us deciding to design a solution for this potential problem. We needed to find a

way to keep the container stable while the motors turned the rods, this we would

eventually decide to do with a counter weight.

3.4.6 Incorporating Useful parts of unused rapid
prototype to our new design.

As mentioned before, the first candidate was the dual motor controlled wheel

navigation design. With this design the hardware would have a simple to

implement design. This simplicity driven structural architecture would make it easy

to wire the power source, microcontroller and sensors together. Also, we could

65

prototype it without too much 3D printing if necessary. Figure 3.4.7 shows the

essential parts of this structural architecture. The Cylinder, of course, would

encapsulate the frame, power supply, central Intelligence system and sensors.
The right, left, front wheel, Device Stabilizer and sensors would be ligaments

exterior to the cylindrical exoskeleton. However, we thought Image Figure 3.4.7

as more of a block diagram for the electronics and made decided to document and
prototype the actual structural architecture in a 3D model shown further down in

the document. Throughout the design process we actually prototyped this model

and found many good qualities of it that we thought would be valuable assets to

our final Spherical Design.

Figure 3.4.7 Block Diagram of Potential Design

In this design the entirety of our electronic hardware and sensor devices would be

encapsulated within a hard protective cylinder exoskeleton. This structural design

would ensure that the hardware was isolated from external forces. We decided not

to use this and instead go with the Spherical exoskeleton of Figure 3.4.2 and

Figure 3.4.3 However, in prototyping this model we found the Central Intelligence

System frame right wheel and left wheel could be incorporated into our new

Spherical Design. In essence, by putting all of the hardware within a protective

Sphere we would defend from the cat’s predatory attacks invoked by our kitty-bot

movement algorithms. Secondly, the Power Supply, Device Stabilizer, Sensors

and Central Intelligence system would all be placed within close physical

proximities of each other in a stable position. This meant that when prototyping our

Spherical design, we could use the useful parts from the old design so that we

would not have to work twice. This would much simplify our electrical design in the

66

future we thought, which was later confirmed in our rapid prototyping stage. We

would also create a frame to hold all of these components that would be used in

our Sphere. This frame would have to have two rods attached where the wheels

used to be to direction the Sphere and propel it. In our original prototype each

wheel would be controlled by a motor and would make decisions based our system
of microcontrollers which would later be interwoven into a PCB design which we

called our Central Intelligence System. The device stabilizer and sensors would as

well be programed to react to input data or take data in and analyze it based on

this system. In our new system all we had to do is replace the wheel with a rod

that attaches to the inner part of either hemisphere and we could keep all of our

work from the first prototype. This of course made us happy because we saved

time. One of the drawbacks our original rapid prototype design was that we would

have to program sensors to recognize when our devices has be knocked over and

needs to be re-stabilized. These sensors would also have to recognize when the

device is upright so as to not tip it back over by the Device Stabilizer. The device

stabilizer itself which would be constructed as somewhat of a L shaped rigid tail

that spins when the robot senses that the unit has been destabilized. The spinning

motion of the device stabilizer would make it so that the L shape would make
contact with the ground and the force between itself and the ground would propel

our unit to an upright position. The point is, with our new Design we did not have

to consider any of this. Our spherical structure made it so that our device would

never be knocked down.

3.4.7 Why we chose the Spherical Design over
the Cylindrical Design.
Our cylinder based design have other consequences we were uncomfortable with.
In order to further consider them we modeled our ideas. By 3d modeling our ideas

we were able to critically think through potential design flaws and or advantages.
This model was created and referenced so that we could see what the structural

architecture would cause us to consider in terms hardware design. In this rough

AutoCAD 3D model sketch we noticed several things that we would have to

overcome. Firstly, notice the green appendage in Figure 3.4.9. We called this item

the device stabilizer. In order for this structural architecture to work the Device

Stabilizer would have to be promptly adjusted to the rest of the unit. The device

stabilizer would rotate clockwise or counterclockwise in the event our Kitty-Bot was

knocked over by the playful feline. This means we would have to add another

motor to the unit which would further increase overall complexity of the Kitty-Bot.
Also the motor would have to be strong enough to propel the entire system upright

in the event it was knocked over. This in turn, would mean we would have a further

67

power consideration variable to add to our ever increasing complexity equation.
With the Spherical design we would not have to consider any of these difficulties.

Figure 3.4.8 3D Model of Cylindrical Design

Secondly, when trying to 3D model our our Structural Design we found ourselves

having a hard time deciding how to design the wheels and the motors that attached

to these wheels. Functionally, the way we mentally imagined things working before

the 3D model was our central intelligence unit controlling the servo motors which

would in turn spin the wheel. However, our Cylindrical structural design made it so

that that would be difficult.

Figure 3.4.9 View of Cylindrical Design’s Wheel

The 3D model made us notice that we would have to cut into the Cylinder in such
a way that the wheels would not touch it while simultaneously keeping the

hardware encapsulated. Also, after further considering this design we became

concerned about the safety of the animal. The point of this device is to have a cat

attack it from as many angles as possible. This being said we imagined a scenario

where the cat would try to attack the wheel of our robot, get a nail stuck in one of

the moving parts, specifically one of the motors or wheels, and potentially get hurt.
This, of course was a grave concern for our team and highly weighed on the

negative end of the scale in terms of our final judgment of this structural design.

Next we considered what our encapsulated parts would look like in this design.
One of the main selling point to further consider, 3D model and evaluate this

structural design was the Cylinder outer shell that protected all of the hardware on

68

the inside. Figure 3.4.10 shows the very basic 3D model we used to further

explore this design. However, with the Spherical design we had an even better

and more complete encapsulation of all our hardware.

Figure 3.4.10 Internal View of Cylindrical Design

The Blue and red boxes in this figure represent the Central Intelligence unit, any

electrical connections to it, the physical structure holding this including the

connections to the two motors controlling the wheels outside the cylinder and the

battery pack. The green elongated triangular pyramid represents the location

where we would have decided to place our sensors. We would have decide to

place our sensors here because of several reasons. Firstly, concentrating all the

sensors at the front of any unit seems to be the best solution evolution came up

with so we figured we would copy nature. In essence we wanted to mimic some

kind of counterfeit rodent or prey that the cat would pounce on. The prey would

react to the cat based on algorithms we programed into it. The sensors in the front

of our Kitty-Bot would act as the input to our Central Intelligence System that would
then make decisions that would further incite the cat's playful nature based on our

coding algorithms. The sensor system was one of the few advantages the

Cylindrical system had over the Spherical system. However, the advantages never

outweighed the disadvantages.

Our 3D modeling also made it clear that that the Cylinders encapsulation of our

hardware would perhaps not be as thorough as one would like. As we all know

cats can be very creative in their mischief. It would be very easy for the cat to stick

its paw inside the Cylinder and cause a destructive force to be applied towards our

hardware, power supply and electronics. This would, of course, also cause a great

safety concern to the animal. If the cat stuck its paw inside the cylinder and got its

nail stuck or even worse somehow managed to electrocute itself this would be an

extremely unfortunate event. In the end this candidate had many virtues, but also

many faults.

It was made clear to us after modeling the structural design that this candidate
would have to overcome the shortcomings an undesirable amount of the design

flaws. Further design would be necessary to overcome the safety issues

embedded in this structure. Perhaps, we reasoned, we could have some kind of

69

netting covering the back and front ends of the cylinder. However, if we did choose

that approach we would then have to find a way to let the sensors still peek

through. Maybe a mesh of some sort. Overcoming the safety issues revolving the

motors and wheels however was more challenging to think about. At best we could

make the wheels have hub caps that covered its dangerous parts. However, if the

unit was tilted over these dangerous parts would still be exposed. Other concerns

the team had related to the Device Stabilizer needing substantial torque. The force

created by this torque would means the Device Stabilizer would be prone to break.
Also, the Device Stabilizer itself could potentially be a risky element for the

predator cat. This cylindrical dual motor controlled wheel navigation design was

the first thing we came up with. However, after imagining the design and its

challenges in the more mature versions of its prototype we became even more

confident in our decision to choose the Spherical Design.

4 Identification and Review of Applicable
Standards

4.1 Research and Identification of Standards

4.1.1 Research on Standards

Engineering standards are documents that specify characteristics and technical
details that must be met by the products, systems and processes that are being

developed. These include details such as dimensions, safety aspects and

performance requirements. The purpose of developing and adhering to standards

is to ensure minimum performance, meet safety requirements, make sure that the
product/system/process is consistent and repeatable, and can ensure compatibility

with other standard-compliant equipment. A code is a law or regulation that

specifies minimum standards to protect public safety and health such as codes for

construction of buildings.

Standards may be referenced or included in the specifications, which are a set of
conditions and requirements of precise and limited application that provide a
detailed description of a procedure, product or service for use primarily in

procurement and manufacturing.

Our project must follow certain standards, codes and requirements in order to be

able to be developed and deemed safe. As it stands, we must meet certain

requirements in order to ensure the security of ourselves, those around us while

70

demo-ing and our test subject, the kitten. We must make sure sensitive parts aren’t

exposed that the kitten could get into and end up electrocuting itself. Our PCB and

protective circuits must remain under a certain temperature as to not overheat

causing product failure and/or a fire.

4.1.2 Identification of Applicable Standards

IEC 61249-2-23 Ed. 1.0 b:2005

Title: Materials for printed boards and other interconnecting structures - Part 2-23:
Reinforced base materials, clad and unclad - Non-halogenated phenolic cellulose
paper reinforced laminated sheets, economic grade, copper clad"
Scope: This part of IEC 61249 gives requirements for properties of non-
halogenated phenolic cellulose paper copper-clad laminated sheets, economic

grade, in thicknesses of 0,8 mm up to 3,2 mm. This standard covers material with

different requirements on flammability and is designated according to the following:
Material 61249-2-23-1: general purpose grade, requirement on flammability not
specified; Material 61249-2-23-2: materials of defined flammability (vertical

burning test). These grades of material provide for one of two flammability

requirements and designated as FV0 or FV1.

