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1  Executive Summary    
The purpose of this document is to detail the design and development of the project 
by Group 5 of Senior Design 1 (EEL 4914) undergraduate course at the University 

of Central Florida (UCF) during the Summer 2016 semester. For the course, 
Electrical and Computer Engineering students of the University of Central must 

join together in teams to conceptualize, design, and finally, build a system or 

device that displays the engineering knowledge and skills we have gained. This 

document will also discuss the research that went into the project, review the 

applicable standards and constraints, detail the hardware and software design 

decisions, as well as detail the prototyping process. 
 

Group 5 has decided to work on a project that would not only challenge us, but 

also be useful and fun. The project will be a robotic device whose primary function 

is to interact and play with cats. Cats are often times curious and playful creatures. 
Their interactions with the robot would be entertaining for both the cats and their 

owners. The robot, affectionately dubbed “Kitty-Bot”, will function as an advanced 

robotic toy for cats. It will be able to autonomously roam about an indoor space. It 
will also be able to sense its surrounds so it will not run into people, pets, or objects 

like walls, tables, couches, etc. 
 

Since the primary target for the robot is cats, it will be designed with this animal in 

mind. It will be of a small enough size (no more than 10 inches in height) as to be 

an appropriately-sized plaything for the average household cat. The robot will need 

to be durable enough to withstand rough contact from the animal. Cats have sharp 

claws and teeth, so the outer shell of Kitty-Bot must be scratch resistant, and the 

sensitive components such as microcontrollers, printed circuit boards (PCB), and 

wiring will need to be housed in durable compartments. Kitty-Bot may potentially 

be turned over while a cat is playing with it. If this happens, Kitty-Bot will be able 

to set itself upright again. This will be achieved by Kitty-Bot’s spherical design. It 
will, in essence, be a “smart ball”, an autonomous, self-rolling sphere. 
 
The project’s nature of being a device for pets means that it will interact with living 

beings. Because of this safety is of the upmost importance. Group 5 will design 

Kitty-Bot to not cause physical harm to pets or their owners. It will be an indoor 

device as well, so very high-power will be avoided to lessen the chances of 

physical harm and damage to property.  
 

Throughout this document we will explore the potential capabilities of KittyBot.  
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2  Project Description 

2.1 Project Motivation and Goals  
Every six in 10 Americans is a pet owner. Census done by the Humane Society of 

the United States shows that there are 86.4 million cats in households around the 

United States. That alone is a large population, but combined with the hundreds 

of millions of cats living in households across the global the numbers become 

staggering. Pet owners love their animals, and while they strive to meet their pets’ 

basic needs of food, shelter, and health, they also want to fulfill the pets desire for 

play. A variety of pet toys exist, but with such a large population that is capable of 

a sustainable market, technology will continue to be pushed forward in said 

market.   
 

Cats can be very playful creatures. Even though they are domesticated animals, 
they still display natural predatory instincts that often manifest through play. They 

run, they climb, they jump, chase, pounce, and leap, whether it be outside or all 

throughout their owner’s home. Cats love the thrill of the chase. They will chase 

objects and run from them. KittyBot will be a mobile device. This mobility will 

engage the animal to play. 
 

Our group consists of two electrical engineers and two computer engineers. Our 

electrical engineers will give KittyBot life through designing circuits and power 

systems, while our computer engineers will give KittyBot brains by developing the 

programs and algorithms that will influence KittyBot’s behavior. 

2.2 Objectives  

The overall goal of this project is to produce a robotic pet toy. The main function 

of the robot will be to interact with pets, mainly cats. More specific goals for the 

robot include: 
 

 Durability: This project will need to be durable. The robot is intended to 

interact with animals which can be, to say the least, unpredictable. Outer 

casings of aluminum or plastic should have sufficient durability to withstand 

even the roughest contact with a cat. The main durability concern is the 

electronic components of the robot. Components such as breadboard 

circuits, printed circuit boards, and microcontrollers can be severely 

damaged by cats clawing and biting them. These components need to be 

protected.  
 



3 
 

 Maneuverability: The robot will need a concern degree of maneuverability. 
The robot will primarily operate in an indoor space. The robot will move 

across common household flooring surfaces such as wood, tile, and low 

carpet.  
 

 Size: The robot is meant for indoor use with household cats. Because of 

this, the size of the project has to be kept to dimensions reasonable for this 

sort of environment. The robot should not exceed 60 cubic centimeters in 

overall size. 

2.3 Requirements Specifications  

This section will go over the requirement specifications of this project. These 

requirements detail what KittyBot needs to be capable of in order to be 

successful. The appropriate values and constraints will be detailed for each 

requirement in order to properly access said requirement. 
 

2.3.1 Structural Requirements  
This section details the requirements and specifications regarding the structural 

and physical aspects of the project. The size and weight of every element must be 

carefully consider in order to keep within the desired small form factor. A key 

component is the motors. The motor should be small enough to within a central 

compartment or chassis. They should also not be too heavy. 
 

 Next is the chassis itself. The principle design for this project is a spherical robot 

design. This means it will need an inner chassis to which the motors and all other 

essential electronics will be mounted, as well as an outer spherical shell. The outer 

shell will determine the overall size of KittyBot, but it will also dictate what the sizes 

of all the other components need to be because they all have to fit within the outer 

shell in a reasonable fashion. The inner chassis should be the second largest 

single component of KittyBot, and will have to be small enough to fit inside the 

outer spherical shell, but large enough to hold all the electronic components. In 

keeping with the interest of maintaining as low a weight as possible this piece 

should be made from a lightweight material. Two common structural materials are 

metal and plastic. Both are durable enough for this project and malleable enough 

to form a shape small enough for this component. A metal like aluminum is a great 

choice of metal for example. The advantage of plastic however is that will metals 

like aluminum are more durable and the chances of finding a pre-made piece that 
suits the projects needs and specifications are certainly much higher than other 



4 
 

less adequate materials, it is harder to alter metal in general than it is plastic 

because it is stronger. In all likelihood we won’t find a pre-made piece that perfectly 

fits our needs and it would need alterations of some kind. That would require 

sawing, shaving, and machining relatively small parts; a bothersome task. Plastics 

have the advantage of 3D printing. With 3D printing we won’t have to worry about 

alterations because we can create fully customized pieces to suit our needs. A 

common 3D printed polymer is acrylonitrile butadiene styrene (ABS). This polymer 

is sufficient in providing the level of durable needed for the inner chassis, but more 

important it will allow us to print a piece in the desired shape.  
 

Probably the heaviest single component is the power supply. This project is a 

mobile platform so it will need to run off battery power. Batteries can come in pre-

assembled packs or in single cells. The single cells need to be housed in a battery 

holder.   
  

Specification Value Constraint/Comment 

Maximum Weight 1 kg This is including all 
components and 
accessories assembled 
into the final product 

Maximum Overall Size 60 cm long 
30 cm wide 

The maximum size the 
group deemed acceptable 
for a common household   

 

Figure 2.3.1: Overall Structural Requirements 

 
 

Specification Value Constraint/Comment 

Maximum Weight 60 g The weight of a single 
motor should not exceed 
this in order to keep 
overall weight down 

Maximum Overall Size 7 cm long 
3 cm wide 
3 cm tall 

The profile of an individual 
has to not exceed this in 
order to fit the center 
chassis   

 

Figure 2.3.2: Motor Structural Requirements 

 
 
 

Specification Value Constraint/Comment 
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Maximum Weight 75 kg Material could be metal or 
plastic to give desired 
function and weight 

Maximum Overall Size 10 cm long 
10 cm wide 
10 cm tall 

The maximum size to 
keep the inside of the 
sphere reasonable   

 

Figure 2.3.3: Inner Chassis Structural Requirements 

 
 

Specification Value Constraint/Comment 

Maximum Weight 200 kg Battery pack may reach 
this level of weight if an 
external battery holder 
with wire connectors and 
on/off switch is used 

Maximum Overall Size 7 cm long 
7 cm wide 

Overall size of battery 
pack   

 

Figure 2.3.4: Power Supply Structural Requirements 

 
 
 

2.3.2 Performance Requirements  
This section details the requirements and specifications pertaining to the 

performance aspects of the project. A major determining factor in the systems 

performance is the motor. Since a small motor is preferable we can use a lower 

current. The speed of the motors does not need to be that fast since this is an 

indoor pet toy. The torque just needs to be high enough to carry the overall load 

of the entire structure. This project will operate at a relatively low power. To this 

end, the voltage will be low enough to facilitate this, but not be too low as to where 

the torque would fall to unacceptable levels.  
 

Specification Value Constraint/Comment 

Minimum Battery Life 60 minutes On a full charge, the 

system should be able to 
operate for this long 

Minimum Speed  60 cm long 
30 cm wide 

The maximum size the 
group deemed acceptable 
for a common household   

Maximum Speed 5 mph In order to maintain a safe 

operating speed, this 
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speed should not be 
exceeded 

Minimum Speed 1 mph The device should at the 
very least reach these 
speeds 

Figure 2.3.5: Overall Performance Requirements 

 

Specification Value Constraint/Comment 

Minimum Torque 2 kg-cm This is what is needed to 
move the system 

Maximum Torque  10 kg-cm This amount of torque is 
adequate for the scope of 

the project, anymore 

could possibly be 
dangerous   

Minimum Speed 30 rpm This is the speed (in 
rotations per minute) a 
single motor needs to be 
able to reach 

Maximum Speed 50 rpm This is an adequate 

speed for the project. 
Spinning any faster is 
unnecessary and 
potentially dangerous 

Minimum Voltage 4 V Baseline voltage required 
for operation 

Maximum Voltage 6 V The most needed to keep 
the project in a low 
voltage range 

Figure 2.3.6: Motor Performance Requirements 

3  Research related to Project Definition 
The following section will detail the research performed for the development of 

Kitty-Bot. Once the initial concept, goals and requirements were all created the 

research process of Kitty-Bot could begin. The process began with searching for 

similar projects and products that already exist. Since Kitty-Bot is intended to be a 

cat toy, robotic pet toys were some of the first products looked at. One of the 

principle overall designs of Kitty-Bot is to make it spherical in shape. With that in 

mind, many spherical robot projects and toys were researched. Information 

gathered from these existing devices helped to focus the design of Kitty-Bot. Next, 
the technologies of the individual components that will make up Kitty-Bot needed 

to be researched. These components are the building blocks of Kitty-Bot, so the 

attributes of different technologies needed to be accessed in order to determine 
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what would best fulfill the requirements of Kitty-Bot, and what would best work 

together to create a cohesive whole in the final product. 

3.1 Existing Similar Projects and Products  

3.1.1 Autonomous Ball Collector 
This project, the autonomous ball collector, is from an Engineering team of 

students here at University of Central Florida. The idea was to make an 

autonomous ground bot that would detect loose balls and automatically scoop 

them to make it easier for tennis players to deal with picking up balls.  The plastic 

casing holds the tennis balls and protects the circuitry as seen below in Figure 

3.1.1.  The plastic is durable enough to withstand oncoming tennis balls.  KittyBot 

also needs a strong plastic casing to withstand cats playing with it.  Another 

similarity is that KittyBot will be fully autonomous as well which made this project 

a good reference for general robotics.   

 
Figure 3.1.1: Autonomous Ball Collector 

 

The Autonomous Ball Collector was made with mindset to convenience the user.  
The user turns it on and lets the robot do the work while they play tennis.  KittyBot 

will be similar in the sense that a user turns it on and will be something a cat can 

play with, without the user having to step in and help it get unstuck from corners 

of rooms.  
 

The project’s software interface is an AVR programmer made by Atmel.  This Atmel 

chip is a good reference to look at because it is relatively cheap and easy to use 

which are good specifications for our KittyBot project. The chip utilizes a flash 

memory and will execute the program that is written inside. Their chip runs at the 

speed about 10MHz with built-in 1KB of RAM and 10KB of storage. The idea is to 

consume the least amount of energy as possible because tennis matches can last 

over an hour which was one specification this group set out to do. 
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3.1.2 Puppy Pal 
The Puppy Pal is a senior design project done in 2014 by project members Scott 

Smith, Afzal Schafi, Anson Contrares, and Cameron Riesen.  Their project is 

similar to the KittyBot in the sense that it was made to be an interactive toy with 

animals.  Shown in Figure 3.1.2, they have a very similar idea with the round 

casing to one of the design considerations for KittyBot.  The Puppy Pal was created 

to have a user interface to control the ball with an Android device.  The creators 

wanted to add additional components to the inside like LEDs and an amp.  Flashing 

lights and random sounds were creative ideas in coming up with other ways to 

attract an animal’s attention to play.   

 
Figure 3.1.2: Puppy Pal 

 
 

The intended function of KittyBot is to be a robotic cat toy, so we looked at similar 

products that are current in the market. A common type of product that relates to 

our project is a motorized chase ball. This type of product is made and sold by 

several companies. The product mainly consists of a battery-powered motor 

encased in a plastic ball that can be separated in half down the middle. Attached 

to the outside of the ball is usually a tail coated in synthetic fur so that it resembles 

a small furry animal. Once turned on, the motor inside the ball rotates causing the 

ball to begin rolling on its own. As the ball rolls the tail flips and flops around along 

with it. The rolling ball along with the erratic movement of the tail are meant to 

engage the cat in play. As stated prior these are common products, but we have 

also researched a few more specific products developed by their own companies. 
Here is a more in-depth look at them.   
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3.1.3 Hexbug 
 

Hexbug is a company that sells toys and robots ranging from small R/C toys aimed 

at children to larger, more complex robots for builders and hobbyists. They also 

spot a line of electronic cat toys. They currently have a few designs. First is the 

Hexbug Nano Robotic Cat toy which is a small robot designed to look like an insect. 
The Nano has five legs on each side and scurries around, mimicking a bug’s 

movement. There is also a furry tail attached by a string to the back of the Nano 

to entice cats to chase it. Hexbug’s other design is the Hexbug Mouse Robotic Cat 

toy. This product is a bit bigger than the Nano cat toy and as its name would 

suggest it is decorated to look like a mouse. This toy comes in two variants, a 

remote-controlled version and a fully robotic version. The products are shown in 

Figure 3.1.3. 
 
 

 

Figure 3.1.3: Hexbug Nano and Hexbug Mouse 

 

(From hexbug.com) 

 

3.1.4 Rotundus GroundBot 
Since our robot has a spherical design, we researched other spherical robots. One 

product we looked at was the Rotundus GroundBot. GroundBot is a robotic mobile 

platform with a spherical shape and two cameras on the sides of the sphere. It is 

primarily a mobile surveillance platform intended for use at large secure locations 

such as airports, warehouses, harbors, and power plants. The spherical and 

robust design allows for GroundBot to better traverse the rough terrain some of 

these locations can have. GroundBot can be remote controlled or set to a path 



10 
 

using GPS. Internally the GroundBot has a pendulum attached to a motor. The 

motor moves the pendulum arm. When the pendulum leans in a certain direction 

the center of gravity of the sphere shifts. This causes the sphere to roll in that 

direction. The motor keeps the pendulum arm up in a certain direction which allows 

for continuous movement. Figure 3.1.4 shows the GroundBot and the internal 

schematic of how the pendulum arm mechanism works.  
 
 

  
Figure 3-4: Rotundus GroundBot and Internal Schematic 

3.1.5 Sphero 
Sphero is a robotic ball toy. Owners control the toy’s motion and the LED color 

displayed with a smartphone application. Sphero uses Bluetooth communication 

to receive its commands.  In addition to the basic control app, Sphero’s creators 

developed a series of programming environments to encourage Sphero owners to 

be creative and make their own apps. Some of the apps let the user create a path 

for Sphero to follow.  To track movement, a three-axis accelerometer and a 

gyroscope were installed.  One impressive feature is Sphero’s ability to charge 

wirelessly.   

KittyBot is heavily leaning towards the spherical shape design.  The great variety 

of apps developed for Sphero shows that there are many applications for this type 

of toy. At first thinking about how the KittyBot will function and move autonomously 

was difficult to picture.  Sphero has given us some guidance towards the first step 

in making KittyBot autonomous. Figure 3.1.5 shows the Sphero. 
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Figure 3.1.5: Sphero 

(From www.sphero.com) 

 

Another fun product on the market is the Sphero 2.0, made by the company of the 

same name. Sphero 2.0 is their latest model and it is a small spherical robot, about 

7.5cm in diameter. It is incased in a sealed plastic shell. This makes Sphero 

waterproof, giving it the ability to traverse bodies of water. The highlight feature of 

this product however, is its ability to work in tandem with smartphones. It connects 

with smartphones through Bluetooth allowing user to interact with Sphero through 

a plethora of smartphone applications available on digital marketplaces. These 

range from changing the lighting of Sphero’s LEDs, directly controlling Sphero’s 

movements, or pre-programming directions for Sphero to follow. A scaled up 

version of this toy can be seen in BB-8, the android character featured in the 2015 

film Star Wars: The Force Awakens. Sphero is responsible for both the robot used 

in the films and the mass-produced toy versions of BB-8. BB-8 has a stationery 

head that sits on top of the rolling ball as it moves. This is because the ball 

proportion has an internal gyroscope. The gyroscope helps in maintaining stability 

in the ball as it moves.  

3.1.6 Remote Controlled Basketball Robot 
In this project, a basketball moves along the ground based on input from a two-

channel radio and receiver. Inside of the basketball, a hamster ball holds the 

chassis. The sides of the chassis are attached to the outside of the ball. This holds 

the chassis in the middle of the ball. A drive motor, servo, and steering arm are 

used for drive and steering. A gyroscope was also included.  

The bottom of the steering arm holds the batteries and weights. With enough 

weight, the chassis is kept parallel to the ground despite the ball’s motion. As the 

motor and servo rotate the steering arm in the desired direction, the rest of the ball 
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is pulled forward to keep up with the new center of mass. The gyro senses the 

changes in rotation, allowing for control. Figure 3.1.6 shows an internal schematic 

of the project. 

 

Figure 3.1.6: Remote-Controlled Basketball Schematic 

This robot’s mechanical system could be a straight-forward solution to the 

mechanical design of KittyBot. The main obstacles of this design are the weight 

used, the construction or purchase of the chassis, and control. The use of only a 

gyroscope in this project left much to be desired in precision. If KittyBot had used 

this method, it would also include an accelerometer to achieve a more clear-cut 

sense of maneuverability than the basketball robot. 

 

3.1.7 Product Research Conclusions  
The myriad of products researched gave great insights into the design of Kitty-Bot. 
After researching these robots and toys, the spherical design became much more 

preferred. Comparing the main two spherical products researched, Sphero and 

GroundBot, elements of both provide good inspiration. When it comes to their 

internal movements designs, Groundout’s pendulum arm design is an elegant 

solution to spherical movement. Sphero’s innards are more akin to a scooter 

stuffed in a ball. Rotating wheels and gear shafts of the internal car-like unit move 

inside the spherical casing causing it to roll. Sphero’s design falls more in line with 

the desired design of Kitty-Bot. It is a toy, which means it is a smaller scale project. 
GroundBot is a much larger orb-like robot than Sphero and the intended size of 

Kitty-Bot. It is meant to be an all-terrain robot that can cover large distances. 
Sphero and Kitty-Bot are meant for use in the small controlled environments of 

homes. Sphero’s internal car design is more applicable in this smaller scale than 

GroundBot’s pendulum. 
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As a pet toy, Hexbug’s line of toy robots greatly inspire Kitty-Bot. These products 

give insight into making the devices appealing and eye-catching to pets. Things 

like the bright colors, lights, and sounds all help to entice the animals to interact 

with the device. The Puppy Pal greatly resembles how KittyBot is intended to look. 
The internal mechanisms are very different from what will be considered for 

KittyBot.     

3.2 Relevant Technologies  
The following section details the research of the relevant technologies to the 

primary components of Kitty-Bot. First will be a look at motors, which are 

foundational because they are the primary movers of the device. That will be 

followed by an in-depth look at microcontroller. The microcontroller’s importance 

is paramount because it will act as the “brain” of Kitty-Bot. It will direct all of Kitty-

Bot’s motions and actions. Lastly, power supply research will be examined. The 

power supply’s importance is obvious; it will give Kitty-Bot the power to function. 

3.2.1 Motor 
An essential piece of technology for this project is a motor. A motor will be needed 

to move the robot. A few different types of motors have been researched in order 

to determine which would be the best fit for the project. Some motor types under 

consideration are stepper motors, direct current (DC) motors, and servo motors.  
 

The stepper motor is a very precise motor. It can allow for sharp starting, stopping, 
and reversing. Stepper motors also tend to run cheaper than the other types of 

motors under consideration. There are several advantages that the stepper motor 

may provide KittyBot.  One advantage is that the stepper motor is extremely 

meticulous in calculating its motion.  The extreme accuracy of the stepper motor 

allows for immediate acceleration and deceleration, both forwards and backwards.  
The stepper motor provides a strong level of control to the user.  Another 

advantage of the stepper motor is that it is inexpensive when compared to the 

servo motor and the direct current motor.  However, there are certain drawbacks 

to the stepper motor. There are drawbacks to the stepper motor. Firstly, they are 

slow. They are also noisy. It could potentially scare animals with its excessive 

noise. The servo motor and the direct current motor both provided a higher rate of 

acceleration when compared to the stepper motor.  Our team felt that this may 

cause a problem if KittyBot was found being used in an outside environment.  
However, being that KittyBot is only meant for indoors, our team concluded that 

this drawback was not crucial to its success.  A drawback to the stepper motor that 

could hinder the usefulness of KittyBot was its noise level.  The stepper motor is 
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the loudest motor when compared to the other two, which might frighten the animal 

that is trying to play with the device.    
 

