

FunBox Classic (FBC)

Senior Design II - Project Documentation
August 7, 2015

Group 14

Stephen Caskey Anna Iskender
Nick Johnson Kyle McCleary

i

Contents
1. Executive Summary ... 1	

2. Project Description ... 2	

2.1 Project Motivation ... 2	

2.2 Goals and Objectives ... 2	

2.3 Requirement Specifications ... 3	

2.4 Standards and Constraints ... 4	

2.4.1 Standards .. 4	

2.4.2 Identification and Review of Related Standards 6	

2.4.3 Constraints .. 6	

2.4.4 Impact of Realistic Design Constraints .. 11	

3. Research Related to Project .. 12	

3.1 Existing Similar Projects and Designs .. 12	

3.1.1 Instructables How to Make a Portable Game System by 1up 12	

3.1.2 Adafruit PiGRRL .. 12	

3.1.3 The eNcade ... 13	

3.2 Hardware Research ... 14	

3.2.1 System Processor ... 14	

3.2.2 Screen ... 19	

3.2.3 Microcontrollers ... 24	

3.2.4 Communication Technologies ... 27	

3.2.5 LEDs .. 40	

3.2.6 Solar Paneling ... 45	

3.2.7 Audio ... 52	

3.2.8 Power System ... 60	

3.2.9 Case Design .. 75	

3.3 Software Research ... 86	

3.3.1 Base Operating System ... 86	

3.3.2 Software Frontend ... 88	

3.3.3 Software Backend ... 89	

3.3.4 Operating System Modifications .. 91	

4. Hardware Design ... 93	

4.1 Screen Setup ... 93	

4.1.1 Backlight Controller Error! Bookmark not defined.	

ii

4.2 Audio .. 95	

4.3 Power System .. 99	

4.3.1 Wall Charging Circuit Design ... 99	

4.3.2 DC-to-DC Converter Circuit Design ... 100	

4.3.3 Power Supply Design .. 102	

4.3.4 Combining the Power Supply and Charge Circuit 103	

4.3.5 Solar Panel Charge Controller Circuit ... 104	

4.3.6 LED Battery Charge Indicator .. 106	

4.3.7 Switching Battery Chargers ... 111	

4.4 Final Case Design .. 113	

4.4.1 Front Panel .. 113	

4.4.2 Back Panel .. 115	

5. Prototype Construction .. 117	

5.1 Hardware Acquisition ... 117	

5.2 Hardware Overview .. 118	

5.3 Hardware Integration .. 119	

5.3.1 PCB ... 120	

5.4 Software Overview ... 123	

5.4.1 Software Acquisition .. 124	

5.4.2 Software Integration .. 125	

6. Prototype Testing ... 126	

6.1 Hardware Testing ... 126	

6.1.1 Raspberry Pi 2 ... 126	

6.1.2 Screen ... 126	

6.1.3 Wall Charge Module .. 127	

6.1.4 Battery ... 128	

6.1.5 Solar Charge Module ... 128	

6.1.6 Power Supply Module .. 129	

6.1.7 Battery Indicator Module .. 130	

6.1.8 Backlight Controller Module ... 130	

6.1.9 Bluetooth Module ... 130	

6.1.10 Controller Module .. 131	

6.1.11 Speakers ... 131	

6.1.12 Audio Module ... 131	

iii

6.2 Software Testing .. 132	

6.2.1 Emulator Tests .. 132	

6.3 Final Integrated System Tests ... 137	

6.3.1 Integration Tests .. 137	

6.3.2 Final System Tests .. 138	

7. Administrative Content ... 139	

7.1 Milestones .. 139	

7.2 Workload Distribution ... 139	

7.3 Budget and Finances ... 140	

8. User Manual .. 142	

8.1. System Power ... 142	

8.1.1 Charging the System ... 142	

8.1.2 Powering on the System .. 142	

8.1.3 Low Power ... 142	

8.2. Using the EmulationStation Menu ... 143	

8.2.1 Scraper .. 144	

8.2.2 Sound Settings .. 144	

8.2.3 UI Settings ... 144	

8.2.4 Configure Input .. 144	

8.2.5 Quit .. 144	

8.3 Playing Games ... 144	

9. Conclusion ... 146	

Appendices .. 147	

Appendix A – Copyright Permissions ... 147	

1

1. Executive Summary

The following documentation outline, in full detail, the processes, procedures,
and means by which we completed our project: The FunBox Classic. It lists and
describes the goals, objectives, specifications, research, designs, testing
procedures and administrative content of the project. The final FunBox Classic
prototype brings back memories of a simpler time, when games did not have
gigabytes of resources and content to work through. It acts as a simple, but
pleasing, way to play classic Nintendo games. The project does not attempt to
break new ground, but it endeavors to make it as simple as possible for any user,
even without advanced technical knowledge, to just pick up and play, wherever
they might be.

The end goal of our project was to produce a functioning prototype. This
conformed to a variety of specifications. The device operates at a resolution of
640 x 480 on a 4.3-inch screen. The buttons for the internal controller were
placed at optimum positions, ensuring proper ergonomics. The device fits
comfortably in the hands and weighs little, allowing for hours of gameplay without
fatigue. It is able to connect with a wide variety of external controllers via
Bluetooth, allowing for multiplayer on the device. The device charges using a
standard Micro USB port, albeit with a wall charger instead of through a
computer. Note that it still charges through a computer, but much more slowly.
The device also charges through solar panels on the back of the case. This
allows for a little more power to get a user through the day. The casing is custom
designed and 3D printed, ensuring the tightest fit for the internal components.

There were many ways to meet the requirements set out in the requirements, but
it was decided to use trusted, proven components and technologies, to maximize
efficiency and minimize wasted time and money. A Raspberry Pi 2 was selected
as the core of the device, allowing the FBC to run a full Linux operating system
for maximum software compatibility. Bluetooth 4.1 LE was selected to ensure the
fastest speeds at the lowest power cost. Composite video was chosen to output
to the screen of the device, which helped to ensure compatibility with the
Raspberry Pi without adding on the additional hardware costs of HDMI. The PCB
and buttons from a USB SNES controller were reused for the internal controller,
ensuring that classic responsiveness and feel. Hardware volume control is on the
case, allowing the user to control the volume level even when the device is
turned off or unresponsive. By combining these technologies together, the
FunBox Classic is sure to delight and satisfy gamers of all ages.

2

2. Project Description

The FunBox Classic (FBC) is a portable game console that emulates five
Nintendo systems: GameBoy (GB), GameBoy Color (GBC), GameBoy Advance
(GBA), Nintendo (NES), and Super Nintendo (SNES). The main workhorse of the
FBC is a Raspberry Pi 2 (RP2) which runs the operating system and software
needed to support the emulators. Games can be loaded to the FBC by uploading
them directly to the SD card in the Raspberry Pi 2 or using a portable storage
device in the USB port inside the case. A screen is attached to the RP2 and will
display the emulated games when the device is turned on. The FBC also
contains speakers and a headphone jack to allow users to choose how they want
to hear their games. A game controller is attached to the RP2 directly and seated
internally in the case for a single user. If multiplayer is desired the FBC also
supports Bluetooth controllers. The FBC will operate away from a wall plug for
extended periods of time due to the internal rechargeable battery. The solar
panels that charge the device when it is not plugged in extend the life of the FBC
even further.

2.1 Project Motivation

Our motivation for building the FunBox Classic was mostly due to personal
desires. We wanted to build a device that would allow us to play the old classic
games we loved on the go in a single all-inclusive portable console that is
comfortable to hold and use. We also wanted the device to last long enough to
allow us to actually be able to enjoy the game on a road trip or flight. Additionally,
a device such as this allowed each group member to obtain design experience in
various categories. The combination of electrical circuit design components,
hardware/software interaction, and software design components was perfect for
our group, as well as the ability to add or remove components as needed or
desired.

2.2 Goals and Objectives

Our main goal was to accurately recreate the feeling of playing our old favorite
games, while also allowing the player to move around freely while doing so.
Ideally, the FBC will replace all of a user’s old Nintendo consoles while also
adding new features to them.

There were a variety of goals for the FBC that are necessary to the operation of
the system. The FBC needed to have a battery system that would quickly charge
a battery from a standard USB connection. The FBC needed to have an on-off
switch that would control the power from the battery to the FBC components. The
battery system also needed to keep the FBC powered for extended periods of
time. The FBC had to be able to emulate GB, GBC, GBA, NES, and SNES
games at their native speeds. Games needed to be able to be uploaded to the
FBC through the USB port located in the case. The emulated games had to be

3

displayed on a screen housed in the case of the FBC and attached to the RP2.
An audio system had to be attached to the RP2 that would play the sound from
the games via speakers or headphones. A controller to operate the FBC had to
be attached to the Raspberry Pi and needed to be comfortable to use. The case
was required to house all the components of the FBC safely. The case needed to
be sturdy enough to survive a drop and not allow the circuitry in the FBC to short
or disconnect.

Additionally, there were a variety of supplementary goals for the FBC that were
important to us. The FBC needed to have built-in Bluetooth to allow users to
connect their Bluetooth controllers and keyboards to the FBC for multiplayer or if
they would prefer to use that controller instead of the internal controller. The FBC
had to also have solar panels that would extend the battery life of the device. The
FBC also needed to have LED indicators for charging, completed charging,
battery/charge error, low battery, and power on.

2.3 Requirement Specifications

This list of requirement specifications describes the minimum goals and
objectives for our device in a more precise manner. Following the list, we explain
our reasoning for our minimum requirement specifications.

• Screen Size of at least 3.5” but less than 6”
• Display rate of at least 50 FPS
• Bluetooth 4.0 LE or higher
• Flash Memory of at least 16 GB
• 3.5mm Headphone Jack
• 2 Speakers of at least 1 Watt at 8 Ohms
• Charging Voltage of 5V
• Operating Voltage of 5V
• Maximum system current draw of 700 mA
• Solar power charge current of at least 100 mA
• Battery of at least 2100 mAh

We chose the size of the screen to be between 3.5” and 6” for 3 main reasons.
The first reason was to maintain the portability of the device. The larger the
screen the less portable the FBC will become. The second reason was to keep
the power draw of the system low. A larger screen meant shorter battery life. The
third reason was to make the games look better. A smaller screen results in less
stretching and will not distort the low resolution games of our consoles. We
chose the display rate to be at least 50 FPS to conform to both NTSC and PAL
standards.

Bluetooth 4.0 LE was our minimum requirement due to our device being battery
powered. The newer Bluetooth LE devices draw significantly less current and will
allow for a longer lasting battery life.

4

The flash memory of the device needed to be at least 16 GB due to it needing to
be able to contain an operating system, systems software, emulators, and
games. While 16 GB may not be necessary, we want to allow users to hold all of
their games on the device.

A 3.5mm headphone jack is required because it is the standard size for
headphones and we want the user to be able to plug in any of their own
headphones into the FBC. The speakers need to be at least 8 Ohm 1 Watt
speakers to ensure that their output through the case is audible and clear.

The charging voltage needed to be 5 volts so that the device could be plugged
directly into a standard USB port, which operates at 5 volts. The user needed to
be able to plug the device into their phone charger or computer to charge it. The
power supply of the system needs to supply an operating voltage of 5 volts
because the Raspberry Pi 2 is normally powered by USB.

The current draw of the system did not exceed 700 mA because the device
aimed to be low power and long lasting. We settled on 700 mA as the cap
because the only things drawing significant power in the device are the
Raspberry Pi 2 and the screen. The RP2 did not exceed 400 mA and the screen
did not exceed 200 mA. A 700 mA current draw maximum compensated for the
600 mA of the RP2 and screen and allows 100 mA for the rest of the components
combined. The solar power charge current was at least 100 mA to partially
alleviate the current draw of the rest of the system and to charge the battery at
an acceptable rate when the device is not powered.

The battery needed a charge capacity of at least 2100 mAh. At the max current
draw of 700 mA a 2100 mAh battery would last for three hours without any solar
power. We wanted the device to last for at least three hours when not in sunlight.

2.4 Standards and Constraints

There are a variety of standards we adhered to in the design of our project, and
constraints that affected both the design and use of our project. There are
standards for pretty much everything, but we were primarily concerned with the
standards related to the most important components of our device. Likewise,
there are a vast amount of constraints that will have some effect on our project,
but we focused on the ones that have a significant impact.

2.4.1 Standards

Engineering standards specify properties and technical requirements that must
be met by systems that implement them. This ensures that minimum guidelines,
such as safety, performance, reliability, testability, and interaction with other

5

complying equipment, are met. The following are standards that were
implemented either by our project or components in our project.

2.4.1.1 Bluetooth 4.0.

Bluetooth 4.0 is a version of the Bluetooth wireless technology standard for
exchanging data over short distances. It uses UHF radio waves in the ISM band
to accomplish this. Bluetooth 4.0 uses half the power of Bluetooth 3.0, which
makes it crucial for the developing mobile market. It was formerly maintained by
IEEE, but they abandoned support. It is now maintained by the Bluetooth Special
Interest Group.

2.4.1.2 NTSC

NTSC is the analog television system used mainly in the Americas. It can be
transported in a variety of ways, such as coaxial cable or composite video cable.
It was developed and standardized by the United States Department of Defense,
as seen in document # SMPTE-170M: Television - Composite Analog Video
Signal – NTSC for Studio Applications.

2.4.1.3 USB 2.0

USB 2.0 is the second main revision of the Universal Serial Bus standard. This
increased theoretical speeds to 480 Mbit/s, 40 times faster than the 1.x standard.
It has four pins: Vcc, Ground, Data+, and Data-. The specification was developed
and maintained by the International Electrotechnical Commission (IEC) in
document # IEC 62680-1: Universal serial bus interfaces for data and power –
Part 1: Universal serial bus specification, revision 2.0.

2.4.1.4 Micro USB Revision 1.01

Micro-USB revision 1.01 was a new, smaller connection designed for USB 2.0.
Micro-USB adds an ID pin to the previously existing four pins of USB. This allows
for USB on-the-go technology, which turns a client device into a host. The
specification was developed and maintained by the International Electrotechnical
Commission (IEC) in document # IEC 62680-2: Universal serial bus interfaces for
data and power - Part 2: Universal serial bus - Micro-USB cables and connectors
specification, revision 1.01.

2.4.1.5 FAT32

FAT32 is a variation on the 1970s file system File Allocation Table, or FAT. The
32 stands for the size of the entries in the filetable which are each 32 bits. This
increased the maximum volume size to 2TB, 1000 times more than the previous
FAT16 (these both assume 512 byte sectors). It was developed, standardized,
and maintained by Microsoft in the Hardware White Paper: “Microsoft Extensible

6

Firmware Initiative FAT32 File System Specification. FAT: General Overview of
On-Disk Format. Version 1.03.”

2.4.2 Identification and Review of Related Standards

Several standards pertaining to the components used in the FBC were adhered
to and considered. The SMPTE-170M-1990 standard associates with the
standard to the analog television system color bar test system, which
corresponds to the display screen used. The formerly IEEE upheld 802.15.1
standard refers to the development for Bluetooth technology, such as the chip
implemented in our design. To note, the Bluetooth standard is now upheld by the
Bluetooth Special Interests Group (BSIG). The IEC 62680-1:2013 standard
covers the interface data and power for USB technology, and in relation, the IEC
62680-2:2013 is the standard for micro-USB cables and connectors. The IEEE
928-1986 standard was recognized for the performance expected of photovoltaic
power systems. Finally, the IEEE 1625-2008 observes the standard for the
recharging of batteries for multi-cell mobile computing devices. Standards in
battery charging and solar performance were heavily considered for the expected
performance related to the efficiency of the FBC

2.4.3 Constraints

Design and construct considerations for the FBC must also take into accounts of
the likelihood of realistic developmental impact constraints that will need to be
addressed. Discussion of potential, if not already existing, implications will help
identify legitimate concerns, as well as benign factors that do not pose actual
issues in the execution of the project.

2.4.3.1 Economic Constraints

Economic and financial factors will be the most heavily focused constraints to
anticipate moving forward with the project cycle. Given the many various
components that comprise both the hardware and software aspects of the FBC,
hurdles to consider include individual acquisition of building parts and materials,
and the availability based on quantity need. One specific constraint would be the
necessitation of individual components that do not require mass ordering. Certain
FBC features utilize unique IC’s and microcontrollers that need no more than one
or two centralized components for implementations. Ordering such parts in
singular quantity can conflict with manufacturer requirements that dictate quantity
bulk order, and potentially limiting the availability to particular models. Another
aspect to consider is the financial limitations of ordering components on the
individual level as opposed to mass ordering. Bulk purchases generally tend to
be at a better pricing figure than simply ordering one component, and having that
component alone shipped for manufacturing. An evident challenge is that many
of the FBC controllers and IC’s are unique from each other and cannot be

7

substituted as a common factor piece. Therefore, the need for many different
singular parts arises with the dilemma of specialized orders.

Additionally, an unforeseen economic constraint that was faced in the
developmental phase of the FBC was in the form of reshaping in the
technological consumer market. In particular, the standard for commercially sold
electronic components, Radio Shack Corp., was forced into bankruptcy, thus
resulting in multiple store locations closing. This factored into our ability to readily
obtain necessary components for design and construction of the FBC, as well as
generated refocus onto additional reliance in online ordering conventions.

Adding to ascertaining of parts, and their availability, another constraint in the
economic sense is the means to build the FBC. Self-reliance on sectional
building would require additional resources, such as soldering stations and
specialized tools, like small-scale mounting instruments. Another option would be
resourcing private venues that professionally construct the designated circuit
boards needed, which would be another unanticipated fee. This must be factored
into additional costs that do not directly go into the FBC, but must be used for
achieving its realization.

2.4.3.2 Environmental Constraints

Availability of resources and surround requirements are to be taken into account
when dealing with the FBC environmental constraints. Primarily, the conditions of
building the device are to be considered first, with access to the proper work
environment being essential. For testing and building of parts, we have a home-
based work-bench that features amenities ideal for electrical-mechanical
construction. However, the limitations facing our work-space include
fundamentally scaled utilities that do not necessarily parallel to those of
standardized research labs. The Senior Design lab located on UCF is another
option that could provide a desired environment for project advancement, but
would also require a constant transportation of parts, many of which are on the
micro scale, to and from said location. Additionally, the Senior Design lab also
has limited space and readily accessible utilities that can compromise work
efficiency. Given that so many of the FBC building components are only a few
millimeters in surface area, fabrication conditions should be favorable to an
abundance of lighting and sizable work-surface area.

The secondary environmental constraint deals with the functionality of the FBC
within its surroundings. This constraint directly refers to the operation of the
FBC’s battery charging solar panel circuit. Essentially, this component harnesses
available sunlight into usable electrical energy to charge the internal source
lithium polymer battery. For this to occur, operation and temporary storage of the
device should be in a location accessible to direct sunlight. This can be a
challenge, in particular, for in-use operation, as the solar cells capturing sunlight
are located on the back of the FBC, opposite facing from the TFT LCD screen.

8

Due to this design specification, the solar cells are not likely to be directly
exposed to environmental sunlight while the FBC is in use. However, the solar
cells are capable of operation in indirect lighting, and full lighting can be achieved
should the FBC not be in user operation, and is left, screen-side down, for
additional battery charging. It is noted that the solar charging panel is the only
natural-environment dependent aspect to the project.

2.4.3.3 Social Constraints

The identification of social constraints pertaining to the FBC project can be met
with a subjective paradigm, considering the views society can hold on the roles of
videogames in the social environment, let alone the advancement of a previously
outdated console. The influencing factor of videogames as a household common
component make the further advancement, such as the FBC, questionable under
what society approves. In particular, social views that videogames can be a
debilitating, and even destructive, factor to human behavior has been an
argument used for most of the history of gaming consoles. And while indeed the
discussion zeros in on the actual games used for the consoles, the FBC provides
a vehicle by means to potentially deliver such disapproved games in the form of
a portable handheld device. This brings up the social constraint of whether it is
marketable to make readily available a device that can yield more potentially
violent gaming platforms.

Additionally, the other social constraint to be discussed is the social reaction to
recreating a console that was very popular at its release point in the early 1990’s,
and giving it new life under modern amenities. Society, to a scale, may have
objections to hosting a compilation of emulated games on a private, unique
gaming device. Additionally, modeling a device after such an iconic console can
make it a tall task to live up to certain reviews if compared to its professionally
manufactured predecessor. Although social constraints do not have a direct,
immediate constriction to the design and building of the FBC, it sets conscious
limitations going forward as to the overall design consideration, as well as final
product reception.