IEC/TS 62657-1 Ed. 1.0 en:2014

Title: Industrial communication networks - Wireless communication networks - Part
1: Wireless communication requirements and spectrum considerations
IEC TS 62657-1:2014 (en) provides the wireless communication requirements
dictated by the applications of wireless communication systems in industrial

automation, and requirements of related context. The requirements are specified

in a way that is independent of the wireless technology employed. The

requirements are described in detail and in such a way as to be understood by a
large audience, including readers who are not familiar with the industry

applications. Social aspects, environmental aspects, health aspects and market

requirements for wireless communication systems in industrial automation are

described to justify the wireless communication requirements. This Technical

Specification describes requirements of the industrial automation applications that

can be used to ask for additional dedicated, worldwide unique spectrum. This

additional spectrum is intended to be used for additional wireless applications while

continuing using the current ISM bands.

71

CISPR/TR 28 Ed. 1.0 b:1997

Title: Industrial, scientific and medical equipment (ISM) - Guidelines for emission
levels within the bands designated by the ITU (International Telecommunication
Union)
This technical report provides the guidelines for emission levels within the bands
designated by the International Telecommunication Union (ITU) for industrial,

scientific and medical (ISM) application.

IEC 62115 ED. 1.0 b:2011

Title: Electric toys – Safety – Deals with the safety of toys that have at least one

function dependent on electricity. Examples of toys within the scope of this

standard are constructional sets; experimental sets; functional toys (having a

function similar to an appliance or installation used by adults) and video toys (toys

having a screen and means of activation, such as a joystick or keyboard.

4.2 Design Impact of Relevant Standards
A quick review of the standards above shows that this project is not directly

affected by many standards, however, it is subject to a few. The first standard that

is relevant is IEC 61249-2-23 Ed. 1.0 b:2005 which is a standard that governs

flammability characteristics of PCB materials. This is obviously important to the

project since we employ a multi-layer PCB in our project. The board must conform

to this standard since it is built using industrial materials. The next two documents

are used to set standards for wireless communication. Our project has wireless

communication using the HC-05 Bluetooth module, and it turns out to be a good fit

because it conforms to the FCC standards listed as well as the ITU standard.
The final standard listed is related to electric toys. Technically, our project is a toy

(for kittens) and it runs on electricity, therefore, this standard is applicable to our

design. Even though the robot is being made for kittens to play with, it is being

operated and maintained by humans, so it must meet this standard which is

necessary for it to be developed. Our protective circuits must be secure so that

wires or other components will not be exposed which can cause electrical burns
and/or electrocution to the human handling Kittybot or the kitten that is playing with

it.

72

5 Realistic Design Constraints
The following sections will discuss possible challenges faced in the development

of this project. These include monetary, time, and environmental constraints, as

well as the factors relating to health, safety, and practical use.

5.1 Economic and Time Constraints

The project’s total cost will be relatively low. Based off of our estimations the

project shouldn’t exceed $500 in total cost. It should fall around $250 to $300. The

project must be completed by December of 2016. We will begin rapid prototyping

with old parts and personal items we previously owned as early as June 2016 to

help during the designing phase. This will help in the building phase as well. After

the rapid prototyping and design is near completion we can see what components

can be salvaged from the prototype for use in the final build of KittyBot. With

previously owned components we are saving time and money. However, some

parts will eventually need to be ordered. While this obviously presents an

economic constraint; that is planned for, we priced items and parts in our initial

report. A more nebulous problem is possible delivery time for certain parts. Items

that can be found in local retail and hardware stores (Walmart, Home Depot, Pet

Supermarket, etc.) can be occurred anytime if the item is in stock. We purchased

a hamster ball from a local Petland pet store to test early prototypes with; and

hardware items such as screws, nuts, and polyvinyl chloride (PVC) piping can be

purchased at store like Home Depot and Lowe’s. Some other items may only be

available online and with this comes potential complications when it comes to

shipping times. The best case scenario for online ordering would be if the desired

item was available on Amazon. More specifically, since we have access to an

Amazon Prime account, if the item is available under the Amazon Prime banner

we can get free two-day shipping. A small calibration was purchased for early

prototype testing using this service. Amazon Prime has a continuously expanding

library of goods, but some of the more sensitive electronics needed for KittyBot will

not be available with the Prime service. Most other goods providers will not be able

to provide free shipping, and if it is free it will most likely be very slow delivery

ranging from one to three weeks. Having to wait long periods of time for

components can halt development, cause milestones to be missed, and deadlines

to be pushed back. Getting faster delivery would then mean paying more for

express shipping, thereby increasing the costs. The time constraint of shipping can

become an economic constraint as well.

73

5.2 Environmental, Social, and Political
Constraints

KittyBot will be meant for interaction with indoor cats. It will move best on smooth

surfaces like wood or tile floors and even low carpet, basically common flooring

surfaces found in most everyday homes. KittyBot is not meant to be used outdoors;

i. It is not recommended to operate the device in grass, sand, mud, snow, etc.
because it is not designed as an all-terrain device. Also it will not be water-proof,
water-tight, or water-resistant and will malfunction if allowed to is soaked or

submerged in water. Cats are meant to interact with KittyBot, so it will be able to

withstand potential damages from household cats. Animals comparable to the size

of a cat could also interact with KittyBot, certain breeds of small dogs for instance.
Larger animals like large dogs could cause damage to KittyBot; as such, it is not

recommended for these animals to play with the device.

5.3 Ethical, Health, and Safety Constraints

Since KittyBot is meant to interact with pets we have a responsibility to design and

construct KittyBot in a manner that will in no way harm the animal. The casing

housing all internal electronics for KittyBot will be smooth with no sharp edges that

could cause scrapes or lacerations to the intended animals. KittyBot will be of a

weight and size that shouldn’t hurt or crush the animal if bumped into. Again, cats

are the intended audience for play with this device. If smaller animals like

hamsters, mice, lizards, or snakes are allowed to interact with the device they

could potentially be harmed by its size and weight. On the other hand, animals

larger than cats could also potentially be harmed KittyBot. If a large dog were too

rough and cracked open the device, they could cut themselves on the fractured

shell or damaged electronics. This is a pet toy, as such it not meant for use with

children. Depending on the age of the child they could break KittyBot and cut

themselves or even swallow any broken off pieces of the device. The best course

of action for any user of our device is to always maintain adult supervision when

allowing your pets or children to play with KittyBot.

74

5.4 Manufacturability and Sustainability
Constraints
Kitty-Bot will be made from majority inexpensive components, with the most

expensive single piece being the printed circuit board. The structural components

are all inexpensive. The outer shell is a plastic hollow ball. A common hamster ball

found in most pet stores for under $10 would work just fine for this casing. An

internal chassis will be 3D printed. Fortunately for our group, as University of

Central Florida students we have access to free 3D printing. Since this will be

made from acrylonitrile butadiene styrene, or ABS, plastic which is one of the

cheapest 3D printing materials, and it will be no larger than 10 cm in width, length,
or height, this chassis can be cheaply reproduced. Any additional screws, bolts,
or brackets for construction are all inexpensive items. Microcontrollers and sensors

are price comparable to the printed circuit board while still not being as expensive.
These electronics fall within the $20 to $40 range. Motors can also be around $30

a piece. Batteries plus potential cases and battery holders can total upwards of

$20. With the right combination of components, found at the right prices, KittyBot

could be manufactured for well under $150.

When it comes to long term sustainability, that can be difficult to determine exactly.
Starting from the outside, the integrity of the outer shell should hold for quite some

time, years in fact, if operated in the intended ways. KittyBot should be used to

play with cats primarily, so it can withstand regular play from cats. With the average

number of cats in a single household being two or three, KittyBot shouldn’t be

overwhelmed by the number of feline participants in the vast majority of

households. KittyBot may ram into walls or other objects. For the top speeds

KittyBot will be able to reach, this ramming should cause no significant damage

after extended periods of time. When it comes to the other structural components,
the screws, nuts, and brackets holding KittyBot together should all be able to

withstand a cat’s activity as well as bumping into things. The overall structural

integrity is not meant to be able to take activity beyond this. As stated early, larger

pets such as large dogs are not recommended for KittyBot. These types of pets

may be able to damage KittyBot with their paws, bodyweight, or jaws.
Unsupervised children of a certain age can pose a danger to KittyBot’s structure

as well. KittyBot can withstand bumping into objects while moving at its top speed

but acts that can cause KittyBot to collide into objects at speeds surpassing that

like rolling, throwing, or dropping KittyBot can most certainly cause severe damage

to the structural elements of the project.

75

The internal elements of the KittyBot are much more sensitive. Putting these

components inside an outer casing can will help in keeping them safe. The

mechanisms and components fastening the electronics in place will hold under the

intended uses of KittyBot. Unintended use can cause damage to these internal

components as well. Excessive force can knock the central chassis out of place,
or at worst the shocks can cause damage to the printed circuit board or

microcontroller. Extreme heat and sun exposure, extreme cold or snow, and rain

and water can cause danger. An indoor environment is best. KittyBot should be

operated in temperatures ranging from 65 to 75 degrees Fahrenheit.

76

6 Hardware Design
The kitty-bot is made using both mechanical and electrical hardware. These

systems need to work together through sensors, motors, embedded systems,
printed circuit boards, and microprocessors. The power supply systems need to

accommodate all these hardware components with enough power to run the kitty-

bot correctly.

6.1 Voltage Regulation

Voltage regulators are important in electrical systems. They allow systems to run

12V batteries without out sending too much power to more sensitive components.
Voltage regulators don’t use much power due to the tiny current that runs through

it. The servo motors could require a larger voltage to power them and therefore a

voltage regulator will be needed to regulate voltage for the microcontroller and

sensors. Having a large gap between Vin and Vout causes inefficiency in the

regulator.