DC motors allow for higher speed continuous rotations. Such high speeds may be 

excessive for this project. KittyBot is meant to be an indoor cat toy, so very high 

speeds are unnecessary. Servo motors generally seem to be a happy medium 

between DC motors and stepper motors. They offer more precise movement than 

DC motors. They produce less noise than stepper motor and can reach higher 

speeds. A drawback of the servo motor is that it has a limited rotational range. This 

can be tuned however. The first characteristic our team noticed was that the servo 

motor was not as loud as the stepper motor.  The servo motor was also able to 

function at a faster speed than the stepper motor.  When it came to comparing the 

movement of the servo motor with the stepper motor, there was very little 

difference in timing.  The stepper motor proved to be more precise than the servo 

motor.  As a team, we concluded the difference to be trivial.  There was one 

disadvantage to the servo motor that was unnoted with the stepper motor: 

rotational range.  In the end, after researching whether or not our team could fix 

this flaw within KittyBot, we concluded that a simple tune-up would suffice. 
 

Lastly, our team analyzed the findings of the previous motors to those of the direct current 

motor.  The direct current motor was lower in volume when compared to the stepper 

motor, and was around the same decibel level when compared to the servo motor.  The 

direct current motor was the fastest motor out of all three motors.  Our team found that 

the major difference between the direct current motor and the other two motors was the 

precision in its movement.  The direct current motor was recognizably slower in its timing.   
 

Our team felt that accuracy in timing and detection was crucial to the success of 

the project.  Therefore, the direct current motor was eliminated as a possibility.  
When deciding between the stepper motor and the servo motor, our team decided 

that the servo motor provided a nice balance between precision and noise level.  
Although the stepper motor was slightly more accurate, we determined the 

miniscule difference to be negligible.  In the end, our team chose the Parallax 

Standard servo motor. 

3.2.2 Microcontroller 
The microcontroller is responsible for controlling the entire system. When selecting 

one factors such as processor speed, memory capacity, power consumption, and 

number of available ports must be considered. Besides the microcontroller’s 

specifications, its cost must also be taken into account. 
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A plethora of considerations came into play when deciding what microcontroller to 

use. This small computer will hold the processing power memory, programmable 

in and outputs and essentially be the brains of our entire system. Also, the 

microcontroller will be the base of what will eventually become our printed circuit 

board. Without this vital piece instructions cannot be compiled into an executable 

logic that will execute our algorithm. We were mindful of things but certain things 

were less important than others. For example, processing speed might be a vital 

nerve for a gigantic system. However, keeping in mind that our system will be 

relatively simple processing power will not be something that greatly consider. For 

the same reason, memory wasn’t something that was of grave importance. Power 

consumption on the other hand was a considered a pillar to our success. Our 

device does not have allot of breathing space to be abundant with space or energy. 
Being that everything has to fit into a spherical container we need the entire system 

to consume as little power as possible and also take up as little space as possible. 
The number of digital pins however was important for us and was a factor of 

importance for our consideration. Analog pins were not an important factor being 

that we don’t at this stage believe that we use the analog side. That being said 

having good analog to digital converters would be a useful tool to have in our back 

pocket should we need it. Lastly, how the output ports were organized for motors 

and what software we would consider to reconcile the two was of grave importance 

for us.   
 

Many different microcontrollers were researched. The following figures will list the 

microcontrollers as well as their pros and cons. 
 

Arduino UNO Rev3: $25 

Pros Cons 

● Cheaply Priced 
● Native IDE 

● Programmable in C, C++ 

● Slow Clock - 16 MHz 

 

Figure 3.2.1: Arduino UNO Rev3 Pros and Cons Table 
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BASIC Stamp 2: $49 

Pros Cons 

● Small Physical Size 
● Low Power Consumption 
● Native IDE 

● Programmable in C, C++ 

● PBASIC Language 

● Slow Clock - 20 MHz 
● Small Memory Capacity - 32-

byte RAM 

 

Figure 3.2.2: BASIC Stamp 2 Pros and Cons Table 
 

 

BeagleBone Black: $55 

Pros Cons 

● Fast Processor - 1 GHz ARM 
Cortex Processor 

● Large Storage Capacity 
● Native IDE 

● Compatible with Android, 
Debian, etc. 

● Requires knowledge of Linux 
● High Power Consumption - 5 V 

at 200 - 450 mA 

 

Figure 3.2.3: BeagleBone Black Pros and Cons Table 
 

 

Raspberry Pi: $40 

Pros Cons 

● Fast Clock - 700 MHz 
● Programmable in multiple 

languages 
● Very impressive quad core 

processor ARMv7 
● Possible to integrate Ubuntu 

and other Operating Systems 

● High Power Consumption - 5V at 2 
A 

● Requires knowledge of Linux  
● Designed to process video and 

audio more efficiently than other 

microcontrollers. Could be a pro 

depending on what we want. 

 

Figure 3.2.4: Raspberry Pi Pros and Cons Table 
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TI Tivia C: $13 

Pros Cons 

● Very inexpensive 
● Energia -  An Arduino based 

IDE 
● Compatible with Texas 

Instruments software libraries 

● Less native libraries than more 
commonly used microcontrollers 

 

Figure 3.2.5: TI Tivia C Pros and Cons Table 

 
 

TI MSP430: $12 - $24 

Pros Cons 

● Very inexpensive 
● Energia -  An Arduino based IDE 

● Low Power Consumption - 1.8 - 3.6 

V at 200 uA 

● Needs peripheral for prototyping 
● Relatively low memory 

 

Figure 3.2.6: TI MSP430 Pros and Cons Table 

 
 

Wiring S: $35 

Pros Cons 

● An abundance of AD pins and 
PWM outputs for sensors and 

motors. 
● Allot of memory SRAM and Flash 

to store code and increase process 
speed 

● More memory than needed 
● Very little documentation and not 

much of an online community for 
problem solving support 

● Very high operating voltage 

 

Figure 3.2.7: Wiring S Pros and Cons Table 

 
 
 

990.005 MuIn - Multi Interface Board with PIC18F2520: $35 
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Pros Cons 

● Many components, ADC 

Channels, GPIO/SERVO, 
EE/EXPORT/USB SOCKET, 
LEDs, I2C BUS 

● Up to 12 sensors can be 
connected 

● Can attach more motors than other 
devices 

● Very little documentation and not 
much of an online community for 
problem solving support 

● Native Instruction Set 

 

Figure 3.2.8: 990.005 MuIn - Multi Interface Board with PIC18F2520 Pros and 

Cons Table 

 

Given the pros and cons of each microcontroller based off of their technical 
specifications and the group’s prior experience with some of the systems in 

question, the TI MSP430 was chosen. The MSP430 has low power consumption 

which will allow for extended operating times and longer periods of interaction with 

pets. Also with the MSP430 consuming less power, KittyBot will be under less 

stress. Considering that our motors need to be able to move the weight of the 

microcontroller, power supply, and spherical chassis; weight must be cut down 

wherever possible to ensure proper functionality. The MSP430 also supports many 

peripherals. Interfacing Texas Instruments brand peripherals will be easier 

because of greater compatibility. The most important reason TI MSP430 was 

chosen is our familiarity with the hardware. Similar features can be found in some 

of the other microcontrollers, but our past experience with the MSP430 will make 

it easier to use for the group. 
 

3.2.3 Power Supply 
KittyBot’s power supply is will consist of two or four AA batteries.   
 

Component Input Voltage  Current  

Microcontroller 3.3V 330 μA 

Motors 5V 90-190 mA 

Sensors 5V 22 mA 

Figure 3.2.9: Power Overview 
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Batteries 
 

Four types of batteries were researched: nickel cadmium, nickel metal hydride, 
and lithium ion batteries and alkaline batteries.  The kitty-bot will run on 2-4 AA 

sized batteries and be able to run for at least an hour nonstop.   The battery pack 

will sit on top of the PCB board within the KittyBot ball casing.   
 

The batteries will need to be able to supply enough power to all the components.  
The project is small and compact so the goal is to keep it as low power as possible.  
The servo motors use about 5 volts and 90 mA to 190 mA each.  The batteries will 

need to be able to supply power also to the proximity sensors which use 5 volts 

and draw around 12 mA of current.   
 

NiCd 
 

Nickel-cadmium (NiCd) used to be the cheapest of the batteries, but a rise in 

popularity of NiMH and lithium ion batteries caused them to become cheaper and 

closer in price.  The NiCd battery has highest current output among the three types 

but is outperformed by NiMH and lithium ion batteries.  NiCd takes around one to 

two hours to fully recharge.  The battery needs to be fully discharged before 

recharging to prevent memory effect in which the battery holds less charge over 

time.   
 

NiMH 
 

Nickel-metal hybrid (NiMH) batteries are a newer technology than NiCd.   It’s 

known to have limited memory effect and higher energy density than NiCd.  NiMH 

battery has good current output and is more environmentally friendlier than NiCd.  
Rechargeable NiMH batteries are available in 1.2 V per cell.  An advantage NiMH 

has is its ability to discharge a constant 1.2 V until the battery is depleted.   
 

Lithium ion 
 

Lithium ion batteries are the most advanced technology among the three. It is 

environmentally friendly and has the same energy as NiMH battery but weighs 

less.  Li-Ion has higher energy density than the other two rechargeable batteries.  
A great advantage lithium ion batteries have over NiMH is that they have no 

memory loss effect.   Rechargeable Li-Ion single cell’s nominal value is 3.6 V, 
which means it would require three times as many nickel batteries.  If lithium-ion 

batteries are used, a protection circuit must be created to use them safely.   
 

Alkaline 
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Alkaline batteries were researched as well to have an alternative possibility other 

than rechargeable batteries.  Even though it’s the only disposable battery here, 
the alkaline battery has 4 times the capacity of NiCd or NiMH.  The nominal cell 

voltage for an alkaline battery is 1.5V.  Alkaline disposable batteries are readily 

available, commonly used, and cheap.  Some negatives about alkaline batteries 

are that they are heavy and have low power capacities. 
 

 
Figure 3.2.11 

 
Lithium ion batteries provide the most energy and are rechargeable and are the 

best option for the kitty-bot’s design.  Since the battery pack is small and can 

only fit two batteries there needs to be most possible energies from the ones 

researched.  There’s a clear advantage that the lithium ion battery has over the 

NiMH battery, the nominal voltage is 3 times as much.  The small casing 

everything is fitting in causes another design constraint due to the size of the 

housing, although lithium-ion batteries are the superior batteries to NiCd, NiMH 

or alkaline batteries. 
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3.2.4 Protection Circuits 
 
A protection circuit is important to protect your power supply and all the 
components from either a power surge or a component is drawing more current 

than the power provided.  Fuses act as a short when too much current is running 

through a system.  The fuse triggers when there’s too much current in a circuit.  
Once the current burns through its seal, the fuse blows and cuts off the current 

from going back into the power supply.  The fuse prevents current from going 

through the power supply which is connected to the motor, microcontroller, and 

PCB, and protects them from becoming damaged.   
 

Another good way to protect components is with a protection diode.  The safety 

diode protects the circuit or device from the harm that a reverse voltage or current 

can cause.  The protection diode only allows current to flow in one direction.  When 

a diode is placed in parallel with a component, as shown in figure 3-6.1 it is typically 

placed in reversed bias mode because of current potentially flowing backwards 

through the circuit.  Figure 3-6.1 shows the second arrow which is the reverse 

current flowing through the diode, instead of possibly damaging the motor.  The 

first arrow is correct current flowing into the motor.   

 

 

Figure 3.2.12 
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3.2.5 Over-current Protection 
Another important feature for a motor controller is the fact they provide protection 

to the SERVO motors.  While testing KittyBot or an autonomous vehicle in general 

it is important to protect your components so you can work on testing it rather than 

waiting to replace fried parts.  Components can be protected with the motor 

controller rather than be exposed to overheating during testing. Heat overloads, 
shorts and over-current faults can occur for a number of reasons and it’s highly 
valuable to stop the motor controller before damage can be done to itself or the 

connected circuitry. The device must have current limits set on the internal field 

effect transistors. If a fault of any kind is detected, a surge protector will be able to 

prevent damage to the motor controller and power supply.  The feedback will cause 

the circuit to be open disallowing the motor to pass too much current through and 

protecting the circuit.  
 

3.3 Strategic Components  

This section will detail strategic components that can be attached to Kitty-Bot. The 

content seen below will delve into the components outside of the main components 

needed for the project. These devices will serve to refine Kitty-Bot’s abilities and 

functionality to allow for a better product. 
 

3.3.1 Communication Hardware Considerations 

Remote Control 

 

KittyBot is first and foremost a robot. We want it to be autonomous and make 

decisions based off of inputs from its sensors. Another option for KittyBot to give it 

more flexibility as an entertainment item is to add some form of remote control. 
While operating autonomously KittyBot can fully engage with the pet, but the owner 

is limited to only the role of a spectator. With a remote control option KittyBot 

changes from merely being interactive for the pet and observatory for the owner to 

being interactive for both. Remote control would bridge the gap between pet and 

owner allowing for an interaction between the two.  
 

There are a few ways to achieve remote control with KittyBot. The first would be 

through a transmitter and receiver kit. The receiver would connect to the internal 

central unit of the system while the user would transmit commands with the RC 

transmitter. Many transmitter/receiver set are available. All that is necessary is a 
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2-Channel transmitter is all that would be necessary, one for forwards and 

backwards and the other for left and right rotation. The most common style of 

transmitter is the two joystick design; the left joystick controls front and back 

movement while the right stick controls left and right rotation. An example of this 

design is shown in Figure 3.3.1. 
 

 
Figure 3.3.1: Spektrum DX-7 Transmitter 

 

The Spektrum DX-7 shown has quite a bit more features than necessary, but it 

displays the style of controller we would consider, the common dual-joystick style.  
 

Another option for remote control is through Bluetooth, more specifically Bluetooth 

control through a smartphone application. A Bluetooth module can be attached to 

the central control unit to allow for communication between the device and a 

smartphone or tablet. A module like the HC-05 or HC-06 could accomplish this. 
The HC-05 (Figure 3.3.2) is capable of slave or master (receiving or transmitting) 

settings while the HC-06 is only capable of slave settings. They are both physically 

the same measuring only 3 cm long. Oddly the HC-06 is normally not cheaper than 

the HC-05.  
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Figure 3.3.2: HC-05 Bluetooth Module 

 

The HC-05 would have to work in tandem with a smartphone application. This 

comes with many choices. The first would be which mobile operating systems to 

develop for, Apple IOS, Google Android, or Windows Phone. While slowly 

growing, the share of the mobile phone market Windows holds is very small; and 

while their Windows 10 integration on their very successful line Surface tablet 
computers would allow for an increased plethora of choice in programming 

languages, IDEs, etc., we feel the best course of action for the Bluetooth control 

option would be to focus on smartphones as the primary transmit device and let 

tablets be secondary. Apple IOS is a much more widely used operating system. 
The fact that it is limited to the Apple iPhone line of smartphones is not an issue 

because of the brands staggering popular and widespread use. Market and 

familiarity would not be a problem. When it comes to programming the options 

become quite a bit less. IOS apps have classically been mostly coded in Objective 

C, which is a very robust language fully capable of delivering the desired results. 
Apple has also introduced the Swift programming language to allow for a more 

user-friendly coding experience. iOS would present a challenge with the use of the 

app. Will the app would be able to be tested on an iPhone in developer mode, the 

process of trying to get an app on their app store requires a $100 developer fee. 
The Android operating system is incredibly widespread. It is very popular and used 

on a multitude of different devices. Android development is mostly done in Java. 
The other good part of Android app development is getting your app up and running 

for testing and on the Google Play store is completely free. 
 

The best fit for developing an app would be the Android operating system. The 

main reason for this is simply familiarity. Our group has much more prior 

experience developing for Android. We have little to none developing for iOS. 
While Windows can utilize a wide variety of programming languages, we don’t 

readily have access to a Window Surface or similar product. That also takes away 

the mobile element we’d wish to achieve. An Android application would allow us 
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to interface with the Bluetooth module inside KittyBot. Nearly all modern 

smartphones include Bluetooth technology. This would mean nearly all cell phone 

user have a remote to KittyBot in the palm of their hands. This is a design element 

inspired by Sphero which uses Bluetooth and a variety of Sphero developed apps 

to control the robot.  
 
 

Infrared Communication 

Infrared communication is a very popular communication technology for many 

applications such as remote control, robotics, etc. Infrared communication has 

been used in applications such as remotes effectively since around the 1950’s; it 

is an effective way to wirelessly transmit data. There are many aspects of infrared 

communication that can make it a suitable means of transferring data given the 

right conditions.  
 
It is a very low power option that generally requires no more than a couple of AA 

batteries. Since infrared is a very popular technology, it is also well established 

and has existed in the market place for many years now. Due to this widespread 

market utilization it is also a very inexpensive technology and has many resources 

on the fundamentals of its operation. The data transfer rate of infrared is not as 

fast as some other technologies (around 4 MB per second), but that is fast enough 

for this project and therefore is not an appreciable problem.  
 

Unfortunately, infrared communication also has some serious drawbacks. Due to 

the high frequency with which infrared operates, about 100-214 THz for low range 

telecommunications, infrared cannot pass through solid objects such as walls or 

any other solid material. This means that to effectively utilize infrared technology 

the receiver must be visible to the transmitter or the signal will be totally reflected 

and not be transmitted/received at all.  

RF Communication 

Radio frequency (RF) communication is the most popular form of communication 
in modern technology today; Bluetooth is actually a specialized form of RF 

communication designed to operate over short distances. Most RF communication 

technologies are designed to operate over greater distances than technologies like 

Bluetooth or Infrared with ranges of up to a few kilometers. RF communication 

technologies are generally classified by the frequency with which they transmit 
information; the two that will be addressed here are two frequencies in the ISM 

(industrial, scientific, medical) frequency band, 2.4 GHz and sub-GHz technology. 
Instead of separating them into two different categories they will be compared side 
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by side due to many commonalities in their operation as well as to highlight some 

of their differences. 
2.4 GHz 

  

2.4 GHZ technology is the most popular frequency in most wireless internet routers 

today; it has been the chosen frequency in the ISM band for some time due to the 

IEEE standards. This frequency has a balance between range and penetrability. If 
allowed to transmit through free space, it has a range that is higher than a 900 
MHZ system and also allows for smaller antennas due to the shorter wavelength 

of a 2.4 GHz RF signal. Unfortunately, signals are not transmitted in free space so 

there will be greater transmission loss for a 2.4 GHz signal if obstructions are 

encountered such as walls and other solid objects. Another important feature of 

2.4 GHz technology compared to 900 MHz technology is the data rate associated 

with each; 2.4 GHz technology allow for higher data transfer rates.  
 
Sub GHz (900 MHz) 
  
Sub GHz technology has become increasingly popular over the last few years for 

a number of reasons. It is still a part of the unlicensed ISM band making it suitable 

for industrial applications. It has some of the same advantages of 2.4 GHz 

technology with some vast improvements. While 2.4 GHz experiences better 

range in free space transmission, sub GHz technology is vastly superior in 
transmission through environments where obstructions are encountered resulting 

in an overall better range for sub GHz transmission. This is due to a number of 

factors, one of which is path loss. Path loss is a mathematical model describing 

how much of a signal is lost over a certain distance for a certain wavelength. It is 

given as:  
 

Path Loss(dB)=20∗log10 [(4∗π∗d)/λ]  
 

Where d is the distance and λ is the wavelength of the transmitted signal. Since 

wavelength is inversely proportional to frequency it can be seen that a 900 MHz 

signal would have far superior range compared to a 2.4 GHz signal. As a matter 

of fact, a 900 MHz signal would have approximately 2.67x increase in range 

compared to a 2.4 GHz signal. A 2.4 GHz device would have to increase its power 

by nearly 8.5 dB to match the range of a 900 MHz signal operating at lower power. 
A graph comparing the path loss of a 2.4 GHz signal to a 900 MHz signal is shown 

below in Figure 3.3.3. 
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Figure 3.3.3: 2.4 GHz vs 900 MHz 

Bluetooth Communication 

Bluetooth is another potential design to utilize wireless communication. It is a 

relatively new technology that has many advantages over infrared and other 

technologies. Bluetooth was invented in 1994 by the telecommunication company, 
Ericsson.  Bluetooth utilizes radio frequencies in the 2.4 GHz range to transmit 

data.  

As with any technology, Bluetooth has some positive attributes as well as some 

shortcomings. Bluetooth technology is actually a radio frequency standard that 

employs a protocol which means that any device operating on Bluetooth 
technology will operate using that specific frequency range and will also send 

information in a uniform format. This is one of the biggest benefits to using 

Bluetooth technology, it can automatically connect.  If any two Bluetooth devices 

are within the operating range and they are both enabled, they will connect and 

transmit data automatically. This adds a level of convenience for the user since 

they do not have to worry about formatting how they transmit data or whether or 

not they are connected. 

Bluetooth technology also has the advantage of being a low power transmission 

option for wireless communication; it transmits about 1 mW per transmission. This 

would work well with the lower power goal set for KittyBot.  Also, Bluetooth can 

incorporate multiple devices at once due to its frequency hopping which allows up 

to 79 devices on as many different frequencies communicate with one another. 
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This would be advantageous for this project if multiple robots were to be created 

and added in the future. Bluetooth is both low power and an easy to use 

technology.  Bluetooth has a limited range of use, but it is roughly 30 meters in all 

the Bluetooth models that were researched, and the range is long enough for 

KittyBot.   

Although there are many advantages to using Bluetooth technology, there are also 

some disadvantages that must be taken into account. This would not be a huge 

problem except that, as mentioned before, this project is supposed to be designed 

to operate over a substantial distance, ideally much farther than ten meters. 
Bluetooth is also capable of fast data transfer, up to 2-3 megabits per second which 

is slower than IR but still fast enough for the for this project. 