2.4.3.4 Health and Safety Constraints

Concern for conditions of operation and safety quality of the product bring are
considerations behind the health and safety constraints. While the FBC is a light,
portable, low-powered device, potential hazards are to be assumed worth
addressing. An immediate concern would be associated with the safeguards
behind the device, and the minimization of malfunction risks. A lithium polymer
battery, rated at 4.2 V, powers the FBC and the overall design of the FBC
compacts all components, including the battery, into a close-quarters case.
Lithium batteries, in of themselves, can be susceptible to catastrophic failures as
a result from overcharging, with fires and explosions in extreme cases. Although
the battery we are using comes with overcharge protection, and the FBC features

9

IC’s to address the potential for battery overcharge, there is a small, but
significant, risk of device failure that can pose as a safety hazard. This is
especially relevant given that the FBC poses a dual-option charging system, and
should a battery indication system fail, overcharge can be a realistic concern.
Additionally, with the battery in close proximity to the rest of the hardware
components, self-destructive behavior will likely damage the device as a whole,
and even possibly a user while in operation. Such occurrences are unlikely, to
say the least, but a disclaimer to the internal power source must also be brought
to light.

Another safety constraint comes with the FBC construction process. The device
is to be built utilizing multiple electronic and mechanical means for project
realization, and a majority of work being conducted by amateur craftsmanship.
Unfamiliarity with production tools, such as soldering guns, can lead to burn or
shock injuries, as well as other physical injuries from hardware connections and
case building. Proper safety procedures and protection apparel will need to be
observed to avoid such risks. Furthermore, the device will be attempted to be
assembled in a simulated professional manner, but will not be factory-grade
work. Such results can mean potentially exposed electrical components that can
pose isolated shock risks. Consideration for working on the device when
connected to a power source should be taken to minimize risk of electrocution.
A health concern with the FBC comes from device operation by the user,
especially the environment that pertains to the given situation. The console uses
a 3.5” TFT LCD screen for visual transmission output of the video games being
emulated for use. Although suitable for a portable device, the size limits the user
to a small focus point for potentially extended periods of time. This may lead to
the user bringing the illuminated screen into closer proximity to their eyes for
better visual prowess. This can potentially lead to eye strain problems, and in
isolated cases, myopia, that may require attention. Additionally, device
operations in a darkened environment can lead to headaches and eye fatigue.

2.4.3.5 Manufacturability Constraints

The building process, along with the means to build of the project, yield
manufacturability constraints to be aware of. A specific constraint encompasses
the acquisition of parts and components for the FBC. Nearly all of the electrical
components are diverse in origin, and require multiple shipping orders from
various companies to achieve the materials needs. Also, bulk ordering is
unnecessary, due to demand for mostly singular components. This makes the
purchasing of parts a constraint to the production process, as locating the
necessary parts can be tedious and diverse. Another manufacturability constraint
to observe comes from the actual building of the device. The ideal design for the
FBC specifies a centralized device that features components surface mounted to
the printed circuit board. The two problems with this come from actual
achievement of surface mount soldering, and actual restrictions given tight
spacing. Surface mounting components, which are only a few millimeters in

10

dimensions, makes for tedious and limited manufacturing, even with the use of
specialized low-scale and magnification tools. The actual components and
models to be surface mounted are also constrained to what can be achieved
under design specifications. Certain parts cannot be directly surface mounted to
the location they need to be in due to either internal temperature specifications,
or surrounding component conflicts. This limits the manufacturing process by
hand, producing the need for production solutions that are achievable on the
small, individual scale, given the FBC’s manufacturing is done on the private,
preliminary platform.

2.4.3.6 Sustainability Constraints

Energy sustainability, both within the device system and the surrounding
environment, provides constraints for consideration. Primary restrictions for
device energy allocation constitute as battery supply throughout the system, as
well as both means of charging the battery, from a plug-in wall charger, and from
attached solar panels. Parts sustainability must also be addressed, with the
prospect of continual availability of components and specified models crucial for
intended production. Power sustainability within the device is first observed, with
the lithium polymer battery supply throughout the FBC being scrutinized for
sustaining the necessary power to run all components. Various features of the
console, from LCD screen display, to audio speaker output, and auxiliary
controller connection all require diverse powering demands that must be met
from the source battery. Sustainable power must be achieved equivalently for
optimized performance, with proper voltage regulation and DC-to-DC conversion
observed as needed.

Additionally, power sustainability constraints include means of charging the
FBC’s source battery. Two means of charging, the wall charger and the solar
panel, are able to provide additional power to the system, but must be done so in
a sustainable manner. The wall charger must utilize the given available power
from whatever plug-in source while only supplying as much as needed to the
FBC. Excessive power draw from the charging source will be wasteful and
unnecessary, as well as potentially hazardous. Thus, the wall charger needs to
draw current and voltage at an acceptable rating and have means to prevent
over-draw. The solar panel charging circuit utilizes renewable energy for
additional battery power, and must actually sustain a measureable amount of
energy for significant charge. The sustainability constraint with the solar panel
contribution comes from the concern of necessary photonic sources needed to
supply the desired current for the system.

Sustainability of parts used within the project is also a constraint to recognize.
Preliminary planning of parts to be used for the FBC can be compromised should
the components not be sustainably produced or marketed. To date, there is no
current concern that specific model components are being produced at an
unsustainable rate that would produce foreseeable concern in the future.

11

However, constraints in market demand and availability bring to question the
sustainable course of anticipation for achieving of parts at a later date for
production.

2.4.4 Impact of Realistic Design Constraints

Throughout production of the FBC, innumerous constraints limited our efficiency
and timeline in constructing a functioning prototype. These constraints, as
analyzed prior to project implementation, were not always expected, and
contributed to shaping the final design. The most debilitating constraints we
faced were from financing and manufacturing the FBC. The economic constraints
foreseen for the project were more pragmatic than initially considered,
specifically the shipping costs. With design revisions, as well as emergency part
acquisition from damaged components, the urgency resulted in numerous
overnight shipping, which would yield a shipping cost many times more
expensive than the part itself. Additional costs in manufacturing the project
ourselves, including soldering irons, copper wires, support clamps and so on also
added up in costs. Revised PCB productions also drove the cost up, with the final
cost of the project far exceeding the initially predicted budget that was set. The
manufacturing constraints can also be derived from the financial woes, as means
to build the FBC were limited to what the group could afford and with the
availability of resources. As predicted, surface mounted components proved
difficult to solder with irons not designated for pin-point use. Professional
manufacturers were an option sought to correctly mount our board, requiring
searches and consultations.

Further constraints were encountered during the project, even if not as impactful
as the financial and manufacturing dilemmas. Primary environmental constraints
revolve around lack of ideal manufacturing working space. Construction of the
project by members was often performed at a workbench in a garage, with
limited space to work with and excess debris, such as dirt and dust that would
settle on needed components. A secondary environmental challenge occurred
during testing of the solar panels, with availability of direct sunlight being limited
to morning hours. Based on member availability, afternoon summer rainstorms
would compromise testing of the solar panels, creating setbacks for accurate
results. Safety constraints were encountered with working on soldering
components to the board. The soldering irons used by the members could
exceed 600°F, not only making them dangerous to work with, but debilitating to
use for long periods of time, as the heat coming off the iron would make even the
padded handle of the iron uncomfortable to work with. Use of wire cutters and X-
Acto knives for wires and traces also posed threats of injury when being used.
There were no notable political, ethical, or social constraints that realistically
affected the production of the FBC.

12

3. Research Related to the Project

Making old video game consoles portable is something that hobbyists and video
game enthusiasts have done for years. Researching existing projects that are
similar to our project allowed us to get a better understanding of what exactly we
needed to do to make our system work, as well as warned us of potential issues
that could have arisen during the design of our project. Additionally, research into
various hardware components allowed us to select the components that best fit
the needs of our device. Choosing appropriate components for our device was
imperative in order to ensure low power consumption, reactive controls, effective
charging and solar charging, and accurate rendering of games. Research into
software for the FBC allowed us to determine the best way to emulate games
and interact with user input.

3.1 Existing Similar Projects and Designs

There are quite a few projects that are similar to our device. Some of the projects
choose to transplant an old console’s circuit board into a portable device and
natively play its games, while other projects choose to use computers to emulate
multiple consoles and store the games on the device itself. We chose to examine
three similar projects. Of these, one uses a disassembled console’s circuit board
and two use microcomputers to emulate a variety of systems. The two latter
projects more closely relate to our device, but the first project contains some
useful information as well. Sadly, we could find no projects similar to ours that
supported Bluetooth or had additional battery charging via solar panels.

3.1.1 Instructables How to Make a Portable Game System by 1up

This project contains a lot of valuable information related to building our project. It
explains the main differences between a few common types of batteries and how
to choose between them. This project also shows how to take apart a screen and
alter it to consume less power if necessary, information on how to make a
custom controller for a NES console and on how to use the PCB from inside a
NES controller. The tutorial for this project also contains a lot of basic wiring and
soldering advice that will prove quite useful in the construction of our project. It
also explains a variety of ways to design and construct a case. This information
is invaluable to us because none of us have any experience with case design.

3.1.2 Adafruit PiGRRL

The PiGRRL, shown in Figure 3.1.2.1, is a project that is very similar to the
device we aim to make. It effectively emulates the consoles that we want to
emulate. The PiGRRL also has a small screen (2.8”) and operates using
batteries. The device also charges via USB. It is lightweight and portable and has
a controller built into the case. While the PiGRRL does use multiple premade
circuits that we will not use, such as a charger and DC-to-DC converter combo

13

circuit, it does help to give us a basic understanding of what kind of components
we will need. The PiGRRL also has downloadable files for 3d printing. Examining
these files will give us a much better understanding of how 3d modeling and 3d
printing work. This project also gives us quite a bit of information on how to setup
emulators on a Raspberry Pi. This information could prove to be invaluable. This
project also gives even further insight into modifying old console controllers and
using them for other purposes.

Figure 3.1.2.1 – Adafruit PiGRRL, reprinted with permission from Adafruit

3.1.3 The eNcade

The eNcade is another portable console that uses the Raspberry Pi. It has
already raised $6629 on Kickstarter, which shows that there is at least a small
market of people interested in a project like this. The eNcade is also very similar
to the device we would like to make. Like our device, it is battery powered and
has a custom case, onboard controller, built in screen, and a USB port. The
software of the eNcade allows users to connect and play games with each other
online. The eNcade, like the PiGRRL, uses many pre-built circuits instead of
designing circuits around components, but they are connected in a very similar
fashion as the PiGRRL. This was a great discovery for us because it shows how
we would need to connect the components in our device and what kind of circuits
we would need to design.

14

3.2 Hardware Research

Choosing the hardware that would make up the device was extremely important
to the overall design and construction of the project. The components that make
up the project dictate how they interconnect and the circuits that needed to be
built around them. The research in this section compares different hardware
components and was used to choose the best parts for our project.

3.2.1 System Processor

When deciding what would be the core of our project, we took many factors into
consideration including: cost, resources available, size, extensibility, and
developer support.

We mainly compared three types of devices: Microcontrollers, FPGAs, and
micro-computers such as the Raspberry Pi and BeagleBone Black.

3.2.1.1 Microcontrollers

Table 3.2.1.1 shows a comparison of the different microcontrollers that we
considered. The cost was a very appealing factor. Very cheap and very easy to
get ahold of, microcontrollers gave us a lot of leeway when budgeting. For the
size, the microcontroller boards were, of course, small. This meant that we could
fit it in a smaller form factor case, leaving more room for other sub components.
As far as extensibility went, it depended on the microcontroller board. Overall,
there were some boards with a multitude of expansion capabilities and others
with very little.
We felt confident we could find an extensible enough board to suit our needs.
Developer support on microcontrollers varied, depending on the popularity of the
chip. No one, however, had tried anything similar to what we were doing on a
microcontroller, and this was a large negative.

Processor speed maxed out at 500 MHz, enough to run the emulation code, but
not quickly, due to the extra load of interpreting every line of assembly code and
translating it to the new architecture. Further, the RAM maxed out around 256
KB, not enough to emulate the 256 KB of the GBA, or the 128KB of the SNES,
due to emulator and microcode overhead, as well as the Video RAM
requirements of each system.

The processors themselves maxed out at 32-bit, which worked, but that was the
absolute minimum a processor could have to process the emulation code. This is
due to the fact that the Game Boy Advance had a 32-bit processor, thus a 16-bit
or 8-bit processor would not have been able to run its code.

Furthermore, and perhaps more pressingly, the microcontrollers could only hold
up to around 256KB of program code maximum, and that was on the higher

15

performance chips. This is definitely too small for even the smallest of our
emulators (weighing in at 2.1 MB), let alone the crazy task of fitting an operating
system capable of managing these emulators and their filesystems into that small
space. This, we believe, is the reason that no one had tried what we were doing
before: it was unfeasible with the resources available. For this reason, we were
forced to no longer consider microcontrollers.

Company	
 Model	
 Number	
 Price	
 Core	

Size	
 Memory	
 FLASH	
 Clock	

Speed	

Atmel	
 ATSAMA5D36A	
 $17.53	
 	
 32-­‐
bit	

128	
 KB	
 160	
 KB	
 536	

MHz	

Atmel	
 ATSAM4N8AA-­‐AURTR-­‐
ND	

$6.08	
 	
 32-­‐
bit	

64KB	
 512KB	
 100	

MHz	

Microchip	
 PIC32MZ2048ECM144-­‐
I/PL	

$16.03	
 	
 32-­‐
bit	

512KB	
 2MB	
 200	

MHz	

Texas	

Instruments	
 MSP430F5522IZQE	
 $7.04	
 16-­‐

bit	

10KB	
 32KB	
 25	
 MHz	

Texas	

Instruments	
 TMX320F28377SPTPT	
 $32.98	
 	
 32-­‐

bit	

82KB	
 1MB	
 200	

MHz	

Table 3.2.1.1 - Microcontroller Comparison

3.2.1.2 FPGAs

The cost was much higher, making it less appealing in that category. Size
depended on the capability of the development board, so it wasn’t really an
issue. Extensibility was much better. Not only were there various expansion ports
on the board, but just by the nature of an FPGA, the software capabilities were
greatly expanded. This was a highly desirable property. Resources available
were also greater than the microcontroller, so we thought we had a winner this
time. Sadly, when we got to developer support, we were forced to abandon this
idea. Another group of graduating students had tried this project in the past and it
was left unfinished due to “unsolvable complexity” in the project. The FPGA just
could not adequately support the strenuous requirements (often 10 times more
than original specifications) of emulation, and so they hung what was equivalent
to a “Abandon all Faith” sign in front of their project, as a warning to others to not
go down that path.

We would have had to have found some way of programming in all the various
processors of the consoles, a task which was impossible given time constraints.
As evidence, it took a student a year to fully implement just the NES processor (a
relatively simple 8-bit Ricoh 2A03 chip) for his master’s thesis. As we had five
systems, with five different CPUs (and supporting systems such as GPUs), we
realized that this path would be unfeasible given the time allotted for the project.
As a result, we had to abandon the idea of an FPGA.

16

3.2.1.3 Micro-Computers

Table 3.2.1.2 compares essential features between the two micro-computers that
we primarily considered. The cost was relatively decent, costing between $35-
$55, midway between the others. The size was fairly consistent as well, with the
larger Raspberry Pi still only about the size of a credit card, albeit a very bulky
one. Extensibility is massive, with a 40 pin GPIO header on the Raspberry Pi 2
and 65 pins on the BeagleBone Black. Developer support for both options were
fantastic, with tons of projects similar to ours already fully completed and
documented. Resources available were also large, with a quad core 1 GHz
processor and 512 MB of RAM on the Raspberry Pi 2 and a 1GHz processor,
512 MB of RAM, and 4 GB of flash storage on the BeagleBone Black.

	
 	
 CPU	
 Type	

Clock	

Speed	
 Cores	
 RAM	

Onboard	

Flash	

Native	

Audio	

Raspberry	
 Pi	

2	
 ARMv7	
 900	
 MHz	
 4	
 1	
 GB	
 N/A	

3.5mm	
 or	

HDMI	

BeagleBone	

Black	

ARM	
 Cortex-­‐
A8	
 1	
 GHz	
 1	

512	

MB	
 4GB	
 HDMI	
 Only	

	
 	
 Native	
 Video	

USB	

Headers	

Avg	
 Power	

Draw	

GPIO	

Pins	
 Cost	

	
 Raspberry	
 Pi	

2	

Composite	
 or	

HDMI	
 4	

650	
 mA	
 @	

5V	
 40	
 $39.99	
 	

	
 BeagleBone	

Black	
 HDMI	
 Only	
 N/A	

460	
 mA	
 @	

5V	
 65	
 $45	
 	

	

Table 3.2.1.2 – Essential Features Comparison Chart

Both of these systems would have worked for our project, unlike the other
options. Both were reasonably priced, with comparable features. We ended up
choosing the Raspberry Pi 2 for the following reasons.

1. Parallelism is incredibly important in emulation. All graphics processing
can be run in parallel, as well as a lot of the assembly interpretation and
subsequent code optimization. For this reason, having the 4 cores of the
Raspberry Pi 2 was a must, compared to the single core of the
BeagleBone Black.

2. While the 512MB of RAM of the BeagleBone was sufficient, we felt more
comfortable with the 1GB of RAM of the Raspberry Pi 2. It made us feel
confident that we will not run out of memory recreating these games.

3. Due to reasons of extensibility, the BeagleBone only having HDMI was a
minus. If we decided to use it, we would be forced into using an HDMI
monitor, plug and all. This would raise our costs and lower our options.
Having composite as a fallback, especially given the naturally low
resolutions and original sizes of these games, was key.

17

4. For audio, having HDMI only killed it. Not being able to use audio without
splitting the HDMI signal would have been a huge complication and
inconvenience, greatly limiting our options for audio playback. We decided
that the Raspberry Pi 2, with its easily replaceable audio jack, was the
right choice for the job.

5. The lack of USB headers on the BeagleBone was a huge detriment. Even
though we had planned to chop off the tall headers of the board
regardless, we still planned to make use of USB connections via soldering
wires, as transferring files to the system via USB would be essential to
add the games and other bits of software at user convenience.

6. The Raspberry Pi 2 already had the excellent RetroPie backend, with
EmulationStation frontend, ported to it perfectly. This would save us time
and effort that could be focused on the hardware end of the project.
Further, the software already looked very nice and works very well in our
desired input configuration.

3.2.1.4 Raspberry Pi 2 Usage

We used the following features of the Raspberry Pi 2:

- Composite Video
- 3.5mm Audio
- USB
- GPIO Header
- Micro SD reader

3.2.1.4.1 Composite Video

Composite video was used to output to a screen, as we determined that this was
sufficient for our needs. We decided that HDMI would complicate things and add
cost, and that input solutions from the GPIO headers would be incomplete
without driver overhauls. These are explained in greater detail further in the
paper.

3.2.1.4.2 Audio 3.5mm

The jack was used for outputting the audio from the various games. We decided
against using a custom DSP solution, as it would add complication without much
benefit.

3.2.1.4.3 USB

The USB headers were used to attach external USB ports not soldered to the
board. We used these headers to load games onto the device using a USB drive,
to debug the system with an external keyboard, and for the Bluetooth dongle.

18

3.2.1.4.4 Micro SD

The reader was used to read the MicroSD card (64GB) that holds our operating
system, our emulators, and all games.

3.2.1.4.5 GPIO

The header was used to connect the following devices:

- Screen: The screen was powered by the 5V Power on GPIO Pin 2 and
connected to the ground on GPIO Pin 6.

- Bluetooth: The Bluetooth module was connected to Pins 8 and 10 on the
header, which are for UART Tx and Rx

- Supporting board: Specifically Bluetooth, Internal Game Controller, and
Audio Controller was powered by the 5V power on GPIO Pin 4 and
connected to the ground on GPIO Pin 6.

- The internal game controller was connected to pins 1, 6, 7, 19, and 23.

These can be seen in Table 3.2.1.1 below.

GPIO	
 Pin	

#	
 Function	
 Used	
 By	

1	
 3.3V	
 Power	
 Controller	

2	
 5V	
 Power	
 Screen	

4	
 5V	
 Power	
 Peripheral	
 PCB	

6	
 Ground	
 Shared	
 Ground	

7	
 GPCLK0	
 Controller	
 Data	

8	
 TxD	
 Bluetooth	
 Tx	

10	
 RxD	
 Bluetooth	
 Rx	

18	
 GPIO	

Bluetooth	

Wake	

19	
 MOSI	

Controller	

Clock	

23	
 SCLK	

Controller	

Latch	

Table 3.2.1.1 – GPIO Header Map

19

3.2.2 Screen

In choosing a proper screen, we considered a variety of options on five different
categories: connection type, resolution, size, touchscreen, and power
consumption.