Capacitors are used to filter noise input prior to regulation. Another capacitor is

placed on the output of the voltage regulator to deal with voltage spikes from the

regulator on the load resistor. Different sized capacitors are used in the figure

below to filter different ranges of frequency. The smaller capacitor prevents large

frequency signals to interfere with the motor. Figure 6.1.1

Figure 6.1.1

77

6.1.1 Linear Regulators
A linear voltage regulator is a technological device that acquires a certain amount

of input voltage and then helps to govern a predetermined amount output voltage.
They are advantageous when being applied to a circuit board due to their compact

size and ability to produce both positive and negative output voltages. Linear

voltage regulators come in multiple voltage types, such as either fixed voltages or

adjustable voltages. An example of a fixed voltage linear regulator is the 78xx

series. An example of an adjustable voltage linear regulator is shown in LM317,
below in Figure 6.1.2.

Figure 6.1.2

(From www.ti.com)

Our team has found linear regulators that can provide output voltages ranging from

1 to 40 volts. The current from the load is at less than 1 to 1.5 amperes. However,
there are input voltage requirements for linear voltage regulators. The input

voltage must fall between a minimum and a maximum range. The minimum

voltage requirement is determined by the dropout voltage, which is found on the

datasheet of the linear regulator. This dropout voltage is generally between 2-3

volts. Therefore, a 10 volt regulator would usually have a minimum voltage

requirement of 12-13 volts. The maximum input voltage is dependent on the part

selected and generally yields up to 40 volts.

For KittyBot, a linear voltage regulator is an adequate piece of technology. Our

required voltage level falls within the range of the minimum and maximum

requirements of a linear voltage regulator. The ampere level is thoroughly covered

by the average level of a linear voltage regulator and thus is more than within

reason. Our team’s battery will provide input voltages at a considerably higher

level than the desired regulator output. Therefore, the dropout voltage

requirement will also be met. Linear regulators meet the requirements of our

team’s project and in conclusion can be used for most voltage regulation needs.

http://www.ti.com/

78

Another advantage of a linear voltage regulator is the practicality in its design. The

voltage regulation is performed entirely within KittyBot’s integrated circuit.
Therefore, no add-ons are needed when implementing the regulator. The linear

regulator usually has 3 pins, which allows it to be applied easily to KittyBot’s printed

circuit board. However, there is one disadvantage of a linear voltage regulator: its

efficiency. There can be certain cases where the input voltage is much higher than

the regulated output voltage, in which the linear regulator is inefficient in trying to

banish the extra power as heat. For this project, the input voltage will be 5V

typically which is not a large drop off to supply the 3.3 V needed for the

microcontroller therefore it will be approximately 90% efficient.

6.1.2 Switching Regulator
Switching regulators have the ability to take a higher voltage and it brings it down

to a lower voltage as well as linear regulators. Switching regulators have the ability

to transform a lower voltage to a higher voltage. Switching regulators can also be

very efficient with their power output, looking at some datasheets we saw that

some regulators have an efficiency of 90-95%. Switching regulators also create

very little heat when being used.

The downsides of using the switching regulators are that they cost more and are

little more complex. Another downside is that switching regulators are noisier than

linear regulators. Another obstacle switching regulators present is that they tend

to have an output current greater than 1 amp. The regulator will be powering our

microcontroller which has a very low input current. The MSP430 has an input

current in the micro amp range.

Switching regulators have three different abilities which have names they are

common for. Those three names they’re known for are buck (step down), boost

(step up), and buck-boost (step up/step down) regulators. Our battery will be

supplying anywhere from 5-6 volts to loads which require a range of 3.3 to 5 Volts.
A buck regulator was found courtesy of Texas Instruments, they had a voltage

regulator which met our group’s specifications. The LM2594 step-down buck

converter is an adjustable regulator which works well with battery applications. The

pin level diagram of this chip is pictured below in Figure 6.1.3.

79

Figure 6.1.3

(From www.ti.com)

Switching voltage regulators use a combination of transistors acting as switches
and inductors or capacitors acting as storage devices to provide a constant output

voltage. Switching regulators can further be divided into categories such as buck,
boost, and buck/boost regulators. A buck regulator takes a higher input voltage

and steps it down to a constant lower output voltage. For this project, a buck type

regulator will be required. Switching regulators are available as complete

integrated circuits just like linear regulators. Typically used parts handle supply

voltages of up to 40 volts or higher and can handle currents up to about 3 amperes.
Switching regulators do not convert the difference in power to heat like linear

regulators and therefore have power efficiencies of up to 95%.

6.1.3 Regulator Trade-offs

The benefits of using switching regulators over linear regulators are mainly

because of their power efficiency. KittyBot needs to be efficient in order to work

for as long as possible. Switching regulators are also available online as complete

integrated circuits and would therefore be easy to integrate and implement into

KittyBot’s circuit design. Switching regulators have the ability to step down or up

giving more versatility, but for the KittyBot only step down is needed. Switching

regulators produce very little heat compared to a linear regulator.

There are a few key advantages linear regulators have over switching regulators

however. Linear regulators are less noisy because switching regulators can

produce electric interference due to their utilization of inductors and can have a

80

ripple voltage. Ripple voltage can also be caused from a high switching rate. The

switching in the regulator causes it to be much noisier than its linear counterpart.
Linear regulators benefit from being smaller due to switching regulators requiring

additional components to build the desired switching regulator circuit. Although

linear regulators can be quite large if a heatsink is necessary. This design’s case

wouldn’t require a heatsink.

This project would be able to meet the requirements set out for KittyBot with either

a switching regulator or a linear regulator. The input power supply and output

power requirements fit into the specifications of readily available switching

regulator parts. Many of today’s electronic devices using microprocessors also use

switching regulators. This makes finding existing circuit designs easy and allows

us to be able to change the designs to help benefit this project. Linear regulators

can only regulate voltage lower but for the design, as mentioned before, they still

work out. Figure 6.1.4 was created below to see the advantages or disadvantages

between the regulators easier

Figure 6.1.4

(Used from Digikey.com)

6.2 Amplifier Circuit Design

Amplifier
One of the reasons we wanted to design a decent amplifier is because. For

example, our censor output voltage range might not match up well with the

msp430. Also the msp430 might not output enough current to correctly power the

81

motors. Being that we want to avoid these issues we wanted to design an amplifier

that would give us flexibility. We wanted to put the input values into a computer

program that would give us the output values desired, and that’s exactly what we

did. There are advantages and disadvantages, however. For example, a common

emitter amplifier might have low impedance and is inverting. These are all things

that we would like. These are characteristics of, for example, a common emitter

amplifier. The high output impedance and current gain might be ok as well.
However, the high voltage gain is what we really desire. That will improve the

quality of our device. We figured an average voltage for the circuit board that we

want to provide power supply to might be two volts. We would want an input

resistance of about 15,000 ohms and an output resistance of about 100 ohms.

At the end we decided a multi stage Common emitter amplifier would be our best

bet. Our major point of focus was a high gain. After a lot of math and a very

crafty computer program written in C we arrived at the following specs.

Design Procedure:

1. To design the amplifier circuit, we need to break the specifications down

into two parts: a high input resistance that produces a large gain, and a low

output resistance. Two amplifier circuits fit the bill only somewhat. A

common emitter amplifier can amplify the voltage by a great factor, but

moves the phase of the output such that it is 180 degrees out of sync with

the input - basically, inverting the output along the real axis. A common

collector has a low output resistance, but does not negate the phase shift

of the output. As such, a third component is added: a common emitter

amplifier with no bypass capacitor.

2. To calculate the proper values, the circuit must first be transcribed into its

DC and small signal equivalent circuits. For practicality, capacitors are

taken as relatively large values between 10 micro farads and 100 micro

farads. When the impedances of these components are calculated, these

values will result in a short circuit when considering small signal values, and

an open circuit for direct current values. Therefore, the equivalent circuits

can be shown in Figure 6.2.1 and Figure 6.2.2.

82

Figure 6.2.1 Circuit diagram of Small Signal equivalent of the

amplifier circuit

Figure 6.2.2 Diagram showing the DC equivalent circuit of the

amplifier

3. From the above circuits, one can estimate several resistance values based

on the requirements set forth in the lab. Once these values are obtained,
the rest of the resistance values can be obtained through calculation and

estimation.

4. In order to simplify the construction of the circuit, the obtained values can

be rounded to the nearest available physical resistor value.

83

After analyzing the circuit, these equations which were used to bias the circuit.

Stage 2 and Stage 3

 RE3 = (Vcc - VCE3) / IC3;

 RC2 = (Vcc - VBE - IC3*RE3) / (IC2 + IC3/B);

 RE2 = (Vcc - RC2*(IC2 + IC3/B) - VCE2) / IC2;

 RC1 = (Vcc - IC2*RE2 - VBE) / (IC1 + IC2/B);

 RE1 = (Vcc - RC1*(IC1 + IC2/B) - VCE1) / IC1;

Stage 1

Rth = 0.1*(1+B)*RE1
Vth = (Rth/B + RE1)*IC1 + VBE

R1 = Vcc*Rth/Vth;
R2 = Vth*R1/(Vcc - Vth);

Rib = rpi1 + (1+B)*RE1;
Ri = 1/(1/Rib + 1/Rth);

84

Small Signal

Derived Small Signal Equations

 rpi1 = B*VT/IC1;
 rpi2 = B*VT/IC2;
 rpi3 = B*VT/IC3;
 ro1 = VA/IC1;
 ro2 = VA/IC2;
 ro3 = VA/IC3;

 gm1 = IC1/VT;
 gm2 = IC2/VT;
 gm3 = IC3/VT;
 Rib = rpi1 + (1+B)*RE1;
 Ri = 1/(1/Rib + 1/Rth);

After trying several values these worked best.