 

Decision on Which Type of Communication to Use 

A couple Bluetooth chips were researched and many of the specifications were 

compared such as: cost, operating voltage, size, and the complexity of interfacing 

the module to the system. Figure 3-1 provides a table comparing the different 

specifications of potential Bluetooth modules. Observing the table, it appears that 

all the modules require around the same operating voltage to run.  The module 

RN-42 has a potential of 6 volt operating voltage due to the ability to change its 

max data rate. The largest module appears to be the HC-06 Bluetooth module, 
while the RN-42 and the WT11i are approximately the same size.  Size is important 

due to the fact that the components all need to be enclosed in a small round casing.  
The table shows that the signal distance specification.  The HC module has the 

lowest standard in comparison of the other two modules with 30 feet, the RN-42 

ranging from 50 to 60 feet, and the Bluegiga WT11i with a significant line of sight 

range of 328 to 984 feet.  This feature is not as important for KittyBot as it is an 

inside cat toy and if a controller was made for KittyBot, the user would most likely 

be in a 30 feet range.  The max data rate value for all three potential Bluetooth 

modules are around the same of around 2 to 3 Mbps. The HC-06 module will be 

the cheapest of the 3 modules, with the RN-42 and WT11i costing about 30-40 

dollars.  The KittyBot needs to be cheap in order to ever be profitable so HC-06 is 

good for this.   
 

With all the specifications taken into consideration, the HC-06 module would be 

the best potential choice for KittyBot’s hardware in integrating a Bluetooth 

communication device.  This would only be considered for a user control design 

only. It is the best possible choice with this design consideration because the 30 

feet signal coverage is an acceptable range for KittyBot; the project was made to 
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be used in a house or room.  The HC-06 module can connect to an Android or 

iPhone device in a simple way by locating the module from the user’s phone and 

entering a given password to connect. The HC module is larger in size in 

comparison to the other two, but can be negated due to the price of the HC module 

being much lower. 
 

Bluetooth 
Module 

HC 06 Bluegiga WT11i RN-42 

Operating 
Voltage 

3.3V 2.7 - 3.6V 3.3 - 6V 

Size 4.3 x 1.6 x 0.7 

cm 

35.75 x 14.5 x 2.6 

mm 

38 x 17 mm 

Signal Distance 30 ft. 328 -984 ft. 
(L.O.S.) 

50 to 60 ft 

Max Data Rate 2.1 Mbps 2-3 Mbps 3 Mbps 

Cost $10.00 $30.00 $40.00 

Figure 3.3.4: Module Comparisons 
 

 

3.3.2 Sensors 
 

The kitty-bot’s sensors should be able to read and detect objects in its path in 

milliseconds.  The sensors need to be able to detect objects quickly enough to 

process and send the signal back to the microcontroller and motors to be able to 

adjust, and roll away to avoid an object.  The sensor needs to be reading data 

continuously.  The settling time for the sensors should be in the millisecond range 

as well when they are powered up.   

 
The sensor should be able to accurately detect obstacles through the balls clear 

shell, and sense them quickly enough to avoid what’s in the way.  The sensor 

should be able to detect any objects the KittyBot hits and the KittyBot will either be 

able to avoid it or eventually move away from the object after hitting it.  The four 

sensors researched for all the possible designs for KittyBot were 

photoelectric(infrared), image(webcam), ultrasonic, and piezoelectric(impact) 

sensors.  Piezoelectric sensors were the most popularly liked among the 

group.  Since KittyBot is continuously rolling the group realized how difficult 

ultrasonic sensors or photoelectric sensors might be impractical to implement.   
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Photoelectric Sensors 
 

One type of sensor that was considered is a photoelectric sensor.  Since the 

sensor is in a clear plastic housing, photoelectric sensors will not work with the 

design because photoelectric sensors can detect transparent surfaces.  
Photoelectric sensors are useful for other potential kitty-bot designs, they’re able 

to sense objects in the kitty-bot’s path to a given distance.   
 
The photoelectric sensor is good for detecting a fixed range which is useful for this 

design.  There are 3 main types of photoelectric sensors, through-beam, reflective, 
and diffuse.  Through-beam sensors are the most accurate of the 3 but require a 

receiver and a transmitter and wait for the light beam between them to break.  This 

won’t work in the design because through-beam sensors wait for a break in light 

rather than project and read what’s in front of the sensor.   
 

 

Figure 3.3.5 

 
The retro reflective mode of photoelectric sensors detects objects when the signal 

is blocked.  Retro reflective optic sensors also have a transmitter and a receiver.  
The transmitter transmits a light beam off a reflective surface across from it.  When 

the light is blocked by a non-shiny surface and the light particles can’t make it back 

through the polarization filter the retro reflective sensor detects an object.  This is 

also not the type of sensor that would good for this type of project because the 

retro reflective sensor is stationary across from a shiny surface, and the kitty-bot 

is mobile. 
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Figure 3.3.6 
 

The 3rd mode of photoelectric sensors is diffused mode.  In diffused mode, the 

transmitter sends out light to an adjustable distance.  A receiver reads the light that 

scatters off the object in front of the sensor and triggers a command.  Diffuse mode 

photoelectric sensors can be used for other designs because it can detect 

transparent walls or objects.  This design requires a different sensor because the 

sensors need to be protected in a clear plastic casing.   
 

 

Figure 3.3.7 

 

 
 
 
Image Sensors 
 
Image sensors or webcams take in the light waves from particles bouncing off 
objects and turn those photons into electrical signals which can be displayed as 

an image on a screen.  Complementary metal-oxide semiconductors (CMOS) are 
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a type of image sensor as well as charged-coupled devices (CCD).  The resolution 

on the image sensors needs to be good enough to have enough pixels to present 

a clear image for navigation.  The kitty-bot will usually be in tight spaces so the 

image sensor will need to be able to detect and read the objects it’s approaching, 
quickly and clearly.  Since webcams rely on light, darkness could be a design 

restraint to consider.   
 

CMOS and CCD sensors both take in light through pixels shown in figure 3-4.  The 

sensors take in photons which build up in the highly light sensitive areas to build 

an image.  Using a positive charge, the electrons are separated from the photons.  
Then the electrons are turned into a tiny voltage which is amplified and can be 

connected and shown through a screen.  For CCD sensors most of the functions 

are done on the printed circuit board through output nodes.  CMOS sensors 

convert photons to electrons and then to voltage through a diode, all right at the 

pixels.  The diodes send the voltage into a MUX and after the voltage is amplified, 
an analog to digital conversion is done for the CMOS sensor.  This process allows 

the CMOS sensor to be faster due to the pixels can be processed at once.  CCD 

sensors can only process one pixel at a time through their output nodes so it takes 

much longer than CMOS sensors.  CMOS chips are more low powered than CCD 

chips, but  

 
Figure 3.3.8 

 

Ultrasonic Sensors 
 
Ultrasonic sensors use high frequency sound waves to detect items that the sound 

reflects off from.  The sensor keeps track of time for the echo to return, as well as 

the echo pulse width to determine the distance of the object in the way which is 

important for KittyBot.  Inexpensive ultrasonic sensors usually give off a 40±1000 

Hz range of frequency as its sound wave to echo for detection.  One popular 

detection method is SONAR.  It is used primarily for underwater because the high 

frequency waves emitted, it’s less than 1 MHz though.  SONAR emits echo sound 

that travels through a medium (air) to detect an object.  Upon contact with an object 

emitted signal is reflected back towards the sensor that listens to reflected sound 
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waves.  Reflected signal carries information about direct distance to the object. 
This presents an ability to obtain a fairly quick response from the object detected.  
 
The ultrasonic sensors use of sound propagation is an advantage for accuracy of 

distance over infrared sensors.  Sound waves are capable of detecting an object 

regardless of the color so this is good to detect glass surfaces. They are also 

immune to external disturbance such as vibration, infrared radiation and 

interference. There will be different scenarios that need to be addressed and 

resolved by the KittyBot like corners or animals. Another example is when KittyBot 

detects an object ahead, the sensors needs to detect it and turn away instead of 

getting stuck in a corner of a house or anything.  
 
The ultrasonic sensors have some drawbacks however that led to the group not 

wanting to use them.  In figure 3-5 it shows the sensor not working due to the angle 

which is deflecting away the signal and not detecting the wall quickly enough.  The 

theta value for figure 3-5 is less than 45° which is a high value on top of the limited 

space the sensors would be operating out of.  Another reason ultrasonic sensors 

can be disadvantageous is that they are unable to read small objects in its path as 

shown in figure 3-6.  The ear design for KittyBot would have the sensors elevated 

and would have trouble rolling past an object long and low to the ground like a 

branch for example.  Another disadvantage of ultrasonic sensors is ghost echo.  
This is where the sound can bounce off of several objects and result in duplicate 

and reflected waves with a time interval delay. Sound absorbing materials can also 

throw off the accuracy and lead to the KittyBot not reading objects before it and 

getting stuck running into a wall potentially.   Ultrasonic sensors are expensive 

compared to the photoelectric sensors, and our goal is to make it as cheap as 

possible since KittyBot is meant to be a toy. 

 

Figure 3.3.9 

(From www.parallax.com) 



34 
 

 

Figure 3.3.10 

(From www.parallax.com) 
 
 

 
Figure 3-27 

 

 
 
Piezoelectric Sensors 
 

Piezoelectric sensors are usually small and very versatile sensor.  This sensor is 

also known as a transducer.  The piezoelectric sensor can detect changes in 

pressure, acceleration, temperature, or force which is important for KittyBot when 

a cat swipes at the ball it will change direction and roll away.  Also the piezoelectric 

sensor will detect when the KittyBot hits a wall and be able to maneuver away so 

it doesn’t get stuck.  
 

Piezo sensors have their disadvantages however.  Since they rely on contact, they 

may be slow to signal the motors and KittyBot will turn away from objects or 

animals slower.  Another possible design constraint could be that the ball may roll 

on top of the sensors causing them to trigger.  Since the sensors will be placed on 

the shell casing, which will be moving, wiring these sensors may prove difficult.  
Based on how they were set up in a video, it may be hard to set the piezo sensors 

up.   
 

The piezoelectric sensors have their advantages as well.  One example is that 

they’re very lightweight and tough so they can withstand the impact of a wall over 
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and over or if an animal that is playing with it.  Some useful characteristics of the 

properties of the sensor are listed below: 
 

• Wide frequency range—0.001 Hz to 109 Hz. 
 
• Vast dynamic impact range (10-8 to 106 psi)  
 

• Low acoustic impedance, close match to water, human tissue and adhesive 

systems.  These sensors can be used to detect signal in muscles and tissues. 
 
• High elastic compliance which means it’s useful for KittyBot being able to bend 

around the round surface of the round casing. 
 

• A high output voltage is generated from a fair impact.  
 

• High mechanical strength and impact resistance (109 —1010 Pascal modulus).  
 

• High stability—resisting moisture (moisture absorption), most chemicals, 
oxidants, and intense ultraviolet and nuclear radiation.  

 
• The piezoelectric film sensors can be fabricated into an unusual design like the 

round shell casing of the KittyBot.  
 
• Can be glued with commercial adhesives so the sensors can be applied easily 

to the KittyBot. 
 
The idea for using piezoelectric sensors is that the cat would swipe at KittyBot and 

it would sense the force and react and roll away.  The piezo element has a 12mm 

diameter which will allow them to be placed throughout KittyBot’s casing.  Some 

things to consider in setting these up inside KittyBot will be its wiring and making 

sure they won’t trigger while rolling.  This piezo sensor provides too miniscule of a 

voltage when pressed and can’t be connected directly to the microcontroller.   
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Figure 3.3.11 

(From www.sparkfun.com) 

 

One solution to this problem is to connect the piezo sensor to a pnp transistor.  The 

transistor 2N3906 was a good example seen used.  The red lead connects to the 

base, the black connects to the emitter and ground.  The collector is connected to 

the MSP430 to pin 3 like shown below in figure 6.1.4.  The sensor provides enough 

voltage to turn on the transistor which is still not enough voltage to power the 

microcontroller.  In order to get the microcontroller to read the piezo sensor, the 

MSP430 is set to trigger when it reads low instead of high.   

 

 

Figure 3.3.12 

The previously researched sensors will be used based on the design approach we 

take as a group.  The best approach will be tested and multiple sensors could end 

up in the final design or it could be just one of the choices.  Even though research 

was done for webcams, it was soon realized that they could not be practical with 

any of the designs for KittyBot and no part was included.     

 
Sensor Tradeoffs 
 
The sensors that were considered in coming up with this kitty-bot design include: 

photoelectric, image, infrared and ultrasonic sensors.  Each sensor has its 

positives about it, but the design constraints narrowed down which sensor the kitty-

bot would use to detect objects.  The shell casing, which allows the ball to roll and 
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protects the circuitry, sensors, and motors, also limits design possibilities, but 

creativity was needed to make some of the sensors usable.  Infrared sensors 

sense the light given off from objects but can detect transparent surfaces.  Infrared 

wasn’t a good option because of the sensors’ sensitivity to infrared lights and 

sunlight.  Since the casing is plastic, a small hole would have to be cut in order for 

the sensor to be usable for this kitty-bot design.  I compared the other sensors and 

looked at the pros and cons (as seen in figure 6-5) to help decide which detection 

sensor will be used for kitty-bot.   

 
Photoelectric sensors are very good for accuracy of the desired distance of 

detection.  However, these sensors may prove to be difficult to set up with 

accuracy because of the movement.  Since kitty-bot is a toy, it needs to be 

relatively cheap if it were to ever sell and make a profit, and photoelectric sensors 

can be pricy. The kitty-bot project is good to use some cheap sensors because it 

only needs a sensing distance of less than 12 inches.  Photoelectric sensors are 

good because they use a laser or light so they’re very fast with detection compared 

to sound also compared in figure 6-5.  Setting a distance to detect 5 inches in front 

of the plastic ball would be very easy.  Laser sensors also read objects in front of 

it very accurately without being affected a lot by outside factors like brightness, or 

color of the object.  Photoelectric sensors are the worst for power out of the 3 types 

of sensors researched.  The diffuse sensor could be the only photoelectric sensor 

possible for this project, and for this design, they may be the only sensors 

available. 

 
Ultrasonic sensors use sound waves to detect items that the sound reflects off 

from.  The housing around the sensors for this design wouldn’t be able to work 

well with ultrasonic sensors because of its inability to send a signal past the plastic 

casing.  Ultrasonic sensors are still a consideration for multiple casing design 

ideas.  These sensors are the lowest power of the 3 sensors as can eb seen in the 

trade-off chart in figure 6-.  These sensors are useful for detecting range 

accurately, and can detect small objects better than a photoelectric sensor.  A big 

upside to ultrasonic sensors is its ability to detect surface while disregarding 

brightness, color, or transparency unlike most proximity sensors.  The downsides 

of ultrasonic sensors are that they don’t work well with the design and their 

response time is slower than photoelectric sensors, because light is faster than 

sound.  The ultrasonic sensor also can’t detect soft objects that have trouble 

reflecting noise back well.  It’s important the sensors stay protected and a casing 

around them doesn’t allow for the ultrasonic sensors to function how they’re 

needed.   
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The sensor design first considered was an image sensor, or a webcam.  This 

design is practical for the transparent casing around the webcams.  The webcam 

can’t be adjusted to sense or see a shorter distance like the diffused photoelectric 

sensor can.  Image sensors are low powered; the ones found online were all less 

than 500 mW, slightly lower than the photoelectric sensors found.  A high 

resolution camera would be better at detecting objects and colors more clearly but 

having 2 cameras limits the price and quality of the sensors.  The main reason 

image sensors are ideal for the kitty-bot is because of its flexibility to detect objects 

through a transparent surface.  The sensor needs to be protected and durable to 

keep the kitty-bot running if an animal were to play with it.  Image sensors rely on 

sensing the colors around it which limits the cameras accuracy to avoid any object 

in its path.   

 

 
 
 
 
 

Sensor Tradeoff Table 
 

Sensor Type Photoelectric Image Ultrasonic 

Speed ↑↑ ↑ ↓ 

Accuracy ↑  ↑ 

Power ↓  ↑ 

Design Flexibility ↓ ↑ ↓ 

Weight ↑ ↓↓ ↑↑ 

Size  ↓ ↑↑ 

Distance ↑ ↑  

↑↑ = Very positive   ↑ = Positive    ↓ = Negative     ↓↓ = Very negative 

  

Figure 3.3.13 
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3.3.3 Voltage Regulation 
Voltage regulators are important in electrical systems.  They allow systems to run 

higher voltages for more powerful components without out sending too much 

voltage to more sensitive components.  The two types of regulators that were 

researched were the switching and voltage regulators.  Voltage regulators don’t 

use much power due to the tiny current that runs through it.  The servo motors 

could require a larger voltage to power them and therefore a voltage regulator will 

be needed to regulate voltage for the microcontroller and sensors.  Having a large 

gap between Vin and Vout causes inefficiency in the regulator.  
 
Sometimes motors can draw a huge amount of current that a battery source could 

not handle. As a result, the whole system could experience a significant voltage 

drop, causing the microcontroller to reset and not work properly or have the sensor 

give bad readings. The solution to the problem is placing an electrolytic capacitor 

parallel to the battery pack. One of the main functions of capacitor is to store large 

energy quantity during idle periods and give up that energy when other 

components need it. The higher the capacitance, the more charge it can hold. 
Many capacitors are labeled with the maximum voltage that the capacitors can 

handle without damaging them. It is recommended to get capacitors that are rated 

at least twice the expected voltage drop across them to ensure that they don’t 

explode when fully charged. Since a ceramic capacitor can lose about 50 percent 

of its capacitance at a rated voltage, it’s best to leave a large margin on the voltage 

rating.  
 

Capacitors are typically connected to the input and output of a voltage regulator. 
The input capacitors filter out system noise prior to regulation. The output 

capacitors help the regulator deal with spikes created by the load. The regulator 

may oscillate at certain temperatures if the capacitors are not present. The large 

capacitors prevent low frequency interferences and keep the system powered 

when sudden current surges occur. Small capacitors prevent high frequency 

disturbances from motors. They have low equivalent series resistance (ESR) that 

allow them to charge and discharge quickly. 
 
Under faulty conditions such as short circuits and overload, a fuse should be used 

to protect the motors from excessive current flowing from the battery. The fuse 

would heat up and blow, therefore, interrupting the current flow and preventing 

damage to the motors. Time-delay or slow-blow fuses are recommended for 

inductive loads such as motors. Fast-acting fuses are used for non-inductive loads. 
Fuse’s voltage rating indicates that the fuse can be used at all voltages not 

exceeding the rating. An AC fuse can be used on a DC circuit but its voltage should 

be rated at least twice that of the circuit. Fuses can be connected in series or 
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parallel. If there’re multiple power sources connected in series, then only one fuse 

is needed to connect in series to the sources and load. If there’re more than one 

battery connected in parallel, then there must be one fuse for each battery in 

addition to one main fuse connected to a load. The parallel configuration is 

obviously less advantageous than the series configuration because it requires a 

higher number of fuses. 
 
Large capacitors that are fully charged after the robot is turned off can cause 

components to be accidently shorted and fried. A LED can be used to drain the 

capacitors and also serves as a status indicator. A dim LED might indicate that the 

circuit is low in power. The LED should be connected in series with a resistor to 

prevent the LED from frying. There’re tradeoffs in selecting the resistance. The 

higher the resistance, the more power it can drain but the LED’s brightness would 

decrease. 
 
A voltage regulator is needed to regulate the voltage to the microcontroller and 

sensors. Increasing or decreasing the input voltage even for a fraction of a second 

would result in the microcontroller resetting or sensor giving bad signals. Even 

though batteries are specified to operate at a nominal voltage, they are not always 

at the nominal value. A fully-charged battery can go higher than the nominal 

voltage. A drained one would drop significantly from the nominal value. Because 

the microcontroller and sensors consume low current, the wasted power is not 

significant. As a result, either a linear regulator or switching regulator can be used. 
On the other hand, motors require a lot of current. In this case, switching regulator 

is ideal for the motors. 
 

Multiple circuit protection and voltage regulation designs are considered. One 

design uses two power sources. A battery pack is used exclusively to power the 

motors. Another pack is used to power other electronics. The design divides the 

system into two main subsystems. One subsystem consists of one battery pack, 

motors, and fuses. The other subsystem includes the other battery pack, 

microcontroller, sensor, and voltage regulator. If one subsystem fails, then it would 

not affect the other subsystem. However, adding more battery packs means more 

space is occupied and adding load burden on the whole system, causing the 

motors to draw more current. Therefore, the design is unfit for our robot. Another 

design would have only one power source. There is one major drawback of this 

design, however. Since the whole system is interconnected, a component’s failure 

may affect the other components. For this design, several voltage regulators are 

taken into account including boost/buck, boost, and LDO (low drop-out) regulators. 
.   
Boost Regulator Circuit Design 
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Figure 3.6 shows a circuit design with a TI TPS61232 boost converter. 
TPS61232 is preferred over the TPS61230 and TPS61231 because it allows a 5 
V fixed output voltage whereas the other two have adjustable outputs which 

require additional resistors to adjust the voltage. The converter is ideal for our 

project because its maximum efficiency is 96 percent. With an input ranging from 

2.3 V to 5.5 V it’s able to regulate a fixed output voltage of 5 V that is 

recommended by the sensors. The converter also delivers up to 2.1 A of current 

with a 5 V output and 3.3 V input. This current is more than enough to power the 

electronics in the system. The converter has additional built-in features including 

output over voltage and thermal shutdown protections, power good output, and 

power save mode for light load which typically consumes 1.5 uA. The converter 

is optimized for a one-cell Li-Ion battery, which is usually rated at 3.7 V. Either a 

single Li-Ion cell or three NiMH cells with a voltage of 3.6 V can be used. C1, C2, 

C3, L, and R2 are required external components whose values are specified in 

the TPS6123x datasheet. They help to stabilize the regulator. The inductor and 

the output capacitor C3 serve as energy storage during conversion. Both the EN, 

HYS and the power good, PG, pins can be left floating or unconnected if not 

used. At moderate or heavy load currents, the converter would operate at a 2 

MHz frequency pulse width modulation (PWM). At light load current, it reduces 

the switching frequency and operates with pulse frequency modulation (PFM). 
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Figure 3.6: Schematic for Boost Converter 

 

Buck/Boost Regulator Circuit Design 

 

If our team decides to use a buck/boost converter to regulate voltages, then a TI 

TPS63061 converter will be selected. Out of all the other TI buck/boost converters, 

it is one of the few that is able to regulate a fixed voltage of 5 V. Besides, its 93 

percent efficiency is high. It can also accept input voltage range from 2.5 V to 12 

V, making it ideal for low voltage supply. Nevertheless, it’s not advisable to have a 

converter’s input voltage at the exact minimum and maximum of the range since 

the input might deviate from the values. Going off the input range would result in a 

damaged converter or one that doesn’t regulate voltage at all.  
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Unlike the TPS61232 boost converter, the TPS63061 has additional pins with 

special functions. The PS pin is used to enable/disable power save mode. A 1 is 

disabled and a 0 means enabled. During power save mode, the switching 

frequency and quiescent current is reduced to maintain high efficiency. Disabling 

the PS would set the switching frequency at a fixed rate. Connecting a clock signal 

at the PSY/SYNC pin would force the converter to synchronize to the clock’s 

frequency. To enable the EN pin, set it to 1. Otherwise, set it to 0. In many 

applications, the pin is tied to the supply voltage, which is on high. Hence, the pin 

is always enabled. To shut down the device, the EN can be connected to the 

ground. The battery and the load are disconnected during shutdown. The power 

good or PG indicates whether the output voltage is regulated properly. For the PG 

pin, setting to 1 means good, 0 means failure.  
 