3.2.2.1 Connection Type

We had five different options: VGA, DSI, HDMI, SDI, and composite.

VGA was one of the simplest options, with a great deal of support and analog
video, so we don’t have to worry about digital signal processing. Unfortunately,
connecting to VGA would have also added a lot of bulk, and since the Raspberry
Pi 2 doesn’t have a VGA port, we opted against this technology.

DSI was a technology which would allow us to directly connect a ribbon cable to
the Raspberry Pi 2 without worrying about the bulk of larger connections that
need to be soldered, like HDMI or VGA. It provided a more direct connection to
the screen, but also came at the cost of being far more delicate and easy to
break, such as if the ribbon cable had torn. We initially considered this
technology due to the positives outweighing the cons, however we later learned
that the Raspberry Pi does not fully support this technology natively. Thus we
ended up not considering it. A more detailed comparison is shown in Table
3.2.2.1 below.

Screen	

Nokia	

N8	

iPhone	
 3GS	
 iPhone	
 4	

Resolution	
 360X640	
 480x320	
 960x640	

Cost	
 ~$35	
 ~$20	
 ~$30	

Cost	
 for	
 additional	

parts,	
 such	
 as	
 driver	

boards	

~$25	

Not	
 Found	
 Not	
 Found	

Conclusion	
 Costly	
 Unconnectible	
 Unconnectible	

Table 3.2.2.1 – DSI Screen Comparison

HDMI is a nearly universal technology these days, combining video, audio, and
even Ethernet in some cases, into a single cable. As it is a purely digital signal,
we would not have had to worry about any digital to analog conversion and the
signal loss that would allow. We realized that, although one of the screens
seemed like it passed muster, that simply plugging in an HDMI screen would be
no fun at all. Further, it would have been a little bit large for a portable game
system at 5” and we could find no HDMI displays at lower resolutions. If we had
wanted to, control chips were available to convert other standards for smaller

20

screens to HDMI, but this was not a cost we felt was warranted by the size of the
screen and the resolution that we needed. A more detailed comparison is shown
in Table 3.2.2.2 below.

Screen	

Pixel	
 Qi	

10"	

HDMI	
 4	
 Pi	
 7"	
 HDMI	
 4	
 Pi	
 5"	

Resolution	
 1024	
 x	
 600	
 1280	
 x	
 800	
 800	
 x	
 480	

Cost	
 $179.95	
 	
 $114.95	
 	
 $64.95	
 	

Conclusion	
 Costly	
 Costly	
 Good	

Table 3.2.2.2 – HDMI Screen Comparison

After HDMI, we moved to SPI, a relatively well supported technology which the
Raspberry Pi happened to support out of the box. We compared a number of
different screens and finally decided on one to get. A more detailed comparison
is shown in Table 3.2.2.3 below.

Screen	
 5"	
 TFT	
 LCD	
 3.5"	
 TFT	
 LCD	
 2.8"	
 TFT	
 LCD	

Resolution	
 800	
 x	
 480	
 320	
 x	
 480	
 240	
 x	
 320	

Cost	
 $29.95	
 	
 $39.95	
 	
 $29.95	
 	

Cost	
 for	
 additional	
 parts,	

such	
 as	
 driver	
 boards	

$34.95	
 	

N/A	
 N/A	

Conclusion	
 Costly	
 Good	
 Too	
 Small	

Table 3.2.2.3 – SPI Screen Comparison

Unfortunately, upon hooking it up, the jumper pad for the SPI header fell off. We
solved this by routing the cable directly to a 3.3V source. Yet this did not solve
our essential problem, namely displaying anything other than white light on the
screen. We discovered that SPI was not quite as supported as we thought, as
the built in driver only allowed SPI output and did not, as we thought, directly
facilitate displaying the O/S screen. We would have to code separate drivers for
the Raspberry Pi to transfer the display data. We decided against this, as it would
have cost us even more already dwindling time.

Finally, we were left with composite. An older technology, it only supports NTSC
or PAL video, clearly not HD. Thankfully, this fit our purposes exactly, as all the
emulated consoles originally output NTSC or PAL video streams. Further, the
maximum resolution of 480i (for NTSC) was, for most applications, fairly small,
but perfectly suitable for our games, which maxed out as 512 x 448. A more
detailed comparison is shown in Table 3.2.2.4 below.

21

Screen	

3.5"	

NTSC/PAL	

4.3"	
 TFT	
 LCD	
 4.3"	
 TFT	
 LCD	

Resolution	
 800	
 x	
 480	
 640	
 x	
 480	
 480	
 x	
 272	

Cost	
 $44.95	
 	
 $17.57	
 	
 $16.85	
 	

Conclusion	
 Costly	

Good	
 Poor	
 Aspect	

Ratio	

Table 3.2.2.4 – Composite Screen Comparison

3.2.2.2 Resolution

We considered the need for the games from each console to still look crisp,
without being too letterboxed. The largest required resolution was 512x448,
which is only required for certain SNES games, and those that have it can be
compressed. The smallest required resolution was 160 x 144 for the Game Boy
and Game Boy Color. Based on numerous quality tests with each system and
many games, we determined that any distortion of aspect ratio due to stretching
or compression was negligible at 640x480 when considering the size of the
screen. Thus, we opted for a screen with 640x480 resolution. The scaling
comparison of the different resolutions is shown below in Figure 3.2.2.1.

Figure 3.2.2.1 - Screen Resolution Comparison

22

3.2.2.3 Screen Size

We considered a variety of options, but settled between three major options: <5”,
5”, and 7”.

A <5” screen would be ideal for the resolution chosen. Much larger would
produce too much stretching or aspect ratio distortion, leading to poor quality
gaming. In addition, the smaller screen size provides for lower power
consumption.

A 5” screen is just a little too big, and the resolutions on all compatible screens
we could find exceeded our desired resolution. In addition, the additional power
draw would reduce our battery life.

A 7” screen is, quite frankly, massive. Once we came to terms with just how
unwieldy a 7” screen would be in a portable, not to mention the massive power
draw and cost of the display, we quickly abandoned that idea.

For reasons of power consumption, desired resolution, and desired cost, we
ended up deciding on a screen that was less than 5” diagonally.

3.2.2.4 Touchscreen

We considered both types of touch screens: resistive and capacitive vs. not
having a touchscreen at all.

Resistive touchscreens would have had the benefit of allowing us a finer degree
of control, using a thinner stylus over a much thicker finger. This would have
precluded the need to redesign the interface to accommodate the larger finger. In
addition, the technology is cheaper in general. However, the downside would be
the need for a stylus, which might not be ideal for our needs.

Capacitive touchscreens would have allowed us to obtain a more responsive
touchscreen, with no pressure really needed. In addition, the pointing device,
one’s finger, would always be at hand. Unless of course one has lost all their
fingers, in which case there are probably bigger issues at hand, like how to use
the game console at all. Also replacement fingers. The downside, of course, is
the necessity to redesign the interface to have more easily pressed (read: bigger)
UI elements, and the greater cost.

Finally, not having a touchscreen would limit us to controller and other HID input.
This would, however, not require us to include a stylus or increase the size of UI
elements. Also, it would cut down on cost.

We researched the feasibility of implementing a touchscreen to our project. The
touchscreen’s input would require 4 dedicated input pins: two for the flat plane

23

across the screen, and two for the depth of pressure with which we touched
(resistive only). As we were going with resistive for cost reasons, we decided that
this would use too many of our valuable GPIO pins. Furthermore, screens that
we found using touchscreens and fitting our other requirements had custom,
extended ribbon cables, which did not fit non custom driver boards.

As a result, we decided to go with a screen that did not have touchscreen
capabilities.

3.2.2.5 Power Consumption

We ideally wanted a screen that drew <= 500 mA, with a backlight. This, of
course, limited our size options as discussed above. Further, it made sure that
we chose an efficient screen, and preferably one with an adjustable backlight, or
that we made our own adjustable backlight.

For all reasons listed above, we went with a 4.3” TFT-LCD screen ripped out of a
car rearview monitor. It provided the best bang for our buck, so to speak. It was
the correct resolution, size, and met the power requirements, as well as being
able to be directly soldered to the board. It was less than $20, a marked savings
compared to screens designed for the Raspberry Pi 2. Additionally, it gives us
the opportunity to have more soldering experience.

3.2.2.6 Backlight Controller

We planned to implement a twofold system:

First, the backlight will be controlled by a hardware switch linked to the
Raspberry Pi 2’s GPIO ports, which will determine the level of PWM coming from
other GPIO pins connected to the backlight control. This will allow the user to
control the level of backlight to save power or to make the screen brighter when
needed. We believe this will add significant battery life when desired, at a minor
cost to usability.

Second, before the input for the backlight is even touched by the Raspberry Pi 2,
it will be fed through a photo-resistor, which will automatically increase or
decrease the relative backlight level to match the surrounding light. In this way,
we can ensure power savings while not sacrificing much visibility.

These simple changes will ensure a better user experience at a minimal cost to
develop and, as a result, we will want a screen with a backlight to control and,
preferably, one that can be controlled directly with a PWM pulse, and not just an
onscreen menu.

However, we decided against including this in the project.

24

3.2.2.7 Final Choice

We decided to go with the 4.3” TFT LCD that we will rip out of a pre-existing car
backup display. This screen meets the resolution requirements, ensuring that it
will not stretch or compress the image to the point where the games look “off”. It
met the size requirements both in image quality and weight of the system. It
meets the standard requirement, being a composite screen. It did not contain a
touchscreen, reducing complication. The power consumption, even with backlight
at full, is less than 500 mA, ensuring long battery life. The final screen is shown
below in Figure 3.2.2.2.

Figure 3.2.2.2 – Final Screen Choice, reprinted with permission from Amazon

3.2.3 Microcontrollers

We started by comparing three microcontrollers: The Atmel ATtiny13, the Texas
Instruments MSP430G2230, and the Microchip PIC12F1501.

3.2.3.1 Atmel ATtiny13

It is a simple, 8 pin chip with a 20MHz clock speed and 1KB of flash memory to
program (as well as 64B of slower EEPROM and 64B of SRAM). It has two PWM
channels and 32 general purpose registers. The version we are looking at takes
2.7 V to 5.5 V Vcc input and draws just 240 uA/MHz of oscillation. For our
purposes, this will come out to around 3 mA, given our Vcc will be 3.3V at 8MHz.

25

The Atmel chip can be programmed in a variety of ways, including SPI and
through a dedicated adapter/programmer. Code for the chip is written in C using
the easy-to-use, and free, Atmel Studio. This also works with any Atmel AVR
device, making it convenient to stay in the Atmel family when choosing chips.

Additionally, we have prior experience in programming ATtiny chips, which will
make adoption time non-existent. We have also found related, though not
identical, schematics to what we are trying to accomplish, assuring us that a
backlight controller will be feasible using the ATtiny13. A programmer for the
device can be obtained for only $22, which is a reasonable initial cost.

It costs $2.48 per chip, a little on the high side, but still perfectly feasible, even if
we had to buy a few.

3.2.3.2 Texas Instruments MSP430G2230

The chip is a simple, 20-pin device with a 16MHz clock cycle and 2KB of flash
memory to program (as well as 256B of slower EEPROM and 128B of RAM). It
has two PWM channels and 16 general purpose registers. The version we are
looking at takes 1.8 V to 3.6 V Vcc input and draws just 220 uA at 2.2V. For our
purposes, this will come out to around 2.2 mA, given our Vcc will be 3.3V at
8MHz. We can see the supply current shown in Figure 3.2.3.2 below.

The TI chip can be programmed in a variety of ways, including SPI and through a
dedicated adapter/programmer. Code for the chip is written in C using the free
Code Composer. This also works with any TI Embedded device, thanks to TI
created libraries, making it easy to stay in the TI family of chips.

Additionally, we have prior experience in programming the MSP430, thanks to
Embedded Systems, which will make it very easy to pick up coding where we left
off. Code Composer is also still installed, saving a tiny amount of time installing
and configuring the IDE. The FET programmer, however, is $119, representing a
significant initial cost hurdle to overcome if we do not build our own device.

It costs $2.37 per chip, a tad bit expensive, but still perfectly feasible, even if we
had to buy a few.

26

Figure 3.2.3.2 – MSP430G2230 Supply Current, Courtesy of Texas Instruments

3.2.3.3 Microchip PIC12LF1501

The MCU is a simple, 8 pin chip with a 5MHz clock speed and 1KB of flash
memory to program (as well as 128B of slower HEF and 64B of RAM). It has four
PWM channels and 12 general purpose registers. The version we are looking at
takes 1.8 V to 3.6 V Vcc input and draws just 30 uA/MHz of oscillation @ 1.8V.
For our purposes, this will come out to around .5 mA, given our Vcc will be 5V at
8MHz.

The Microchip chip can be programmed through a dedicated
adapter/programmer. Code for the chip is written in C using MPLAB. This
software disables certain features after 60 days of use, so it might not be ideal for
our purpose. This also works with any Microchip embedded device, making it
convenient to stay in the Microchip family when choosing chips.

We have no prior experience programming Microchip PIC chips, and thus the
learning curve for the various libraries and the IDE might not be desired.
Additionally, the programmer required for the device is $45, which makes the
initial costs much higher than other options.

It costs $.89 per chip, which is a very reasonable cost to adopt, and it slightly
offsets the initial high investment of the programmer.

27

3.2.3.4 Backlight Controller MCU Selection

Based on the information obtained, we decided to go with the Atmel ATtiny13.
While the PIC and TI chips did have lower current draw, we decided this was
negligible when compared to four other factors.

First, the ATtiny13 had a cheaper programmer that could be used for our surface
mount final chips as well as our DIP testing chips.

Second, we considered using an ATmega as well, which would mean we would
not have to buy another programmer or setup additional software.

Third, the Atmel chip was most popular among hobbyists. This led to much
greater community support and, therefore, many more base schematics we could
draw from. This would also give us a greater network for support, in case
anything went wrong.

Fourth, the Atmel chip supported up to 5.5 V, giving us confidence that the chip
would continue to operate if there were any sudden spikes in voltage, for
instance if the power subsystem failed.

Based on these benefits, the Atmel ATtiny13 was the clear choice for the
backlight controller.

However, we decided not to include a backlight controller in the project and thus
none of these chips were necessary.

3.2.4 Communication Technologies

Fun Box Classic has a multiplayer capability. Two people can play at the same
time on one console. This can be done in two ways. The first way is when two
users have two players inside the game playing cooperatively against each other.

The other way is when the screen is divided into two parts and two users play the
game side-by-side of each other. In order to connect a second user to the
console, we have external controllers that communicate wirelessly with the
console. We can implement wireless connectivity via two types of technologies –
Wi-Fi and Bluetooth.

3.2.4.1 Bluetooth versus Wi-Fi

Both Bluetooth and Wi-Fi deliver good performance, security and functionality
that are necessary for secure local wireless transaction communication.
However, there are several key differences that have to be addressed for making
a decision on which technology we should use in our design.

28

Wi-Fi provides higher range of wireless connection. It can cover up to 100 meters
where Bluetooth based wireless connections generally designed to cover up to
30 meters. The range is varied based on the class of radio used in
implementation. Bluetooth technology has three classes of range. A Class 3
radio has a range of about 1 meter or 3 feet; a Class 2 radios has a range of 10
meters or 33 feet; a Class 1 radios has a range of 100 meters or 300 feet.

If we were to use our console as the only media to display a game, we would
choose a range of the Class 3 radios. However, we wanted the users to be able
to connect the Fun Box Classic console to the big display of their choice such as
TV display. For this purpose, we needed to use a bigger range of Bluetooth.
Hence, a Class 2 radios will be an ideal choice.

The data transfer rate is not a big concern for our device. We rather have to
make sure that our software implementation works good that the control
commands over Bluetooth are processed in a way that there is no delay. We will
need to take into consideration minimizing the processing delay. Bluetooth offers
the security such as 16-digit PIN authentication, frequency hopping and data
encryption. Wi-Fi security is higher than the security for Bluetooth. Wi-Fi is
protected by different encryption protocols such as WPA (Wi-Fi Protected
Access) and WEP (Wired Equivalent Privacy). Bluetooth security is pretty much
limited to a key matching, but it is still very secure. Bluetooth devices “cannot be
addressed by unauthorized Bluetooth devices because they do not “listen to”
incoming messages from any other Bluetooth devices and are not configured to
be “discoverable”.” (2) Bluetooth terminals are protected by 16-digit PIN codes. In
order to make a Bluetooth device discoverable and connectible, a hacker will
have to first guess a Bluetooth code, which is generated through the Diffie-
Hellman key agreement protocol. According to the protocol, the code is 16-byte
or 128-bit long and different for each base station, which means there can be
over 3x1037 different possible PINs. Frequency hopping for Wi-Fi based
networks is within 2.4, 3.6 and 5 GHz. Frequency hopping for Bluetooth is within
a 2.4 GHz spectrum.

Wi-Fi enables a very fast connection, very big range from the base station, and
very high level of security. Bluetooth wireless communications is a simpler
technology. It can easily replace the cables that connect devices and, at the
same, it provides relatively high levels of security.

Bluetooth is convenient to use when the information need to be transferred
between two or more devices that are near each other and the speed is not an
issue. Bluetooth technology also requires low power, low cost, and it is
ubiquitous.

29

3.2.4.2 Candidate Bluetooth Module

Choosing the type of Bluetooth chip that is suitable for our device depended on
several factors such as low power consumption, a range of the wireless single,
and compatibility with other devices. We used the Bluetooth chip to interface it
with Raspberry pi processor. After conducting some research, we found three
Bluetooth chips that would be the most suitable for our design. We have to
decide between BR-LE4.0-S2N that designed by Blue Radios, PAN1026 – by
Panasonic and RN4020 – by Microchip modules.

3.2.4.2.1 BR-LE4.0-S2N Module

BR-LE4.0-S2N, part of Bluetooth version 4.0, is a low energy wireless technology
module. The size of the chip is 11.8 x 12.6 x 1.9 mm. Approximately, it was $13
per chip if buying 10 chips minimum.

It covers over 150 meter or 500 ft distance with integrated antenna. It can be
externally controlled via simple ASCII AT commands over the UART or
programmed with custom applications embedded in the module.

BR-LE4.0-S2N has very low power consumption – 27mA 0dB TX, RX down to
19.6mA, .9uA sleep w/timer, and 0.4uA deep sleep. It is compatible with TI
TPS62730 step down converter, which can extend battery life by up to 20%. It
has 10 milliseconds connect time and low data latency. It supports software
adjustable transmit power from short to long-range applications (Class1, 2 & 3).

The chip can handle between 2.4 and 3.6 Volts of power supply voltage. The
recommended setting is 3.0Vdc. And it should be receiving less than 10mV pick-
to-pick noise. Maximum voltage VDD on any pin is 0.3 V. Current consumption is
24 mA.

3.2.4.2.2 PAN1026 Module

PAN1026 part uses Bluetooth version 4.0. It has a dual mode – place-and-play
RF module. Among its features are Wi-Fi coexistence and high-speed interfaces:
USB 2.0 UART up to 4.3 Mbps. The size of the chip is 15.6mm x 8.7mm x
1.9mm, and it is fully shielded to improve immunity. A Digi-Key part number is
P16771CT-ND. The cost is $15.3 per 1 chip.

The PAN1026 is a short-range Class 2 Bluetooth dual-mode module. The
module is compatible with iOS and Android devices, wireless sensors, and can
be used as a cable replacement. The embedded serial port profile frees
application resources while the command set API creates a simple but flexible
firmware interface. PCB layouts are simplified using available Gerber files and
minimized with Panasonic's tiny footprint technology.

30

PAN1026 is a low energy module designed to create low data rate networks
using a minimum amount of power. It provides an ultra-fast connection time of 3
ms. It can handle a single Vcc supply between 1.7 and 3.6 Volts.

3.2.4.2.3 RN4020 Module

RN4020 uses Bluetooth Version 4.1. It integrates RF, a baseband controller, and
command API processor, making it a complete Bluetooth Low Energy Solution.
The size of the chip is 11.5 x 19.5 x 2.5mm. A Digi-Key part number is RN4020-
V/RM-ND. The cost is $10.61 per one module.

The RN4020 has a built-in high performance PCB antenna optimally tuned for
long range, typically over 100 meters.

The small form factor, surface mount module has the complete Bluetooth stack
on-board and is controlled via simple ASCII commands over the UART
interface. The RN4020 can be remote controlled by another module over a
secure connection and can be updated via the UART interface or over-the-air.
RN4020 is a low energy module for designers who want to easily add low power
wireless capability to their products. It can handle a single operating voltage in
the range between 3 to 3.6 Volts. Tx Power Consumption is 16 mA, Rx Power
Consumption is 16 mA.