Input values

IC1 = 1mA
IC2 = 1mA
IC3 = 1mA
VCE1 = 2V
VCE2 = 2V
VCE3 = 4V
RL = 5K
RS = 100

Resulting Values A

 RC1 = 4569.536621

 RC2 = 3278.145508

 RE1 = 2399.999512

 RE2 = 3699.999512

 RE3 = 5000.000000

 Rth = 36239.992188

 Vth = 3.341599

 R1 = 97605.937500

 R2 = 57641.718750

 Rib = 366299.937500

85

 vbe2 = -0.864712

 ib3 = 0.000281

Resulting Values B

 VCE1 = 2.000000

 VCE2 = 2.000000

 VCE3 = 4.000000

 RAC1*IC1 = 4.504151

 RAC2*IC2 = 3.249525

 RAC3*IC3 = 2.455285

 Ri = 32977.367188

 Ro = 46.391895

 Gain = 103.575066

 Maximum unclipped voltage = 2.000000

6.3 Embedded System

6.3.1 Microcontroller

Our senior design group has chosen to utilize the MSP430 microcontroller family
for this project subsequent to contrasting every one of the models that we

compared above and numerous others. We thought long and hard about this but

in the end this choice depended on various elements. Some elements being more

important to us than others. Primarily, we require low power. A high power

microcontroller would mean less space for other components and more weight to

lug around. However, beyond that, we require low power utilization for three

reasons: to augment the time we can have the KittyBot rolling around before

waiting be revived and recharged. Furthermore, we have to minimize the measure

of weight and size as mentioned earlier. To diminish the weight on the engines that

will move our sphere and to minimize the dependencies of the sphere on large

energy sources. To do this we needed to find a microcontroller that would facilitate

this goal. Maintaining a strategic distance from a cumbersome battery would be a

great design accomplishment for our team. A microcontroller that conveys a

considerable measure of weight and requests a great deal of board space, is

needless to say not what we want. We also wanted a microcontroller with sufficient

peripherals and proficient I/O ports.

We did not start by considering which is the best microcontroller but rather which

is the best microcontroller for our project. We researched far more than the

microcontrollers referred to above and considered many advantages and

disadvantages of devices. For example, we considered a PIC and thought that

86

maybe it might be best for our group because of its minimum size. We found out

they have incredibly small ones, but later saw to many complexities in

implementation. If we needed a more potent processing power, on the other hand,
we might have chosen to go with a cortex. Minimum power consumption, however,
was an important aspect for us, hence the MSP430.

Another reason we have chosen the msp430G2 is the flexibility we have with the

compilers. Texas Instruments provides a whole family of compilers to assist us in

corralling a logical elegance of one and zero bits on the Printed Circuit Board.
Texas Instruments Select the IDE you’re comfortable with. To learn more about

our software offerings such as Energia, CCS Cloud, and Code Composer Studio™

6.4 Sensors

6.4.1 GP2Y0A41SK0F
The Sharp GP2Y0A41SK0F analog distance sensor is a possible choice for the

KittyBot to detect objects. The proximity sensor is especially desirable because

they’re cheap for photoelectric sensors and only cost 10 dollars. Considering the

ear design calls for 2 of these sensors, they will save us more money than many

of the other researched sensors. The range for this distance sensor can be set to

a desired range of 4-30 centimeters.

The proximity sensors are low power which was wanted for design specification

purposes. The proximity sensor requires a 4.5V - 5.5V input and the max current

is 22 mA. The sensor draws current in short bursts and it’s recommended to place

a 10µF capacitor by the sensor across Vcc and ground in figure 6-1. The capacitor

will stabilize the power supply from too large of a burst of current.

87

Figure 6-1

6.4.2 PING)))
The PING))) sensor from Parallax was heavily considered due to the groups

familiarity working on other projects which included Parallax devices. It meets the

requirements for the range as the sensor can work up to 3 meters. I found this

sensor to work with the microcontroller being chosen, the MSP430. This works

well with the KittyBot design because it is also 5V like the previous sensor and the

motors. The PING))) sensor is simple to use considering the 3 pins and their

functions shown in figure 6-2. This sensor works using a 40 kHz signal. The

frequency is burst out for 200 µs and can sense the object between 115 µs and tmax

which is 18.5 ms, and has a 200 µs delay before another signal is sent out.

88

Figure 6-2

(From www.parallax.com)

The PING))) ultrasonic sensor ultimately has some drawbacks that made the group

come to a decision that it would be hard to do. First, it would be hard to implement

with the design on the mobile KittyBot toy. If the design with ears were used, there

would be large holes making the sensors vulnerable to the cat swiping in at the

sensors and possibly causing damage. The other designs for KittyBot don’t allow

for these types of sensors since all the parts will be confined in a spherical casing.

6.4.3 Piezo Element

So after much research, we decided to use a Piezo element to detect any impact

that the feline might inflict on our unit. Firstly, of course, we would have to figure

out how to use the Piezo sensor. This sensor could be used for a large variety of

reasons; be it to detect a knock on the door or the vibrations of a solid table. We

are using to detect attacks from a cat. After researching the device we discovered

that the piezo device is able to make a voltage after being physically altercated or

irregularly touched. This could be due to a vibration from a physical element like a

cat attack, a sound wave or any sort of a mechanical strain on the device.

When we say Piezo sensor, we are really using a short name for piezoelectric

sensor. In essence, a piezoelectric sensor that measures changes. It has the

ability to use the piezoelectric effect. This is basically a manipulation of the electric

charge that might accumulate in solid materials. The piezoelectric sensor uses this

effect to detect the changes in certain things. It can detect the changes in anything

from temperature, strain, force pressure or electric charge. Where it is useful for

us is in measuring the changes in charge and vibration. We will use this effect and

the Piezoelectric sensor that leverages it to detect vibrations on the outside of our

sphere. These will, of course, be applied due to the predatory felines attacks on

our device.

This is a very useful tool for us because it captures the moment of interface

between our unit and the predator feline. In addition to this, you can also place a

voltage across a piezeo. If we do this the device will actually vibrate as well as

http://www.parallax.com/

89

create a tone of our liking. In essence our plan is to run a signal to an audio output

when the kitty-bot is attacked. When rapid prototyping the unit we were able to

scan and evaluate the output of the device using the analogRead() function

provided by the library we are using. Next we had to encode the voltage. What we

decided to do is to slice the voltages into different physical values.

We encoded the values to vary between the range of zero to five volts. In addition

to this we assign an integer value that ranged from zero to one thousand and

twenty-three. By splitting everything into these values we were able to apply an

analog to digital conversion otherwise known as an ADC. Our goal was to be able

to control when our sensor would react and when it wouldn’t. First, as a proof of

concept, we connected the entire unit to the computer. If the sensor was more

powerful than a certain threshold our msp430 microcontroller would then send the

command “React” to the computer. This would be done over the serial port. If we

refer to the diagram we can see that one of the sensors’ cords is connected to

ground and the other to the microcontroller. The wire that’s connected to the

microcontroller is the serial port of the msp430.
Musical output added to our circuit.

Multiple Piezo sensors

As can be seen from figure 3.4.17 we at this point in Agile rapid prototyping sprint

only have one sensor working. This one sensor, simply will not be sufficient for

what we need. We need enough sensor coverage on the sphere where if any part

of the our kitty bot is attacked we can take it as an input and react accordingly.
Hence at this stage in our rapid prototyping process we decided it would be worth

our while build multiple sensors into our core electrical design. What we came up

with can be analyzed in the following figure.

90

Figure 6.4.18

Notice Figure 6.4.18 it contains the final outline of our prototyping session with

sensors. During our research process we realized that Piezo sensors are

polarized. This sounds complicated but it basically means that any voltage that

passes through their circuit will do so in one specific direction. This is in contrast

to a bipolar sensor. In order for us to get many Piezos to work we found out that

we must connect the black wires to ground in series and the red wires to the analog

pins. However, we found out a quirk when getting in the other sensors. We must

additionally to our previous design Also connect a one Mega Ohm resistor in

parallel to each Piezo device. This serves a very important service to the totality

of our device. It limits the voltage and current produce. The Piezo might not react

well to the fluctuations we found so it was safer to do this. This also serves to

protect the analog input from potential damage. We prefered to purchase the piezo

sensors that looked like a metallic disc because it was less overhead and allowed

us to deal directly with the sensor. Alos it doesn’t have anything to impede it so it

is easier to use as an input sensor. We also found other small but useful

discoveries. If the Sensor is not firmly placed against the wall of our sphere it does

not work as efficiently. In our final implementation we will build the sensor into our

actual device for best production.

Using our sensor to play musical notes

When creating the project one of our main goals was to make it as fun as possible.
After all we are making a toy for cats and humans. Throughout our process we

began to find things that would help us actually implement this vision. One of the

ideas we came up with was to make the unit so that it reacts with a unique or

entertaining sound. No one can deny that we all like things that sound. For

example a piano or a flute. But we dont like things that sound in an annoying way.
For example a door bell. Well it turns out we can do this using the piezo and it

works out great. In this way we can save by not putting extra components on our

unit. As long as we have the tones and the durations of each tone we will be able

to create what we want. Actually we can code the msp430 to play what we want.

For prototyping purposes we decided to have the sensor play happy birthday. To

do so we went to a web site and grabed the notes necessary to create the melody

which were as follows.

The notes were:

c c d c f e

91

c c d c g f

c c highc a bflat g

a a bflat f g f

The first time we did it we used the traditional delay to code what we wanted. We

wanted a better way of doing this so later we figured out how to get the delay that

we want using the PWM pule width modulation hardware. In order to get this to

work we had to figure out that all notes correlate to a particular frequency. What

we were able to do was to reset the channel duration for the second half and set

the channel to use only half of the duration. Using other references, we were able

to get a Pulse Width Modulation of fifty percent Duty cycle at our particular

frequency. With the previously described set of logical steps we were able to

accomplish something very impressive. We were able to make a square wave from

the sine wave. After that, we, of course, encountered more problems. One of these

being the ability to seize a Tone. We wanted to stop the Tone. The problem was

that since, we were using PWM and software bit-banging we were now unable to

simple zero out the output by zeroing the bit. That being said we also knew that

we can make the period zero if we want. With all of this in mind, we coded the

function and initialized our PWM pulse width modulation and were able to

accomplish our goals. With this modification in place we will be able to accomplish

a very nifty thing. Now every time the cat attacks our unit, the unit will sing a

different musical note. When we consistently attack the unit it the unit creates a

melody that we all can enjoy.