The converter has additional features including overvoltage protection, over 
temperature protection, short circuit protection, under voltage lockout, and power 

save mode. Once the temperature goes beyond a threshold, the IC stops its 

operation. As the temperate decreased below the threshold, the device starts 

operating. The under voltage lockout functions by automatically starting the device 

only when the supply voltage on VIN is above a certain under voltage lockout 

threshold. If the supply voltage goes below the threshold, then the IC automatically 

enters shutdown mode. The overvoltage protection internally monitors the output 

voltage so that it doesn’t exceed critical values. There is no timer in the IC. As a 

result, the output voltage overshoot and current inrush occur at startup but the 

device keeps the current and overshoot at minimum. When the output voltage 

does not rise above 1.2 V the IC would assume a short circuit at the output and 

protect itself by keeping the current limit low, typically under 2 A. The efficiency 

rises as the output current increases. The output current depends on the input 

current from the battery. As a result, the battery will be selected to have the current 

rating as high as possible. Figure 3.7 shows a circuit design with the TPS63061.  
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Figure 3.7: Buck/boost converter circuit with motors at output 

 

An additional design for the buck/boost converter circuit would be separating the 

microcontroller and sensor subsystem from the motors and placing the motors at 

the input of the voltage regulator as opposed to the output. This configuration could 

be more advantageous because if the voltage regulator fails, the motors will not 

be affected. Figure 3.8 shows this configuration. 



45 
 

 

Figure 5.8: Buck/boost converter with motors at input 

 

 

Linear Regulator Circuit Design 

 

This circuit is better than the circuits that use switching regulators since it has a 

smaller number of components. Since the regulator can only output a maximum 

of 500 mA and its efficiency is low, it could be used to power the low-power 

devices such as the sensor and microcontroller. For the components that require 

higher current such as motors, they will be directly connected to the battery 
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instead of the regulator’s output. The LM2937-5 should be used because it has a 

fixed output voltage of 5 V.  

 

Unlike the TPS61232 and TPS63061 converters, the LM2937 has reverse 

battery protection. As a result, a Schottky diode should be connected to the fuses 

to protect the motors. The regulator’s reverse battery protection circuit 

automatically protects the sensor and microcontroller. Therefore, a Schottky 

diode is not needed at the regulator’s input. Though the typical minimum dropout 

voltage is 0.5 V, the input voltage should be at least 2 V higher than the output 

voltage for optimal performance. In other words, the input voltage is required to 

be at least 5.5 V but should be 7 V or higher. Because it’s harder to find a 5.5 V 

than a 6 V NiMH or Li-Ion battery, a 6 V battery would be used with the LM2937 

regulator. The regulator’s quiescent current is typically 10 mA if the regulator is 

under full load and the input and output voltage difference is greater than 3 V.  

 

The LM2937 has additional features including thermal shutdown, short circuit 

current limit, and overvoltage shutdown. The thermal shutdown circuitry is not 

intended to replace the heat sink. Running the IC at thermal shutdown is not 

advisable because the device’s reliability may be degraded as the junction 

temperature rises above the allowed absolute maximum junction temperature 

rating. In cases the output is shorted to ground or the load impedance is 

extremely low, the device would limit the current. If the LM2937 operates 

continuously at the current limit, then the IC would transition into thermal 

shutdown mode. Since our project would not use any power supply that exceeds 

26 V we have no need to be concerned about the overvoltage shutdown. The 

LM2937 lacks the under voltage lockout and enable functions. The output only 

tracks the input voltage until the input rises above 6 V where the device remains 

in linear operation. Figure 3.9 shows circuitry using a LM2937 LDO (low-dropout) 

linear regulator. 
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Figure 3.9: Schematic for LDO Regulator Circuit 

3.3.4 Gyroscope 
An exciting strategic component we researched is the gyroscope. A gyroscope is 

a small electronic device, many are no larger than a quarter, that measures 

rotational motion. Figure 3.3.14 display what this type of module looks like. 
Gyroscopes can measure angles and angular velocity. Angular velocity is 

measured in degrees per second or revolutions per second. Angular velocity is the 

measurement of the speed of rotation. The process of gyroscopes measurements 

is when the device is rotated, a tiny resonating object inside the gyroscope is 

shifted as the angular velocity changes. The shift is converted into a low-current 

electrical signal that is amplified and read 
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Figure 3.3.14: LPY503 Gyroscope 

 

(From learn.sparkfun.com) 

 
This can help our project because the gyroscope can detect changes in 

orientation. The changes in direction can be measured from a set balanced 

position and corrections can be sent to the motors. In 3D space, there are three 

axes X, Y, and Z (Figure 3.3.15). Objects can rotate about any of the three.  
 

 
Figure 3.3.15: XYZ Axes 

 

Gyroscopes come in varieties that either measure rotation around a single axis, 
two axes, or all three. The price difference on these varieties is minuscule these 

days, but we may only need gyroscopic detection in one axis. Figure 3.3.14 

displays a 3D representation of sphere rotation. 
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Figure 3.3.16: 3D Representation of Sphere Rotation 

 

Forward motion is the primary focus. Figure 3.3.16 uses the same colored axes 

as Figure 3.3.15. The yellow curved arrows indicate rotation about the blue Z-

axis. This rotation will cause the sphere to roll forward. The gyroscope, in this 

cause, would detect rotation in the Z-axis. Most standard gyroscopes are not 

meant for picking up very fast spinning objects. Luckily KittyBot is an indoor toy so 

its rotations shouldn’t be too fast for a gyroscope to measure. The forward linear 

velocity or acceleration won’t affect the gyroscope either, as it only picks up and 

measures angular velocity.   
 

Gyroscopes connect through power and through a communication interface. The 

communication interface can either be analog or digital. Digital communication can 

be through Serial Peripheral Interface or Inter-Integrated Circuit. Serial Peripheral 

Interface, or SPI, is a type of interface bus used to send data between a 

microcontroller and peripherals. SPI works synchronously as opposed to 

asynchronously.  
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Communication 
 

A standard serial port with RX and TX (think receiver and transmitter) lines, 
typically works asynchronously. This means that the rate at which data is sent and 

received is not controlled, and that lack of control comes from the two side not 

running at the exact same clock rate. Computers have everything synchronized to 

a single clock, but when you try to communicate between two different computer 

systems, like a microcontroller and its peripherals, the clock rates may be different. 
To make asynchronous serial communications work extra bits are added to the 

end of the data-stream. A start bit at the beginning and a stop bit at the end help 

to isolate the desired bits allowing the receiving system to sync up with the data 

properly. The two separate systems must be set to the same transmission speed 

beforehand for this to work properly. Figure 3.3.17 aids in displaying this method 

of serial communication.  
 

 
Figure 3.3.17: Asynchronous Serial Communication 

 

(From learn.sparkfun.com) 

 
Asynchronous communications work but are tricky due to the number of 

complications. The start and stop bits have to be sorted out in order to get the 

correct data, and the transmission speed have to be the same, if they are not than 

the data sent will be wrong.  
 

SPI’s synchronous communication works differently. The data bus for a 

synchronous serial uses separate wires for data sent and a clock that keeps the 

communicators synced. The clock is sent out as an oscillating signal. This signal 

tells the receiver when to sample bits from the stream of data. The receiver picks 

up on the rising or falling edges of the clock signal. A rising edge is a shift from low 

to high and a falling edge is from high to low. Whichever edge that is set to be the 

“triggering” edge for sampling will tell the receiver that sample at that moment. 
Below is Figure 3.3.18 displaying this type of communication.  
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Figure 3.3.18: Synchronous Serial Communication 

 

With SPI, the side that generates the clock is called the “master” and the other is 

called the “slave”. In the case of our embedded systems, the master will be the 

microcontroller and the slave, peripherals such as a gyroscope. The 

microcontroller is always controlling when data is sent, and sends commands to 

the gyroscope so it will send its angular velocity data back to the microcontroller 

for processing. 
 

SPI offers these advantages and disadvantages. 
 

SPI Advantages: 

 

 Supports multiple slave receivers 
 

 Receiving hardware can be as simple as a shift register 
 

 Faster than asynchronous serial 
 

SPI Disadvantages: 
 

 Requires more wires than other communication interfaces 
 

 Master must control all communications 
 

 Communications must be defined in advance 
 

 Usually requires separate SS lines attached to each slave. 
 

Our other digital interface is the Inter-Integrated Circuit, or I2C. I2C allows multiple 

slave systems to communicate with one or more master systems. I2C has an 



52 
 

advantage over SPI in that it requires less connections. SPI needs four lines to 

connect a single master to a single slave, one for the clock, one for sending data 

from the master to the slave called “Master Out/Slave In” (MOSI), one for sending 

data from the slave to the master called “Master In/Slave Out” (MISO), and the 

“Slave Select” line which acts as a sort of “wakeup” command sent from master to 

slave readying the slave to send or receive data. Besides the pins taken up on the 

master unit by these lines, additional slaves require an additional chip select I/O 

pin. The SPI interface has a tendency of filling up several pins very quickly. This 

is problematic if you have only one master and multiple slaves. With KittyBot, our 

group wants to keep the internal space as uncluttered as possible since it is limited 

and must all fit within a relatively small form factor. That is why we would want to 

keep the number of microcontrollers to just one. Budget is also a concern if we 

need to purchase additional microcontrollers. The gyroscope is not the only slave 

our microcontroller would have as we are considering other strategic components 

to add as well, so pin space on a single microcontroller is limited. 
 

 I2C’s required number of lines is merely two and that is for multiple slave devices, 
up to 1008 to be exact. The two signals sent through I2C are SCL and SDA. SCL 

acts as the clock signal while SDA is the data signal. Similar to the principles 

discussed with SPI, I2C’s master device sends the clock signal which controls the 

sending and receiving of data. With I2C however, the slave has an extra ability. 
Let’s say the rising edge is the signal from the master to send/receive data and 

one is approaching. That means the clock is currently low and an oscillation up to 

high is coming. The slave has the option to force the signal to remain low in order 

to delay the master if the slave is not yet ready to send/receive. This ability is called 

“clock stretching”. The I2C bus operates on what is called an “open drain”. 
Remember that the bus connection can be between a single master and multiple 

slaves. All the slaves have this clock stretching functionality. The idea behind the 

open drain is that any slave can drive the clock signal low if it needs more time, 
but none can drive it high if they are ready. This makes it so that the transmissions 

only go through when all the devices in question are ready, preventing potential 

damage to the transmission. A pull-up resistor on the signal lines are used to 

restore the signal back up to high if no device is forcing a low signal. Figure 3.3.19 

displays a representation of this. 
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Figure 3.3.19 Generic Master/Slave Connection with Pull-up Resistors 

 

(From learn.sparkfun.com) 

 

Both SPI and I2C are intended for use over a short distance. Since all electronics 

will be confined within the space of KittyBot’s chassis, distance should be an issue. 
These two also have limitations on their sampling rates, with SPI reaching higher 

rate than I2C. This could potentially lower the accuracy of the angular velocity 

readings. 
Those were the digital communication options. The alternative to digital is analog 

communication. The gyroscope can register rotational velocity by raising and 

lowering voltage between ground and the supply voltage. Analog gyroscopes 

usually run cheaper than digital gyroscopes and can even be more accurate. The 

accuracy depends on how the analog signals are read. Analog to Digital 

Converters (ADC) need to be used to transfer those analog signals to digital ones 

that a microcontroller can process. Voltage is the type of analog signal detectable 

by microcontrollers. Only certain pins on a microcontroller are capable of this as 

well. Figure 3.3.20 shows a comprehensive guide by Texas Instruments to TI 

MSP430. 
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Figure 3.3.20 TI MSP430 Launchpad 

 
(By Texas Instruments) 

 

The TI MSP430 is our groups microcontroller of choice. This microcontroller has 8 

pins, P1_0 through P1_7, that are capable of receiving analog voltage signals. 
These signals can then be converted to digital. The ADC of the microcontroller 

handles the actually conversion. TI MSP430’s ADC is 10-bit meaning it can detect 

up to 1024, which is 210, discrete analog values. The actual conversion is done by 

the analog voltage to be converted is used to charge an internal capacitor that is 

then discharged across and internal resistor. The time of that discharge is 

measured by the microcontroller counting the number of clock cycles that pass 

between the time the capacitor began discharging to when it stopped. The number 

of clock cycles is then returned to the microcontroller as the new digital value. The 

maximum value of a 10-bit ADC is 1023 because it can have 1024 different values 

ranging from 0 to 1023. The maximum value digital value has a ratiometric 

relationship with the overall system voltage, or VCC. This means that the digital 

value of any analog value sent to an ADC-capable pin is a ratio of 1023 and the 

VCC. Assuming a VCC of 5 V and a measured voltage of 2.5 V, the digital value can 

be described by x in the following equation. 
 

1023

5.00𝑉
=

𝑥

2.5𝑉
 

 

Solving for x we would get the following. 
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1023

5.00𝑉
∗ 2.5𝑉 = 𝑥 

 
1023

2𝑉
= 𝑥 

 

𝑥 = 511.5 
 

The digital value would end up being 511.5. Notice that the measured voltage 

value of the ADC was 2.5 V, which is half of 5 V. The converted value of 511.5 is 

also half of 1023. In order for the microcontroller to pick up these values it would 

to be programmed to do so. It would first need to define the pin it is receiving input 

from. Let’s assume pin P1_0 is the receiving an input voltage for this example. 
 

pinMode(P1_0, INPUT); 

 
Tell the microcontroller to convert the input from analog to digital with the 

analogRead() command into in integer, x. 
 

int x = analogRead(P1_0); //Reads the analog value on pin P1_0 into x 

 
This is how the analog voltage values sent from a gyroscope can be processed by 

our microcontroller. 
 

Power 
 

Gyroscopes are typically low power devices, so powering the device is not a major 

concern. The levels of current to operate them fall in the milliAmp or even the 

microAmp ranges. Digital gyroscopes can operate at the supply voltage or have 

their own set logic levels of voltages. The digital gyros need to be configured more 

carefully because they need set logically states to operate. Digital signals are 

binary, 0 or 1, ON or OFF. The digital gyroscopes may seem more finicky, but they 

can also have a low power and sleep mode. This can converse more power in the 

long run versus an analog gyroscope. Since KittyBot is a battery-powered unit, 
consuming less power will allow for longer operation times. 
 

Moving on, the specifications of the gyroscope are key. A few different 

specifications to look at are the gyroscopes range, sensitivity, and bias. The range, 
or full-scale range, of a gyroscope is simply the maximum angular velocity a gyro 
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can read. This does not need to be too drastically high for this project as KittyBot 

will not be reaching very high speeds. 
The sensitivity of a gyroscope is how much the voltage changes for a given angular 

velocity. Sensitivity is measured in millivolts per degree per second (mV/°/s). A 

gyroscope, just like any sensor, contains some degree of error. This is called the 

bias of said sensor. Gyroscope bias can be seen when the gyroscope is still. 
Instead of being exactly 0 degrees, the gyroscope will always read a slight non-

zero value in the output. This bias drift or bias instability can be caused by a few 

different factors. Temperature can be a major factor. This is alleviated by most 

gyroscopes by having a built in temperature sensor. This data can be read and 

used to correct any temperature dependent changes. Calibrating a gyroscope 

correctly is the best way to reduce error. This can be done by keeping the gyro still 

and zeroing all the values and readings in the code on the microcontroller. 

3.4 Possible Architectures and Related 
Diagrams 
In this section the various architectural designs for Kitty-Bot are discussed. The 

resulting research and conclusions based off of said research are also detailed. 

3.4.1 Design Choice: Spherical vs. Dual Motor 
 
When Designing the KittyBot we quickly realized considering several architectural 
designs would be a crucial step in efficiently completing the electrical and software 

model. When mentally visualizing our design in hopes of arriving at an intelligent 

solution we had to consider all the advantages and disadvantages of any system 
and especially the consequences they would inflict on the hardware power supply 

and software. For example, one of our design constraints stated the robot should 

be durable enough to withstand potential damage from an animal. With this in mind 

any potential structural design that included many moving parts and could 
potentially have damaged hardware would have a negative weight towards its final 

consideration. We need a structural design that is not vulnerable or fragile, being 

that the cat would quickly devastate the structural integrity of our unit and its 

hardware if it was so. Structural integrity is especially hard to maintain in terms of 

the sensors. A sensor can very easily be disconnected or damaged so any 

structural design had to take this into consideration. Another requirement was that 

our robot should be maneuverable. That being said, the challenge lies in making 

the unit maneuverable without having allot of moving parts. When considering how 

the structural design would affect the hardware power supply and software, we 

found many interesting and unique designs that were quickly disqualified because 
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of their complex attachments and multiple moving parts; These we found out would 

be antagonistic towards our hardware simplicity. Also, from a purely practical point 

of view, avoiding moving parts in particular was a hurdle to jump when trying to 

ensure that the robot would erect itself upright if turned over. In short, we quickly 

realized that any structural consideration would undoubtedly impact the electrical 

design in either a positive or adverse way.  
 
When we considered all of the previous design constraints in tandem with potential 

structural designs we arrived at two final candidates, the Spherical Design and the 

Dual Motor Controlled Wheel Navigation Design. We kept our printed circuit board 

and Power Supply design at premium thoughtfulness when deciding which route 

to choose. Both candidates satisfied our design limitations within a reasonable 

margin. Both considerations, however, contained both virtues and faults. Our 

challenge would now become deciding what design consequences we were 

comfortable with enough to confront. One of the candidates was the spherical 

design. This design would consist a spherical outer shell encapsulating the inner 

hardware power supply and sensors. The hardware would contain sensors on the 

inner part of the sphere that would create forces to actually spin the structure. This 

architecture, we realized, would be far more difficult to design in a structurally 

sound manner. This due to the fact that everything would be rolling. This would 

mean that the microcontrollers battery pack, fame and motors would somehow 

need to be stabilized. However, the final product would present significant increase 

in elegance to our solution. The other candidate was the dual motor controlled 

wheel navigation design. This design implements a hardware simplicity driven 

structural architecture. The structural architecture facilitates ease of wiring 

between the power source, microcontroller and sensors.  
 
In one of our group meetings we came up with the following brainstorming pros 

and cons. The brainstorm resulted in Figure 3.4.1. This tree of pros and cons was 

a great way to start considering which of the two designs we actually wanted to 

invest more intellectual resources in. We would later, as demonstrate in the figures 

following this paragraph, 3D models our designs to further consider them and 

eventually even proto type both of them in a physical sense. But we started out 

with this very simple brainstorm of pros and cons to each design. The Dual motor 

controlled wheel navigation cylindrical design we reasoned would have a relatively 
simple architectural design due  

to the physical proximity of all the parts. The sensor would be on a stable platform 

in this structural architecture as opposed to the spherical design where we would 
have to design for a spinning structure where sensors would be fundamentally less 

stable. Also with the dual wheel which we tested on a Bo-Bot we found extremely 

precise maneuvering capabilities were within reach. The disadvantages we 

reasoned started with the visually appealing and non-elegant architectural 
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structure upon which all of our electronics would rest on. This, as opposed to the 

rolling sphere which most certainly had a “Cool” factor to it. Another disadvantage 

we reasoned was the relative openness of the hardware. With the cylindrical 

design, it would be harder to keep the hardware from being dislodged during play 

with the cat. This, as opposed the Spherical design which would by nature 

encapsulate all of the hardware in a sphere. With the sphere there was the 

advantages of it being “Cool”, having the hardware enclosed and also visually 

appealing. With all of the previous in mind we would eventually need the help of 

3D models to make our final decision. which would eventually be to take the risk 

and implement our spherical design. The 3D model would help us consider the 

electrical and power implications.  
 

 
Figure 3.4.1 Pros and Cons Flowchart of Two Designs 

 

3.4.2 PCB, Sensor, and Power of Spherical 
Design  
 
This pros and cons brains storm was of course a great tool to choosing our final 

design. Our decision, by unanimous vote would be the Spherical Design. We knew 

that it would be far more challenging than the dual motor controlled wheel 

navigation design, but we were really excited about how cool a rolling sphere would 

be. We decided to disregard our design fears of tackling a more complex system 

and trust our University of Central Florida Engineering training to hopefully get us 

through the problem solving difficulties. However, we needed more to truly map 

out our design giving that our academic careers and countless hours of intellectual 
resources that would be spent developing one what we decided would be the 

Spherical Design. A couple of senior design meetings later we arrived at the 

conclusion that we needed 3D models of our designs to further investigate the 

electrical and power consequences of our conclusions. We did not need to make 
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them completely perfect but rather close enough to leverage our imaginations. This 

way we could more closely consider the printed circuit board implications of our 

chosen path.  
 

3.4.3 Dual Hemisphere Structure 
 

The core Electrical design advantage to this candidate was its spherical nature. 
That being said, the core structural design disadvantage to this candidate was its 

spherical nature. 
 