31

3.2.4.3 RN4020 Module Attributes

This module used the latest Bluetooth 4.1 version versus 4.0 that is offered for
other two modules. Newer Bluetooth version has better performance and more
features.

3.2.4.3.1 Cost

The cost of this module was a great standout point. The RN4020 was the
cheapest Bluetooth module among its competitors. There was no requirement to
buy some specific minimum amount of RN4020 modules. Digi-Key Electronics
had 83 available modules in stock that could have been purchased at any time,
and the price for a single unit was only $10.61.

The price for a single unit for PAN1026 module was $15.3. BR-LE4.0-S2N chip
was only available for purchase when buying several units. Minimum 10 units
have to be purchased with $13 per each unit.

3.2.4.3.2 Size

The size of RN4020 is 11.5 x 19.5 x 2.5 mm in WxLxH and weight is 1.2 grams.
This size seemed to be pretty reasonable comparing to two other sizes of 11.8 x
12.6 x 1.9 mm for BR-LE4.0-S2N and 8.7 mm x 15.6 mm x 1.9 mm for PAN1026
modules. The widths of the module were a little smaller than the width of the BR-
LE4.0-S2N chip. The length of RN4020 was a little bigger than length of the other
two modules. The height was 0.6 mm taller than other two modules.

3.2.4.3.3 Power Consumption

Microchip’s RN4020 Bluetooth Low Energy Module provided a highly integrated
solution for delivering low power Bluetooth 4.1 solutions. The advanced
command interface offered rapid time to market. The RN4020 module complied
with Bluetooth specification version 4.1. It integrated RF, a baseband controller,
and command API processor, making it a complete Bluetooth Low Energy
Solution.

RN4020 had the best low energy power consumption among three modules.
RN4020 could handle a supply voltage in the range between 1.8 and 3.6 Volts
DC. We needed for our design an input voltage up to 3.3 Volts, which perfectly
coincides with the modules voltage range.

A working current depends on profiles but typically 12 mA. A standby current is
less than 0.5 mA. Current consumption for dormant mode is less than 700 nA,
deep sleep < 5 uA, idle < 1.5 mA, Tx/Rx active is 16 mA at 0 dBm. (3)

32

3.2.4.4 RN4020 Interface

Hardware Interface

The primary communication interface between the Raspberry Pi MCU and the
RN4020 Bluetooth Module consisted of a Universal Asynchronous
Receiver/Transmitter (UART) bus. The UART allows asynchronous serial
communication between the RN4020 peripheral module and the Raspberry Pi
MCU.

The RN4020 Bluetooth Module has the capability to be commanded by the
application software via the recommended and additionally provisioned hardware
control lines. The additional provisioned hardware control lines were used to
extend the utility of the RN4020 during development and/or for the final
consumer product. The interface between a microcontroller and the RN4020 is
shown in Figure 3.2.4.1 below.

Figure 3.2.4.1 – Interface Descriptions, reprinted with permission from Microchip

33

Software Interface

The RN4020 Bluetooth Module utilizes the ASCII command Application
Programming Interface (API) defined in the RN4020 Bluetooth Low Energy
Module User’s Guide. This document was the primary source of information
regarding the RN4020 software command interface.

3.2.4.5 RN4020 Requirements

3.2.4.5.1 Hardware Requirements

The Main Board provides a voltage regulator circuit to regulate the operating
voltage of the RN4020 Bluetooth Module.

The RN4020 Bluetooth Module voltage regulator resets the RN4020 module
when the voltage is outside of the recommended operating range.

The RN4020 Bluetooth Module voltage regulator circuit provides a +3.3 ± 5% DC
voltage source.

The Main Board provides a serial communication interface between the RN4020
Bluetooth Module and the Raspberry Pi MCU.

The Main Board provides the control lines for hardware flow-control between the
RN4020 Bluetooth Module and the Raspberry Pi MCU.

The Figure 3.2.4.2 shows the module’s pin-out. In this section, we specify the
use of physical pins, and how they are connected on the circuit board. For our
design, we do not need to use all the pins. Below is the description and
discussion of pins that we will need to use.

We definitely needed to use the generally required pins such as GND and VDD.
The hardware interface required the use of UART. UART_TX and UART_RX will
be used to send or receive data that is coming from evaluation board.

34

Figure 3.2.4.2 - RN4020 Pin Diagram, reprinted with permission from Microchip

WAKE_SW – Deep Sleep Wake; active-high to wake module from Deep Sleep.
Function: Input; weak pull down
CTS PIO [5] - Reserved for CTS if hardware flow control is on the UART.
Function: CTS (input)
WAKE_HW - Hardware wake from dormant state. Function: Active-high; internal
pull down.

Figure 3.4.2.3 illustrates the RN4020 pins that will be used. Unused pins will be
left in a default configuration or grounded per the module specification. The
rationale for not utilizing all the available pins is due to unneeded advanced
hardware debug functions and manufacturer firmware update modes that will not
be used during the lifecycle of this project.

35

Figure 3.2.4.3 - Status LEDs, reprinted with permission from Microchip

3.2.4.5.2 Software Requirements

In this section, we expanded on how the pins will be used and for what reasons.

Status LED Pins

We have three status LED pins available to us. We decided for what purposes
we may need to use LEDs. We wanted to show one LED to the user. Then, we
needed to have a power LED that indicates that the device is powered. And then,
we need to have some sort of network LED that indicates that the Bluetooth-
active connection is going on.

Three status pins that can be set as LEDs or for other purposes:

1) CONNECTION LED (Green LED)/ PIO1/ SCK pin:

This pin can have three configurations that are defined by software. It can be
used for general purpose, diagnostics or as a connection LED. For
connection LED, default state is output: active-high indicates the module is
connected to a remote device. Active-high indicates a disconnected state. For
general purpose, the pint can be configured as PIO1 via software command.
The pin should be configured as SCK or diagnostics and factory calibration if
pin 17 is asserted. In our case, we may choose to use this pin as a
connection LED.

2) MLDP_EV (Red LED)/ PIO2/ CS

The pin can be used for general purpose, diagnostics or as the LED indicating
MLDP data event. For MLDP_EV, default function is output used for MLDP
data event indicator (Red LED). Active-high indicates MLDP data received or
UART console data-pending. Low level indicates no events. Event only
triggered in CMD mode, when CMD/MLDP (pin 8) is high. For general
purpose, the pint can be configured as PIO2 via “|>” and “|<” commands. The

36

pin should be configured as CS for diagnostics and factory calibration if pin 17
is asserted.

3) WS (Blue LED)/ PIO3/ MOSI

The pin can be used for general purpose, diagnostics or as the LED indicating
activity. For LED, default function is an output used for activity indicator. High
level indicates module is awake and active. Low level indicates module is in a
Sleep state. For general purpose, the pint can be configured as PIO3 via “|>”
and “|<” commands. The pin should be configured as MOSI for diagnostics
and factory calibration if pin 17 is asserted.

So, the Bluetooth Module gave us three options. The connection LED was our
first option. It will be useful when the device is connected to a remote device.
This will toggle between high and low, depending, if the connections are active or
not. The second pin MLDP_EV gives us an event. Any time the data is received
over UART, which means the device sends data to the Bluetooth, it blinks or
toggles high and low. It will be useful during the development stage because it
will show us that there is a device connected. The third LED is an activity
indicator, and is really only used for engineering purposes. We won’t need to use
it.

Using LEDs during the development stage would have helped us visually confirm
what our hardware is doing. For this reason, we need to have some visible LED
or LEDs that will show that there is some sort of connection or activity going on in
the network. It may be a combination of green PIO1 and red PIO2 LEDs since
the first LED is simply shows when the module is connected. We may have
wanted to have had some LED blinking when there are things happening. The
first LED is not going to blink because it is going to stay on all the time showing
us that there is something connected.

None of these LEDs were used, however, in the final design due to board
constraints.

Data Transfer Pins

CTS/ PIO5 pin – reserved for CTS (clear to send) if hardware flow control is on
the UART. The pin can be configured as CTS (input) or PIO5.

PIO6 – reserved for RTS (request to send) if hardware flow control on UART.
Configurable as PIO6 if hardware flow control disable. The pin can be configured
as RTS (output) or PIO6.

There are two data transfer pins CTS (input) and RTS (output) that are used to
control the data flow on hardware. These pins allow two devices to talk to each
other and control when the data should be sent and at what rate. It’s a nice plus

37

to have these pins if we will decide to do something like that. Realistically, the
RTS and CTS pins are used in situations when the receiver and transmitter need
to communicate without the risk of losing data under specific conditions.
Conditions such as system scheduling, timing, and high transfer rates can cause
data loss. UART Flow Control makes use of the RTS and CTS signals to allow
devices to communicate under these conditions. Even if an immediate need for
flow control is not needed, it is a good practice to create a design margin for
future applications.

Control Pins

WAKE_HW pin allows the RN4020 module to be signaled to exit a dormant state.

WAKE_SW pin allows the RN4020 module to be signaled to wake from a Deep
Sleep state. The use of these pins allows the RN4020 module’s state to be
controlled by a software implementation.

3.2.4.6 RN4020 PCB Layout

Dimensions

Figures 3.2.4.4 and 3.2.4.5 illustrate the RN4020 Bluetooth Module dimensions.
It is important to account for these dimensions into the overall Main Board layout
and care design.

Figure 3.2.4.4 – Top View and Side View of Dimensions, reprinted with
permission from Microchip

38

Figure 3.2.4.5 – Bottom View of Dimensions, reprinted with permission from
Microchip

Mounting

Figure 3.2.4.6 shows the recommended mounting details. For optimal radio
performance, the RN4020 module’s antenna end should protrude at least 31 mm
beyond any metal enclosure. The PCB antenna is fabricated on the top copper
layer and covered in solder mask. The layers below the antenna do not have
copper trace. It is recommended for module to be mounted on the edge of the
host PCB. It is permitted for PCB material to be below the antenna structure of
the module as long as no copper traces or planes are on the host PCB in that
area.

Figure 3.2.4.7 shows example of good, bad, and acceptable positioning of the
RN4020 on the host PCB. When laying out the carrier board for the RN4020
module, the areas under the antenna, RF text point (semi-circular pad) and
shielding connections should not have surface traces or ground planes.

39

Figure 3.2.4.6 – Recommended PCB Footprint, reprinted with permission from
Microchip

Figure 3.2.4.7 – RN4020 Host PCB Example Layout, reprinted with permission

from Microchip

40

Soldering

The RN4020 wireless module was assembled using standard lead-free reflow
profile IPC/JEDEC J-STD- 020. The module can be soldered to the host PCB
using standard leaded and lead-free solder reflow profiles.

To avoid damaging the module, the following recommendations are given:

• Microchip Technology Application Note: “AN233 Solder Reflow
Recommendation” (DS00233) provides solder reflow recommendations

• Do not exceed peak temperature (Tp) of 250 C
• Refer to the solder paste data sheet for specific reflow profile

recommendations
• Use no-clean flux solder paste
• Do not wash as moisture can be trapped under the shield
• Use only one flow. If the PCB requires multiple flows, apply the module on

the final flow

Complications

Unfortunately, the chip chosen was a single-mode chip and did not
support any non-LE Bluetooth devices. As a result, we were forced to relegate it
to only providing serial access to the console and used a USB Bluetooth dongle
for the controller instead.

3.2.5 LEDs

During operation of the FBC, it is ideal for a form of a power status indicator light to
be available to the user for feedback on the remaining battery life. Considering the
need for a visual representation to be compartmentalized for a hand-held, portable
device, the use of light emitting diodes (LEDs) are a sufficient choice to indicate the
battery charge status. LEDs lend themselves to low power consumption, color
representation versatility, and ideal surface-space minimization. The FBC offers two
LED-based battery status indicators, one which directly indicates the battery charge
status with an RGB LED, and the other which will utilize surface mounted miniature
LEDs to indicate a more precise measure of remaining battery life.

3.2.5.1 LED Light Color Properties

The LED is to always be considered as a current-powered pn-junction diode, with
an individually identified voltage contribution when illuminated (in the ON status).
The current flowing through the LED, the forward current, determines the amount
of light, or brightness, emitted, with the maximum forward current distinguishing
the limit of current that can pass through the diode without catastrophic failure.
Additionally, the LED contains a forward voltage to be considered in relation to
the power supply. Maximum forward voltage and current values are specified for
the LED used, with common value ranges expected within certain colored LEDs,

41

such as red or green diodes, to be lower than that of blue LEDs, which require
higher voltages. We noticed that the red LED, which has a forward voltage of 2V,
has a much lower tolerance of current in excess of its forward rating. The blue
LED, meanwhile, can withstand values higher than its forward current rating,
failing around 3.8V. However, even though the blue LED can function past its
forward current rating, doing so can damage the diode and shorten its
performance life significantly.

It is always important to not overload the LED with too much current that would
potentially burn out the diode. A simple solution to restrict current flow would be
to design a two-part voltage regulator, consisting of a current-limiting resistor in
series with a Zener diode and the LED. The resistor value will be chosen to
ensure that the current flowing through the diode will not exceed the maximum
forward current value, and the Zener diode, with contribution from the LED
forward voltage, will limit the voltage from the power supply across the resistor.
This series circuit is ideal for its simplicity and effectiveness. A disadvantage is
that it lacks efficiency, as the resistor releases heat as it limits current. However,
due to the LED circuit reading directly from the DC battery power source, at a low
maximum voltage of 4.2 volts, the resistor/Zener series regulator will be
sufficient.

3.2.5.2 Red, Green, Blue (RGB) LEDs

The RGB LED serves as three separate colored LEDs in one ‘bulb’ display.
Within the device are three separate diodes, one each for the red, green, and
blue LED. The RGB LED consists of four pins, one anode, or negative, pin for
each of the three diodes, and a cathode, or positive, pin commonly shared by all
three diodes. Even though the RGB LED joins three separately colored LEDs
under one bulb, each one behaves as a single LED, and follows the forward
voltage and current restrictions unique to that particular LED. Likewise, the same
voltage regulator circuit design can be applied to control each of the three LED
colors separately, and in combination to generate many various color outputs.

The RGB LED is ideal for color combinations and sequencing illumination
signals, with a wide range of combinations available for output via incorporating
the three different LED colors together. Additionally, forward current increase or
reduction can dim or brighten the LED for a desired dominant color, and can be
used to transition from one diode in the RGB LED turning off to the other turning
on, assuming the change in current is not largely immediate in value extremes.
Figure 3.2.5.2 below demonstrates the color spectrum wavelengths achieved for
maximum intensity, with overlapping defining the capability to combine two
separate colors for a third spectrum option. In the FBC application, each of the
three available diodes in the RGB LED will be used for a specific status,
however, and the transition from each diode within the RGB LED will be the
focus.

42

Figure 3.2.5.2 - RGB LED Wavelength Spectrum, reprinted with permission from

Wikipedia

3.2.5.3 Surface Mount LED (SMD LED)

Surface mounted LEDs (SMD LEDs) are, by comparison to single LEDs, much
shorter in height from the surface board, with the average SMD measuring 1.6
millimeters tall, compared to a standard green LED that measures 8.6 millimeters
tall. In design, SMDs are designated to be soldered directly to the surface, such
that the anode and cathode regions are not evident with pins, but are instead
represented as a mounted platform at opposite ends of the SMD. This height
reduction makes the SMD ideal for designs with limited spacing constraints, as is
the case with a handheld portable device as the FBC. With a square, flat design,
SMDs also boasts a significantly increased viewing angle, which is the angle of
brightness away from the viewing center of the LED. The SMD viewing angle is
typically 100 to 140 degrees, compared to the 30 to 60 degrees viewing angle of
a single green standard LED, making the SMD ideal for mounted displays that
can give off a wider range of light across a surface. Figure 3.2.5.3 below shows
the viewing angle range standard for LED displays.

43

Figure 3.2.5.3 - Viewing Angle Spectrum for LED, reprinted with permission from
Wikipedia

Selecting the ideal SMD LED for the indicator circuit revolves around taking in to
consideration the acceptable forward current and LED-Zener voltage summation
contribution. The standard forward current for LEDs is 20 mA, with a lower
current simply reducing the luminosity of the LED, and a higher current
potentially shortening the operational life of the diode, and even destroying it.
Wanting to reduce the current draw from the power source while still attaining
measurable current through the microcontroller, we must consider the voltage
contribution that will attribute the current along the current-limiting resistor. We
were looking for a SMD LED with a lower forward voltage to factor into the Zener
contribution, while meeting the ideal forward current and viewing angle
advantages found in SMD LEDs. Also, the size of the SMD LED will be
considered for space availability of the FBC design layout. Below, in Table
3.2.5.1, are three comparable green SMD LEDs for consideration of the battery
power indicator circuit. We chose a green LED indication, as green lighting has
been a universally common indicator of sufficient status for most electronics.

Model Forward

Current
Forward
Voltage

Viewing
Angle

Size
Dimensions

LG L29K 20 mA 1.7 V 160° 1.3 mm x 0.8
mm

APA2106MGC 20 mA 2.1 V 120° 2.1 mm x 0.6
mm

LG R971 25 mA 2.2 V 160° 2.1 mm x
1.35 mm

Table 3.2.5.1 SMD LED Model Comparison

44

Looking at the three green SMD LED models, we first compared the forward
current. The LG R971 is the only one that breaks the standard of 20 mA, having
a higher tolerance of 25 mA. The advantage to this is that the LED can withstand
a higher current draw, allowing for more flexibility in terms of current response
from the power system. However, the higher forward current means that the LG
R971 requires higher than normal current to achieve maximum brightness, and
we wanted to be mindful of the allocation of current throughout the device for
battery supply purposes.

Looking at forward voltage, the LG L29K has a much lower than average rating
of 1.7 V. This can allow for lower Zener diode voltage contributions in relation to
the current-limiting resistor, and better manage the allowable forward current
through the LED. When considering viewing angle, the APA2106MGC is the
least practical, as that it has an angle of 120 °, much lower than the typical 160°.
Since improved viewing angle is, in nearly every sense, preferred, we eliminated
the APA2106MGC from consideration for our design. With size constraints, the
LG R971 width, by box design, takes up much more space than other LED
models. However, with only 3 SMD LEDs being employed in relation to their side
visibility of the case design, this constraint is flexible to overcome.

 With all considerations, we chose the LG R971 model over the LG L29K. This
decision was primarily based on the LG R971’s higher current tolerance, which,
for SMD LEDs, is of the highest importance for both turning on the LED while
ensuring it withstanding potential current-overdraw. Furthermore, the LG R971
does not require maximum brightness, and lends itself to more flexibility with
acceptable current to adequately illuminate for battery status indication. Figure
3.2.5.4 displays the dimensions of the LG R971, both in millimeters and inches,
to showcase its desired minimal surface area for design implications.

Figure 3.2.5.4 - LG R971 Dimensions, reprinted with permission from OSRAM

45

3.2.5.4 LED Implications

The most significant restraint to most LED technology is the forwarding current
through the circuit. Since LEDs are under the diode family, they are operated at
specified current levels, with a maximum forwarding current defining their limit. At
maximum rated current, the LED will be at its peak luminosity, but will also be
prone to quick component degradation, and a shortened functional life span.
Current exceeding the forward current, past a maximum value, can destroy the
diode, and permanently burn out the LED, ruining it for further operation. While
LEDs can operate below their forwarding current value, the luminosity will be
lessened, and the output can be dim. One of the considerations for any LED
circuit is being able to supply an acceptable forward current through the LED.
Unfortunately, the standard for forwarding current is 20 mA, which can be
proportionally small compared to the current output throughout the device.
Realistically, we can implement current-limiting resistors at the LED inputs, which
can appropriate current. Although economically speaking, LEDs and resistors are
not a financial concern in numbers, size constraints for the FBC limit the amount
of additional components added to regulate current.

Another concern for working with LEDs, and SMD LEDs, in particular, is the
small workable surface factor. The SMD LEDs we are working with are only 2.1
mm long and 1.35mm wide. For actual implementation on the designated work
board, these size constraints require specialized small-scale tools to solder and
test the components. This is a necessary constraint, however, as the FBC is
meant to be a limited-sized handheld device. For building the SMD LED battery
indicator circuit, investment and knowledge in small-scale soldering is to be
desired.

3.2.6 Solar Paneling

A specification for the design included a means to recharge the power supply
battery via exterior solar paneling that effectively extends the power supply while
meeting the constraints of the power output. While means to charge battery
power supplies via solar cells is simple, panel dimensions, quantity, and charge
characteristics must be considered. Additionally, the output voltage from the solar
module contributions must not overcharge the initial power source, to which
voltage regulation application must be applied. In effect, the solar panel charging
contribution design was factored by the necessary standards of available solar
modules that meet the constraints of the hardware design. When applying
additional charge to the power supply battery via solar paneling contribution, the
effectiveness of the resulting solar output were considered. Solar cell efficiency is
most commonly measured in energy conversion efficiency, which yields the
percentage of solar photons converted into actual contributing electrical power,
and is largely considered for application.