6.5 Printed Circuit Board (PCB) Design

A printed circuit board is a circuit board that electronically connects and

mechanically supports electronic components using tracks, pads and other

conductive features made from coppers sheets laminated onto a non-conductive

substrate. The substrate is usually a semiconductor such as silicon, silicon

dioxide or gallium arsenide that serves as a foundation upon which electronic

devices like transistors, diodes and integrated circuits are deposited.
Components are soldered onto the PCB in either a single sided, double sided or

multi-layered layout. Our group decided that using a double-sided layout for our

PCB would be most effective because it would allow us moderately high

component density while keeping costs relatively low.

92

6.5.1 HC-05 Bluetooth Module Layout

The HC-05 Bluetooth Module has some added benefits related to the PCB design

of the project. The HC-05 Bluetooth Module has a simple, non-cumbersome

package which makes it suitable for a two-layer PCB design, this helps keep the

design simple and inexpensive. Also, since the HC-05 Bluetooth Module family all

have a similar footprint and are all configured using the same pin layout the design
team can elect to change the specific module that is used without having to

redesign the PCB connections for communication. There are multiple ways that

this module can be mounted onto a PCB as long as the proper ground plane

procedures are followed. This gives the team a lot of flexibility regarding the

placement of this component on the PCB.

6.5.2 Programming Microcontroller on PCB

During the prototyping and initial testing phases the project will be implemented

using an MSP430F5529LP LaunchPad. This will provide the design team with a

quick method of implementing the robot movement algorithm and interfacing the
major components of the robot such as the MCU, Servos, Sensors, and Wireless

Communication. One of the advantages of using the LaunchPad to prototype the

project is that it has an emulator board on it that is used to program the

microcontroller. The microcontroller cannot be programmed properly without this.
However, for the final design the project will obviously not be using a LaunchPad,
but rather a custom designed PCB with the microcontroller and all other

components surface mounted. The emulator board is not a simple set of

components but rather a complex and high level emulator module that is beyond

the scope of the design team. Also, the emulator board physically takes up a

93

considerable amount of board space. The design team has made a decision to

use the emulator board on the LaunchPad to program the MCU on the custom

PCB for the final design. This seemed to be the most cost, time, and space efficient

way to implement the design without having to redesign a Texas Instruments

Emulation board.

To use the emulator board from the LaunchPad to program the custom PCB the
design team must isolate the emulator board from the LaunchPad and replace the

on board MCU with the MCU on the custom PCB. Instead of constructing the entire

emulation board the design team will simply design the PCB so that jumper wires
from the jumper block can be attached temporarily to set the MCU on the PCB as

the target device for the emulation board. After considering different options and

time constraints it seems that this will be the most efficient method to be able to

use the emulator without having to reinvent it.

6.5.3 Soldering

While soldering may seem minor to the experienced engineer or hobbyist, none of

the design team members have ever done it before. Since it is such a fundamental

skill in electrical engineering and none of the team members have done it before,
time will be taken here to gain some knowledge about how to solder.

Soldering is a process used to join different metal components together. This is

accomplished by using a metal alloy (solder) to connect the different pieces by

melting the solder onto the components and allowing it to cool. This creates a bond

that is strong enough to hold the components together and also conduct electricity.
Soldering is different from other methods used to fuse metals together such as
welding because it occurs at a lower temperature (around 400 degrees

Fahrenheit). Also, soldering melts a filler material between two metals to create

contact unlike welding which actually melts the independent metals and fuses them

together. Soldering can be “undone” for this reason by melting away the solder

when it is desired to do so.

Soldering Tools

1. Soldering Iron

The size of the soldering iron depends on the application. A 15-40 watt

soldering iron is good for circuit board soldering while 60-140 watt iron is

better for thicker materials. Using a higher power iron on small components

can result in overheating and damage to the components. Some soldering

irons have variable temperature so that most applications can be

accomplished with one iron however they are much more expensive.

94

2. Solder

Solder comes in a variety of thicknesses depending on what it is needed

for. For circuit board applications thinner solder is better since it is more

detailed work. Most solder material is combination of lead and tin but

nowadays lead is being phased out of design due to health concerns. Some

solder contains silver as well which results in a higher melting temperature

which can result in burning components if care is not taken. Apparently

solder with rosin core is better to use because it acts as a flux and helps the

connection.

3. Soldering iron tips

Soldering irons come with tips but it is good to know what tips are better

suited for certain applications. For detailed work, it is better to use a conical

shaped tip while a flat larger tip is good for joining wires together. Also, the

tip should be slightly smaller than whatever is being soldered.

4. Soldering iron holder and cleaning sponge

This just provides a safe place to hold the iron while not in use and a safe

means of cleaning the tip.

5. Tools for wires and clips to hold work

Wire clippers and wire strippers for cutting and stripping wire. Also good

clips to give extra hands while soldering pieces together are necessary such

as “helping hands” or just alligator clips, anything to help make the soldering

process easier.

6. Safety equipment

These include exhaust fans so that fumes are not being inhaled and safety

goggles.

Soldering Procedure

1. Heat up soldering iron and clip all components together onto clips in the

proper orientation such that the board can be flipped upside down and not

have everything fall off.

2. Clean tip of soldering iron with a wet sponge.

95

3. (Soldering Wires Together) Strip about half an inch away from the ends

of the wires and twist them together to form your joint. Touch the soldering

iron to the joint (not the solder) and begin to heat the wires. Touch the solder

to the wires (not the iron) and wait until it melts into the joint. If you touch

the iron directly to the solder it will melt around and not into the wires and

will form a “cold joint” and results in a poor connection.

4. (Soldering on a PCB) Place the leads of whatever component is needed

through the hole in the PCB then bend it slightly so that it does fall out when

flipped over. Touch the tip of the soldering iron to the led and metal pad on

the PCB making sure that too much heat is not added that would damage

anything. Once the lead and pad are hot touch the tip of the solder to the

crack in paying careful attention to how much solder is applied. Too much

solder can pool over connections and cause short circuits while not having

enough can cause a poor connection. The right amount of solder will form

an “ant hill” like mound. If this is not the case, make sure that all leads and

pads are clean first. Remove the solder 1 or 2 seconds before the iron is

removed so the tip of the solder does not stick to the connection; next cut

off the excess lead as close to the PCB as possible with sharp wire cutters.

5. (Surface Mounting Components onto a PCB) The first step to surface

mounting components onto a PCB is to “tinning” the pad. This is

accomplished by heating up the pad where you want to mount the
component and applying a small amount of solder to it to create a small

pool. Next you lower the component onto the solder and pad with tweezers

and heat up the solder again to form the connection; hold the component in

place for an additional few seconds to allow it to cool. Last, connect the

other end of the component to the other pad by soldering the two contacts

together.

6. (Desoldering and Fixing Mistakes) Desoldering is done using either a

solder pump or desoldering braid. It is basically just reheating the joint,
removing the solder and removing the component or resoldering the

connection correctly. Fixing mistakes can be done by just reheating the

connection and adjusting the component so that it is placed properly and

has a good connection/ enough solder.

96

7 Software Design
When creating our project, it was necessary carefully analyze how to approach

every aspect of our Software. Our project is an interwoven mesh of Electronics

controlled by embedded systems. That being said our development environments

were crucial to the outcome of our project. Essentially, the software team’s job is

to be the brains of the unit. We considered many frameworks along this process

but came to solid reason based solutions to our processing needs. Firstly, it was

necessary to consider what would be our Integrated Programming Environment.
Many options were available, however, we came to the conclusion that it would be

intelligent to come to a conclusion about what microcontroller we wanted to use

before we decided on the Integrated Development Environment. After much

deliberation, which was specified in detail in our section on microcontrollers we

decided that the msp430 would be the ideal microcontroller for our purposes. We

wanted a lightweight low energy high in community resource solution to meet our

processing needs. The MSP430 was able to provide that. Additionally, it provided

a plethora of integrated development environments to choose from.

7.1 IDE Options
The TI MSP430 line of microcontrollers is usually programmable through Texas
Instruments’ proprietary integrated development environment (IDE) Code

Composer Studio. Code Composer Studio is a very robust IDE.

An alternative to using Code Composer Studio is Energia. Energia is an IDE for TI

Launchpad microcontrollers that is very similar to the Arduino IDE. This will allow

for us to use Arduino libraries.

A critical thought for this development is the way the hardware will be programed.
Hence, we considered many Integrated development environments to fulfill our

tasks. To efficiently integrate logic and intelligence into our hardware there must

be a path for the equipment to be modified, tried and fixed as fast and productively

as could be expected under the circumstances. In a perfect world the task would

have been customized utilizing an environment that takes into account larger
amount calculations to be actualized without focusing on controlling individual bits

and registers. For example, MatLab might have a good consideration if we only

needed to analyze data but unfortunately we needed to control hardware at its

most fundamental level. To fulfill this, the software integration developers decided

to use the Energia Integrated Development Environment. The choice to utilize the

Energia Integrated Development Environment depended on various elements that

were meticulously considered and evaluated.

97

In particular, one of the reasons that stand out amongst the most vital reasons our

group picked Energia is that it is intended to use the Arduino programming
algorithms and consolidates the plenty of libraries that can be actualized for any of

the problems that we may encounter. This IDE has libraries committed to

everything that our hardware programmed intelligence needs to execute. For

example, Energia has a plethora of libraries that can drive engines dealing with

the heartbeat of our PCB, that is the (PWM) Pulse width modulation required to do

tasks. There are additionally libraries to peruse sensor information which will be

unbelievably essential to facilitating the basic leadership process required to

effectively execute the fundamental calculations we need. To efficiently navigate

the labyrinths paths of development and expand the effectiveness with which they

can be unraveled this integrated development environment will be highly useful.