 

Figure 3.4.2 3D Model of Right and Left Hemisphere 

We imagined a structural architecture composed of a hollowed out sphere. We 3D 

modeled this idea in Figure 3.4.2. This idea was birthed as result of all the 

structural shortcomings of the our first prototyped dual motored control navigation 

design. We imagined a hollowed out sphere that would have two hemispheres, a 

left hemisphere and a right hemisphere. The two hemispheres would be manually 

detachable allowing us to access the hardware inside if necessary. We imagined 

this sphere being approximately one hundred and seventy-eight millimeters in 

diameter. This would give us enough room to insert electronic hardware, 
disassemble parts and still be within the limitations of our system requirements. 
The next question would then become, how do we put hardware in a sphere and 

make it roll? 
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3.4.4 The Containers’ Battery Pack and PCB 
Design 
 

In order to have hardware in the sphere we would need a frame to place it on. This 

frame would have to be small enough to fit in the sphere and large enough to hold 

all of the electronics. We decide to call this frame our “container.” On top of this 

container we also needed to place our electronics and microcontrollers that would 

eventually become our printed circuit board. And, of course, we would need a 

power supply to power the entirety of the system. We realized that we would have 

another layer of complexity in trying to make certain things don’t fall apart. This 

due to the fact that everything would be rolling. This would mean that the 

microcontrollers battery pack, fame and motors would somehow need to be 

stabilized. However, the final product would present significant increase in 

elegance to our solution so the levels of difficulty would be worth it.  
 

 
Figure 3.4.3 3D Model of Center Container 

 

Figure 3.4.3 is the 3D model representation of what we imagined would be a good 

design for the inner electrical and power devices. Notice the “C”, “P” and “B” on 

the AutoCAD model these were placed to assist us as well as the reader. The “C” 

is the container. This is what holds all of the electronics. The “P” is the printed 

circuit board. This is what would be powered by the battery and control all of the 

sensors. The “B” is the battery pack, this, of course, powers the entire system. We 

reasoned this was a good structural design. It could be fit inside of the sphere and 

operate in an elegant fashion. This was the basic blueprint of our design. 
Functionally, however, we still needed to spin the entire unit in order for the ball to 

roll. During our group meetings we had many suggestions as to how to actually 

accomplish this. One of the suggestions was very practical yet simultaneously silly. 
A group member suggested that we put wheels at the bottom of the container and 
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turn the entire platform into what could essentially be described as an RC car in a 

sphere. This would turn the entire sphere and propel our system. This idea, though 

practical and potentially easy to implement had many drawbacks. For one we 

didn’t like the lack of preciseness and instability. We would have no way of 

precisely knowing how much we would turn. Furthermore, the inner structure 

would need an entirely separate design to withstand the impact. It would be rolling 

around inside the sphere in a completely unstable fashion not fastened to anything 

at all. Needless to say, we quickly dismissed this suggestion. We brainstormed 

and conversed amongst each other contemplating different solutions and finally 

decided we should simply have the motors spin the sphere itself.  
 

3.4.5 3D Modeling to consider PCB Implications 
 

When designing and thinking about our printed circuit boards, power supply and 

hardware in the spherical model we needed to give careful consideration to the 

structural designs effect on the printed circuit boards. Circuits, the most recent 

sensors, and code are vital parts of a hardware venture and this spherical design 

would undoubtedly affect how we designed these. Not considering how the 

physical surface of your device effects the electronics power supply and Printed 
circuit board design can bring about reliability problems and unwavering quality 

issues.  
 

For example, we took into consideration what the trace might be on our printed 

circuit board. With an estimated current of twenty-five milliamps at an ambient 

temperature of seventy-eight degrees Fahrenheit we might expect perhaps a trace 

length of five inches and a required trace width of 0.000526 mil. With the spherical 

architecture we realized we could keep all of the components centralized limiting 

the trace of the printed circuit board. That being said it would still be difficult to 

design in a structurally sound manner. However, the final product would present 

significant increase in elegance to our solution. We plan on using length width and 

thickness of trace to control resistance. The centralized printed circuit board design 

of our spherical architecture will make these calculations easier to handle. The 

electrical team will eventually have to make calculations for the trace with beige 

that we can’t change the physical properties of copper which creates resistance. 
Eventually we will want to aim for about a five-degree temperature rise. This being 

said the amount of space that the spherical design affords our PCB boards will 

help with making certain it doesn't overheat. Also, Circles or Loops in the PCB 

could be made small with this design. Little Loops have lower inductance and 

resistance. Putting circles over a ground plane further diminishes inductance. We 

could, if needed, lessen the voltage spikes in this way. Also, when the time comes 
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if we were to use decoupling capacitors, we could place them close to ground and 

power. This would maximize decoupling efficiency by minimizing conductance. 
With this design we could also, if needed, keep Digital and Noisy traces away from 

analog traces. The centralized nature of all of our electronics and hardware would 

permit us to more elegantly design the PCB board when the time is right. We could 

very easily be mindful to course loud grounds from signs that should be quiet. 
Making our ground traces sufficiently large to carry currents that will flow would 

lower the impedance of the traces which would be ideal for us.  
 
 
 

 
Figure 3.4.4 Angled View of Center Piece 3D Model  

 

Consider the image displayed in Figure 3.4.4. Notice that now the Orange unit 

has a “M” on it. This is representative of the servo motor. Of course there would 

be another servo motor on the other side. The idea would be that the servo motor 

would spin the rod which would in turn be attached to either the right or the left 

hemisphere of the sphere which would then in turn rotate the entire unit. Now if we 

redirect our attention towards the pink elements in Figure 3.4.5 and envision them 

hugging the inner wall of either hemisphere we can quickly realize how we plan on 

making the structure move.  
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Figure 3.4.5 Top-Down View of Center Piece 3D Model 

 
Of course the pink element would need to be fixed to the side of the sphere and 
the motors’ casing would have to be stationary in relation to the rod and the right 

or left hemisphere in order for everything to turn. The force of the outermost pink 

element against the left and right hemisphere would create torque which would 

then create a force on the ground as a result of the weight of the unit and friction. 
The entire sphere, we reasoned, would then be forced to rotate as a result of this 

torque. We wrote our design thoughts down in the sketch in Figure 3.4.6. 
 

 
Figure 3.4.6 

We considered the forces described in Figure 3.4.6. Here F is the force the pink 

unit in our simulation exerts on the sphere. The motor would be spinning the rod 

which would in turn be connected to either hemisphere of the sphere. This force 

would be the driving engine of our robot. r is the radius of our kitty-Bot. We were 

intending on making the Kitty-Bot about one hundred and seventy seven 

millimeters or seven inches so the radius would be about half of that. G is the 

center of mass of the sphere, g is gravities acceleration, which is, of course, 9.8 

m/s2 and P is the point of contact of our kitty bot with the ground.FPx would be the 

x component of the force exerted on the our sphere by the ground, at point P. This 

would be a frictional force. FPy is the y-component of the force exerted on the our 

sphere by the ground, at point P. This would be a frictional force. Our group 

reasoned that the force exerted by the motors on the rod, would then create a force 

on either hemisphere of the sphere which would interact with FPx and  FPy causing 

the Kitty-Bot to roll. Essentially, the outer pink ends of figure 1.10 would be spun 

by the motors, these pink ends would be bolted to either hemisphere of the sphere 
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which would in turn cause a force “F” which would in turn cause torque. This would 

in turn create a force FPx and FPy  against the ground “P” which would 

consequently rotate the sphere.  This being said, when further developing the idea 

we ran into some logical problems. For one, what was going to keep our container 

stable?  
 

If we observe Figure 3.4.4 we see the container. In our design the motors would 

be attached but not fixed to the container which holds the printed circuit board and 

the battery pack. The motors would then turn the rods which would in turn be 

connected to the pink outer ligaments of Figure 3.4.4 which would consequently 

turn each hemisphere. The key component to mention here however is that in our 

design we would Ideally want the container to remain relatively stable in 

conjunction with the rods being rotated by the servo motors. There are multiple 

reasons why we wanted this to be so. Firstly, a rotating container would mean 

rotating electronics, battery pack and printed circuit board. This would in turn mean 

we would have to fasten the electrical circuits including the sensors, printed circuit 

board and battery pack together so that none would fly off or become dislodged 

due to the forces caused by the case rotating.  
 
When considering these rotating forces coupled with the cat’s interaction with the 

Kitty-Bot we arrived at many concerns. Secondly, if the container is designed in a 

way where it does not remain stable inside the sphere then this would undoubtedly 

cause a wobble in the sphere. This wobble would create undesirable results 

including a loss in precision and control in terms of steering the Kitty-bot. Thirdly, 
loss of stability in the container would mean our sensors would also be unstable. 
This would of course mean loss of accuracy in decision making. The nature of our 

Kitty-Bot involves the feline attacking the structural architecture as aggressively as 

possible. The sheer force of the impact of a Cats’ strike coupled with the rotating 

forces of a spinning container culminated in a plethora of concerns that resulted in 

us deciding to design a solution for this potential problem. We needed to find a 

way to keep the container stable while the motors turned the rods, this we would 

eventually decide to do with a counter weight. 
 

3.4.6 Incorporating Useful parts of unused rapid 
prototype to our new design. 
 

As mentioned before, the first candidate was the dual motor controlled wheel 

navigation design. With this design the hardware would have a simple to 

implement design. This simplicity driven structural architecture would make it easy 

to wire the power source, microcontroller and sensors together. Also, we could 
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prototype it without too much 3D printing if necessary. Figure 3.4.7 shows the 

essential parts of this structural architecture. The Cylinder, of course, would 

encapsulate the frame, power supply, central Intelligence system and sensors. 
The right, left, front wheel, Device Stabilizer and sensors would be ligaments 

exterior to the cylindrical exoskeleton. However, we thought Image Figure 3.4.7 

as more of a block diagram for the electronics and made decided to document and 
prototype the actual structural architecture in a 3D model shown further down in 

the document. Throughout the design process we actually prototyped this model 

and found many good qualities of it that we thought would be valuable assets to 

our final Spherical Design.  
 

 
Figure 3.4.7 Block Diagram of Potential Design 

 
In this design the entirety of our electronic hardware and sensor devices would be 

encapsulated within a hard protective cylinder exoskeleton. This structural design 

would ensure that the hardware was isolated from external forces. We decided not 

to use this and instead go with the Spherical exoskeleton of Figure 3.4.2 and 

Figure 3.4.3 However, in prototyping this model we found the Central Intelligence 

System frame right wheel and left wheel could be incorporated into our new 

Spherical Design. In essence, by putting all of the hardware within a protective 

Sphere we would defend from the cat’s predatory attacks invoked by our kitty-bot 

movement algorithms. Secondly, the Power Supply, Device Stabilizer, Sensors 

and Central Intelligence system would all be placed within close physical 

proximities of each other in a stable position. This meant that when prototyping our 

Spherical design, we could use the useful parts from the old design so that we 

would not have to work twice. This would much simplify our electrical design in the 
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future we thought, which was later confirmed in our rapid prototyping stage. We 

would also create a frame to hold all of these components that would be used in 

our Sphere. This frame would have to have two rods attached where the wheels 

used to be to direction the Sphere and propel it. In our original prototype each 

wheel would be controlled by a motor and would make decisions based our system 
of microcontrollers which would later be interwoven into a PCB design which we 

called our Central Intelligence System. The device stabilizer and sensors would as 

well be programed to react to input data or take data in and analyze it based on 

this system. In our new system all we had to do is replace the wheel with a rod 

that attaches to the inner part of either hemisphere and we could keep all of our 

work from the first prototype. This of course made us happy because we saved 

time. One of the drawbacks our original rapid prototype design was that we would 

have to program sensors to recognize when our devices has be knocked over and 

needs to be re-stabilized. These sensors would also have to recognize when the 

device is upright so as to not tip it back over by the Device Stabilizer. The device 

stabilizer itself which would be constructed as somewhat of a L shaped rigid tail 

that spins when the robot senses that the unit has been destabilized. The spinning 

motion of the device stabilizer would make it so that the L shape would make 
contact with the ground and the force between itself and the ground would propel 

our unit to an upright position. The point is, with our new Design we did not have 

to consider any of this. Our spherical structure made it so that our device would 

never be knocked down. 
 

3.4.7 Why we chose the Spherical Design over 
the Cylindrical Design. 
Our cylinder based design have other consequences we were uncomfortable with. 
In order to further consider them we modeled our ideas. By 3d modeling our ideas 

we were able to critically think through potential design flaws and or advantages. 
This model was created and referenced so that we could see what the structural 

architecture would cause us to consider in terms hardware design. In this rough 

AutoCAD 3D model sketch we noticed several things that we would have to 

overcome. Firstly, notice the green appendage in Figure 3.4.9. We called this item 

the device stabilizer. In order for this structural architecture to work the Device 

Stabilizer would have to be promptly adjusted to the rest of the unit. The device 

stabilizer would rotate clockwise or counterclockwise in the event our Kitty-Bot was 

knocked over by the playful feline. This means we would have to add another 

motor to the unit which would further increase overall complexity of the Kitty-Bot. 
Also the motor would have to be strong enough to propel the entire system upright 

in the event it was knocked over. This in turn, would mean we would have a further 
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power consideration variable to add to our ever increasing complexity equation. 
With the Spherical design we would not have to consider any of these difficulties. 

 

  
Figure 3.4.8 3D Model of Cylindrical Design 

Secondly, when trying to 3D model our our Structural Design we found ourselves 

having a hard time deciding how to design the wheels and the motors that attached 

to these wheels. Functionally, the way we mentally imagined things working before 

the 3D model was our central intelligence unit controlling the servo motors which 

would in turn spin the wheel. However, our Cylindrical structural design made it so 

that that would be difficult. 
 

 
Figure 3.4.9 View of Cylindrical Design’s Wheel 

 
The 3D model made us notice that we would have to cut into the Cylinder in such 
a way that the wheels would not touch it while simultaneously keeping the 

hardware encapsulated. Also, after further considering this design we became 

concerned about the safety of the animal. The point of this device is to have a cat 

attack it from as many angles as possible. This being said we imagined a scenario 

where the cat would try to attack the wheel of our robot, get a nail stuck in one of 

the moving parts, specifically one of the motors or wheels, and potentially get hurt. 
This, of course was a grave concern for our team and highly weighed on the 

negative end of the scale in terms of our final judgment of this structural design.   
 

Next we considered what our encapsulated parts would look like in this design. 
One of the main selling point to further consider, 3D model and evaluate this 

structural design was the Cylinder outer shell that protected all of the hardware on 
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the inside. Figure 3.4.10 shows the very basic 3D model we used to further 

explore this design. However, with the Spherical design we had an even better 

and more complete encapsulation of all our hardware. 
 

 
Figure 3.4.10 Internal View of Cylindrical Design  

 

The Blue and red boxes in this figure represent the Central Intelligence unit, any 

electrical connections to it, the physical structure holding this including the 

connections to the two motors controlling the wheels outside the cylinder and the 

battery pack. The green elongated triangular pyramid represents the location 

where we would have decided to place our sensors. We would have decide to 

place our sensors here because of several reasons. Firstly, concentrating all the 

sensors at the front of any unit seems to be the best solution evolution came up 

with so we figured we would copy nature. In essence we wanted to mimic some 

kind of counterfeit rodent or prey that the cat would pounce on. The prey would 

react to the cat based on algorithms we programed into it. The sensors in the front 

of our Kitty-Bot would act as the input to our Central Intelligence System that would 
then make decisions that would further incite the cat's playful nature based on our 

coding algorithms. The sensor system was one of the few advantages the 

Cylindrical system had over the Spherical system. However, the advantages never 

outweighed the disadvantages. 
 
Our 3D modeling also made it clear that that the Cylinders encapsulation of our 

hardware would perhaps not be as thorough as one would like. As we all know 

cats can be very creative in their mischief. It would be very easy for the cat to stick 

its paw inside the Cylinder and cause a destructive force to be applied towards our 

hardware, power supply and electronics. This would, of course, also cause a great 

safety concern to the animal. If the cat stuck its paw inside the cylinder and got its 

nail stuck or even worse somehow managed to electrocute itself this would be an 

extremely unfortunate event. In the end this candidate had many virtues, but also 

many faults.  
 
It was made clear to us after modeling the structural design that this candidate 
would have to overcome the shortcomings an undesirable amount of the design 

flaws. Further design would be necessary to overcome the safety issues 

embedded in this structure. Perhaps, we reasoned, we could have some kind of 
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netting covering the back and front ends of the cylinder. However, if we did choose 

that approach we would then have to find a way to let the sensors still peek 

through. Maybe a mesh of some sort. Overcoming the safety issues revolving the 

motors and wheels however was more challenging to think about. At best we could 

make the wheels have hub caps that covered its dangerous parts. However, if the 

unit was tilted over these dangerous parts would still be exposed. Other concerns 

the team had related to the Device Stabilizer needing substantial torque. The force 

created by this torque would means the Device Stabilizer would be prone to break. 
Also, the Device Stabilizer itself could potentially be a risky element for the 

predator cat. This cylindrical dual motor controlled wheel navigation design was 

the first thing we came up with. However, after imagining the design and its 

challenges in the more mature versions of its prototype we became even more 

confident in our decision to choose the Spherical Design. 

4  Identification and Review of Applicable 
Standards 

4.1 Research and Identification of Standards 

4.1.1 Research on Standards 
 

Engineering standards are documents that specify characteristics and technical 
details that must be met by the products, systems and processes that are being 

developed. These include details such as dimensions, safety aspects and 

performance requirements. The purpose of developing and adhering to standards 

is to ensure minimum performance, meet safety requirements, make sure that the 
product/system/process is consistent and repeatable, and can ensure compatibility 

with other standard-compliant equipment. A code is a law or regulation that 

specifies minimum standards to protect public safety and health such as codes for 

construction of buildings. 
 
Standards may be referenced or included in the specifications, which are a set of 
conditions and requirements of precise and limited application that provide a 
detailed description of a procedure, product or service for use primarily in 

procurement and manufacturing. 
 
Our project must follow certain standards, codes and requirements in order to be 

able to be developed and deemed safe. As it stands, we must meet certain 

requirements in order to ensure the security of ourselves, those around us while 
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demo-ing and our test subject, the kitten. We must make sure sensitive parts aren’t 

exposed that the kitten could get into and end up electrocuting itself. Our PCB and 

protective circuits must remain under a certain temperature as to not overheat 

causing product failure and/or a fire. 
 

4.1.2 Identification of Applicable Standards 

IEC 61249-2-23 Ed. 1.0 b:2005 

  
Title: Materials for printed boards and other interconnecting structures - Part 2-23: 
Reinforced base materials, clad and unclad - Non-halogenated phenolic cellulose 
paper reinforced laminated sheets, economic grade, copper clad"  
Scope: This part of IEC 61249 gives requirements for properties of non-
halogenated phenolic cellulose paper copper-clad laminated sheets, economic 

grade, in thicknesses of 0,8 mm up to 3,2 mm. This standard covers material with 

different requirements on flammability and is designated according to the following: 
Material 61249-2-23-1: general purpose grade, requirement on flammability not 
specified; Material 61249-2-23-2: materials of defined flammability (vertical 

burning test). These grades of material provide for one of two flammability 

requirements and designated as FV0 or FV1. 
 

IEC/TS 62657-1 Ed. 1.0 en:2014  

 
Title: Industrial communication networks - Wireless communication networks - Part 
1: Wireless communication requirements and spectrum considerations  
IEC TS 62657-1:2014 (en) provides the wireless communication requirements 
dictated by the applications of wireless communication systems in industrial 

automation, and requirements of related context. The requirements are specified 

in a way that is independent of the wireless technology employed. The 

requirements are described in detail and in such a way as to be understood by a 
large audience, including readers who are not familiar with the industry 

applications. Social aspects, environmental aspects, health aspects and market 

requirements for wireless communication systems in industrial automation are 

described to justify the wireless communication requirements. This Technical 

Specification describes requirements of the industrial automation applications that 

can be used to ask for additional dedicated, worldwide unique spectrum. This 

additional spectrum is intended to be used for additional wireless applications while 

continuing using the current ISM bands. 
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CISPR/TR 28 Ed. 1.0 b:1997  
 

Title: Industrial, scientific and medical equipment (ISM) - Guidelines for emission 
levels within the bands designated by the ITU (International Telecommunication 
Union)  
This technical report provides the guidelines for emission levels within the bands 
designated by the International Telecommunication Union (ITU) for industrial, 

scientific and medical (ISM) application. 
 
IEC 62115 ED. 1.0 b:2011 
 
Title: Electric toys – Safety – Deals with the safety of toys that have at least one 

function dependent on electricity. Examples of toys within the scope of this 

standard are constructional sets; experimental sets; functional toys (having a 

function similar to an appliance or installation used by adults) and video toys (toys 

having a screen and means of activation, such as a joystick or keyboard.  
 

4.2 Design Impact of Relevant Standards 
A quick review of the standards above shows that this project is not directly 

affected by many standards, however, it is subject to a few. The first standard that 

is relevant is IEC 61249-2-23 Ed. 1.0 b:2005 which is a standard that governs 

flammability characteristics of PCB materials. This is obviously important to the 

project since we employ a multi-layer PCB in our project. The board must conform 

to this standard since it is built using industrial materials. The next two documents 

are used to set standards for wireless communication. Our project has wireless 

communication using the HC-05 Bluetooth module, and it turns out to be a good fit 

because it conforms to the FCC standards listed as well as the ITU standard.  
The final standard listed is related to electric toys. Technically, our project is a toy 

(for kittens) and it runs on electricity, therefore, this standard is applicable to our 

design. Even though the robot is being made for kittens to play with, it is being 

operated and maintained by humans, so it must meet this standard which is 

necessary for it to be developed. Our protective circuits must be secure so that 

wires or other components will not be exposed which can cause electrical burns 
and/or electrocution to the human handling Kittybot or the kitten that is playing with 

it. 
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5  Realistic Design Constraints 
The following sections will discuss possible challenges faced in the development 

of this project. These include monetary, time, and environmental constraints, as 

well as the factors relating to health, safety, and practical use. 