46

3.2.6.1 Efficiency Versus Cost

The energy conversion efficiency rating of the solar module is an important value
to consider when applying a solar-fueled charging contribution, but a higher
rating product does not mean that it is commercially realistic, nor the most
feasible for the project. The highest recorded efficiency for a solar cell has been
44.7%, with similarly rated cell efficiencies existing, but these cells are not
practical in the consumer market, and are often constrained to laboratory
research, due to being made from more costly multi-junction sub-cells that
require sunlight magnifications. More realistically, crystalline silicon photovoltaic
cells are the prevalent product for the solar power market, with monocrystalline,
polycrystalline, and thin film silicon panels being the dominating technology. The
efficiency ratings of these three materials vary, as does their cost per cell/panel.

Monocrystalline Cells

Monocrystalline silicon solar cells are comprised of single-crystal silicon material
with an average efficiency rating of 20%. The appeal to monocrystalline cells is
that they are the most commercially efficient panels in circulation, and are
capable of performing better in indirect sunlight, such as overcast weather
conditions, compared to the polycrystalline and thin film counterparts. The
drawback to monocrystalline solar cells is the cost in exchange for better
efficiency, and the fragility of the panels themselves.

Polycrystalline Cells

Polycrystalline solar cells are the most commonly, commercially produced solar
cells, with a correspondingly lower price and efficiency than monocrystalline. The
average efficiency rating for polycrystalline cells is 15%, a value in-step with most
widely available solar paneling products. Polycrystalline cells are ideally
preferred for small-scale projects with a limited budget, but, like monocrystalline
cells, they are fragile in application, and the lower efficiency make them a factor
for usefulness in the power contribution.

Thin Film Panels

Thin film solar panels boast the lowest cost per watt in terms of all three
materials, but also record the lowest efficiency rating, varying on the specific
material used. Thin film panels are commonly made from three types of material.
Amorphous Silicon panels have a 8% efficiency rating and have a low
manufacturing cost, making it a competitive product. It also can be produced in
specified surface dimensions, which is better for design layout. Cadmium
Telluride (CdTe) panels are significant in that the efficiency ratings can be as
high as 15%, matching the efficiency of crystalline silicon, while maintaining a
significantly lower production cost. However, most commercial efficiency ratings
for CdTe are closer to 10%, and a primary concern for development is that

47

cadmium is extremely toxic, and CdTe film panels can potentially be an
environmental concern. Copper Indium Gallium DiSelenide (CIGS) film panels
are the next growing material for thin film solar panels, with experimental
efficiencies reaching as high as 20%, while most commercial ratings hover
around 11%. CIGS panels use considerably less cadmium levels, and have
greater heat resistances, but struggle to be price competitive compared to
amorphous silicon and CdTe films.

3.2.6.2 Solar Cell Selection

Effectively for FBC, the solar paneling design serves primarily as a means to
recharge the power source battery, or, alternatively, extend the available power
time to the device while in play. Therefore, the solar panel contribution is not
specifically designed as the primary source of battery charge, as assumed by the
external power charge plug-in, but rather as the auxiliary contribution to an
extended alternative. With this in consideration, for supplying additional charge to
the Lithium Polymer battery, we looked at four separate models of solar cell
technology, two monocrystalline cells, one polycrystalline cell, and one
amorphous silicon thin film, as shown in Table 3.2.6.1.

Model Output Current Efficiency Dimensions Cost

(single
quantity)

IXYS
SLMD481H08L

200 mA 22% 89 x 55 mm $31.91

IXYS
SLMD121H8L

50 mA 22% 86 x 14 mm $10.23

P-MAXX-
Series
Polycrystalline

400 mA 14.8% 80.43 x 19 mm $1.99

Panasonic –
BSG
AM-1417CA

13.5 µA Varies 35 x 13.9 mm $2.40

Table 3.2.6.1 – Solar Panel Comparisons

By comparison, the monocrystalline cells yielded substantially higher efficiency
ratings, and significantly higher costs. The thin-film Panasonic-BSG output a
marginally lower current, not suitable for charging the FBC lithium polymer
battery. The P-MAXX polycrystalline cell supplied the largest output current,
which is ideal for the time taken to charge the source battery to full capacity, and
costs considerably less. However, its limited efficiency raised concerns for
implementation on successfully charging the battery in a limited forecast
environment, making it unsuitable for an effective handheld design.

48

Between the two monocrystalline panels, the case size factored into the
importance given to the solar cell dimensions. Based on the design constraints,
the FBC is designated to have an exterior case area range similar to that of the
internal Raspberry Pi2 and the LCD Composite screen of 85 x 56 millimeters
(mm), giving approximately the equal amount of space available for the solar
cells to be paneled on the back of the case. The SLMD481H08L has a dimension
that would closely match the surface area of the case, allowing for the need of
only one cell module, with a favorable output current of 200 mA. Likewise, the
SLMD121H8L monocrystalline solar cell can match the surface area and 200mA
current by paneling four cells lengthwise, and connecting them in parallel, which
would sum of the four 50 mA to the near same output current of the single
SLMD481H08L.

The cost discrepancy was that four of the SLMD121H8L would be significantly
more expensive, but the tradeoff was the benefit of replaceable panels. Should
one of the SLMD121H8L get damaged, it can be replaced, while the other three
remain functional and can be kept. With the larger, single cell SLMD481H08L, if
the panel were to be damaged, the entire solar contribution would need to be
replaced. Additionally, the four separate SLMD121H8L panels give way for more
maneuverability with the positioning on the device, a flexible attribute to consider.

After reviewing the variety of solar paneling options, we concluded that the
monocrystalline design would best serve as the choice technology for the FBC,
given its higher efficiency rating in relation to the contribution to extending the
power charge of the source lithium polymer battery. Although a lower efficiency
rating was more feasible, a larger surface area would have been needed to make
up the same electrical charging energy, and for a small, handheld device, such
as the FBC, that was not a practical option. In terms of comparing cost and size,
we concluded that the IXYS SLMD121H8L solar cell would be the best option for
the case design, as well as meeting the specifications for sufficiently charging the
device. Below, in Figure 3.2.6.1, is the model part SLMD121H8L that we used.

49

Figure 3.2.6.1 - SLMD121H8L Solar Cell

Additionally, in Figure 3.2.6.2, we have the solar cell size dimensions for
perspective of exterior case design.

Figure 3.2.6.2 – SLMD121H8L Solar Cell Dimensions

50

3.2.6.3 Solar Overcharge Protection

One concern addressed with the addition of the solar panel circuit to the battery
power source was to regulate the voltage discrepancies and avoid current
leakage. When the solar panel charger is not being utilized, or in direct sunlight,
we do not want reverse current contribution from the battery to flow back into the
solar cells. The solar circuit essentially acts as a secondary charger to the FBC,
and will use a similar charge protection IC for charging the battery. Additionally,
we needed to monitor the solar cell’s input voltage contribution to manage
supplied charge current, otherwise the solar charger’s voltage will collapse when
it drops from maximum open-circuit levels. Another concern was that charging
our lithium polymer source battery required constant current and constant voltage
from the charger, to avoid battery damage. The solar panel has widely variable
voltage and current supply, and a charging IC was needed. For consideration, we
considered three charging IC models, both designated for lithium battery
charging, and ideal by means of solar energy.

LT3652

The LT3652 is a 12-pin lithium battery-charging controller, with charge switch
protection embedded in it. The charge controller can take a minimum charge
voltage of 4.92V and a maximum of 32V, although this is unnecessarily high,
given our low power system. The LT3652 produces constant voltage and current
to the charging destination, and has a built-in output charge detection to
terminate input voltage when charging is complete. This charge controller is ideal
for the very use of charging a lithium battery via solar cells, but is intended for a
much larger contribution scale.

bq24210

The bq24210 is a 10-pin charge controller, with an input charge voltage range of
3.5V to 18V. Similarly, it allows for a constant voltage and current to be supplied
to the charging battery, and specifically caters to lithium ion battery charging
circuits. The bq24210 also offers battery charge level detections to signal the
controller’s status, thus indicating if the battery currently needs to be charged at
all, if already at maximum voltage ratings. This model, as with the LT3652, is
specifically designed for solar circuits, being ideal for ensuring protection by
limiting leakage current through the input pins.

SPV1040

The SPV1040 is an 8-pin, low power charge controller, with input voltage ranging
from 0.3V to 5.5V. It provides constant voltage and current to the charging
battery, and includes protection from discharge at low voltage levels. One
drawback is that this controller is low-powered, and is designed for smaller

51

battery supply contributions, creating concern for conflicting shutdown conditions
while charging.

3.2.6.4 Solar Technology Constraints

One of the significantly contributing constraints to renewable energy technology,
especially solar energy, is efficiency. Even higher-grade commercial
monocrystalline silicon solar cells have typically an efficiency rating of
approximately only 20%. While efficiency ratings can certainly reach much
higher, up to about 44%, such values are only reasonable in carefully controlled
environments, typically in research laboratories. However, the means to achieve
such ratings also include much more costly multi-lens technology for solar
magnification, and are not yet practical for public manufacturing. Although lower
efficiency ratings are acceptable, and much more cost-efficient, the trade-off is
the time required to make up for such energy loses. A 22% efficiency solar cell
will take twice as long to produce the same amount of usable electrical energy as
would a 44% solar cell. Thus, even cheaper and less efficient polycrystalline cells
will take even longer. The constraint is factoring in how long it can take to
produce the desired electrical energy to meet product specifications.

One solution was to simply apply more solar cells in the paneling circuit, with
connections in parallel or series designed as needed for achievable voltage or
current levels. However, cost and space were debilitating factors. Depending on
the application, surface area for solar paneling can be limited. In the case of the
FBC, being a portable handheld device, the surface space for additionally solar
cells was extremely limited. Thin film solar cells, which can wrap around the
device and are more flexible to design, are a realistic solution. However, this
technology is the most limited in output efficiency, and can also be potentially
harmful to the environment, pending on the material used. Additionally, designing
a panel with more solar cells can be costly, with the marginal benefit of added
power production needing to outweigh the marginal cost of purchasing more
cells. Such cost considerations were factored into choosing the SLMD121H8L
cells for the auxiliary charging circuit.

52

3.2.7 Audio

The cornerstone attribute of the FBC was to recapture retro video games in a
modern sense, and a hallmark trait of the Super Nintendo Entertainment System
(SNES) was the vintage gaming music. In original hardware production, gaming
systems, such as the SNES, used audio sound chips that were separate from the
main system, and relied on five audio wave channels (Pulse Wave1, Pulse
Wave2, Triangular, Noise, and Delta Modulated Samples) to accomplish the
precise tempo, pitch, and other effects for the soundtrack composition. Given that
FBC will be supporting SNES games, it is important to compare the original
SNES audio to the FBC’s Emulation Station for accessing the audio sample
codes from the game ROM. The SNES audio system was the Nintendo S-SMP,
which operated at 2.048 MHz and performed from an 8-bit CPU core, the Sony
SPC700. The S-DSP is credited for mixing and creating the actual sounds and
audio, yielding the unique and iconic music samples based off of all five audio
channels. By comparison, the FBC software, Emulation Station, accesses the
same audio samples from the game ROM, and transmits them via the 3.5mm
audio jack to the system stereo speakers. These emulated files arguably lacked
the distinct modulated waves and noise compositions achieved by the S-DSP, as
well as prove to have an audio speed discrepancy from the emulated SPC700 on
Emulation Station. However, efforts to incorporate the original S-SMP sound chip
to the FBC’s microcontroller proved excessively challenging, and overstepped
the allotted size constraints of the casing. Therefore, it was decided to work past
the potential audio shortcomings of the FBC emulation in favor of reduced size
and power.

3.2.7.1 Stereo Output

The primary choice for audio output from the FBC was decided between
monophonic or stereophonic speaker design. The Raspberry Pi 2 core audio
output lends itself to two audio channel pins, allowing the potential for either
speaker design. Monophonic audio is generated through a single channel output,
and only needs one audio speaker to transmit sound, a design classic with
original handheld consoles, such as the Nintendo Gameboy Color. Using both
audio inputs for two separate speakers, stereophonic output can be achieved.
Stereophonic sound allows more depth and surround-sound output, generating a
more perspective approach to the system user. Therefore, the stereophonic two-
speaker design was used.

Amplifiers

Standard audio output speaker sizes in portable handheld consoles range 22 mm
to 29 mm in diameter, and have an output impedance of 8 ohms. Given this
output impedance, the speakers needed an amplifier circuit to make them
functional with the Raspberry Pi 2’s line level high impedance. The TDA2822M 8-
pin amplifier offered dual-speaker stereo capabilities while limiting current drawn

53

from the device and keeping a power voltage within the 5volt supply.
Comparatively, TS4984 amplifier offered a 16-pin multi-stereo option, and came
with a much larger supply current. LM4880, on the other hand, was another 8-pin
stereo capable amplifier, but with lower required current draw than the TS4984.
In Table 3.2.7.1, we compared each of the three audio amplifier models for
consideration.

Model Supply Current Supply Voltage Power Output
TDA2822M 6 mA 1.8 V to 15 V 300 mW
TS4984 7.4 mA 2.2 V to 5.5 V 1 W
LM4880 3.6 mA 2.7 V to 5.5 V 250 mW

Table 3.2.7.1 – Amplifier Comparison

Given the desire for a low current draw from the power supply contribution, we
chose the LM4880 model for our audio output amplifier. The LM4880 used the
minimum 8 pins to use two magnetic speakers for the stereo output, while
handling the 8-ohm impedance load. The supply voltage also allowed for direct
power input from the system power supply. Additionally, we chose the LM4880
based on compatibility review with multiple controller platforms, including the
core Raspberry Pi 2.
Later on in development, we elected a design that designated the LM4880 to
supply the audio output for the audio port alone, and opted for each speaker to
be managed by a LM4861 audio amplifier. This design lent itself for to a more
controlled output from the Raspberry Pi 2, since the LM4880 could take on the
left and right audio signals outputted to the audio jack, and each LM4861
handled the separate “left” and “right” audio signals for the left and right
speakers.

3.2.7.2 Volume Control

Audio control levels needed to be established for user application in selecting the
desired volume output of the device, or to completely mute the audio all together.
The most common method for device volume control was through the use of a
voltage-dividing, resistive-setting analog potentiometer. When the user slides the
potentiometer bar or wheel, the level of resistance was set to drive the system’s
voltage to ground for muted audio, or to the maximum rated voltage for allowable
amplitude levels.

3.2.7.2.1 Linear Versus Logarithmic Control

Setting the correct resistance for the desired audio levels is achieved by moving
the analog potentiometer bar or knob in the direction indicated of higher, or lower
resistance. However, the concept of changing audio at acceptable rates factors
in the amplitude level change as detected in decibels by the human ear. The two
most common potentiometers for volume control are linear and logarithmic rated

54

potentiometers. Linear potentiometers change the output audio response on a
linear scale, with the change of resistance proportional to the extent of which the
potentiometer has been moved. Logarithmic potentiometers change output audio
response on a logarithmic scale, with an initially steady change in volume levels
increasing at a faster rate near the approaching power limit for maximum value.

For user consideration, the logarithmic potentiometer was the preferred design
based on the human ear reception. The human ear is sensitive to amplitude
changes on the logarithmic scale, and audio signals are better responded to
gradual changes, instead of linear levels. However, many available
potentiometers, especially models common in handheld devices, were defaulted
as linearly changing controllers. The easiest way around this was the addition of
a series resistor to divide the rate of voltage change. Figure 3.2.7.1 below
compares the linear and logarithmic potentiometer levels, as well as the
presence of the series resistor to toggle the output rate.

Figure 3.2.7.1 - Linear and Logarithmic Potentiometer Responses, reprinted with

permission from Wikipedia

55

3.2.7.2.2 Analog Potentiometers

The most common, and simpler, potentiometer design found in popular handheld
gaming devices was the analog models. Analog potentiometers are three-pin
electro-mechanical devices that can adjust the output amplitude signals by
increasing or decreasing their internal resistance to permit anywhere between
maximum allowable voltage to zero voltage output. This change in resistance
was directly commanded by the user, and was usually executed by means of an
external slide bar, a thumbwheel, or a rotary knob. Typically, analog
potentiometers alone function as linear audio output devices, and need an added
resistor voltage divider in series to produce a more logarithmic change in volume,
as discussed above. The clearest advantage for analog potentiometers is that
they, unlike digital, require no additionally voltage source to operate; they simply
regulate the output voltage to the speakers at the user’s settings. Additionally,
analog models are useful in that the resistance set by the user is maintained,
even when the device is powered down, and then powered back on again.
However, analog potentiometers are limited in precision, and over larger
mechanical aspects to factor into case design restraints.

3.2.7.2.3 Digital Potentiometers

As opposed to analog potentiometers, which are directly adjusted by user
interface, digital potentiometers can be used in an integrated circuit for better
precision. Digital potentiometers are programmable microcontroller-interfaced
components that feature an internal mechanical potentiometer that can be
adjusted by input pin setting signals, such as a push-button command. Using
multi-resistor ladder integrated circuits, as shown in Figure 3.2.7.2, the digital
potentiometer uses a wiper switch connection to corresponding resistance levels
to control the output current to the stereo system. The user push-button controls
act as the mechanical turn knob or wheel, with each button input sending a
status signal to the next available wiper register. When the wiper register is set to
the corresponding “close” signal, the switch to the matching resistor closes,
increasing the resistance that the potentiometer give out.

56

Figure 3.2.7.2 - Resistor Ladder Digital Potentiometer Circuit, reprinted with
permission from Wikipedia

Initially, this ladder resistance stacking only offered a linear response, which, as
discussed above, was undesirable. However, many recent digital potentiometers,
such as the Microchip AN1080, could be programmed to have a logarithmic
characteristic by simultaneously closing multiple wipers in the ladder circuit,
which changed the audio output for a more gradual response. This created a
digital to analog converter (DAC) feature that smoothed out the audio output.
This is demonstrated in Figure 3.2.7.3, where we observed that as the slider bar
is moved from lowest position (maximum resistance) to highest position
(minimum resistance), the output voltage increases on a linear rate. However,
the decibel level of audio output has a logarithmic curve at the same slide bar
directions. Digital potentiometers can offer better precision and can be
programmed to scale in correspondence to the desired change of volume output.
One challenge with the digital versions, however, was that when the system was
powered down, the potentiometer did not save the last input resistance value on
it, and usually defaulted to a median resistance. Additionally, the digital models
typically required an input voltage to operate, and likely a DC-to-DC converter for
the output voltage from the connecting amplifier circuit.

57

Figure 3.2.7.3 - Digital Potentiometer Using DAC to Create Logarithmic Output,
reprinted with permission from Wikipedia

3.2.7.2.4 Potentiometer Model Selection

Potentiometer model selection came down to deciding between linear or
logarithmic, analog or digital, and finally the model designs available. Clearly, the
logarithmic design was to be used for the FBC, as linear volume control would
have too harsh of an effect on users, and would significantly lower the gaming
experience quality. Both analog and digital potentiometer designs were initially
set to linear controls, with the analog potentiometer acting as a logarithmic
through the use of a series resistor, and the digital model being digitally
configured to adjust resistance intervals in a logarithmic simulation.

Analog and digital potentiometers could have both been appropriately functional
for the FBC, with the advantages and disadvantages considered within the
design constraints. The analog design could be accomplished by direct user
interface, and could maintain the designated volume setting, even through power
phases. Additionally, with the analog mechanical volume control used, the user
could visibly see the potentiometer setting and know what output volume to
expect. Digital potentiometers offered better audio precision, and could be
logarithmically programmed to change volume at a custom ideal rate. The lack of
significant mechanical components also made the digital design a more likely
candidate for size-restricted projects. Both designs also had drawbacks, with the
analog taking up significant space, and the digital being power dependent. When
deciding between the two, we considered the power consumption and size
availability factors of the FBC. As with many handheld, portable gaming devices,
audio level precision is not a significant concern, as long as the output transitions
on a logarithmic scale. For those considerations, we chose the more traditional
analog potentiometer design.