Another helpful component that is connected with the Energia Integrated
Development Environment is that coding representations can be transported in
into Code Composer Studio which additionally accelerates the advancement of our

compiler time. Our group can build up the essential calculation utilizing the Arduino

framework and libraries at first. After that it can be transported and translated into

the Code Composer environment. if more exact refinements are required, for

example, advancement of register and control of individual bits, both calculations

that are more difficult those can be done in Energia. Group five trusts that utilizing

Energia in conjunction with Code Composer Studio will help expedite the

aggregate of our teams programming and improvement abilities.

7.1.1 Potential IDE and our Choice of Energia
After careful consideration we came to the conclusion that the Energia Integrated

Development Environment was best suited to meet our needs. One of the things

we really liked about this development environment is that it is open sourced. This

means that anybody can look at the code. Also, a community of people developed

the environment so it is geared to real life practical needs. This software framework

was exactly what we needed. The software framework is based on a Wiring

framework and is capable of providing a non-technical easy to follow development

workbench. When researching the codebase, we also realized that it is very robust

and beyond that simple. Common sense is all that’s really required in terms of

training to use the Environment. The open source community provides a lot of

benefits to its end users. Other IDE considerations are listed below. Though we

were able to find a multitude of Integrated Development Environments that would
could work conjointly with the msp430 we only truly considered the two considered

below.

IAR Embedded Workbench:

98

Description

IAR Embedded Workbench has a C and

C++ compiler. It also has a debugger tool

suite for applications. It can be used for

MSP430 and TI ARM-based

microcontrollers.

 Completely integrated
development environment

including a project manager,
editor, build tools and

debugger

 Highly optimizing C and C++
compiler for ARM;
Compatible with other ARM

EABI compliant compilers.

 Ready-made device

configuration files, flash

loaders and over 2800

example projects.

Mentor Graphics Sourcery Tools (formerly Code Sourcery, Inc.):

Description

IAR Embedded Workbench is the world-
leading C/C++ compiler and debugger tool

suite for applications based on 8-, 16-, and

32-bit MCUs, including MSP430 and TI

ARM-based microcontrollers.

 Completely integrated
development environment
including a project

manager, editor, build tools

and debugger

 Highly optimizing C and
C++ compiler for ARM;
Compatible with other ARM

EABI compliant compilers.

 Ready-made device

configuration files, flash

loaders and over 2800

example projects.

Though we considered the two previously mentioned Integrated Development

environments they really didn’t compare to Energia. We were astonished as to how

easy to use Energia was. It doesn’t have allot of options which is actually a good

thing when you are getting used to a new Integrated Development Environment.

99

Another amazing feature was the integrated Serial Monitor. This terminal

extremely useful when testing sensors. We were able to see the TX and RX input

and output real time. Also there are allot of API’s that are plenty useful to us. These

do advanced features with the sensors as well as helping us with controlling the

microcontroller and peripherals. A feature which saved us countless numbers of

hours we would have used developing low level elements. These included

functions like digitalRead/Write and Serial.print amongst many others. We also

found that this Integrated Development Environment was compatible with other

devices we wanted to fiddle with. For example, the c2000 or the TM4C. Above all

though we loved that the code was open source and hosted in the same GitHub
server where we are holding our code where we can find higher level libraries for

different applications we might use. If we ever needed a more professional

environment we could also transition seamlessly into the Integrated Development
Environment Code Composer Studio v6

7.2 Development Structure

7.2.1 Git Repositories over SVN
We decided to use Git repositories to maintain our code instead of Subversion. We

came to the conclusion that git is better fit for our needs. We like the fact that Git

is decentralized in its structure. With Subversion we can’t have localized copies of

our code. Also, with Subversion we might encounter a problem. We might be in a

place where for example we might not have internet in which case we would have

to literally copy and paste the code we would not be able to commit it. With git we

don't have this problem our copy of the code is a local repository and we will be

able to commit it whenever we please. That being said there is an added

complexity to this approach. With git there is an entire language that we have to

learn to track of our code. We also have to know the structure of the git system

and how the branch structure works. Also we have to understand the difference

between the local repository and hte actual branch that in our case would be kept

on a server like github.

Git was at first a little confusing to us admittedly. We had to understand what it

meant to work decentralized. What is a remote branch and also how to initialize

and set up a repository? We were able to set up a centralized root branch of code.
From that centralized root branch of code we set up development branches for

each member on the software team. Each member now has his own branch to

work on. When there is a change that the individual wants to keep he simply

commits the change. The great thing is that this change still hasn’t made it to the

root branch. When the individual developer is ready to commit the changes to the

100

main changes root branch he can do so. Then the administrator of the code can

decide to pull the development branch into the root branch therefore updating the

code. This as you could imagine is incredibly useful for our team.

7.2.2 Agile over Waterfall
When choosing our coding construct and framework of organization we had to

think very carefully. From personal experience, if you don’t properly map out your

thoughts and plan the logical road map to success your logic will fail. Our main

options for programing structures were agile and waterfall, we choose to use Agile.
Some decades ago some programmers thought the waterfall methodology was not

flexible enough to meet the needs of modern coding challenges. I happen to be of

the opinion that they were right. That being said, many companies still use

waterfall. They like the sequential and incremental approach of it. However, agile

provides us more flexibility and potential for fast progress. We plan on starting off

with a very simple algorithm design. Which we did in our prototypes. After that we

began working on small portions of the code. We have organized ourselves for the

work to be done on weekly and sometimes monthly sprints. When we complete

the sprint we can then reevaluate the priorities of our coding approach. We then

run our tests to ensure that our code is at optimum quality. The great thing about

this approach is that this system helps us discover bugs as well as get feedback

from our peers. This feedback can then be incorporated into the design and

readjusted to create a better system for the next sprint. Some say that this is a

very inappropriate approach because it lacks a serious initial design and sequential

steps. However, the flexibility and creativity afforded to us by this approach suits

our end goals perfectly.

In the end there were five main reasons why we chose the Agile approach over

waterfall. Firstly, we need to be allowed to make changes to the code after the

initial planning. This way we can rewrite things we found does not make sense.
Secondly, because we are afforded the flexibility of making changes we will easily

be able to add features to the code that will improve the excellence of our project.
Thirdly at the finally of each sprint, we can then evaluate and reconsider our

priorities. This will allow us to easily make adjustments to the project if our

supervisor so desires. Fourthly, we believe strongly in testing and making

excellence an integral part of our process. We need our code to run flawlessly

when demoed. Failure could be catastrophic for our team. The infrastructure of

Agile calls for testing to be complete at the end of each sprint. This ensures that

the bugs that could derail our project are caught and preemptively disposed of at

the end of each development cycle. Lastly, which is kind of tied to the previous

advantage; because our code will be so thoroughly tested we could basically be

ready to present working code at the end of any given month. This assures us and

101

gives us security when crunch time comes around that worst case scenario we will

be able to deliver a working product on demo day.

102

8 Project Prototype Testing

8.1 Rapid prototyping approach
The design phase of this project takes place during the UCF Summer semester of

2016. In order to improve our design, we put together a quick prototype during this

time. We wanted to try and achieve a proof of concept on a motorized rolling ball

to better understand the concept. Members of our group had a bo-bot complete

with wheels and two servo motors from past personal projects. Our team also had

a battery pack, breadboards, and multiple TI Launchpad MSP430

microcontrollers.

The first step was programming the MSP430 to rotate our servo motors. We

achieved this with a simple program coded in Energia. The circuit was assembled

on a breadboard and was powered by an external battery pack. We stacked the

breadboard, microcontroller, and battery pack on the back of the bo-bot and turn

it on. The bo-bot could successfully move. We then went about transferring this

movement to a spherical object.

A hollow sphere that we could snap open and shut again was needed. In fitting

with the pet theme of KittyBot, a hamster ball, 9 inches in diameter, was

purchased. Our desire was to attach the two servo motors to the insides of the

hamster ball so that the rotations of the servos could rotate the entire ball causing

it to roll. We decided use the bo-bot’s chassis in order to hold the servo motors.
The bo-bot chassis was too large to fit in the hamster, so we sawed it in half. Figure

8-1 shows the internal components of KittyBot.

Figure 8-1 Internal Components of KittyBot

103

With the bo-bot chassis sawed, we had a good-sized housing for the two servo

motors that could fit in the hamster ball. The chassis needed to be suspended in

the center of the hamster ball with the servos attached to the opposite ends of the

inside of the ball. Our quick solution to this was to drill holes into the bo-bots wheels

and align them with holes drilled in the hamster ball. We would then insert a screw

through the holes attaching the wheels to the hamster ball. A picture of the

prototype at this stage is shown in Figure 8-2.

Figure 8-2: Chassis first attached to inside of hamster ball

With the chassis intact the microcontroller, breadboard, and battery pack needed

to be placed inside the ball as well. The quick solution to firmly holding these

components was rubberbands. In order to assembly the prototype for operation

the code needed to be modified. The program was set to delay for one minute.
This provided enough time to turn on the battery, reassemble the prototype, and

place it on the floor in a ready position. After the minute delay, the servo motors

kick in and rotate forward for another minute. This causes the ball to move. Finally,
the servos are “detached” in the code, causing the system to stop. Below is a

picture of the prototype at this stage (Figure 8-3).