5.1 Economic and Time Constraints     

The project’s total cost will be relatively low. Based off of our estimations the 

project shouldn’t exceed $500 in total cost. It should fall around $250 to $300. The 

project must be completed by December of 2016. We will begin rapid prototyping 

with old parts and personal items we previously owned as early as June 2016 to 

help during the designing phase. This will help in the building phase as well. After 

the rapid prototyping and design is near completion we can see what components 

can be salvaged from the prototype for use in the final build of KittyBot. With 

previously owned components we are saving time and money. However, some 

parts will eventually need to be ordered. While this obviously presents an 

economic constraint; that is planned for, we priced items and parts in our initial 

report. A more nebulous problem is possible delivery time for certain parts. Items 

that can be found in local retail and hardware stores (Walmart, Home Depot, Pet 

Supermarket, etc.) can be occurred anytime if the item is in stock. We purchased 

a hamster ball from a local Petland pet store to test early prototypes with; and 

hardware items such as screws, nuts, and polyvinyl chloride (PVC) piping can be 

purchased at store like Home Depot and Lowe’s. Some other items may only be 

available online and with this comes potential complications when it comes to 

shipping times. The best case scenario for online ordering would be if the desired 

item was available on Amazon. More specifically, since we have access to an 

Amazon Prime account, if the item is available under the Amazon Prime banner 

we can get free two-day shipping. A small calibration was purchased for early 

prototype testing using this service. Amazon Prime has a continuously expanding 

library of goods, but some of the more sensitive electronics needed for KittyBot will 

not be available with the Prime service. Most other goods providers will not be able 

to provide free shipping, and if it is free it will most likely be very slow delivery 

ranging from one to three weeks. Having to wait long periods of time for 

components can halt development, cause milestones to be missed, and deadlines 

to be pushed back. Getting faster delivery would then mean paying more for 

express shipping, thereby increasing the costs. The time constraint of shipping can 

become an economic constraint as well.  
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5.2 Environmental, Social, and Political 
Constraints  
 

KittyBot will be meant for interaction with indoor cats. It will move best on smooth 

surfaces like wood or tile floors and even low carpet, basically common flooring 

surfaces found in most everyday homes. KittyBot is not meant to be used outdoors; 

i. It is not recommended to operate the device in grass, sand, mud, snow, etc. 
because it is not designed as an all-terrain device. Also it will not be water-proof, 
water-tight, or water-resistant and will malfunction if allowed to is soaked or 

submerged in water. Cats are meant to interact with KittyBot, so it will be able to 

withstand potential damages from household cats. Animals comparable to the size 

of a cat could also interact with KittyBot, certain breeds of small dogs for instance. 
Larger animals like large dogs could cause damage to KittyBot; as such, it is not 

recommended for these animals to play with the device. 
 

5.3 Ethical, Health, and Safety Constraints  
  

Since KittyBot is meant to interact with pets we have a responsibility to design and 

construct KittyBot in a manner that will in no way harm the animal. The casing 

housing all internal electronics for KittyBot will be smooth with no sharp edges that 

could cause scrapes or lacerations to the intended animals. KittyBot will be of a 

weight and size that shouldn’t hurt or crush the animal if bumped into. Again, cats 

are the intended audience for play with this device. If smaller animals like 

hamsters, mice, lizards, or snakes are allowed to interact with the device they 

could potentially be harmed by its size and weight. On the other hand, animals 

larger than cats could also potentially be harmed KittyBot. If a large dog were too 

rough and cracked open the device, they could cut themselves on the fractured 

shell or damaged electronics. This is a pet toy, as such it not meant for use with 

children. Depending on the age of the child they could break KittyBot and cut 

themselves or even swallow any broken off pieces of the device. The best course 

of action for any user of our device is to always maintain adult supervision when 

allowing your pets or children to play with KittyBot. 
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5.4 Manufacturability and Sustainability 
Constraints 
Kitty-Bot will be made from majority inexpensive components, with the most 

expensive single piece being the printed circuit board. The structural components 

are all inexpensive. The outer shell is a plastic hollow ball. A common hamster ball 

found in most pet stores for under $10 would work just fine for this casing. An 

internal chassis will be 3D printed. Fortunately for our group, as University of 

Central Florida students we have access to free 3D printing. Since this will be 

made from acrylonitrile butadiene styrene, or ABS, plastic which is one of the 

cheapest 3D printing materials, and it will be no larger than 10 cm in width, length, 
or height, this chassis can be cheaply reproduced. Any additional screws, bolts, 
or brackets for construction are all inexpensive items. Microcontrollers and sensors 

are price comparable to the printed circuit board while still not being as expensive. 
These electronics fall within the $20 to $40 range. Motors can also be around $30 

a piece. Batteries plus potential cases and battery holders can total upwards of 

$20. With the right combination of components, found at the right prices, KittyBot 

could be manufactured for well under $150. 
 

When it comes to long term sustainability, that can be difficult to determine exactly. 
Starting from the outside, the integrity of the outer shell should hold for quite some 

time, years in fact, if operated in the intended ways. KittyBot should be used to 

play with cats primarily, so it can withstand regular play from cats. With the average 

number of cats in a single household being two or three, KittyBot shouldn’t be 

overwhelmed by the number of feline participants in the vast majority of 

households. KittyBot may ram into walls or other objects. For the top speeds 

KittyBot will be able to reach, this ramming should cause no significant damage 

after extended periods of time. When it comes to the other structural components, 
the screws, nuts, and brackets holding KittyBot together should all be able to 

withstand a cat’s activity as well as bumping into things. The overall structural 

integrity is not meant to be able to take activity beyond this. As stated early, larger 

pets such as large dogs are not recommended for KittyBot. These types of pets 

may be able to damage KittyBot with their paws, bodyweight, or jaws. 
Unsupervised children of a certain age can pose a danger to KittyBot’s structure 

as well. KittyBot can withstand bumping into objects while moving at its top speed 

but acts that can cause KittyBot to collide into objects at speeds surpassing that 

like rolling, throwing, or dropping KittyBot can most certainly cause severe damage 

to the structural elements of the project. 
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The internal elements of the KittyBot are much more sensitive. Putting these 

components inside an outer casing can will help in keeping them safe. The 

mechanisms and components fastening the electronics in place will hold under the 

intended uses of KittyBot. Unintended use can cause damage to these internal 

components as well. Excessive force can knock the central chassis out of place, 
or at worst the shocks can cause damage to the printed circuit board or 

microcontroller. Extreme heat and sun exposure, extreme cold or snow, and rain 

and water can cause danger. An indoor environment is best. KittyBot should be 

operated in temperatures ranging from 65 to 75 degrees Fahrenheit. 
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6  Hardware Design  
The kitty-bot is made using both mechanical and electrical hardware.  These 

systems need to work together through sensors, motors, embedded systems, 
printed circuit boards, and microprocessors.  The power supply systems need to 

accommodate all these hardware components with enough power to run the kitty-

bot correctly.   
 

6.1 Voltage Regulation 

Voltage regulators are important in electrical systems.  They allow systems to run 

12V batteries without out sending too much power to more sensitive components.  
Voltage regulators don’t use much power due to the tiny current that runs through 

it.  The servo motors could require a larger voltage to power them and therefore a 

voltage regulator will be needed to regulate voltage for the microcontroller and 

sensors.  Having a large gap between Vin and Vout causes inefficiency in the 

regulator. 
 

Capacitors are used to filter noise input prior to regulation.  Another capacitor is 

placed on the output of the voltage regulator to deal with voltage spikes from the 

regulator on the load resistor.  Different sized capacitors are used in the figure 

below to filter different ranges of frequency.  The smaller capacitor prevents large 

frequency signals to interfere with the motor.  Figure 6.1.1 

 

 

Figure 6.1.1 
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6.1.1 Linear Regulators 
A linear voltage regulator is a technological device that acquires a certain amount 

of input voltage and then helps to govern a predetermined amount output voltage. 
They are advantageous when being applied to a circuit board due to their compact 

size and ability to produce both positive and negative output voltages.  Linear 

voltage regulators come in multiple voltage types, such as either fixed voltages or 

adjustable voltages.  An example of a fixed voltage linear regulator is the 78xx 

series.  An example of an adjustable voltage linear regulator is shown in LM317, 
below in Figure 6.1.2.    

 
Figure 6.1.2 

(From www.ti.com) 

 
Our team has found linear regulators that can provide output voltages ranging from 

1 to 40 volts. The current from the load is at less than 1 to 1.5 amperes. However, 
there are input voltage requirements for linear voltage regulators.  The input 

voltage must fall between a minimum and a maximum range.   The minimum 

voltage requirement is determined by the dropout voltage, which is found on the 

datasheet of the linear regulator. This dropout voltage is generally between 2-3 

volts. Therefore, a 10 volt regulator would usually have a minimum voltage 

requirement of 12-13 volts.  The maximum input voltage is dependent on the part 

selected and generally yields up to 40 volts. 
 

For KittyBot, a linear voltage regulator is an adequate piece of technology. Our 

required voltage level falls within the range of the minimum and maximum 

requirements of a linear voltage regulator.  The ampere level is thoroughly covered 

by the average level of a linear voltage regulator and thus is more than within 

reason.  Our team’s battery will provide input voltages at a considerably higher 

level than the desired regulator output.  Therefore, the dropout voltage 

requirement will also be met.  Linear regulators meet the requirements of our 

team’s project and in conclusion can be used for most voltage regulation needs.  

http://www.ti.com/
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Another advantage of a linear voltage regulator is the practicality in its design. The 

voltage regulation is performed entirely within KittyBot’s integrated circuit. 
Therefore, no add-ons are needed when implementing the regulator. The linear 

regulator usually has 3 pins, which allows it to be applied easily to KittyBot’s printed 

circuit board. However, there is one disadvantage of a linear voltage regulator: its 

efficiency.  There can be certain cases where the input voltage is much higher than 

the regulated output voltage, in which the linear regulator is inefficient in trying to 

banish the extra power as heat. For this project, the input voltage will be 5V 

typically which is not a large drop off to supply the 3.3 V needed for the 

microcontroller therefore it will be approximately 90% efficient. 
 

6.1.2 Switching Regulator 
Switching regulators have the ability to take a higher voltage and it brings it down 

to a lower voltage as well as linear regulators.  Switching regulators have the ability 

to transform a lower voltage to a higher voltage. Switching regulators can also be 

very efficient with their power output, looking at some datasheets we saw that 

some regulators have an efficiency of 90-95%.  Switching regulators also create 

very little heat when being used.  
 
The downsides of using the switching regulators are that they cost more and are 

little more complex. Another downside is that switching regulators are noisier than 

linear regulators.  Another obstacle switching regulators present is that they tend 

to have an output current greater than 1 amp.  The regulator will be powering our 

microcontroller which has a very low input current.  The MSP430 has an input 

current in the micro amp range. 
 
Switching regulators have three different abilities which have names they are 

common for.  Those three names they’re known for are buck (step down), boost 

(step up), and buck-boost (step up/step down) regulators. Our battery will be 

supplying anywhere from 5-6 volts to loads which require a range of 3.3 to 5 Volts.  
A buck regulator was found courtesy of Texas Instruments, they had a voltage 

regulator which met our group’s specifications.  The LM2594 step-down buck 

converter is an adjustable regulator which works well with battery applications. The 

pin level diagram of this chip is pictured below in Figure 6.1.3. 
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Figure 6.1.3 

(From www.ti.com) 

 
 

Switching voltage regulators use a combination of transistors acting as switches 
and inductors or capacitors acting as storage devices to provide a constant output 

voltage. Switching regulators can further be divided into categories such as buck, 
boost, and buck/boost regulators. A buck regulator takes a higher input voltage 

and steps it down to a constant lower output voltage. For this project, a buck type 

regulator will be required. Switching regulators are available as complete 

integrated circuits just like linear regulators. Typically used parts handle supply 

voltages of up to 40 volts or higher and can handle currents up to about 3 amperes. 
Switching regulators do not convert the difference in power to heat like linear 

regulators and therefore have power efficiencies of up to 95%. 
 

6.1.3 Regulator Trade-offs 
 

The benefits of using switching regulators over linear regulators are mainly 

because of their power efficiency.  KittyBot needs to be efficient in order to work 

for as long as possible.  Switching regulators are also available online as complete 

integrated circuits and would therefore be easy to integrate and implement into 

KittyBot’s circuit design. Switching regulators have the ability to step down or up 

giving more versatility, but for the KittyBot only step down is needed.  Switching 

regulators produce very little heat compared to a linear regulator.   

There are a few key advantages linear regulators have over switching regulators 

however.  Linear regulators are less noisy because switching regulators can 

produce electric interference due to their utilization of inductors and can have a 
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ripple voltage.  Ripple voltage can also be caused from a high switching rate.  The 

switching in the regulator causes it to be much noisier than its linear counterpart. 
Linear regulators benefit from being smaller due to switching regulators requiring 

additional components to build the desired switching regulator circuit.  Although 

linear regulators can be quite large if a heatsink is necessary.  This design’s case 

wouldn’t require a heatsink.   

This project would be able to meet the requirements set out for KittyBot with either 

a switching regulator or a linear regulator. The input power supply and output 

power requirements fit into the specifications of readily available switching 

regulator parts. Many of today’s electronic devices using microprocessors also use 

switching regulators. This makes finding existing circuit designs easy and allows 

us to be able to change the designs to help benefit this project. Linear regulators 

can only regulate voltage lower but for the design, as mentioned before, they still 

work out.  Figure 6.1.4 was created below to see the advantages or disadvantages 

between the regulators easier 

 

 
 

Figure 6.1.4 

 

(Used from Digikey.com) 

6.2 Amplifier Circuit Design 

Amplifier 
One of the reasons we wanted to design a decent amplifier is because. For 

example, our censor output voltage range might not match up well with the 

msp430. Also the msp430 might not output enough current to correctly power the 
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motors. Being that we want to avoid these issues we wanted to design an amplifier 

that would give us flexibility. We wanted to put the input values into a computer 

program that would give us the output values desired, and that’s exactly what we 

did. There are advantages and disadvantages, however. For example, a common 

emitter amplifier might have low impedance and is inverting. These are all things 

that we would like. These are characteristics of, for example, a common emitter 

amplifier. The high output impedance and current gain might be ok as well. 
However, the high voltage gain is what we really desire. That will improve the 

quality of our device. We figured an average voltage for the circuit board that we 

want to provide power supply to might be two volts. We would want an input 

resistance of about 15,000 ohms and an output resistance of about 100 ohms. 

 
At the end we decided a multi stage Common emitter amplifier would be our best 

bet. Our major point of focus was a high gain. After a lot of math and a very 

crafty computer program written in C we arrived at the following specs. 
 
Design Procedure: 

1. To design the amplifier circuit, we need to break the specifications down 

into two parts: a high input resistance that produces a large gain, and a low 

output resistance. Two amplifier circuits fit the bill only somewhat. A 

common emitter amplifier can amplify the voltage by a great factor, but 

moves the phase of the output such that it is 180 degrees out of sync with 

the input - basically, inverting the output along the real axis. A common 

collector has a low output resistance, but does not negate the phase shift 

of the output. As such, a third component is added: a common emitter 

amplifier with no bypass capacitor. 
 

2. To calculate the proper values, the circuit must first be transcribed into its 

DC and small signal equivalent circuits. For practicality, capacitors are 

taken as relatively large values between 10 micro farads and 100 micro 

farads. When the impedances of these components are calculated, these 

values will result in a short circuit when considering small signal values, and 

an open circuit for direct current values. Therefore, the equivalent circuits 

can be shown in Figure 6.2.1 and Figure 6.2.2. 
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Figure 6.2.1 Circuit diagram of Small Signal equivalent of the 

amplifier circuit 

 
Figure 6.2.2 Diagram showing the DC equivalent circuit of the 

amplifier 
 

3. From the above circuits, one can estimate several resistance values based 

on the requirements set forth in the lab. Once these values are obtained, 
the rest of the resistance values can be obtained through calculation and 

estimation. 
 

4. In order to simplify the construction of the circuit, the obtained values can 

be rounded to the nearest available physical resistor value. 
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After analyzing the circuit, these equations which were used to bias the circuit. 

Stage 2 and Stage 3 
   
   RE3 = (Vcc - VCE3) / IC3;                         
    

   RC2 = (Vcc - VBE - IC3*RE3) / (IC2 + IC3/B);     
    

   RE2 = (Vcc - RC2*(IC2 + IC3/B) - VCE2) / IC2;    
    

   RC1 = (Vcc - IC2*RE2 - VBE) / (IC1 + IC2/B);    
    

   RE1 = (Vcc - RC1*(IC1 + IC2/B) - VCE1) / IC1;     
 
Stage 1 
 

Rth = 0.1*(1+B)*RE1 
Vth = (Rth/B + RE1)*IC1 + VBE        

 
R1 = Vcc*Rth/Vth; 
R2 = Vth*R1/(Vcc - Vth); 

 
Rib = rpi1 + (1+B)*RE1; 
Ri = 1/(1/Rib + 1/Rth); 
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Small Signal 
 

 
 

Derived Small Signal Equations 
 

  

      rpi1 = B*VT/IC1; 
      rpi2 = B*VT/IC2; 
      rpi3 = B*VT/IC3; 
      ro1 = VA/IC1; 
      ro2 = VA/IC2; 
      ro3 = VA/IC3; 

 gm1 = IC1/VT; 
 gm2 = IC2/VT; 
 gm3 = IC3/VT; 
 Rib = rpi1 + (1+B)*RE1; 
    Ri = 1/(1/Rib + 1/Rth); 

 

After trying several values these worked best. 
 
Input values 
 
IC1 = 1mA 
IC2 = 1mA 
IC3 = 1mA 
VCE1 = 2V 
VCE2 = 2V 
VCE3 = 4V 
RL = 5K 
RS = 100 
 

Resulting Values A 
 

  

 RC1 = 4569.536621 

 RC2 = 3278.145508 

 RE1 = 2399.999512 

 RE2 = 3699.999512 

 RE3 = 5000.000000 

 Rth = 36239.992188 

 Vth = 3.341599 

 R1 = 97605.937500 

 R2 = 57641.718750 

 Rib = 366299.937500 
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 vbe2 = -0.864712 

 ib3 = 0.000281 

 
Resulting Values B 
 

  

 VCE1 = 2.000000 

 VCE2 = 2.000000 

 VCE3 = 4.000000 

 RAC1*IC1 = 4.504151 

 RAC2*IC2 = 3.249525 

 RAC3*IC3 = 2.455285 

 Ri = 32977.367188 

 Ro = 46.391895 

 Gain = 103.575066 

 Maximum unclipped voltage = 2.000000 

6.3 Embedded System 

6.3.1 Microcontroller 
 

Our senior design group has chosen to utilize the MSP430 microcontroller family 
for this project subsequent to contrasting every one of the models that we 

compared above and numerous others. We thought long and hard about this but 

in the end this choice depended on various elements. Some elements being more 

important to us than others. Primarily, we require low power. A high power 

microcontroller would mean less space for other components and more weight to 

lug around. However, beyond that, we require low power utilization for three 

reasons: to augment the time we can have the KittyBot rolling around before 

waiting be revived and recharged. Furthermore, we have to minimize the measure 

of weight and size as mentioned earlier. To diminish the weight on the engines that 

will move our sphere and to minimize the dependencies of the sphere on large 

energy sources. To do this we needed to find a microcontroller that would facilitate 

this goal. Maintaining a strategic distance from a cumbersome battery would be a 

great design accomplishment for our team. A microcontroller that conveys a 

considerable measure of weight and requests a great deal of board space, is 

needless to say not what we want. We also wanted a microcontroller with sufficient 

peripherals and proficient I/O ports.  
 
We did not start by considering which is the best microcontroller but rather which 

is the best microcontroller for our project. We researched far more than the 

microcontrollers referred to above and considered many advantages and 

disadvantages of devices. For example, we considered a PIC and thought that 
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maybe it might be best for our group because of its minimum size. We found out 

they have incredibly small ones, but later saw to many complexities in 

implementation. If we needed a more potent processing power, on the other hand, 
we might have chosen to go with a cortex. Minimum power consumption, however, 
was an important aspect for us, hence the MSP430. 
 
Another reason we have chosen the msp430G2 is the flexibility we have with the 

compilers. Texas Instruments provides a whole family of compilers to assist us in 

corralling a logical elegance of one and zero bits on the Printed Circuit Board. 
Texas Instruments Select the IDE you’re comfortable with. To learn more about 

our software offerings such as Energia, CCS Cloud, and Code Composer Studio™ 
 

6.4 Sensors 

6.4.1 GP2Y0A41SK0F 
The Sharp GP2Y0A41SK0F analog distance sensor is a possible choice for the 

KittyBot to detect objects.  The proximity sensor is especially desirable because 

they’re cheap for photoelectric sensors and only cost 10 dollars.  Considering the 

ear design calls for 2 of these sensors, they will save us more money than many 

of the other researched sensors.  The range for this distance sensor can be set to 

a desired range of 4-30 centimeters.   

The proximity sensors are low power which was wanted for design specification 

purposes.  The proximity sensor requires a 4.5V - 5.5V input and the max current 

is 22 mA.  The sensor draws current in short bursts and it’s recommended to place 

a 10µF capacitor by the sensor across Vcc and ground in figure 6-1.  The capacitor 

will stabilize the power supply from too large of a burst of current. 
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Figure 6-1  

 
 

6.4.2 PING))) 
The PING))) sensor from Parallax was heavily considered due to the groups 

familiarity working on other projects which included Parallax devices.  It meets the 

requirements for the range as the sensor can work up to 3 meters.  I found this 

sensor to work with the microcontroller being chosen, the MSP430.  This works 

well with the KittyBot design because it is also 5V like the previous sensor and the 

motors.  The PING))) sensor is simple to use considering the 3 pins and their 

functions shown in figure 6-2.  This sensor works using a 40 kHz signal.  The 

frequency is burst out for 200 µs and can sense the object between 115 µs and tmax 

which is 18.5 ms, and has a 200 µs delay before another signal is sent out.   
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Figure 6-2 

(From www.parallax.com) 

 

The PING))) ultrasonic sensor ultimately has some drawbacks that made the group 

come to a decision that it would be hard to do.  First, it would be hard to implement 

with the design on the mobile KittyBot toy.  If the design with ears were used, there 

would be large holes making the sensors vulnerable to the cat swiping in at the 

sensors and possibly causing damage.  The other designs for KittyBot don’t allow 

for these types of sensors since all the parts will be confined in a spherical casing.   