58

The three most commonly used mechanical potentiometer designs are the slide
bar, thumbwheel, and rotary models. The slide bar design adjusts the applied
resistance by the user sliding an externally exposed bar linearly up and down a
track. Visually, the user can use the position of the slide bar in relation to the
maximum and minimum ranges to expect the current volume output. The
thumbwheel model functions via a semi-exposed disk that can be rotated at an
angle generally between 270° and 300°, and is generally numbered from “0”
through “10” on the outer perimeter. Each number represents the volume level of
the device, with “0” equating to a ‘muted’ output, and “10” meaning maximum
volume at the highest output voltage allowed. Despite the linear increase
numerically, the number rating represents sound levels on the logarithmic scale.
The rotary potentiometer adjusts volume via a protruding knob that, like the
thumbwheel, can be rotated along a 270°-300° angle. The rotary design is
discounted due to its functionality requiring a significant knob protrusion. The
volume control mechanism to the FBC was specified to be operated with a single
finger from the user, and the turn-knob design of a rotary potentiometer required
more effort, making it the more inconvenient model.

Between the slide bar and thumbwheel designs, we chose the thumbwheel. The
slide bar covers more exterior surface area due to its slide track, and could be
prone to more unintended motion by the user when handling the device.
Additionally, the slide bar could very easily go from minimum, muted output to
maximum volume in a single swipe, which could be detrimental if accidentally
moved. The thumbwheel, on the other hand, could be more carefully adjusted,
was less prone to significant unintended volume change, and required less linear
spacing for operation. The standard impedance rating for potentiometers in low-
voltage small devices is typically 10 Kilo-ohms, and the ideal thumbwheel
diameter for a handheld design is approximately 9-12 mm. Variations between
company models did not significantly alter the intended functionality for the audio
caption, and based on current availability, we initially chose the Bourns 3352T-
103LF-ND thumbwheel potentiometer. The model and dimensions are shown
here, in Figure 3.2.7.4, as reference. Included in the diagram is also a
demonstration of the rotation of the thumbwheel in relation to the internal
resistance wiper. Starting with the maximum 10 Kilo-ohm resistance, at the
thumbwheel positioned at the furthest counterclockwise angle, the volume is
“muted”. As the thumbwheel is turned in the clockwise direction, the wiper
resistance is decreased as angle rotation increases. When at the highest
possible clockwise setting, the wiper resistance is zero, and maximum voltage is
outputted through the audio speaker or jack systems.

59

Figure 3.2.7.4 - 3352T Potentiometer Diagram, reprinted with permission from
Bourns

A later reevaluation of the design revealed that a 3-pin potentiometer would not
meet the specifications required for a stereo audio system. 3-pin potentiometers
utilize pin1 as the input audio circuit, pin3 as the output, after variable resistance
applied, and pin2 serving as ground. The Raspberry Pi 2 output two separate
audio signals, a left and right signal. Such a design would call for two 3-pin
thumbwheel applications, which we found to be cumbersome and unpractical.
For that reason, we instead implemented the RadioShack 271-001 10K-Ohm
Wheel Potentiometer. This potentiometer boasted a 5-pin function, which allowed
for pin3 and pin4 to handle left audio output, and simultaneously allowed pin2
and pin5 to handle right audio output. Pin1 was designated ground. When the
thumbwheel was adjusted, the four pins allowed for left and right signals to be
applied simultaneously.

60

3.2.8 Power System

Our power system, shown in Figure 3.2.8.1, is one of the most important parts of
our console. The power system needed to adequately apply power to the
different components, while also supporting prolonged device usage away from a
wall outlet. One of our requirements was that the battery in our system would be
able to charge from a standard USB wall adapter or computer outlet. The 5 volts
from the USB needed to be put through a charging circuit specific to our battery
that would ensure our battery safely charged. The battery also is able to receive
a small amount of charge via the solar panels attached to the case. The
workhorse of our system is the Raspberry Pi 2 which runs off of 5 volts through
USB. That means our power subsystem needed to output 5 volts. Since none of
the common types of batteries would produce a constant 5-volt output we
needed to regulate the output. The output of the battery was put through a DC-to-
DC conversion circuit and regulated to the 5 volts needed by the Raspberry Pi 2.
The Raspberry Pi 2 also can output the regulated 5 volts from its power supply
and a regulated 3.3 volt output built in. These outputs were used to power the
various components of the mainboard that will interact with the Raspberry Pi 2.
The first thing we needed to do was choose a battery to determine how we could
charge it and what kind of DC-to-DC conversion circuit we needed to make.

61

Figure 3.2.8.1: Power Subsystem

3.2.8.1 Battery Selection

Due to our system being a handheld game console, we determined that power to
our system would be supplied by a battery in order to make the system portable.
Choosing an appropriate battery for a portable system was very important. We
compared the positives and negatives of five different types of batteries before
settling on the type of battery we were going to use. The five types of batteries
we considered were standard alkaline batteries, nickel-cadmium (NiCd) batteries,
nickel metal hydride (NiMH) batteries, lithium-ion (Li-ion) batteries, and lithium
polymer (LiPo) batteries. We compared the batteries focusing mainly on size,
weight, capacity, and longevity to try and keep the system small and running for
extended periods of time, and to have the battery last for a lot of charge cycles.
Other battery attributes that factored into our decision were output voltage,
charging methods, safety, and environmental impact.

Wall	
 Power Micro	
 USB	
 Port

Solar	
 Panels

Wall	
 Charging	

Circuit

Solar	
 Charging	

Circuit

Relay	
 Switch

Solar	
 Power

Raspberry	
 Pi	
 2

Power	
 Supply

Battery

Controller ScreenAudio

Switch

Bluetooth	

Module Bluetooth	
 Chip

5V

3.3V

5V

62

Alkaline

We decided against using alkaline batteries pretty early on so not a lot of
research was done for them. During discussion we determined that the cost of
constantly replacing alkaline batteries was prohibitive. Another factor that played
into our decision not to use alkaline batteries is that they take up more space
than other batteries while having a lower capacity and output voltage than what
we were looking for. Ultimately we decided that alkaline batteries were not the
appropriate battery for our device.

Nickel-Cadmium (NiCd)

Nickel-cadmium batteries were one of the first types of rechargeable batteries.
The term nickel-cadmium comes from the elements that make up NiCd batteries,
nickel oxide hydroxide (NiOOH) and cadmium (Cd). While they were very widely
used in the past they have seen a drastic decrease in use in recent years due to
the emergence of lithium-ion and nickel metal hydride batteries. We decided
NiCd batteries were worth looking into as they are cheap and still used in some
devices and are very heavily used in the RC community.

First we took a look at the primary factors of comparison. NiCd batteries are
available in standard sizes as well as battery packs with multiple battery cells.
NiCd batteries are also heavier than other batteries. Ideally we wanted a smaller
battery, but this was not enough of a deterrent for us not to take a closer look at
NiCd batteries. The largest capacity AA sized NiCd battery I could find was 1000
mAh. This is significantly lower than some of the other battery options that were
considered. We would have needed five AA NiCd batteries to come close to
reach the capacity of a 5000 mAh lithium-ion battery (which is about the size of
two AA batteries) or lithium polymer battery. NiCd batteries last for quite a few
charge cycles. While this would normally be a good thing, NiCd batteries also
suffer from something called a memory effect. This means that NiCd batteries will
hold less of a charge over time if not completely discharged each time. This was
a huge negative for us due to the fact that we did not want our game system to
have to die before it could be charged, and also because we have a solar power
unit that is constantly charging the battery.

The nominal output voltage of a single NiCd battery cell is 1.2 volts. The actual
voltage can range anywhere from 1.35 volts to 1.1 volts depending on where the
battery is in the discharge process. NiCd batteries have a decently flat discharge
curve so the vast majority of the time they operate at around 1.2 volts. While this
is certainly useful in many situations, our battery output voltage is fed through a
dc-to-dc converter and regulated to supply the needed voltage for our various
components. Figure 3.2.8.2 shows the discharge curve of a single NiCd battery
cell. The figure shows that between 90% and 5% battery remaining there is only
a 100 millivolt change in voltage.

63

Figure 3.2.8.2: Discharge Curve of a Normal Nickel-Cadmium Battery

Charging a NiCd battery consists of supplying it with a steady current of 10% of
its capacity for fourteen to sixteen hours. The voltage supplied by the charger
varies with temperature, but not by much. Charging efficiency is never 100% and
batteries tend to have a higher capacity than listed so charging longer than ten
hours is required. Overcharging is a possible issue with NiCd batteries because
they do not change in voltage by much, so a charger will have a harder time
determining when a NiCd battery has reached full charge based on the battery’s
voltage. Another potential downside to NiCd batteries is the self-discharge rate.
NiCd batteries will discharge 10-20% per month when not under any load. While
not a massive detriment to us, we wanted to be able to pick up the console after
not using it for a few months and still have some charge remaining in the battery.

NiCd batteries are both safe and durable. They can be fully discharged safely
unlike other battery types. NiCd batteries do contain cadmium, though, which is a
toxic metal. NiCd batteries require special disposal and have a negative impact
on the environment if not disposed of properly. While we do not worry about
having to change out the battery anytime in the near future, we prefered to have
a battery in our device that did not have a material that is hazardous to the
environment.

64

Nickel Metal Hydride (NiMH)

Nickel metal hydride batteries are significantly newer than NiCd batteries and
have been improved upon significantly in relatively recent years. Like NiCd
batteries they contain nickel oxide hydroxide (NiOOH), but in place of cadmium
they have an alloy that joins with a hydrogen atom during the charging process to
form a metal hydride (MH). NiMH batteries have replaced NiCd batteries in many
applications. We decided to look into NiMH batteries because they are very
similar to NiCd batteries, but they tend to have more charge capacity while being
just as cheap if not cheaper.

Like NiCd batteries, NiMH batteries are available in standard sizes and battery
packs with multiple cells. NiMH batteries are lighter than their NiCd counterparts
while having a larger capacity. The largest capacity AA sized NiMH battery we
found was 2600 mAh. This was a significant improvement over the capacity of
the NiCd batteries we saw. We would only need two of those batteries to reach
the same 5000 mAh threshold we set for NiCd batteries which makes it roughly
similar in size to lithium-ion batteries. Both of those attributes were huge
positives towards the efforts to make our console very portable. There are
downsides to using multiple NiMH batteries simultaneously, though. The different
cells may discharge at different rates, so charging and discharging them can
become more complex. Testing each cell individually is a pretty big hassle. The
amount of charge cycles that a NiMH battery lasts seems to fluctuate quite a bit
based on the current drawn. They seem to last for several hundred charge cycles
with normal use, which suits our needs. NiMH batteries also do not suffer from
the memory affect that plagues NiCd batteries.

Again, like NiCd batteries the nominal output voltage of a single NiMH battery cell
is 1.2 volts. The actual voltage can range from around 1.4 volts to 1 volt
depending on where the battery is in the discharge process. The discharge curve
of NiMH batteries is very similar to NiCd batteries. This means that the vast
majority of the time NiMH cells operate at around 1.2 volts. The same positives
and negatives apply here as they did for the NiCd battery. The flat discharge
curve is a detriment to our battery level indicator and the near constant voltage is
unnecessary for our device components. Figure 3.2.8.3 shows both the charge
and discharge curve of a single NiMH battery cell. The curve is incredibly similar
to the discharge curve of a NiCd battery. Many of the websites I visited while
gathering information said the discharge curves of NiCd and NiMH batteries were
basically interchangeable.

65

Figure 3.2.8.3: Discharge Curve of a Nickel Metal Hydride Battery

Charging a NiMH battery is often similar to charging a NiCd battery. The same
10% of its capacity for around fourteen hours is supplied to the battery. The
voltage supplied is between 1.4 and 1.6 volts. Similarly to NiCd batteries, NiMH
batteries need to worry about overcharging because of the constant current
supplied to the battery by the charger. NiMH batteries have a very large self-
discharge rate in comparison to other batteries. NiMH batteries self-discharge at
about 30% a month when not under any load. This by itself is not terrible, but
what makes it particularly bad for our implementation is that the self-discharge is
not linear. The battery can self-discharge up to 20% of its capacity in the first day
alone. This is not ideal for a portable console that aims to be taken on long drives
and flights.

NiMH batteries are also safe and durable. They are used as batteries for many
power tools much in the same manner as NiCd batteries. NiMH batteries are also
very environmentally friendly. They do not contain the cadmium that makes NiCd
batteries so toxic. For this reason and a few others nickel metal hydride batteries
are a solid choice. If we had to choose between NiCd batteries or NiMH batteries
we would have chosen NiMH, but we still considered two other types of batteries.

Lithium-ion (Li-ion)

Lithium-ion batteries did not see commercial use until the 1990s. They are some
of the newest batteries available and they are more expensive than the
previously discussed types of batteries. Li-ion batteries get their name from the
lithium ions that move from the anode to the cathode while the battery is
discharging and from the cathode to the anode when the battery is charging. The
advent of Li-ion batteries has had a huge effect on portable electronics. Li-ion

0.8	

0.9	

1	

1.1	

1.2	

1.3	

1.4	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

vo
lta

ge
	

minutes	

NiMH	
 Discharge	
 Curve	

66

batteries are used widely in consumer electronics and are smaller than both NiCd
and NiMH batteries. Most modern phones and portable devices use Li-ion
batteries.

Li-ion batteries are available in all the standard sizes, but also come in different
sizes and shapes. The most notable shapes are cylinders and flat/rectangular
like a cell phone battery. They are lighter than both NiCd and NiMH batteries,
and have a similar capacity to NiMH batteries. The largest capacity I could find in
AA size was 800 mAh, but we would be using a slightly larger sized Li-ion battery
that can hold up to a 3400 mAh charge on a single cell. The lightweight and high
capacity properties of the li-ion batteries were a huge selling point for us. The
amount of charge cycles that a li-ion battery lasts is similar to a NiMH battery,
generally in the range of 300 full cycles. Li-ion cells have no memory effect
whatsoever.

The nominal output voltage of a single Li-ion cell is 3.7 volts. The actual voltage
output of a Li-ion battery ranges from around 4.2 volts when charging should be
stopped down to 2.5 volts when discharge should be absolutely stopped. Ideally
you should stop discharge around 3 volts. A Li-ion battery should never be
discharged below a certain voltage. When Li-ion batteries drop below or raise
above certain voltage thresholds irreversible chemical reactions take place that
ruin the battery and can cause fires and explosions. The discharge curve of li-ion
batteries is different from the nearly flat curve of NiCd and NiMH batteries. The
voltage is regulated so the fluctuations in voltage from the Li-ion battery were a
non-issue. Figure 3.2.8.4 shows the discharge curve for a single Li-ion cell at a
constant current of 20% of its charge capacity and the discharge curve of a
single NiCd or NiMH cell at 20% of its charge capacity. Clearly the voltage in the
Li-ion discharge curve fluctuates far more than the voltage in the nickel oxide
hydroxide based batteries we have discussed.

2.4	

2.6	

2.8	

3	

3.2	

3.4	

3.6	

3.8	

4	

4.2	

0	
 1	
 2	
 3	
 4	
 5	

vo
lts
	

hours	

Li-­‐Ion	
 Discharge	
 Curve	

67

Figure 3.2.8.4: Discharge Curve of a Li-ion Cell

Charging a Li-ion battery is more complex than charging a NiCd or NiMH battery.
Instead of just supplying a constant current the whole time, a constant voltage is
also applied towards the end of the charging process. A constant current is
supplied to the Li-ion battery based on the Li-ion battery and the charger that is
used. The voltage output of the charger will increase as the charge in the cell
increases and the current remains constant. When the maximum charge voltage
(generally around 4.2 volts) is reached, a constant voltage equal to the maximum
charge voltage is applied to the Li-ion battery. The current supplied by the
charger will decrease until reaching a set value when the charger will stop
charging the battery. This process is faster than the “trickle charging” method of
the nickel batteries. As stated before, overcharging a Li-ion battery is dangerous
and can cause explosions, so strictly following the maximum and minimum
voltage values and the maximum current of a Li-ion battery when charging was
very important. Li-ion batteries, unlike their nickel based counterparts, have a
very low self-discharge rate. Generally Li-ion batteries only self-discharge at a
rate of around 2% a month. Such a small self-discharge rate was ideal for a
console that you might forget about for a few months and then want to play
immediately. A Li-ion battery should also not be allowed to self-discharge below
a safe voltage.

Li-ion batteries are less safe and durable then NiCd and NiMH batteries. While
they are used in a lot of consumer electronics, they are not generally used in
heavy duty applications. While safety is a concern with Li-ion batteries, when
handled properly it is easy to use Li-ion batteries safely. Some Li-ion battery cells
come with a circuit to shut off the battery when it approaches being overcharged
or over-discharged. These batteries are known as protected batteries. On top of
that Li-ion chargers are made with both constant voltages and constant currents
that will detect when to switch from constant current to constant voltage and
when to stop supplying the constant voltage. A lot of Li-ion chargers actually
allow you to set the constant voltage supplied by the charger for when you are
using multiple cells to supply a higher voltage. Like NiMH batteries, Li-ion
batteries are negligibly toxic. While NiMH batteries are a solid choice for a lot of
applications, we ultimately agreed that the faster charging, lighter weight, and
more fluctuation in voltage of a Li-ion battery better suited our needs. Li-ion was
the current front-runner but there was still one more type of battery to consider in
lithium polymer.

Lithium Polymer (LiPo)

Lithium polymer batteries are very similar to Li-ion batteries, but they come in a
soft pouch instead of the hard cylinder or rectangle shape of a standard Li-ion
battery. The reason they are able to be held in a soft pouch is because instead of
using the liquid electrolyte that a standard Li-ion battery uses, they instead use a

68

solid polymer electrolyte. These batteries are commonly referred to as lithium
polymer batteries because of the lithium ions and the polymer electrolyte.

LiPo batteries are available in various different pouch sizes. They are lighter than
their Li-ion counterparts, but in turn they suffer from a worse energy density. The
lighter weight of LiPo batteries make them perfect for use in radio controlled
models, but at the cost of a firm structure. LiPo batteries are in danger of having
pressure put on the pouch that increases capacity retention. The difference in
weight will be barely noticeable in a handheld gaming console. Having to make
sure that the LiPo battery does not have any pressure put on it could make
designing the interior layout of the case more difficult.

The voltage characteristics of a LiPo battery are the same as a Li-ion battery,
and the batteries are also charged in the same manner. They also have the
same amount of charge cycles as a Li-ion battery. They are, in general, more
expensive than a Li-ion battery of equal charge capacity, but the difference in
cost is not a deal breaker.

The LiPo battery is another solid choice, and one that potentially suits our needs.
While we really like how lightweight LiPo batteries are, we do not think that such
a minor difference in weight will have a huge impact on the portability of our
system, yet it is still a benefit when designing a handheld device. We do,
however, think that being required to compensate for a sensitive battery pack
that cannot withstand pressure will make determining the interior layout of the
case significantly harder, but at the same time the wide variety of sizes and
shapes that LiPo pouches come in could make case layout easier. LiPo batteries
can be as thin as a credit card which is a huge selling point. When it comes down
to a direct comparison between Li-ion and LiPo the choice is still not clear, so
both of these types of batteries were compared when choosing a specific battery.

Choosing a Battery

To pick a specific battery we first had to decide how much voltage we would
need to supply to the circuit. In order to keep our cost and battery size lower we
decided that the standard 3.7 volts provided by a Li-ion or LiPo battery cell was
fine, and that we would increase the voltage to whatever we needed it to be with
a DC to DC converter. From there it could just be regulated down to whatever
voltage different components in the circuit need.

After we determined that 3.7 volts would suffice, we had to figure out what
charge capacity we would need for our device to run for a fair amount of time.
The Raspberry Pi 2 will draw anywhere from 300 mA to 500 mA of current, but
we can safely assume that for our case the Raspberry Pi 2 will draw no more
than 300 mA on average. The 4.7-inch screen that we selected says that it will
draw around 150 mA. To be safe we assumed that it will draw 200 mA. The other
components of the device will not add up to anywhere over 200 mA, so assuming

69

that 700 mA of current will be drawn on average is a fair estimation, if not too
high. This means for a battery life of 3 hours, not including the charge provided
by the solar panels, we needed a battery with a capacity of 2100 mAh. Our
selections were limited to batteries at or above 2100 mAh.

The next thing to check when choosing a battery is physical size, weight, and
shape. Upon browsing through many different batteries we came to an important
choice between two Li-ion batteries and one LiPo battery. Table 3.2.8.1 shows a
comparison of the specifications between the two different batteries. The
difference in physical size of the two Tenergy Li-ion batteries is simply that the
5200 mAh battery is the same size as two of the 2200 batteries put next to each
other with a wrapper around them. The LiPo battery is wider than the Li-ion
batteries, but it is also less than half as thick. The LiPo battery is also the lightest
battery, though the 2200 mAh Li-ion battery is very similar in weight. The 5200
weighs about twice as much as the other two batteries. All three batteries contain
a protection circuit, which is ideal as additional protection against overcharging
and overdischarging. The 2200 mAh Li-ion battery is the only cylindrical battery,
the others being rectangular. We determined that a rectangular battery was more
ideal because the screen and Raspberry Pi 2 are both rectangular so the battery
could just be placed under those components. The price difference is less than
ten dollars between the three batteries.