104

Figure 8-3 Prototype with electronics strapped to chassis

8.2 Design considerations derived from
prototyping
Based on our prototyping approach, new design options needed to be considered.
With the prototype displayed in Figure 8-3, the ball is able to roll due to the servos

turning. Both servos turn forward, rotating the ball, however when the ball turns

the center chassis ends up sloping forward. The components strapped to the top

of the chassis combined with the torque of the wheels turning may cause the center

unit to tip over. As the servos continuously turn, the center eventually tilts back

upright just to move and fall back over again. Internally the center piece rocks back

and forth. The instability of the central unit causes the movements of the entire

system to be erratic. The system does not move straight or at a steady pace. When

the central unit tips over, the prototype is halted because the servo motors’ torque

is moving the central unit back upright instead of rotating the ball forward. When

the ball halts for that brief moment, it slumps over on one of its sides because the

combined torque of the servo motors that keep the ball rolling on its vertical center

axis stops momentarily. When the servos begin propelling the system forward

105

again, the ball is starting from a leaning position causing the ball to veer off in the

direction it was leaning. On one hand, this erratic, random movement is an

interesting prospect for playing with cats. The random movement could potentially

excite and entice the animals. Random movement patterns are desired for Kitty-

Bot, but the group would rather achieve this through algorithms programmed into

the microcontroller. The desired movement of Kitty-Bot is meant to be more

controlled, because of this the physical instability of the prototype needed to be

dealt with.

In order to stabilize the movement, the idea of a counterweight was introduced.
Inspired by the schematic of the Rotundus GroundBot, the idea was to hang a

weight under the central unit inside the ball. The weight should hang freely

underneath and not connect to or touch the bottom of the inside of the ball. The

free hanging weight should keep the central unit upright while the servos turn,
allowing for straighter, more controlled movement. The central unit, consisting of

the sawed bo-bot chassis, two servo motors, MSP430 microcontroller, breadboard

circuit, and battery pack, was weighed; it measured 308g. A calibration weight

weighing 500g (Figure 8-4) was tested first.

Figure 8-4 500g Calibration Weight

This weight was 2.5in tall. This made it worrisome as to whether it would fit inside

the prototype without touching the bottom. Upon inspection, the weight was able

to hang from the center chassis with just enough clearance. This weight however

proved to be too heavy for the motors to handle. A valuable lesson was learned

from this experiment. Weight is very important to consider. KittyBot needed to be

as light as possible to avoid the need for larger motors. This would also keep the

costs down and keep the overall size of KittyBot small enough to be acceptable as

a household item.

With the limited supplies of this earlier stage we decided to test further levels of

performance through programming. We decided to add turning to the prototype.
By making the left wheel stop and rotating the right, the torque from the right wheel

106

would cause the sphere to spin to the left. Pausing the left motor for about one to

three seconds should give enough time to cause a 90 degree left turn. The inverse

can be done to cause a right turn. We also programmed an about-face 180 degree

turn and a reverse movement. To reverse the angles of spin of the motors are

simply swapped causing the device to rolling in the opposite direction. Achieving

180 degree rotations are very similar to the 90 degree ones. The stopped motor

just needs to be paused for longer and the active motor should run longer. Three

to five seconds is enough to cause a complete about-face in the prototype. Figure

8-5 and Figure 8-6 show visual representations of the left and right rotations in 90

degree and 180 degree respectively. The views are from a top-down perspective.
The yellow line indicates the forward facing direction of the prototype and the red

arrows are the direction of rotation.

Figure 8-5: Visual Representation of 90 degree Left and Right Rotation

107

Figure 8-6: Visual Representation of 180 degree Left and Right Rotation

Figure 8-7 will provide a more detailed look at the movements.

Action Turning Angle
(in degrees)

Left Wheel
Direction

Right Wheel
Direction

Move Forward 0 Clockwise Clockwise

Move Backward 0 Counterclockwise Counterclockwise

Turn Left 90 Stopped Clockwise

Turn Right 90 Clockwise Stopped

About-face
Clockwise

180 Clockwise Stopped

About-face
Counterclockwise

180 Stopped Clockwise

Figure 8-7: Movement Details

8.3 Breadboarding

A good practice for testing and prototyping is to take notes of observations and

data so that if a problem occurs, our team can go back and resolve it quickly. Using

breadboard for prototyping allows the team the flexibility to swap resistors and

other components in and out on the fly. It is smart to prototype this way because it

allows the opportunity to make mistakes and learn from them before investing in a

PCB. Of course, our final design will use a custom-made PCB tailored to the

specifications of our project because it is more reliable and practical.

Before a resistor is placed on a breadboard, our team should ensure that the

resistance value is determined by an online resistor calculator. If a component is

a surface mount device (SMD) that has pins sticking out of its sides, then alligator

clip shall be used to connect it with other components.

Using a multimeter and we can measure the amount of current drawn to the servos
in the presence of no load and full load to understand how much the practical

108

values deviate from datasheet values. We must make sure that the full load does

not draw more current than the battery pack can supply. In case it does, we can

replace it with another battery pack that can support higher current draw. The

group will power the motors using a power supply in the lab before actually testing

with a battery pack. It is best to set the current as low as possible then verify that

the motors draw the right amount of current before slowly increasing the current.

Measuring the input and output voltage as well as the input and output current of
the voltage regulator, we can then calculate the wasted power using Equation 8-

1. If the power loss is within 1 watt, then no heat sink is required. If a linear

regulator wastes more than 1 watt of power, then it should be replaced by a

switching regulator.

Wasted power = (input voltage – output voltage) x output current (8-1)

Next, we calculate the voltage regulator’s efficiency based on Equation 8-2,

Efficiency = (output power/input power) × 100 = [(output current × output

voltage) / (input current × input voltage)] × 100 (8-2)

8.4 Conclusions reached

Upon observing the full movement capabilities, we programmed into the prototype,
we decided we liked the movement. The movement was originally thought to be

too unstable and erratic. The turning protocols programmed into the prototype

provided an adequate degree of mobility. This dramatically helped us in

determining if we wanted to pursue the spherical design fully. It is a design that

can facilitate all of our requirements. The plastic outer shell is durable enough to

withstand rough play from cats. It houses all the sensitive electronics inside behind

a scratch resistant shell. Because it is a sphere even if it is turned over or tossed

around it can still roll.

109

9 Administrative Content

9.1 Team Management
We developed a timeline for our periodic meetings throughout the semester once

we decided on what wanted to do for our project. We generally try to meet up at

least once every week to report to other members what we are currently working

on, share some of the things we learn and new ideas that we may have. We also

assign new tasks for the upcoming weeks. Our goal is to keep the project simple

at first. As we research more, we’ll add improvements to the robot and change our

objectives if necessary.

The first two months is for research and prototyping. The last two months is for

prototyping and testing as shown in Figure 10-1a. The research is very important

so we knew we had to spend a lot of time on it. We have to write a report of 120

pages so each of us will write 30 pages. As we research, we write down what we

learn in the report. We found out that writing everything down after all the research

is done will take more time. The majority of the second semester of Senior Design

will be spent purchasing components, designing the PCB and testing our

algorithm. We know that it is important to order parts early and design a few

working PCBs so that when the deadline approaches we can focus most of our

attention testing our algorithm and troubleshooting. We are aware that system

integration is important so time will be spent on that to make sure everything is

running smoothly. When we created the table of contents, we also assigned areas

of specialty to each member using a Divide and Conquer approach, as shown in

Figure 10-2. We also collaborated on some parts of the project as well.

May June July August
Documentation

Research
 Prototyping

Figure 10-1a: Project Timeline for SD1

August September October November December
Purchase Components

PCB Layout, Design and Soldering
 Algorithm Testing and Troubleshooting
 Final System Integration and

Testing

Figure 10-1b: Project Timeline for SD2

110

Divide and Conquer

Bryen Buie Carlos Garzon Stephen Barth Trenton
Williams

Communication
protocols

Microcontrollers Motors System
Protection

System
Integration

Movement
Algorithms

Sensors PCB Research

Data processing Pseudocode Communication
Hardware

Schematic
Design

PCB Design
Circuit troubleshooting

Code testing
Error testing

Bill of materials

Figure 10-2: Divide and Conquer

9.2 Project Milestones
Most of us are pretty new to this project since we did not have any experience in

robotics. Ideally, we aim to prototype and test in the second half of this semester.
We overestimate the time needed to complete each task so that if an unexpected

problem comes up, we still have enough time to fix. However, 75% of the time is

already dedicated to research. We spend so much time on research because not

all information we read about is related to what we are working on. Sometimes

when we are building a part of the robot, we have to go back and research for

more information.

While doing our own research, we have to keep in mind the other members’

research too. For instance, if one member works on protection circuits and the

other two are working on sensors and the microcontroller, the first member has to

keep in mind of the specifications of the sensors and microcontroller. The research

part is very crucial. It eventually determines how our product will turn out. One

wrong step can lead to a series of problems in the future. Therefore, we pay very

particular attention to our research. Initially, we wanted to finish the research part

as soon as possible so that we have more time on the designing and prototyping.
However, we are slightly behind schedule. Nevertheless, we all have solid

understanding of where we are heading so we can be on track pretty quickly. If
necessary, we’ll spend more time on the project to speed things up. To increase

productivity, we decide that each member should specialize in certain topics. This

method saves time and prevents confusion due to overloaded information. Then

we share what we learn with each other. However, we’ll collaborate on the

designing, testing, and coding because they are too important to leave to one

member.