6.4.3 Piezo Element 

So after much research, we decided to use a Piezo element to detect any impact 

that the feline might inflict on our unit. Firstly, of course, we would have to figure 

out how to use the Piezo sensor. This sensor could be used for a large variety of 

reasons; be it to detect a knock on the door or the vibrations of a solid table. We 

are using to detect attacks from a cat. After researching the device we discovered 

that the piezo device is able to make a voltage after being physically altercated or 

irregularly touched. This could be due to a vibration from a physical element like a 

cat attack, a sound wave or any sort of a mechanical strain on the device.  

When we say Piezo sensor, we are really using a short name for piezoelectric 

sensor. In essence, a piezoelectric sensor that measures changes. It has the 

ability to use the piezoelectric effect. This is basically a manipulation of the electric 

charge that might accumulate in solid materials. The piezoelectric sensor uses this 

effect to detect the changes in certain things. It can detect the changes in anything 

from temperature, strain, force pressure or electric charge. Where it is useful for 

us is in measuring the changes in charge and vibration. We will use this effect and 

the Piezoelectric sensor that leverages it to detect vibrations on the outside of our 

sphere. These will, of course, be applied due to the predatory felines attacks on 

our device. 

This is a very useful tool for us because it captures the moment of interface 

between our unit and the predator feline. In addition to this, you can also place a 

voltage across a piezeo. If we do this the device will actually vibrate as well as 

http://www.parallax.com/
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create a tone of our liking. In essence our plan is to run a signal to an audio output 

when the kitty-bot is attacked. When rapid prototyping the unit we were able to 

scan and evaluate the output of the device using the analogRead() function 

provided by the library we are using. Next we had to encode the voltage. What we 

decided to do is to slice the voltages into different physical values.  

We encoded the values to vary between the range of zero to five volts. In addition 

to this we assign an integer value that ranged from zero to one thousand and 

twenty-three. By splitting everything into these values we were able to apply an 

analog to digital conversion otherwise known as an ADC. Our goal was to be able 

to control when our sensor would react and when it wouldn’t. First, as a proof of 

concept, we connected the entire unit to the computer. If the sensor was more 

powerful than a certain threshold our msp430 microcontroller would then send the 

command “React” to the computer. This would be done over the serial port. If we 

refer to the diagram we can see that one of the sensors’ cords is connected to 

ground and the other to the microcontroller. The wire that’s connected to the 

microcontroller is the serial port of the msp430.  
Musical output added to our circuit. 

Multiple Piezo sensors 

As can be seen from figure 3.4.17 we at this point in Agile rapid prototyping sprint 

only have one sensor working. This one sensor, simply will not be sufficient for 

what we need. We need enough sensor coverage on the sphere where if any part 

of the our kitty bot is attacked we can take it as an input and react accordingly. 
Hence at this stage in our rapid prototyping process we decided it would be worth 

our while build multiple sensors into our core electrical design. What we came up 

with can be analyzed in the following figure. 
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Figure 6.4.18 

Notice Figure 6.4.18 it contains the final outline of our prototyping session with 

sensors. During our research process we realized that Piezo sensors are 

polarized. This sounds complicated but it basically means that any voltage that 

passes through their circuit will do so in one specific direction. This is in contrast 

to a bipolar sensor. In order for us to get many Piezos to work we found out that 

we must connect the black wires to ground in series and the red wires to the analog 

pins. However, we found out a quirk when getting in the other sensors. We must 

additionally to our previous design Also connect a one Mega Ohm resistor in 

parallel to each Piezo device. This serves a very important service to the totality 

of our device. It limits the voltage and current produce. The Piezo might not react 

well to the fluctuations we found so it was safer to do this. This also serves to 

protect the analog input from potential damage. We prefered to purchase the piezo 

sensors that looked like a metallic disc because it was less overhead and allowed 

us to deal directly with the sensor. Alos it doesn’t have anything to impede it so it 

is easier to use as an input sensor. We also found other small but useful 

discoveries. If the Sensor is not firmly placed against the wall of our sphere it does 

not work as efficiently. In our final implementation we will build the sensor into our 

actual device for best production.  

Using our sensor to play musical notes 

When creating the project one of our main goals was to make it as fun as possible. 
After all we are making a toy for cats and humans. Throughout our process we 

began to find things that would help us actually implement this vision. One of the 

ideas we came up with was to make the unit so that it reacts with a unique or 

entertaining sound. No one can deny that we all like things that sound. For 

example a piano or a flute. But we dont like things that sound in an annoying way. 
For example a door bell. Well it turns out we can do this using the piezo and it 

works out great. In this way we can save by not putting extra components on our 

unit. As long as we have the tones and the durations of each tone we will be able 

to create what we want. Actually we can code the msp430 to play what we want.  

For prototyping purposes we decided to have the sensor play happy birthday. To 

do so we went to a web site and grabed the notes necessary to create the melody 

which were  as follows. 

The notes were: 

c c d c f e 
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c c d c g f 

c c highc a bflat g 

a a bflat f g f 

The first time we did it we used the traditional delay to code what we wanted. We 

wanted a better way of doing this so later we figured out how to get the delay that 

we want using the PWM pule width modulation hardware. In order to get this to 

work we had to figure out that all notes correlate to a particular frequency. What 

we were able to do was to reset the channel duration for the second half and set 

the channel to use only half of the duration. Using other references, we were able 

to get a Pulse Width Modulation of fifty percent Duty cycle at our particular 

frequency. With the previously described set of logical steps we were able to 

accomplish something very impressive. We were able to make a square wave from 

the sine wave. After that, we, of course, encountered more problems. One of these 

being the ability to seize a Tone. We wanted to stop the Tone. The problem was 

that since, we were using PWM and software bit-banging we were now unable to 

simple zero out the output by zeroing the bit. That being said we also knew that 

we can make the period zero if we want. With all of this in mind, we coded the 

function and initialized our PWM pulse width modulation and were able to 

accomplish our goals. With this modification in place we will be able to accomplish 

a very nifty thing. Now every time the cat attacks our unit, the unit will sing a 

different musical note. When we consistently attack the unit it the unit creates a 

melody that we all can enjoy.  

6.5 Printed Circuit Board (PCB) Design 

 
A printed circuit board is a circuit board that electronically connects and 

mechanically supports electronic components using tracks, pads and other 

conductive features made from coppers sheets laminated onto a non-conductive 

substrate. The substrate is usually a semiconductor such as silicon, silicon 

dioxide or gallium arsenide that serves as a foundation upon which electronic 

devices like transistors, diodes and integrated circuits are deposited. 
Components are soldered onto the PCB in either a single sided, double sided or 

multi-layered layout. Our group decided that using a double-sided layout for our 

PCB would be most effective because it would allow us moderately high 

component density while keeping costs relatively low. 
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6.5.1 HC-05 Bluetooth Module Layout 
 

The HC-05 Bluetooth Module has some added benefits related to the PCB design 

of the project. The HC-05 Bluetooth Module has a simple, non-cumbersome 

package which makes it suitable for a two-layer PCB design, this helps keep the 

design simple and inexpensive. Also, since the HC-05 Bluetooth Module family all 

have a similar footprint and are all configured using the same pin layout the design 
team can elect to change the specific module that is used without having to 

redesign the PCB connections for communication. There are multiple ways that 

this module can be mounted onto a PCB as long as the proper ground plane 

procedures are followed. This gives the team a lot of flexibility regarding the 

placement of this component on the PCB. 

6.5.2 Programming Microcontroller on PCB 
 
During the prototyping and initial testing phases the project will be implemented 

using an MSP430F5529LP LaunchPad. This will provide the design team with a 

quick method of implementing the robot movement algorithm and interfacing the 
major components of the robot such as the MCU, Servos, Sensors, and Wireless 

Communication. One of the advantages of using the LaunchPad to prototype the 

project is that it has an emulator board on it that is used to program the 

microcontroller. The microcontroller cannot be programmed properly without this.  
However, for the final design the project will obviously not be using a LaunchPad, 
but rather a custom designed PCB with the microcontroller and all other 

components surface mounted. The emulator board is not a simple set of 

components but rather a complex and high level emulator module that is beyond 

the scope of the design team. Also, the emulator board physically takes up a 
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considerable amount of board space. The design team has made a decision to 

use the emulator board on the LaunchPad to program the MCU on the custom 

PCB for the final design. This seemed to be the most cost, time, and space efficient 

way to implement the design without having to redesign a Texas Instruments 

Emulation board.  
 
To use the emulator board from the LaunchPad to program the custom PCB the 
design team must isolate the emulator board from the LaunchPad and replace the 

on board MCU with the MCU on the custom PCB. Instead of constructing the entire 

emulation board the design team will simply design the PCB so that jumper wires 
from the jumper block can be attached temporarily to set the MCU on the PCB as 

the target device for the emulation board. After considering different options and 

time constraints it seems that this will be the most efficient method to be able to 

use the emulator without having to reinvent it. 

6.5.3 Soldering 

While soldering may seem minor to the experienced engineer or hobbyist, none of 

the design team members have ever done it before. Since it is such a fundamental 

skill in electrical engineering and none of the team members have done it before, 
time will be taken here to gain some knowledge about how to solder.  
 

Soldering is a process used to join different metal components together. This is 

accomplished by using a metal alloy (solder) to connect the different pieces by 

melting the solder onto the components and allowing it to cool. This creates a bond 

that is strong enough to hold the components together and also conduct electricity. 
Soldering is different from other methods used to fuse metals together such as 
welding because it occurs at a lower temperature (around 400 degrees 

Fahrenheit). Also, soldering melts a filler material between two metals to create 

contact unlike welding which actually melts the independent metals and fuses them 

together. Soldering can be “undone” for this reason by melting away the solder 

when it is desired to do so.  
 

Soldering Tools  
 

1. Soldering Iron  

 

The size of the soldering iron depends on the application. A 15-40 watt 

soldering iron is good for circuit board soldering while 60-140 watt iron is 

better for thicker materials. Using a higher power iron on small components 

can result in overheating and damage to the components. Some soldering 

irons have variable temperature so that most applications can be 

accomplished with one iron however they are much more expensive.  
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2. Solder  

 
Solder comes in a variety of thicknesses depending on what it is needed 

for. For circuit board applications thinner solder is better since it is more 

detailed work. Most solder material is combination of lead and tin but 

nowadays lead is being phased out of design due to health concerns. Some 

solder contains silver as well which results in a higher melting temperature 

which can result in burning components if care is not taken. Apparently 

solder with rosin core is better to use because it acts as a flux and helps the 

connection.  
 

3. Soldering iron tips  

 
Soldering irons come with tips but it is good to know what tips are better 

suited for certain applications. For detailed work, it is better to use a conical 

shaped tip while a flat larger tip is good for joining wires together. Also, the 

tip should be slightly smaller than whatever is being soldered.  
 

4. Soldering iron holder and cleaning sponge  

 
This just provides a safe place to hold the iron while not in use and a safe 

means of cleaning the tip.  
 

5. Tools for wires and clips to hold work  

 

Wire clippers and wire strippers for cutting and stripping wire. Also good 

clips to give extra hands while soldering pieces together are necessary such 

as “helping hands” or just alligator clips, anything to help make the soldering 

process easier.  
 

6. Safety equipment  

 
These include exhaust fans so that fumes are not being inhaled and safety 

goggles.  
 

Soldering Procedure  

 

1. Heat up soldering iron and clip all components together onto clips in the 

proper orientation such that the board can be flipped upside down and not 

have everything fall off.  
 

2. Clean tip of soldering iron with a wet sponge.  
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3. (Soldering Wires Together) Strip about half an inch away from the ends 

of the wires and twist them together to form your joint. Touch the soldering 

iron to the joint (not the solder) and begin to heat the wires. Touch the solder 

to the wires (not the iron) and wait until it melts into the joint. If you touch 

the iron directly to the solder it will melt around and not into the wires and 

will form a “cold joint” and results in a poor connection.  
 

4. (Soldering on a PCB) Place the leads of whatever component is needed 

through the hole in the PCB then bend it slightly so that it does fall out when 

flipped over. Touch the tip of the soldering iron to the led and metal pad on 

the PCB making sure that too much heat is not added that would damage 

anything. Once the lead and pad are hot touch the tip of the solder to the 

crack in paying careful attention to how much solder is applied. Too much 

solder can pool over connections and cause short circuits while not having 

enough can cause a poor connection. The right amount of solder will form 

an “ant hill” like mound. If this is not the case, make sure that all leads and 

pads are clean first. Remove the solder 1 or 2 seconds before the iron is 

removed so the tip of the solder does not stick to the connection; next cut 

off the excess lead as close to the PCB as possible with sharp wire cutters. 
 
5. (Surface Mounting Components onto a PCB) The first step to surface 

mounting components onto a PCB is to “tinning” the pad. This is 

accomplished by heating up the pad where you want to mount the 
component and applying a small amount of solder to it to create a small 

pool. Next you lower the component onto the solder and pad with tweezers 

and heat up the solder again to form the connection; hold the component in 

place for an additional few seconds to allow it to cool. Last, connect the 

other end of the component to the other pad by soldering the two contacts 

together.  
 

6. (Desoldering and Fixing Mistakes) Desoldering is done using either a 

solder pump or desoldering braid. It is basically just reheating the joint, 
removing the solder and removing the component or resoldering the 

connection correctly. Fixing mistakes can be done by just reheating the 

connection and adjusting the component so that it is placed properly and 

has a good connection/ enough solder.  
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7  Software Design  
When creating our project, it was necessary carefully analyze how to approach 

every aspect of our Software. Our project is an interwoven mesh of Electronics 

controlled by embedded systems. That being said our development environments 

were crucial to the outcome of our project. Essentially, the software team’s job is 

to be the brains of the unit. We considered many frameworks along this process 

but came to solid reason based solutions to our processing needs. Firstly, it was 

necessary to consider what would be our Integrated Programming Environment. 
Many options were available, however, we came to the conclusion that it would be 

intelligent to come to a conclusion about what microcontroller we wanted to use 

before we decided on the Integrated Development Environment. After much 

deliberation, which was specified in detail in our section on microcontrollers we 

decided that the msp430 would be the ideal microcontroller for our purposes. We 

wanted a lightweight low energy high in community resource solution to meet our 

processing needs. The MSP430 was able to provide that. Additionally, it provided 

a plethora of integrated development environments to choose from. 

7.1 IDE Options 
The TI MSP430 line of microcontrollers is usually programmable through Texas 
Instruments’ proprietary integrated development environment (IDE) Code 

Composer Studio. Code Composer Studio is a very robust IDE.  
  

An alternative to using Code Composer Studio is Energia. Energia is an IDE for TI 

Launchpad microcontrollers that is very similar to the Arduino IDE. This will allow 

for us to use Arduino libraries. 
 

A critical thought for this development is the way the hardware will be programed. 
Hence, we considered many Integrated development environments to fulfill our 

tasks. To efficiently integrate logic and intelligence into our hardware there must 

be a path for the equipment to be modified, tried and fixed as fast and productively 

as could be expected under the circumstances. In a perfect world the task would 

have been customized utilizing an environment that takes into account larger 
amount calculations to be actualized without focusing on controlling individual bits 

and registers. For example, MatLab might have a good consideration if we only 

needed to analyze data but unfortunately we needed to control hardware at its 

most fundamental level. To fulfill this, the software integration developers decided 

to use the Energia Integrated Development Environment. The choice to utilize the 

Energia Integrated Development Environment depended on various elements that 

were meticulously considered and evaluated.  
 



97 
 

In particular, one of the reasons that stand out amongst the most vital reasons our 

group picked Energia is that it is intended to use the Arduino programming 
algorithms and consolidates the plenty of libraries that can be actualized for any of 

the problems that we may encounter. This IDE has libraries committed to 

everything that our hardware programmed intelligence needs to execute. For 

example, Energia has a plethora of libraries that can drive engines dealing with 

the heartbeat of our PCB, that is the (PWM) Pulse width modulation required to do 

tasks. There are additionally libraries to peruse sensor information which will be 

unbelievably essential to facilitating the basic leadership process required to 

effectively execute the fundamental calculations we need. To efficiently navigate 

the labyrinths paths of development and expand the effectiveness with which they 

can be unraveled this integrated development environment will be highly useful.  
 
Another helpful component that is connected with the Energia Integrated 
Development Environment is that coding representations can be transported in 
into Code Composer Studio which additionally accelerates the advancement of our 

compiler time. Our group can build up the essential calculation utilizing the Arduino 

framework and libraries at first. After that it can be transported and translated into 

the Code Composer environment. if more exact refinements are required, for 

example, advancement of register and control of individual bits, both calculations 

that are more difficult those can be done in Energia. Group five trusts that utilizing 

Energia in conjunction with Code Composer Studio will help expedite the 

aggregate of our teams programming and improvement abilities. 

7.1.1 Potential IDE and our Choice of Energia 
After careful consideration we came to the conclusion that the Energia Integrated 

Development Environment was best suited to meet our needs. One of the things 

we really liked about this development environment is that it is open sourced. This 

means that anybody can look at the code. Also, a community of people developed 

the environment so it is geared to real life practical needs. This software framework 

was exactly what we needed. The software framework is based on a Wiring 

framework and is capable of providing a non-technical easy to follow development 

workbench. When researching the codebase, we also realized that it is very robust 

and beyond that simple. Common sense is all that’s really required in terms of 

training to use the Environment. The open source community provides a lot of 

benefits to its end users.  Other IDE considerations are listed below. Though we 

were able to find a multitude of Integrated Development Environments that would 
could work conjointly with the msp430 we only truly considered the two considered 

below.  

IAR Embedded Workbench: 
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Description  

IAR Embedded Workbench has a C and 

C++ compiler. It also has a debugger tool 

suite for applications. It can be used for 

MSP430 and TI ARM-based 

microcontrollers. 

 Completely integrated 
development environment 

including a project manager, 
editor, build tools and 

debugger 
 

 Highly optimizing C and C++ 
compiler for ARM; 
Compatible with other ARM 

EABI compliant compilers. 
 

 Ready-made device 

configuration files, flash 

loaders and over 2800 

example projects. 

 
 

Mentor Graphics Sourcery Tools (formerly Code Sourcery, Inc.): 
 

Description  

IAR Embedded Workbench is the world-
leading C/C++ compiler and debugger tool 

suite for applications based on 8-, 16-, and 

32-bit MCUs, including MSP430 and TI 

ARM-based microcontrollers. 

 Completely integrated 
development environment 
including a project 

manager, editor, build tools 

and debugger 

 Highly optimizing C and 
C++ compiler for ARM; 
Compatible with other ARM 

EABI compliant compilers. 
 

 Ready-made device 

configuration files, flash 

loaders and over 2800 

example projects. 

 
Though we considered the two previously mentioned Integrated Development 

environments they really didn’t compare to Energia. We were astonished as to how 

easy to use Energia was. It doesn’t have allot of options which is actually a good 

thing when you are getting used to a new Integrated Development Environment. 
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Another amazing feature was the integrated Serial Monitor. This terminal 

extremely useful when testing sensors. We were able to see the TX and RX input 

and output real time. Also there are allot of API’s that are plenty useful to us. These 

do advanced features with the sensors as well as helping us with controlling the 

microcontroller and peripherals. A feature which saved us countless numbers of 

hours we would have used developing low level elements. These included 

functions like digitalRead/Write and Serial.print amongst many others. We also 

found that this Integrated Development Environment was compatible with other 

devices we wanted to fiddle with. For example, the c2000 or the TM4C. Above all 

though we loved that the code was open source and hosted in the same GitHub 
server where we are holding our code where we can find higher level libraries for 

different applications we might use. If we ever needed a more professional 

environment we could also transition seamlessly into the Integrated Development 
Environment Code Composer Studio v6 
 

7.2 Development Structure 

7.2.1 Git Repositories over SVN 
We decided to use Git repositories to maintain our code instead of Subversion. We 

came to the conclusion that git is better fit for our needs. We like the fact that Git 

is decentralized in its structure. With Subversion we can’t have localized copies of 

our code. Also, with Subversion we might encounter a problem. We might be in a 

place where for example we might not have internet in which case we would have 

to literally copy and paste the code we would not be able to commit it. With git we 

don't have this problem our copy of the code is a local repository and we will be 

able to commit it whenever we please. That being said there is an added 

complexity to this approach.  With git there is an entire language that we have to 

learn to track of our code. We also have to know the structure of the git system 

and how the branch structure works. Also we have to understand the difference 

between the local repository and hte actual branch that in our case would be kept 

on a server like github.  

Git was at first a little confusing to us admittedly. We had to understand what it 

meant to work decentralized. What is a remote branch and also how to initialize 

and set up a repository? We were able to set up a centralized root branch of code. 
From that centralized root branch of code we set up development branches for 

each member on the software team. Each member now has his own branch to 

work on. When there is a change that the individual wants to keep he simply 

commits the change. The great thing is that this change still hasn’t made it to the 

root branch. When the individual developer is ready to commit the changes to the 
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main changes root branch he can do so. Then the administrator of the code can 

decide to pull the development branch into the root branch therefore updating the 

code. This as you could imagine is incredibly useful for our team.   