Tenergy Li-Ion
18650 Battery
Module 5200

Tenergy Li-Ion
18650 Battery
Module 2200

Adafruit Lithium
Ion Polymer

Battery
Capacity (mAh) 5200 2200 2500
Size (mm) 66 x 37 x 19 69 x 19 65 x 51 x 8
Weight (g) 96 54 52
Protection Circuit Yes Yes Yes
Shape Rectangular Cylindrical Rectangular
Price $19.99 $10.99 $14.95

Table 3.2.8.1: Comparison of Battery Choices

The LiPo battery fit our needs the best. It has the rectangular shape that we
determined was a better fit than a cylindrical shape. Even though it is wider than
the other batteries it is still not as wide as the screen or Raspberry Pi 2. It is also
lighter than the other batteries and right between them in terms of cost. It has a
capacity of 2500 mAh which was enough for our needs. While it would have been
nice to have a battery with a large capacity like the 5200 mAh battery, it was
decided that the thin and lightweight features of the LiPo battery made it the best
fit for the FunBox Classic.

70

3.2.8.2 Charger

Due to the selection of a LiPo battery, we needed to choose a charging IC chip to
match our needs. There were a large amount of things to compare between the
different chips. Even though different chips have many different features there
are a few features that mattered more to us than others. We needed the chip to
make sure the battery safely charges without overcharging. The charging circuit
needed to take in 5 volts from a standard USB connection, either to a wall or a
computer, and charge the battery using the constant current followed by constant
voltage method. The constant current needed to be 500 mA and the constant
voltage needed to be 4.2 volts. There were some additional peripherals that it
would be nice for the chip to have but they were not necessary. These
peripherals were mostly just additional safety features. There are quite a few
different LiPo charging ICs, so choosing the one that best fit the FBC proved to
be challenging. After choosing a chip we needed to design a charging circuit
using the IC to take in a voltage input and charge the battery. We also wanted to
include LEDs to show when the battery is charging and when it is fully charged.

Charging IC Selection

After comparing many Li-ion charger chips based on the specifications we set,
we narrowed our selection down to three different ICs. The ICs that we chose
from were the LTC1734, LTC4056, and the MCP73831. We will now examine the
specific chips in more detail.

The LTC1734 in a sample 300mA constant current circuit, has a constant current
anywhere from 200mA to 700mA programmable by attaching a resistor to the
PROG pin. It is available in both a 4.1 and 4.2-volt model, the latter being the
relevant one to our project. The IC enters sleep mode when no power is
connected to it and draws negligible current from the battery. The PROG pin also
has a constant 1.5-volt output during the constant current portion of charging,
which then drops down to very low voltage levels as charging nears completion
and the current through the resistor reaches the cutoff level. The chip also has a
built in temperature sensor that protects the circuit from getting too hot, and limits
the output current to prevent damaging the battery or IC. The LTC1734 is 1 mm
thick and has 6 pins.

The LTC4056 is made by the same company as the LTC1734 and shares some
similarities. Per modern Li-ion standards the constant voltage output is 4.2 volts.
The constant current can reach up to 1400 mA using a resistor attached to the
PROG pin on the IC. The constant current is equal to the current through the
PROG resistor multiplied by nine hundred fifteen. The PROG pin outputs a
reference voltage of 1 volt for resistor selection. The current through the PROG
resistor can be tested in a similar fashion to the LTC1734 to shut down the circuit
if desired. The CHRG and TIMER/SHDN pins are used to program a shutdown
timer for the circuit to protect against overcharging during the constant voltage

71

step of the charging process. The LTC4056 has the same temperature and
current protection as the LTC1734.

The MCP73831, shown in a sample 500 mA charging circuit in Figure 3.2.8.5,
has only 5 pins, which is less than the number of pins in both of the LTC charging
ICs. The charging current is anywhere from 15 to 500 mA. The output current is
also decided by the resistor attached to the PROG pin. The MCP73831, like the
other ICs, has current and temperature protection. The VDD pin takes a voltage,
Vin, anywhere from 3.75 to 6 volts. VDD needs to be attached to at least a 4.7
microfarad bypass capacitor. VBAT connects to the battery and outputs the
constant current and voltage needed by the battery. It also needs to be
connected to at least a 4.7 microfarad bypass capacitor. The STAT pin is an
output that connects to a LED to show the status of the battery or to a resistor to
connect to a microcontroller. The VSS pin connects to ground. The charge cycle
ends if the current drops below 5 percent of the charge current.

Figure 3.2.8.5: Sample 500 mA MCP73831 Circuit, reprinted with permission
from Microchip

Comparing the datasheets of the three different chips made choosing the
MCP73831 a pretty clear choice. The MCP73831 offers the most out of the chips
compared to the complexity of including it in a circuit. The timer feature on the
LTC4056 was deemed unnecessary. The MCP73831 will also allow us to hook
up an LED to show when the battery is charging and fully charged. The max
charging current of 500 mA is perfect for us. Ultimately the MCP73831 charger
IC offers everything we need and will be the easiest to implement in our charger
circuit. At 56 cents per unit the MCP73831 is also well within our budget.

72

3.2.8.3 DC-to-DC Converter and Regulator

Now that we had a circuit to charge the battery we needed to make a circuit to
power our device using the battery. The output of the battery ranges from 3 to 4.2
volts and the battery is able to output up to 2500 mA of current, which is far more
than our device will draw. Since we want to turn 3 – 4.2 volts into a regulated 5
volts we need to find a Step-Up (also sometimes called Boost) DC-to-DC
converter chip. Just like with the charging IC there are a multitude of Step-UP
DC-to-DC converter chips available. Thankfully we had a few requirements for
our converter chip that helped narrow down the selection. The chip needed to be
able to output 5 volts. Whether it only output 5 volts or had a variable voltage
output did not make a huge difference to us, but a variable voltage source would
allow us to make the voltage slightly over 5 volts if we needed to, which we
ended up doing to account for voltage drops at higher current. The converter also
needed to be able to output enough current to power our system. While our
system will probably run under 700 mA, without having been able to test the
actual current draw of the system we wanted to be safe and only looked at
converters that support close to or more than 1 amp of current output. We also
wanted to limit our search to synchronous converters due to their smaller size
and higher efficiency than their nonsynchronous counterparts. Removing the
need for an external power diode is also nice. Another thing we needed the
converter to have was a dedicated enable or shutdown pin. This pin connects to
the battery and ground through a simple switch. This switch acts as the ON/OFF
switch of the device. A power efficiency of over 90% at 1 amp was also desired.
A lot of the converters we came across the power efficiency seemed to fall off
significantly around 1 amp. The two DC-to-DC converters we compared that
were most suitable to our device were the PAM2401 and the TPS61030

The PAM2401, shown in Figure 3.2.8.8 in a sample 5 volt out circuit, can take an
input voltage anywhere from 0.9 volts to 4.75 volts. Our LiPo battery will always
be between these ranges when operating safely. The PAM2401 supports
currents up to 3 amps which is well above our 1-amp requirement. The chip also
has a dedicated enable pin. The output voltage can range anywhere from 2.5
volts to 5 volts. While we technically only needed 5 volts we did end up going
with about 5.15 volts output instead to account for any voltage loss at higher
currents. The power efficiency of the system, shown in Figure 3.2.8.9, drops to
around 90% for our operating voltage range. This fits our requirements. The
PAM2401 is definitely an okay choice, but does not leave any room for future
changes to circuits.

73

Figure 3.2.8.8: PAM2401 5 Volt Output Circuit, Courtesy of Diodes Incorporated

Figure 3.2.8.9: PAM2401 Efficiency Curve, Courtesy of Diodes Incorporated

The TPS61030, shown in Figure 3.2.8.10 in a sample 5 volt out circuit, can take
an input voltage anywhere from 1.8 to 5.5 volts. The LiPo battery will always be
well within this range. The TPS61030 outputs currents up to 1 amp at 5 volts.
This perfectly matches our needs. Like the previous IC, this chip also has a
dedicated enable pin. The output voltage of the chip can go up to 5.5 volts. This
gives us a little headroom in case we need to increase the voltage a bit to
compensate for changes in the circuit. The power efficiency of the system, shown
in Figure 3.2.8.11, is about 95% at 3 volts input voltage and 1-amp output
current. This efficiency will always meet our requirement of above 90% because
our battery will normally be operating at a higher input voltage with a lower output
current which will only increase the efficiency even further. The TPS61030 is an
excellent choice. It fits all of our requirements and has good efficiency which will
lead to longer battery life.

74

Figure 3.2.8.10: TPS61030 5 Volt Output Circuit, Courtesy of Texas Instruments

Figure 3.2.8.11: TPS61030 Efficiency Curve, Courtesy of Texas Instruments

Both the PAM2401 and the TPS61030 fit our specifications, but the TPS61030
definitely matched what we needed more closely. The 3-amp max output current
of the PAM2401 is unnecessary for our applications and the efficiency is not as
good as the TPS61030. The slightly over 5 volt maximum output that the
TPS61030 was seen as potentially useful and was eventually utilized, whereas
we would have been stuck with 5 volts maximum using the PAM2401. The
TPS61030 meets our needs perfectly while giving us just enough headroom. It is
also perfect for our portable system because the power efficiency is so high. The
LBO (low battery comparator output) pin allowed us to have an LED indicate
when the device has low battery. The cost of the chip is only $3.15 which was
definitely an acceptable amount.

75

3.2.9 Case Design

The inspiration for the case design for our gaming console came mostly from
case designs made by Nintendo Company. This professional company, a leader
in the gaming industry has many great designs that are based on years of
research and testing to insure the best user-experience. We looked at both
Nintendo DS and Game Boy lines.

3.2.9.1 Comparing Nintendo Lines

We mostly looked at Nintendo DS and Game Boy lines. Nintendo DS line offers
the consoles with dual displays: LCD and touchscreen. Two displays are
convenient in a way that two players can play multiplayer using only one console.
However, this causes a problem that one player can see the other player’s
screen. Game Boy line introduces a single display consoles. We thought that
dual display consoles looked a little bulky and would add a lot of extra weight to
our console. So, the case was decided to be with a single display.

Next we had to decide what shape the console should have. A clamshell design
looked very tempting. We implemented solar batteries design in our console that
had to be attached to the backside of the console. The clamshell design would
be perfect to get the most of solar battery since the sunlight would be
continuously charging it. We considered using the SolidWorks software to
implement the case design, and then 3D print it at UCF Innovations lab. A
clamshell design was causing many complications with designing and printing it
on 3D printer. We were not sure if we would be able to develop in Solidworks the
proper design of clamshell case since it had two separate parts that had to be
attached. A unibody shape of the console was complicated enough, and it was
decided to work with that design alone.

For the control buttons, we wanted to reuse the existing circuit boards from
Nintendo DS console or Super Nintendo controller. Nintendo DS consoles have
the following controlling functionalities: D-pad, circle pad, C-stick, A/B/X/Y, L/R,
ZL/ZR, and START/SELECT buttons, home button, and touchscreen. Whereas,
Super Nintendo controller has more basic controlling buttons: C-stick, A/B/X/Y,
L/R, ZL/ZR, and START/SELECT buttons. Super Nintendo controller seemed to
have a cleaner easier buttons layout, which was suitable for our design.

The first console in Figure 3.2.9.2 has a general rectangular shape. This shape
does not look very convenient to use. If we decide to use it, we would like to
modify and add some elongation to sides. It would be more comfortable for a
user to hold this device while playing the games. The console on Figure 3.2.9.3
has a clamshell design similar to Nintendo DS.

76

3.2.9.3 Research on the Case Design

The case design for the console depended on such characteristics as shape,
dual displays layout versus single, location of the buttons, and sizes of all
components that had to be placed inside the console.

Dual versus Single Display

Dual-display consoles looked very sophisticated and more appealing toward a
great user-experience. It would be great to go with that design, but it would also
mean that we had to have a more involved functioning of other parts that go
inside the console. We thought that out system was involving enough, and didn’t
want to create an extra complication to it. The parts that we put inside the
console did not have perfect design. The Raspberry Pi was very bulky; two circuit
boards instead of one took a lot of extra space etc. As students, we had limited
professional engineering and manufacturing skills, which greatly affected the
console’s size.

Clamshell versus Rectangular Design

The rectangular design looked less complicated to manufacture, but was more
challenging to design the layout of its inside components. We had circuit boards,
speakers, battery and other components that had to be placed inside one box
instead of two. The parts had to be placed inside in a way that they don’t touch
and don’t short-circuit.

77

It was decided to install solar panels on the back of the console as an additional
source of charging the battery. In the clamshell design, we could locate solar
panels on the backside of the folding top. A user would be charging the battery
using solar light continuously and keeping the battery last for many hours. In
rectangular design, solar panels would have to be placed on a backside as well
but it would make solar batteries less useful. Every time the user would want to
use solar battery, he/she would have to keep the device vertically or at an angle.
However, a user could also take a break from the game and leave the device out
on the sun charging for a while. Solar panels were relatively big in size and took
a lot of space on the backside of the console. We were faced with the challenge
to design a shape of the case in a way that it didn’t look bulky and had enough
area to place solar panels. We thought that we would have to take a lot of risk if
we decide on pursuing the clamshell design. The risks included: not being able to
attach two separate halves, properly attach the wires and ended up redesigning
the case. So, to be on the safe side, we decided to choose a rectangular shape
for the device with few modifications. We wanted our design to look similar to the
design shown in Figure 3.2.9.3. This model has very clean look.

Figure 3.2.9.3 - Retro Bit Portable Handheld Console V2.0
Reprinted with the permission of Retro Bit Games

3.2.9.4 Designing the Front-Facing Buttons

A lean design technique was implemented for the control buttons. When the
user’s attention is shifted from one location to another, there is a cost associate
with time or effort. If buttons are not easily acceptable, the user may feel
frustrated and even loose interest in playing on the console with such buttons.
The design of the buttons should minimize this inconvenience by providing the
buttons located to the nearest possible position.

We wanted to design our console with minimum amount of buttons, but without
reducing the user-experience. For front-facing buttons we need to have a start,
select and game controlling buttons. Usually, Nintendo consoles have the
following buttons: The D-pad, an analog stick, and start, select and four A/B/X/Y
buttons. We decided not to use an analog stick on our console.

78

Front-facing buttons that will be used:
• D-pad
• 4 A/B/X/Y buttons
• Start button
• Select button

These can be seen in Figure 3.2.9.4 below.

Figure 3.2.9.4 - Controller

79

3.2.9.5 Basic Design Philosophy

The mechanical design of the Fun Box Classic portable gaming console
stemmed from two basic requirements:

− Create a cost-effective device that meets all applicable environmental
requirements.

− Utilize board’s outlines and interconnections of all the parts in order to fit
them inside the case.

Research into recent designs of the portable consoles led us to select the
mechanical design philosophy of a Retro Bit portable handheld console shown in
Figure 3.2.9.3.

Figure 3.2.9.5 represents the rough design of Fun Box Classic console. The
button assignments are given in Table 3.2.9.1.

Figure 3.2.9.5 – Case Design of Fun Box Classic Console

80

Number Button Name
1 L & ZL Buttons
2 USB Port
3 R & ZR Buttons
4 LCD Display
5 Control D-Pad
6 Power Button
7 A/B/X/Y buttons

Table 3.2.9.1 Front View System Components

Advantages include:

• The opportunity to use highly cost-effective castings common across the
range for several of the major components, such as the front panel, back
pane and two shoulder buttons.

• Well proven structural integrity
• Effective space utilization

3.2.9.6 Case Components

To make this type of case, we first have to measure all the parts to find out the
width and height of them. Then, we will stack all the parts and find the depth of
the console.

We will measure all our parts in mm units since these are the most common units
used in specifications for the parts that we bought.

81

3.2.9.6.1 Front Panel

The width and height of the display we thought would be about 105 x 65 mm.
The width and height of the circuit board with the front buttons were thought to be
127 x 50.8 mm. Then we considered to have elongated sides of the console
similar to the design of Nintendo Wii U Pro Controller. First sketch of the front
panel is shown in the Figure 3.2.9.6.

Figure 3.2.9.6 - Front Panel Sketch #1

Later, the design of the front part of the case was comprehended. The second
better version of the case design is shown below in Figure 3.2.9.7.

82

Figure 3.2.9.7 - Front Panel Sketch #2

83

3.2.9.6.2 Back Panel

A physical characteristic of the backside of the case is to allow the users to
remove the battery through an accessible lid that can be unscrewed. We used
rechargeable lithium ion polymer battery that has 65 x 51 mm in width x height.
Analyzing the lid sizes of existing consoles and considering the size of the lithium
ion battery, we were thinking to design the lid with dimensions about 65 x 127
mm. There also had to be a place for two or four solar panels. The size of each
solar battery is 86 x 14 mm in width x height. The approximate design of the back
panel is shown in the Figure 3.2.9.8.

Figure 3.2.9.8 - Back Panel Sketch #1

84

This design was farther researched and changed to the design shown in Figure
3.2.9.9 below.

Figure 3.2.9.9 – Back Panel Sketch #2

85

3.2.9.6.3 Side View

The Table 3.2.9.2 has an approximate estimation of the thickness of the future
console. This analysis was based on the specifications of some big parts that
were placed inside the console and also the specifications of existing products,
which were used for comparing purposes. Below figure 3.2.9.10 represents the
idea of what we thought the upper part of the console would look like.

Part Thickness
(mm)

Weight (g)

Solar Panel 2 5
Battery 8 52
Display 15 132
Raspberry Pi 3 50
Other Components 57 240
Total 85 479

Table 3.2.9.2 - Estimate Thicknesses of the Console

Figure 3.2.9.10 - Side View of the Future Console

86

3.3 Software Research

This section details the research into a base operating system for our device, a
software frontend GUI for users to interact with, a software backend to run the
games, and potential modifications to the operating system.

3.3.1 Base Operating System

Initially, we considered using a FPGA system and designing from the very lowest
level a custom operating system, built from a custom kernel geared towards the
FPGA. The advantages were obvious. We would have been able to maximize
power efficiency, since no unnecessary OS functions would have been required
that would have drained more power, like a task manager. We would have been
able to cut down on the disk space used by the OS as, again, no unnecessary
space wasters, like advanced GUI elements, would be required. Finally, we
would have been able to make sure the OS used all components of the
hardware, such as the processor and memory, most optimally. This would have
ensured the maximum possible amount of resources was available to the
emulators, for maximum performance for each game.

However, the main disadvantages were too great to overcome. Learning to build
an operating system from scratch, including the BIOS, the kernel, libraries,
drivers, the GUI, and the user ring, would have taken an inordinate amount of
time. From memory management to file system permissions, there was simply
too much to do in too little time. In addition, we would have had to port all the
emulators to our custom operating system, requiring more time. The operating
system or emulator ports alone could have filled up a Computer Science Senior
Design project, and thus we opted to abandon our overly ambitious goal. We can
see how complex a standard operating system structure is by the flowchart in
Figure 3.3.1.1 below.

87

Figure 3.3.1.1 – Full Operating System Flowchart, reprinted with permission from
Wikipedia

We decided to go with a Linux Kernel, due to its open-source, and therefore
freely available, nature as well as the easily modifiable kernel. We thought,
initially, about using something easy to use, like Ubuntu, but realized we should
probably switch to a lighter distro that would more easily run on a micro-
computer, like Raspberry Pi or BeagleBone Black. Looking at commercial
derivatives, such as Fedora, and fan-proclaimed “pure” distributions such as Arch
Linux, we opted to go with a midline Linux distro, Debian. Specifically, we used
the most supported version of Debian with the Raspberry Pi – Raspbian, made
by the developers of the Raspberry Pi to work best with their system. A more
detailed comparison of Linux distros is shown in Table 3.3.1.1.

Distro	
 Cost	

Default	

FS	
 DE	

arm	

support	

GUI	

Installer	

Rpi	

Support	

ES	

Support	

Arch-­‐
Linux	
 Free	
 None	
 None	

Yes	
 -­‐	

Unofficial	
 No	
 Unofficial	

Non-­‐
native	

Debian	
 Free	
 ext4	

GNOME,	

etc.	
 Yes	
 -­‐	
 32-­‐bit	
 Yes	
 Yes	
 Native	
 Pi	

Fedora	
 Free	
 ext4	
 GNOME	
 Yes	
 -­‐	
 32-­‐bit	
 Yes	
 2nd	
 Party	
 No	

Ubuntu	
 Free	
 ext4	

Unity	
 on	

GNOME	
 Yes	
 Yes	
 2nd	
 Party	

Non-­‐
native	

Table 3.3.1.1 – Linux Distro Comparison

88

As can be seen in the table above, Debian met all of our system requirements
perfectly, and thus became the obvious choice.