111

After we have finished a decent amount of research, we set out to acquire the

components. We are looking for two factors: price and quality. For the sensors,
the price is not too expensive so we should favor accuracy over price. For the

microcontroller, we have to consider the price and the functionality such as the

number of ports, the memory, and the processing power. Also, we need to know

what kind of communication technology is compatible with that processor or

launchpad. So far, we have acquired some of the material and just started with

prototyping. Connecting the components together won’t take too much time but

getting them to work will take a lot of time. Interfacing the microcontroller with the

sensors and motors are important to the robot’s proper functionality. Therefore,
this process will take a significant amount of time. We expect it to drag on for a few

months. The milestone of the group for both semesters is as follows:

Senior Design I:

 Week of May 30 - Decide on Initial Project Idea

 Week of June 06 - Research sensors, microcontrollers, motors and other

electronic parts.
 Week of June 13 - Design protective circuits & power supply (Hardware

Team)
 Week of June 20 - Design protective casing/outer shell (Hardware Team)

 Week of June 27 - Design, simulate, & capture schematics (Software

Team)
 Week of July 11 - Research and design algorithms (Software Team)
 Week of July 18 - Final Report
 Week of July 25 - Final Report
 Week of August 01 - Continue modifying and improving algorithm

(Software Team)
 Week of August 08 - Continue modifying and improving algorithm

(Software Team)

112

Senior Design II:

 Week of August 15 - Purchase hardware components (Hardware Team)

 Week of August 22 - Build chassis, connect motors (Hardware Team)

 Week of August 29 - Build pcb and other protective circuits (Hardware
Team)

 Week of Sept 05 - Build protective casing and outer shell components
(Hardware Team)

 Week of Sept 12 - Build power supply (Hardware Team)
 Week of Sept 19 - Interface components and test for proper connectivity

(Software Team)

 Week of Sept 26 - Test sensors, collect and graph data (Software Team)

 Week of Oct 03 - Test and modify algorithm (Software Team)
 Week of Oct 10 - Test and modify algorithm (Software Team)
 Week of Oct 17 - Test and modify algorithm (Software Team)

 Week of Oct 24 - Build test area for kitten to play in.
 Week of Oct 31 - Test durability of play area and device with kitten
 Week of Nov 7 - Reinforce outer shell and play area if any weak spots are

discovered (Hardware Team)
 Week of Nov 14 - Make sure the project meets expectations and is

working as intended
 Week of Nov 21 - Make sure the project meets expectations and is

working as intended
 Week of Nov 28 - Dec 5 - Improve and fix any problems or issues before

presentation

9.3 Budget and Financing
As stated in the goals, the project’s cost should be low, we estimate it should be

around $200 but no more than $300. Texas Instruments’ distributors Digi-key and

Mouser have search filters that are simpler and easier to use than that of TI.
Besides, the distributors allow buyers to select the mounting style which is not

offered on Texas Instruments’ website. The team will utilize the distributors’ search

filter to find TI products. We will also try to use websites such as Amazon.com with

an Amazon Prime account and Ebay to order certain parts because we can get
relatively fast shipping times and not have to wait two – three weeks for shipping

when ordering from companies such as Digi-key.

113

Since there might be a chance that a component might become defective or break

during testing and prototyping, electronic components will be purchased in multiple

quantities. Nonetheless, the group should keep the quantity at a reasonable level,
which is no more than 10, since it may be expensive to buy at a large amount.
Besides, the team might not use the leftovers after Senior Design II. In order to

save on shipping costs, our team will try to purchase only from a few sellers. Our

team will first look for the items at local stores where we can pick up. If the items

are not available locally, then we will look for them in online stores.

Four Rayovac rechargeable AA NiMH batteries may be purchased as a backup
power supply besides the Energizer Lithium-ion batteries and charger combo

which will be used primarily for testing. The Rayovac batteries work in all chargers

so they can be charged using the Energizer charger, which is also advertised to

be compatible with rechargeable AA and AA NiMH batteries. The Rayovac

batteries are pre-charged so they are ready to use at any critical time when we

need it.

Chassis is usually sold as a kit that includes wheels, motors, and battery holder as

well as mounting parts. It may be more convenient and cheaper to purchase the

kit than to buy the parts in the kit separately. However, a kit offers limited options.
We have little choices in selecting the motors’ size and type or dimensions and

material of the chassis frame and wheels. Wheels can be purchased or acquired

from old toys.

Figure 9-3 will list all the components needed for building the robot. The figure

does not include the shipping fees. Therefore, the actual cost may exceed the total

in the figure. All of the cost comes from the hardware. The software part is free.
The list is subject to change in the future depending on the team’s budget and

when parts are ordered. Some materials may not be purchased if the team deems

them unimportant to the success of the project or they can be substituted by

another material.

114

Part Cost

PCB $50

Microcontroller $40

Casing $20

Camera $50

Proximity Sensors $24

Power supply components and batteries $30

Chassi to hold system $10

Wheels $20

Total $244

Figure 9-3: Bill of Materials

115

10 Conclusion

The Kittybot consists of a robot that is designed to play with pets but it is mainly

focused on kittens/cats. Group 5 has decided to work on a project that would not

only challenge us, but also be useful and fun. Cats are often times curious and

playful creatures. Their interactions with the robot would be entertaining for both

the cats and their owners. The robot will be able to autonomously roam about an

indoor space. It will also be able to sense its surrounds so it will not run into people,
pets, or objects like walls, tables, couches, etc. Our goal is to create a robot that

is small, cheap and power efficient.

Since the primary target for the robot is cats, it will be designed with this animal in

mind. It will be of a small enough size (no more than 10 inches in height) as to be

an appropriately-sized plaything for the average household cat. The robot will need

to be durable enough to withstand rough contact from the animal. Cats have sharp

claws and teeth, so the outer shell of Kitty-Bot must be scratch resistant, and the

sensitive components such as microcontrollers, printed circuit boards (PCB), and

wiring will need to be housed in durable compartments. Kitty-Bot may potentially

be turned over while a cat is playing with it. If this happens, Kitty-Bot will be able

to set itself upright again. This will be achieved by Kitty-Bot’s spherical design. It
will, in essence, be a “smart ball”, an autonomous, self-rolling sphere.

Mobility is achieved through mechanisms of motors and autonomy is accomplished
by the combination of custom codes designed by the team and pre-established

software libraries. During Senior Design II, we expect to spend a lot of time-

troubleshooting hardware problems and coding/software issues that may arise.
Senior Design I is the research, design and prototyping phase. Since we are only

prototyping in Senior Design I, some design areas will be lacking at first but will

come full circle in Senior Design II.

This report is not meant to be followed strictly but to serve as a guideline for our

design decisions and considerations when creating Kittybot. Adjustments and

improvements will be made if a design, prototyping or testing is deemed inefficient,

too costly or simply unfit for our goals. We have faced many obstacles in

completing this report but we overcame them through our teamwork, perseverance

and divide and conquer approach.

116

Appendices

Appendix A - Copyright Permissions
Sparkfun.com

nssn.org (standards)

Ti.com

Hexbug.com

Rotundus.se

Digikey.com

Anaren.com

https://www.arduino.cc/en/Tutorial/Knock

https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/

Appendix B – Code Snippets

Prototype Bo-Bot code snippet

http://www.nssn.org/
https://www.arduino.cc/en/Tutorial/Knock
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/

117

Prototype Code with Delay

	1 Executive Summary
	2 Project Description
	2.1 Project Motivation and Goals
	2.2 Objectives
	2.3 Requirements Specifications
	2.3.1 Structural Requirements
	2.3.2 Performance Requirements

	3 Research related to Project Definition
	3.1 Existing Similar Projects and Products
	3.1.1 Autonomous Ball Collector
	3.1.2 Puppy Pal
	3.1.3 Hexbug
	3.1.4 Rotundus GroundBot
	3.1.5 Sphero
	3.1.6 Remote Controlled Basketball Robot
	3.1.7 Product Research Conclusions

	3.2 Relevant Technologies
	3.2.1 Motor
	3.2.2 Microcontroller
	3.2.3 Power Supply
	3.2.4 Protection Circuits
	3.2.5 Over-current Protection

	3.3 Strategic Components
	3.3.1 Communication Hardware Considerations
	Remote Control
	Infrared Communication
	RF Communication
	Bluetooth Communication
	Decision on Which Type of Communication to Use

	3.3.2 Sensors
	3.3.3 Voltage Regulation
	3.3.4 Gyroscope

	3.4 Possible Architectures and Related Diagrams
	3.4.1 Design Choice: Spherical vs. Dual Motor
	3.4.2 PCB, Sensor, and Power of Spherical Design
	3.4.3 Dual Hemisphere Structure
	3.4.4 The Containers’ Battery Pack and PCB Design
	3.4.5 3D Modeling to consider PCB Implications
	3.4.6 Incorporating Useful parts of unused rapid prototype to our new design.
	3.4.7 Why we chose the Spherical Design over the Cylindrical Design.

	4 Identification and Review of Applicable Standards
	4.1 Research and Identification of Standards
	4.1.1 Research on Standards
	4.1.2 Identification of Applicable Standards

	4.2 Design Impact of Relevant Standards

	5 Realistic Design Constraints
	5.1 Economic and Time Constraints
	5.2 Environmental, Social, and Political Constraints
	5.3 Ethical, Health, and Safety Constraints
	5.4 Manufacturability and Sustainability Constraints

	6 Hardware Design
	6.1 Voltage Regulation
	6.1.1 Linear Regulators
	6.1.2 Switching Regulator
	6.1.3 Regulator Trade-offs

	6.2 Amplifier Circuit Design
	6.3 Embedded System
	6.3.1 Microcontroller

	6.4 Sensors
	6.4.1 GP2Y0A41SK0F
	6.4.2 PING)))
	6.4.3 Piezo Element

	6.5 Printed Circuit Board (PCB) Design
	6.5.1 HC-05 Bluetooth Module Layout
	6.5.2 Programming Microcontroller on PCB
	6.5.3 Soldering

	7 Software Design
	7.1 IDE Options
	7.1.1 Potential IDE and our Choice of Energia

	7.2 Development Structure
	7.2.1 Git Repositories over SVN
	7.2.2 Agile over Waterfall

	8 Project Prototype Testing
	8.1 Rapid prototyping approach
	8.2 Design considerations derived from prototyping
	8.3 Breadboarding
	8.4 Conclusions reached

	9 Administrative Content
	9.1 Team Management
	9.2 Project Milestones
	9.3 Budget and Financing

	10 Conclusion
	Appendices
	Appendix A - Copyright Permissions
	Appendix B – Code Snippets