7.2.2 Agile over Waterfall 
When choosing our coding construct and framework of organization we had to 

think very carefully. From personal experience, if you don’t properly map out your 

thoughts and plan the logical road map to success your logic will fail. Our main 

options for programing structures were agile and waterfall, we choose to use Agile. 
Some decades ago some programmers thought the waterfall methodology was not 

flexible enough to meet the needs of modern coding challenges. I happen to be of 

the opinion that they were right. That being said, many companies still use 

waterfall. They like the sequential and incremental approach of it. However, agile 

provides us more flexibility and potential for fast progress. We plan on starting off 

with a very simple algorithm design. Which we did in our prototypes. After that we 

began working on small portions of the code. We have organized ourselves for the 

work to be done on weekly and sometimes monthly sprints. When we complete 

the sprint we can then reevaluate the priorities of our coding approach. We then 

run our tests to ensure that our code is at optimum quality. The great thing about 

this approach is that this system helps us discover bugs as well as get feedback 

from our peers. This feedback can then be incorporated into the design and 

readjusted to create a better system for the next sprint. Some say that this is a 

very inappropriate approach because it lacks a serious initial design and sequential 

steps.  However, the flexibility and creativity afforded to us by this approach suits 

our end goals perfectly. 

In the end there were five main reasons why we chose the Agile approach over 

waterfall. Firstly, we need to be allowed to make changes to the code after the 

initial planning. This way we can rewrite things we found does not make sense. 
Secondly, because we are afforded the flexibility of making changes we will easily 

be able to add features to the code that will improve the excellence of our project. 
Thirdly at the finally of each sprint, we can then evaluate and reconsider our 

priorities. This will allow us to easily make adjustments to the project if our 

supervisor so desires. Fourthly, we believe strongly in testing and making 

excellence an integral part of our process. We need our code to run flawlessly 

when demoed. Failure could be catastrophic for our team. The infrastructure of 

Agile calls for testing to be complete at the end of each sprint. This ensures that 

the bugs that could derail our project are caught and preemptively disposed of at 

the end of each development cycle.  Lastly, which is kind of tied to the previous 

advantage; because our code will be so thoroughly tested we could basically be 

ready to present working code at the end of any given month. This assures us and 
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gives us security when crunch time comes around that worst case scenario we will 

be able to deliver a working product on demo day. 
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8  Project Prototype Testing  

8.1 Rapid prototyping approach 
The design phase of this project takes place during the UCF Summer semester of 

2016. In order to improve our design, we put together a quick prototype during this 

time. We wanted to try and achieve a proof of concept on a motorized rolling ball 

to better understand the concept. Members of our group had a bo-bot complete 

with wheels and two servo motors from past personal projects. Our team also had 

a battery pack, breadboards, and multiple TI Launchpad MSP430 

microcontrollers.  
 

The first step was programming the MSP430 to rotate our servo motors. We 

achieved this with a simple program coded in Energia. The circuit was assembled 

on a breadboard and was powered by an external battery pack.  We stacked the 

breadboard, microcontroller, and battery pack on the back of the bo-bot and turn 

it on. The bo-bot could successfully move. We then went about transferring this 

movement to a spherical object.  
 

A hollow sphere that we could snap open and shut again was needed. In fitting 

with the pet theme of KittyBot, a hamster ball, 9 inches in diameter, was 

purchased. Our desire was to attach the two servo motors to the insides of the 

hamster ball so that the rotations of the servos could rotate the entire ball causing 

it to roll. We decided use the bo-bot’s chassis in order to hold the servo motors. 
The bo-bot chassis was too large to fit in the hamster, so we sawed it in half. Figure 

8-1 shows the internal components of KittyBot. 
 

 
Figure 8-1 Internal Components of KittyBot 
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With the bo-bot chassis sawed, we had a good-sized housing for the two servo 

motors that could fit in the hamster ball. The chassis needed to be suspended in 

the center of the hamster ball with the servos attached to the opposite ends of the 

inside of the ball. Our quick solution to this was to drill holes into the bo-bots wheels 

and align them with holes drilled in the hamster ball. We would then insert a screw 

through the holes attaching the wheels to the hamster ball. A picture of the 

prototype at this stage is shown in Figure 8-2. 
 

  
Figure 8-2: Chassis first attached to inside of hamster ball 

 

With the chassis intact the microcontroller, breadboard, and battery pack needed 

to be placed inside the ball as well. The quick solution to firmly holding these 

components was rubberbands. In order to assembly the prototype for operation 

the code needed to be modified. The program was set to delay for one minute. 
This provided enough time to turn on the battery, reassemble the prototype, and 

place it on the floor in a ready position. After the minute delay, the servo motors 

kick in and rotate forward for another minute. This causes the ball to move. Finally, 
the servos are “detached” in the code, causing the system to stop. Below is a 

picture of the prototype at this stage (Figure 8-3). 
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Figure 8-3 Prototype with electronics strapped to chassis 

 
 

8.2 Design considerations derived from 
prototyping  
Based on our prototyping approach, new design options needed to be considered. 
With the prototype displayed in Figure 8-3, the ball is able to roll due to the servos 

turning. Both servos turn forward, rotating the ball, however when the ball turns 

the center chassis ends up sloping forward. The components strapped to the top 

of the chassis combined with the torque of the wheels turning may cause the center 

unit to tip over. As the servos continuously turn, the center eventually tilts back 

upright just to move and fall back over again. Internally the center piece rocks back 

and forth. The instability of the central unit causes the movements of the entire 

system to be erratic. The system does not move straight or at a steady pace. When 

the central unit tips over, the prototype is halted because the servo motors’ torque 

is moving the central unit back upright instead of rotating the ball forward. When 

the ball halts for that brief moment, it slumps over on one of its sides because the 

combined torque of the servo motors that keep the ball rolling on its vertical center 

axis stops momentarily. When the servos begin propelling the system forward 
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again, the ball is starting from a leaning position causing the ball to veer off in the 

direction it was leaning. On one hand, this erratic, random movement is an 

interesting prospect for playing with cats. The random movement could potentially 

excite and entice the animals. Random movement patterns are desired for Kitty-

Bot, but the group would rather achieve this through algorithms programmed into 

the microcontroller. The desired movement of Kitty-Bot is meant to be more 

controlled, because of this the physical instability of the prototype needed to be 

dealt with. 
 

In order to stabilize the movement, the idea of a counterweight was introduced. 
Inspired by the schematic of the Rotundus GroundBot, the idea was to hang a 

weight under the central unit inside the ball. The weight should hang freely 

underneath and not connect to or touch the bottom of the inside of the ball. The 

free hanging weight should keep the central unit upright while the servos turn, 
allowing for straighter, more controlled movement. The central unit, consisting of 

the sawed bo-bot chassis, two servo motors, MSP430 microcontroller, breadboard 

circuit, and battery pack, was weighed; it measured 308g. A calibration weight 

weighing 500g (Figure 8-4) was tested first. 
 

 
Figure 8-4 500g Calibration Weight 

 

This weight was 2.5in tall. This made it worrisome as to whether it would fit inside 

the prototype without touching the bottom. Upon inspection, the weight was able 

to hang from the center chassis with just enough clearance. This weight however 

proved to be too heavy for the motors to handle. A valuable lesson was learned 

from this experiment. Weight is very important to consider. KittyBot needed to be 

as light as possible to avoid the need for larger motors. This would also keep the 

costs down and keep the overall size of KittyBot small enough to be acceptable as 

a household item. 
 
With the limited supplies of this earlier stage we decided to test further levels of 

performance through programming. We decided to add turning to the prototype. 
By making the left wheel stop and rotating the right, the torque from the right wheel 
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would cause the sphere to spin to the left. Pausing the left motor for about one to 

three seconds should give enough time to cause a 90 degree left turn. The inverse 

can be done to cause a right turn. We also programmed an about-face 180 degree 

turn and a reverse movement. To reverse the angles of spin of the motors are 

simply swapped causing the device to rolling in the opposite direction. Achieving 

180 degree rotations are very similar to the 90 degree ones. The stopped motor 

just needs to be paused for longer and the active motor should run longer. Three 

to five seconds is enough to cause a complete about-face in the prototype. Figure 

8-5 and Figure 8-6 show visual representations of the left and right rotations in 90 

degree and 180 degree respectively. The views are from a top-down perspective. 
The yellow line indicates the forward facing direction of the prototype and the red 

arrows are the direction of rotation. 

 
Figure 8-5: Visual Representation of 90 degree Left and Right Rotation 
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Figure 8-6: Visual Representation of 180 degree Left and Right Rotation 
 
 
 
 
 
 
 
 
 
 

Figure 8-7 will provide a more detailed look at the movements.  
 
 

Action Turning Angle 
(in degrees) 

Left Wheel 
Direction 

Right Wheel 
Direction 

Move Forward 0 Clockwise Clockwise 

Move Backward 0 Counterclockwise Counterclockwise 

Turn Left 90 Stopped Clockwise 

Turn Right 90 Clockwise Stopped 

About-face 
Clockwise 

180 Clockwise Stopped 

About-face 
Counterclockwise 

180 Stopped Clockwise 

Figure 8-7: Movement Details 
 

8.3 Breadboarding 

A good practice for testing and prototyping is to take notes of observations and 

data so that if a problem occurs, our team can go back and resolve it quickly. Using 

breadboard for prototyping allows the team the flexibility to swap resistors and 

other components in and out on the fly. It is smart to prototype this way because it 

allows the opportunity to make mistakes and learn from them before investing in a 

PCB. Of course, our final design will use a custom-made PCB tailored to the 

specifications of our project because it is more reliable and practical.  
 
Before a resistor is placed on a breadboard, our team should ensure that the 

resistance value is determined by an online resistor calculator. If a component is 

a surface mount device (SMD) that has pins sticking out of its sides, then alligator 

clip shall be used to connect it with other components.  
 
Using a multimeter and we can measure the amount of current drawn to the servos 
in the presence of no load and full load to understand how much the practical 
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values deviate from datasheet values. We must make sure that the full load does 

not draw more current than the battery pack can supply. In case it does, we can 

replace it with another battery pack that can support higher current draw. The 

group will power the motors using a power supply in the lab before actually testing 

with a battery pack. It is best to set the current as low as possible then verify that 

the motors draw the right amount of current before slowly increasing the current.  
 
Measuring the input and output voltage as well as the input and output current of 
the voltage regulator, we can then calculate the wasted power using Equation 8-

1. If the power loss is within 1 watt, then no heat sink is required. If a linear 

regulator wastes more than 1 watt of power, then it should be replaced by a 

switching regulator.  
 

Wasted power = (input voltage – output voltage) x output current  (8-1) 
  

Next, we calculate the voltage regulator’s efficiency based on Equation 8-2, 
  

Efficiency = (output power/input power) × 100 = [(output current × output 

voltage) / (input current × input voltage)] × 100     (8-2) 

8.4 Conclusions reached        

Upon observing the full movement capabilities, we programmed into the prototype, 
we decided we liked the movement. The movement was originally thought to be 

too unstable and erratic. The turning protocols programmed into the prototype 

provided an adequate degree of mobility. This dramatically helped us in 

determining if we wanted to pursue the spherical design fully. It is a design that 

can facilitate all of our requirements. The plastic outer shell is durable enough to 

withstand rough play from cats. It houses all the sensitive electronics inside behind 

a scratch resistant shell. Because it is a sphere even if it is turned over or tossed 

around it can still roll.  
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9 Administrative Content  

9.1 Team Management 
We developed a timeline for our periodic meetings throughout the semester once 

we decided on what wanted to do for our project.  We generally try to meet up at 

least once every week to report to other members what we are currently working 

on, share some of the things we learn and new ideas that we may have. We also 

assign new tasks for the upcoming weeks. Our goal is to keep the project simple 

at first. As we research more, we’ll add improvements to the robot and change our 

objectives if necessary.  
 

The first two months is for research and prototyping. The last two months is for 

prototyping and testing as shown in Figure 10-1a. The research is very important 

so we knew we had to spend a lot of time on it. We have to write a report of 120 

pages so each of us will write 30 pages. As we research, we write down what we 

learn in the report. We found out that writing everything down after all the research 

is done will take more time. The majority of the second semester of Senior Design 

will be spent purchasing components, designing the PCB and testing our 

algorithm. We know that it is important to order parts early and design a few 

working PCBs so that when the deadline approaches we can focus most of our 

attention testing our algorithm and troubleshooting. We are aware that system 

integration is important so time will be spent on that to make sure everything is 

running smoothly. When we created the table of contents, we also assigned areas 

of specialty to each member using a Divide and Conquer approach, as shown in 

Figure 10-2. We also collaborated on some parts of the project as well. 
 
 

May June July August 
Documentation 

Research  
 Prototyping 

Figure 10-1a: Project Timeline for SD1 
 
 
 

August September October November December 
Purchase Components 

PCB Layout, Design and Soldering  
 Algorithm Testing and Troubleshooting 
  Final System Integration and 

Testing 

Figure 10-1b: Project Timeline for SD2 
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Divide and Conquer 

Bryen Buie Carlos Garzon Stephen Barth Trenton 
Williams 

Communication 
protocols 

Microcontrollers Motors System 
Protection 

System 
Integration 

Movement 
Algorithms 

Sensors PCB Research 

Data processing Pseudocode Communication 
Hardware 

Schematic 
Design 

PCB Design 
Circuit troubleshooting 

Code testing 
Error testing 

Bill of materials 

Figure 10-2: Divide and Conquer 
 

9.2 Project Milestones 
Most of us are pretty new to this project since we did not have any experience in 

robotics. Ideally, we aim to prototype and test in the second half of this semester. 
We overestimate the time needed to complete each task so that if an unexpected 

problem comes up, we still have enough time to fix. However, 75% of the time is 

already dedicated to research. We spend so much time on research because not 

all information we read about is related to what we are working on. Sometimes 

when we are building a part of the robot, we have to go back and research for 

more information.  
 

While doing our own research, we have to keep in mind the other members’ 

research too. For instance, if one member works on protection circuits and the 

other two are working on sensors and the microcontroller, the first member has to 

keep in mind of the specifications of the sensors and microcontroller. The research 

part is very crucial. It eventually determines how our product will turn out. One 

wrong step can lead to a series of problems in the future. Therefore, we pay very 

particular attention to our research. Initially, we wanted to finish the research part 

as soon as possible so that we have more time on the designing and prototyping. 
However, we are slightly behind schedule. Nevertheless, we all have solid 

understanding of where we are heading so we can be on track pretty quickly. If 
necessary, we’ll spend more time on the project to speed things up. To increase 

productivity, we decide that each member should specialize in certain topics. This 

method saves time and prevents confusion due to overloaded information. Then 

we share what we learn with each other. However, we’ll collaborate on the 

designing, testing, and coding because they are too important to leave to one 

member.  
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After we have finished a decent amount of research, we set out to acquire the 

components. We are looking for two factors: price and quality. For the sensors, 
the price is not too expensive so we should favor accuracy over price. For the 

microcontroller, we have to consider the price and the functionality such as the 

number of ports, the memory, and the processing power. Also, we need to know 

what kind of communication technology is compatible with that processor or 

launchpad. So far, we have acquired some of the material and just started with 

prototyping. Connecting the components together won’t take too much time but 

getting them to work will take a lot of time. Interfacing the microcontroller with the 

sensors and motors are important to the robot’s proper functionality. Therefore, 
this process will take a significant amount of time. We expect it to drag on for a few 

months. The milestone of the group for both semesters is as follows: 

 
 

 
 
Senior Design I: 

 
 Week of May 30 - Decide on Initial Project Idea  

 Week of June 06 - Research sensors, microcontrollers, motors and other 

electronic parts.  
 Week of June 13 - Design protective circuits & power supply (Hardware 

Team) 
 Week of June 20 - Design protective casing/outer shell (Hardware Team) 

 Week of June 27 - Design, simulate, & capture schematics (Software 

Team) 
 Week of July 11 - Research and design algorithms (Software Team) 
 Week of July 18 - Final Report  
 Week of July 25 - Final Report  
 Week of August 01 - Continue modifying and improving algorithm 

(Software Team) 
 Week of August 08 - Continue modifying and improving algorithm 

(Software Team) 
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Senior Design II: 
 

 Week of August 15 - Purchase hardware components (Hardware Team) 

 Week of August 22 - Build chassis, connect motors (Hardware Team) 

 Week of August 29 - Build pcb and other protective circuits (Hardware 
Team) 

 Week of Sept 05 - Build protective casing and outer shell components 
(Hardware Team) 

 Week of Sept 12 - Build power supply (Hardware Team) 
 Week of Sept 19 - Interface components and test for proper connectivity 

(Software Team) 

 Week of Sept 26 - Test sensors, collect and graph data (Software Team) 

 Week of Oct 03 - Test and modify algorithm (Software Team) 
 Week of Oct 10 - Test and modify algorithm (Software Team) 
 Week of Oct 17 - Test and modify algorithm (Software Team) 

 Week of Oct 24 - Build test area for kitten to play in. 
 Week of Oct 31 - Test durability of play area and device with kitten  
 Week of Nov 7 - Reinforce outer shell and play area if any weak spots are 

discovered (Hardware Team) 
 Week of Nov 14 - Make sure the project meets expectations and is 

working as intended 
 Week of Nov 21 - Make sure the project meets expectations and is 

working as intended 
 Week of Nov 28 - Dec 5 - Improve and fix any problems or issues before 

presentation 

 

9.3 Budget and Financing 
As stated in the goals, the project’s cost should be low, we estimate it should be 

around $200 but no more than $300. Texas Instruments’ distributors Digi-key and 

Mouser have search filters that are simpler and easier to use than that of TI. 
Besides, the distributors allow buyers to select the mounting style which is not 

offered on Texas Instruments’ website. The team will utilize the distributors’ search 

filter to find TI products. We will also try to use websites such as Amazon.com with 

an Amazon Prime account and Ebay to order certain parts because we can get 
relatively fast shipping times and not have to wait two – three weeks for shipping 

when ordering from companies such as Digi-key. 
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Since there might be a chance that a component might become defective or break 

during testing and prototyping, electronic components will be purchased in multiple 

quantities. Nonetheless, the group should keep the quantity at a reasonable level, 
which is no more than 10, since it may be expensive to buy at a large amount. 
Besides, the team might not use the leftovers after Senior Design II. In order to 

save on shipping costs, our team will try to purchase only from a few sellers. Our 

team will first look for the items at local stores where we can pick up. If the items 

are not available locally, then we will look for them in online stores.  
 

Four Rayovac rechargeable AA NiMH batteries may be purchased as a backup 
power supply besides the Energizer Lithium-ion batteries and charger combo 

which will be used primarily for testing. The Rayovac batteries work in all chargers 

so they can be charged using the Energizer charger, which is also advertised to 

be compatible with rechargeable AA and AA NiMH batteries. The Rayovac 

batteries are pre-charged so they are ready to use at any critical time when we 

need it.  
 

Chassis is usually sold as a kit that includes wheels, motors, and battery holder as 

well as mounting parts. It may be more convenient and cheaper to purchase the 

kit than to buy the parts in the kit separately. However, a kit offers limited options. 
We have little choices in selecting the motors’ size and type or dimensions and 

material of the chassis frame and wheels. Wheels can be purchased or acquired 

from old toys. 
 

Figure 9-3 will list all the components needed for building the robot. The figure 

does not include the shipping fees. Therefore, the actual cost may exceed the total 

in the figure. All of the cost comes from the hardware. The software part is free. 
The list is subject to change in the future depending on the team’s budget and 

when parts are ordered. Some materials may not be purchased if the team deems 

them unimportant to the success of the project or they can be substituted by 

another material. 
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Part Cost 

PCB $50 

Microcontroller $40 

Casing $20 

Camera $50 

Proximity Sensors $24 

Power supply components and batteries $30 

Chassi to hold system $10 

Wheels $20 

Total $244 

Figure 9-3: Bill of Materials 
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10 Conclusion 

 
The Kittybot consists of a robot that is designed to play with pets but it is mainly 

focused on kittens/cats. Group 5 has decided to work on a project that would not 

only challenge us, but also be useful and fun. Cats are often times curious and 

playful creatures. Their interactions with the robot would be entertaining for both 

the cats and their owners. The robot will be able to autonomously roam about an 

indoor space. It will also be able to sense its surrounds so it will not run into people, 
pets, or objects like walls, tables, couches, etc. Our goal is to create a robot that 

is small, cheap and power efficient.  
 

Since the primary target for the robot is cats, it will be designed with this animal in 

mind. It will be of a small enough size (no more than 10 inches in height) as to be 

an appropriately-sized plaything for the average household cat. The robot will need 

to be durable enough to withstand rough contact from the animal. Cats have sharp 

claws and teeth, so the outer shell of Kitty-Bot must be scratch resistant, and the 

sensitive components such as microcontrollers, printed circuit boards (PCB), and 

wiring will need to be housed in durable compartments. Kitty-Bot may potentially 

be turned over while a cat is playing with it. If this happens, Kitty-Bot will be able 

to set itself upright again. This will be achieved by Kitty-Bot’s spherical design. It 
will, in essence, be a “smart ball”, an autonomous, self-rolling sphere. 
 
Mobility is achieved through mechanisms of motors and autonomy is accomplished 
by the combination of custom codes designed by the team and pre-established 

software libraries. During Senior Design II, we expect to spend a lot of time-

troubleshooting hardware problems and coding/software issues that may arise. 
Senior Design I is the research, design and prototyping phase. Since we are only 

prototyping in Senior Design I, some design areas will be lacking at first but will 

come full circle in Senior Design II.  
 
This report is not meant to be followed strictly but to serve as a guideline for our 

design decisions and considerations when creating Kittybot. Adjustments and 

improvements will be made if a design, prototyping or testing is deemed inefficient, 

too costly or simply unfit for our goals. We have faced many obstacles in 

completing this report but we overcame them through our teamwork, perseverance 

and divide and conquer approach.  
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Appendices  

Appendix A - Copyright Permissions 
Sparkfun.com 

nssn.org (standards) 

Ti.com 

Hexbug.com 

Rotundus.se 

Digikey.com 

Anaren.com 

https://www.arduino.cc/en/Tutorial/Knock 

https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/ 

 

Appendix B – Code Snippets 

 
Prototype Bo-Bot code snippet 

 

http://www.nssn.org/
https://www.arduino.cc/en/Tutorial/Knock
https://indiantinker.wordpress.com/2012/11/29/tone-library-for-msp430/
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