3.3.2 Software Frontend

We used a frontend called EmulationStation, which is built on top of the
Raspbian variation of the Debian distro, specifically designed for Raspberry Pi.
This will allow us to focus more on the hardware and not be concerned with the
already functional software components. In addition to performing all necessary
frontend functions, the EmulationStation software is freely available and
encourages people to use it in whatever projects they have. The GUI shown to
the user is displayed in Figure 3.3.2.1 below.

Figure 3.3.2.1 – EmulationStation GUI

We looked into other more fragmented solutions, some using RetroArch like
RetroPie does. Each of these solutions, however, would require the user to
browse a standard desktop environment like GNOME. This, given the size of the
screen and the lack of internal keyboard and mouse controls, was a non-ideal
solution. EmulationStation is the official frontend of a combination solution called
RetroPie, which allows us to have all emulators in a central directory, with
games, emulators, and settings easily controllable with only a standard game
controller. Certain options do require the use of a keyboard to configure, but
these will be preconfigured before the final release, making that level of user
input unnecessary.
As we have decided to support only the maximum native resolution of our
screen, which is 640x480, we will configured the EmulationStation to support
only this maximum resolution. This reduced the needed resources from the

89

Raspberry Pi 2, which will prevent low resource issues, such as blank screens
and freezing. Additionally, we only enabled support for the Nintendo
Entertainment System (NES), the Super Nintendo Entertainment System
(SNES), the Game Boy (GB), the Game Boy Color (GBC), and the Game Boy
Advance (GBA). These limitations helped to cut down on required resources as
well. The BIOSs required to emulate each system were extracted directly from
the physical system, thereby sticking to legal use of the copied material.

Additionally, we configured EmulationStation to accept not just the internal
controller, but our external Bluetooth controller as well. Thanks to a built-in
configuration utility, this proved to be very easy.

3.3.3 Software Backend

ROMs of the test games were extracted from our own physical copies of each
game, using already available flash chips. These were saved in their appropriate
directories on the Micro SD card. To put ROMs on the card, it was necessary to
use a direct USB connection.

All emulator tests were performed using much larger sets of conditions, which we
have consolidated to save space in the diagram. For each emulator, we
performed a barrage of 47 to 159 tests, depending on the system being
emulated. These are tests which the speed-running community uses to evaluate
emulators. Since these players are obsessed with shaving off even one more
millisecond of time from their playthrough of any given game, they know that they
need perfect emulation. As a result, we can be assured that the tests are
comprehensive and accurate.

For the NES, we decided between three emulators: Jnes, FCEUX, and NesterJ.
Jnes was a very accurate and powerful emulator, but required too many system
resources for accurate emulation. NesterJ was a solid emulator, that had been
proven to work on portable systems, such as when it was ported to the Nintendo
DS through homebrew applications, but ultimately did not suit our needs due to
emulation inaccuracy and having not been updated in quite some time. We opted
to go with FCEUmm, a port of FCEUX with better mapper support, which
provided the best balance of updates, performance, and system requirements.

The emulators below are the most accurate ones that were precompiled for the
Raspberry Pi. The emulators puNES(closed-source) and Nestopia (open-
source), when compiled for the Raspberry Pi, might provide better accuracy and
performance, and so might be considered as the project progresses for
maximum enjoyment. The test results are shown in Table 3.3.3.1.

90

Test	
 Jnes	
 nesterJ	
 FCEUX	

APU	
 (/40)	
 8	
 8	
 18	

CPU	
 (/55)	
 21	
 23	
 38	

Mapper	
 (/13)	
 0	
 1	
 7	

PPU	
 (/42)	
 6	
 10	
 21	

Misc(/5)	
 3	
 4	
 5	

Demo	
 (/3)	
 0	
 0	
 0	

Total	
 (/158)	
 38	
 46	
 89	

Grade	
 (%)	
 24.05%	
 29.11%	
 56.33%	

Table 3.3.3.1 – NES Emulator Accuracy Comparison

For the SNES, we decided between three emulators as well: ZSNES, a variation
of SNES9x called PiSNES, and higan (formerly BSNES). Higan is, bar none, the
most accurate emulator on the market. The creator mapped every single
pathway of every single chip on the SNES and even expansion chips on the
cartridges. For this effort, he was rewarded with 100% emulation accuracy.
However, emulating an entire system perfectly requires far more resource than
our Raspberry Pi 2 can support, and thus we sadly had to get rid of this option.
ZSNES is an excellent emulator, being very accurate and also considerate of
resources. Unfortunately, the port for Linux systems was not optimized well, and
thus we were forced to remove it from consideration. We ended up going with a
port of the popular SNES9x emulator specifically for Raspberry Pi. The test
results are shown in Table 3.3.3.2.

As we can see, PiSNES reaches nearly 90% accuracy, without the massive
performance drops seen by the higan emulator. As a result, it is the clear choice.

Test	
 ZSNES	
 PiSNES	
 higan	

Blargg	
 Tests	
 (/9)	
 2	
 4	
 9	

Official	
 Tests	
 (/30)	
 20	
 29	
 30	

Cx4	
 Tests	
 (/8)	
 8	
 8	
 8	

SPC7110	
 Tests	
 (/12)	
 12	
 12	
 12	

Total	
 (/59)	
 42	
 53	
 59	

Grade	
 (%)	
 71.19%	
 89.83%	
 100.00%	

Table 3.3.3.2 – SNES Emulator Accuracy Comparison

91

For the GB and GBC, we chose between no$gbm, Visual Boy Advance, and
Gambatte. No$gbm was relatively clunky, experienced slowdown, and has an
appalling level of accuracy. Visual Boy Advance supports Game Boy, Game Boy
Color, and Game Boy Advance games, making it a great choice to cut down on
needed cores for emulation. However, when playing around with it on the
portable system, there were some aspects of the user interface we felt did not
mesh properly with the system as a whole. In addition, the main team stopped
updating the emulator in 2004, and the new team has made some feature
additions which we felt were not worth the additional resources required. Finally,
its emulation accuracy is still poor. Gambatte, on the other hand, is pre-built with
support for the backend system of RetroArch, making it ideal for our idea of a
unified system set. It does not support GBA games, but we felt this lacking was
made up for by constant updates and integration with the backend. The test
results are shown in Table 3.3.3.3.

Test	
 nos$gmb	
 VBA	
 Gambatte	

CPU	
 (/12)	
 9	
 12	
 12	

Sound	
 (/24)	
 1	
 1	
 24	

MEM	
 (/3)	
 0	
 2	
 3	

OAM	
 (/8)	
 2	
 3	
 3	

Total	
 (/47)	
 12	
 18	
 42	

Grade	
 (%)	
 25.53%	
 38.30%	
 89.36%	

Table 3.3.3.3 – Game Boy and Game Boy Color Emulator Accuracy

Additionally, we can see that Gambatte achieves nearly 90% accuracy, far more
than either of the other tested options. With minimal performance effect and
significantly better emulation accuracy, we can safely say that Gambatte is the
clear choice.

Finally, for the GBA, we decided between Visual Boy Advance and gpSP. Visual
Boy Advance was discarded for the reasons stated above. GpSP, while being
originally for the PSP, received a native Raspberry Pi port and seems to work
flawlessly on it. For this reason of ease of use, we chose gpSP. As these were
the only two options available and VBA had already been discounted, we felt that
testing was superfluous at this point.

3.3.4 Operating System Modifications

Even using a premade operating system, there were several modifications we
had to make to maximize effectiveness on our platform.

First and foremost, we made sure to maximize battery life. To this end, we
disabled unnecessary features of the OS, such as the SAMBA share for the
emulators, as we will have no network capabilities. Further, we disabled the LAN

92

chip itself, giving us a savings of 40 mA. These changes nearly double the
battery life of the system, as the total current drawn when fully stressed will be
260 mA and it will idle at 200 mA. More exact measurements of power savings
are shown in Table 3.3.4.1.

100%	
 Load	
 Cores	
 0	
 1	
 2	
 3	
 4	

Pi2	
 230	
 280	
 320	
 380	
 420	

Pi2	
 w/	
 OS	
 Changes	
 200	
 215	
 230	
 245	
 260	

Table 3.3.4.1 – Power Saved Due to Ethernet Removal

Secondly, as we tried to minimize user complexity, auto-USB synchronization
was setup. By this, we mean that upon plugging in a USB drive to the system, it
copied the directory structure and contents of the ROM folder onto the USB.
From then on, any changes made to the USB, such as adding or removing a
ROM, will also be made on the system once the USB is plugged back in. In this
way, the user does not have to navigate the Linux filesystem and worry about
messing something up. We disabled most setup options, so the user does not
accidentally, say, delete the core emulators.

Thirdly, we considered overclocking the BCM2836 chip, as this made Nintendo
64 games playable. However, as we decided to not add an analog stick and as
most games had large compatibility issues with the conversion to the ARM
architecture, we dropped Nintendo 64 support. As a result, the performance
benefits of overclocking were no longer necessary, and we were only left with a
much larger power footprint. The idea of overclocking the system was then
scrapped, leaving us with a more power efficient chip that serves performance
purposes.

Finally, we locked the software volume at 100%, leaving all volume control up to
the hardware potentiometer. This will eliminate the potential of a user forgetting
what they set the software volume at, and thus minimize user error in that area.

93

4. Hardware Design

It goes without saying that the meat of a Senior Design project is, in fact, the
design. This is the most important part of the first half of Senior Design. In this
section, we will lay out, in detail, the design of the various hardware components
that make up the FunBox Classic. Properly laid out, well researched, and well
documented design ensured the least amount of wasted time, effort, and money
when it comes time to actually build the project.

4.1 Screen Setup

Our first step will be to take apart the screen and strip the component
connectors, making sure not to damage the delicate ribbon cable in the process.
Once properly disassembled and stripped, we will move onto the Raspberry Pi.
We will first remove the existing composite video/stereo audio hybrid connector,
as it is tall and does not fit our needs. This will also leave the audio connections
open for our custom audio processing, to output it to headphones or speakers on
a switch. We will connect the composite cable to the solder point PP24, which is
the Composite Signal Input. The ground will be soldered to solder point PP6,
which is a ground point.

Next, we prepare the external screen to accept a more reasonable (for our
purposes, at least) 5V input as opposed to the 12 V it currently accepts (due to it
being a car monitor, this makes sense as cigarette lighters output 12V). This is
accomplished with relative ease. If we remove the linear chip, the circuit
automatically accepts the desired 5V again. We then connect the 5V input and
the ground to the unused USB header marked 2.

Finally, we de-solder the switches below 2 and link them to the backlight
controller. By sending timed pulses, we are able to then control the backlight
capabilities of the monitor.

By performing these three relatively simple steps, we have a natively supported
screen, with the resolution and quality we need, with full backlight (and even
contrast and saturation if needed) control. This also avoids any messy
complications due to driver conflicts and any loss in quality due to analog to
digital conversion.

However, we ended up not doing that at all, scrapping the backlight controller
and soldering a wire directly to pads past the regulator.

As the original brightness control switches for the screen would add unnecessary
bulk (and complication, due to the menu system) to the design of our system, we
have opted for manual control of the brightness. Two options are potentially
available to us.

94

First, the method that would be guaranteed to work, we could have pulses sent to
the areas where the switches used to be, in pre-programmed ways, to control the
brightness. This method has the benefit of already being known to work, as it’s
just substituting wired pulses from a microcontroller for the original switches. The
downside, of course, is that the onscreen menu overlay would display the
volume, negating any software control of that interface. Additionally, it might be
slower, as navigating a menu is, by its nature, slower than direct control.

Second, the method that we are currently testing, we could bypass the
microcontroller and send whatever pulses it uses to control brightness to the
LEDs directly. This method has the benefit of allowing us to use our own GUI for
brightness level displays, as well as being faster due to bypassing the onscreen
menu overlay. The disadvantage to this method is, of course, that it might not be
possible or, more specifically, it might not be possible for us.

Whichever method ends up being the correct one, we plan on using the ATtiny13
from Atmel to control the backlight. This tiny, and cheap, chip is able to do both
of the things we might require: either sending pre-programmed pulses by
listening for specific input (the user changing brightness) or using PWM to control
the brightness directly, also listening for the user’s input (if the screen accepts
this method). Additionally, with the use of a photoresistor and a switch that the
user would control, we can set the brightness to automatically dim or brighten
based on the current level of light in the room. This would, naturally, have to be a
system the user could disable at will, as these systems can provide an
inadequate (or overlarge) level of light at times.

A basic schematic for the backlight controller is shown in Figure 4.1.1.1.

Figure 4.1.1.1 – Basic Backlight Controller Schematic, reprinted with permission
from Wikipedia

However, we ended up not implementing the backlight controller.

95

4.2 Audio

The FBC offered two designated means to output audio from the software: two
external stereo speakers that export sound to the surrounding area of operation,
and also via an audio jack port that could be paired with external headphones to
provide a closed audio system designated only for the headphone operator. A
specification for the FBC design was to externally output the device audio via the
stereo system speakers by default, but to only supply audio through the audio
jack port when a device is plugged to it, thus muting the stereo speakers until the
auxiliary listening device had been removed.

4.2.1 Speakers

We used two external speakers in the FBC audio stereo system, each positioned
on either side of the device to maximize the audio dimension output to the user.
When choosing our device speakers, we referenced previous handheld gaming
models as reference to determine what is an acceptable means of output in
terms of frequency and power rating. As previously mentioned, the standard for
speaker impedance in handheld devices is 8 ohms. Frequency ranges for the
SNES games can rate up to 8 to 12 Kilohertz, so we wanted our speakers to be
able to attain that maximum frequency output. Power consumption was a main
concern, with minimal current draw from the power source being desired,
especially given the use of dual-stereo speaker components. Additionally,
speaker size in relation to the case design was considered. We were looking for
a traditional round speaker design, with a minimum diameter of 22mm, which is
the speaker diameter for the classic Gameboy Color, and a maximum diameter
of 30 mm. Below, in Table 4.2.1.1, we compared available small-scale output
speakers for consideration.

Model Frequency

Range
Power Input Diameter

102-2502-ND 448 Hz – 7 KHz 0.3 W 20 mm
668-1231-ND 500 Hz – 20 KHz 1 W 28 mm
102-1554-ND 530 Hz – 20 KHz 0.1 W 27 mm

Table 4.2.1.1 - Stereo Speaker Model Specs

Comparatively looking at the selected models, we first considered the frequency
range. The 102-2502-ND can attain the lowest available frequency of 448 Hz, but
also only can reach 7 KHz. The other two models can reach up to 20 KHz, well
within the maximum frequency output range desired. For power consideration,
the 668-1231-ND takes the most power, at 1 Watt, much more than the other
models, and more than ideal for power consumption. For diameter dimensions,
the 102-2502-ND is the most efficient in size, which can be ideal for extreme
case design constraints. However, considering all fields together, we chose the
102-1554-ND model. This model required the smallest input power at 0.1 W, and

96

was in the ideal frequency output range. Factoring in that the FBC will be using
two stereo speakers for audio output, this model fulfilled more of the desired
requirements for the sound system.

4.2.2 Audio Jack Output

The secondary source of audio output was from the implementation of an exterior
audio headphone jack. When an auxiliary device, such as a headphone plug, is
inserted into the audio jack, a connection is made that sends the audio output,
from the amplifier, to the headphone output. Additionally, when the plug
connector of the auxiliary device is inserted into the jack, an internal switch is
flipped, breaking the connection to the dual external stereo speakers, and only
providing audio output to the plug-in. The FBC featured the audio jack primarily
for headphone plug-in use, so we used the standard 3.5-mm jack size for our
design. To be noted, the core Raspberry Pi2 for the FBC initially featured a 3.5-
mm jack already attached, but we removed that feature from the surface, as it
was not needed for our device implementation.

For audio jacks, phone connectors are used as the input to channel audio
signals. In particular, stereo headphone jacks comprise of three contacts: the tip,
ring, and sleeve (ground). Each of the three connectors directly corresponds with
the audio jack when plugged in. There are two types of headphone jacks for
device use consideration: open circuit audio jack, and closed circuit audio jack.
Open circuit jacks, when unoccupied by a connector, initially serve as a
connector between the amplifier and the speakers. When a phone connector is
inserted, the tip of the connector also receives audio output, and both the stereo
speakers and the headphones output audio. Closed circuit jacks also serve the
initial purpose of connection between the amplifier and speakers. However, a
moveable internal switch within the jack port keeps this connection by remaining
closed. When a headphone connector is inserted, the switch is flipped open,
breaking output connection to the speakers. Now, the only audio output is
directed to the plug-in headphones. Figure 4.2.2.1 below exemplifies the
headphone connector opening the jack switch.

Figure 4.2.2.1 - Closed Circuit Audio I/O

97

When the auxiliary headphone connector is inserted, from the right side of the
diagram, into the audio port, two pin connectors are pushed outward. When
pushed, the two connectors move the mechanical dials on either side away from
the initial arrow contact to the exterior contacts. This breaks the connection,
cutting signal away from the speakers, and only applying audio output to the jack
connector. Below, in Figure 4.2.2.2, is the initial audio circuit output in relation to
speakers and audio jack, using an NMOS inverter to signal power to the
respecting audio outputs. Note, due to schematic limitations in Multisim, only the
symbol for a single input, single output audio jack was available. However, we
still simulated the stereo system dual-speaker audio jack by placing two single
jacks side by side in series to more closely resemble the audio schematic from
Figure 4.2.2.1

Figure 4.2.2.2 – Initial Closed Circuit Audio Speakers and Audio Jack

Later design analysis revealed discrepancies with the initial audio circuit. The
utilization of the LM4880 to drive signal to the left and right speakers was
inefficient, compared to driving an external load, such as the audio jack. The
LM4861, however, provided a better output for lower power quantities, and was
specifically designed for bridged speakers. Additionally, the LM4861 was capable
of outputting higher power ratings of typically 1.1W, thus requiring speakers that
could take a higher maximum power rating; we chose the CLS0231-L152
magnetic speakers. The final audio circuit can be shown in Figure 4.2.2.3. An
automatic switching design is favored, with the use of the Shutdown pins on both
the LM4880 and LM4861. An NMOS inverter is used to toggle a supply voltage
Vdd to both shutdown pins, which alternate with the connection status of the
audio jack.

98

Figure 4.2.2.3 – Final Audio Circuit Design

To implement an effective switching between audio jack and speakers signal, we
needed a 4-pin audio jack, one that included an auxiliary pin to indicate the
presence of a headphone plug. We chose the SJ-3524-SMT 3.5mm audio jack
for the job. The sleeve, pin 1, is designated as ground, while the tip and ring (pin
2 and pin 3 respectively) output left and right audio signals. The fourth pin serves
as a connector, which is pushed away into an open circuit design when the
headphones are introduced. Figure 4.2.2.4 demonstrates the format of the 4-pin
audio jack used.

Figure 4.2.2.4 – 4-Pin Audio Jack Diagram

99

4.3 Power System

The power system design includes the design of all the circuits related to the
power subsystem. This consists of the battery wall charging circuit, DC-to-DC
converter circuit, 5-volt power supply circuit, solar panel charging circuit, and
LED battery indicator circuit. Also included in this section is the design of a relay
circuit that will switch from solar charging to wall charging when the wall charger
is plugged in.

4.3.1 Wall Charging Circuit Design

Figure 7.3.1.3 showed a sample 500 mA LiPo battery charging circuit using the
MCP73831. We wanted to make a circuit very similar to this but with multiple
LEDs to show the various states of the battery during charging. According to the
datasheet, the STAT pin has three possible states: High when the battery is fully
charged, Low when the battery is charging, and High Z when the battery is not
connected or the MCP73831 enters its shutdown mode. In Figure 7.3.1.3 the
diode will light when the battery is charging because the voltage difference
between Vin and STAT will be positive and the current through the diode will
cause light. When the battery is fully charged the STAT pin will be High and no
current will flow through the LED. In order to have an indication of when the
battery is fully charged we can add a resistor and LED from STAT to ground, as
shown in Figure 4.3.1.1, or we can use a red/green LED and attach a resistor
from the STAT pin to ground. We determined using a second LED was better
because it would allow a third option for lighting both LEDs simultaneously. Three
combinations of LED lighting correspond to the three states of the STAT pin as
shown in Table 4.3.1.1. When the STAT pin is in the High state the voltage drop
from STAT to ground through the LED resistor will cause a current to flow
through the LED lighting it. In the High Z state of the STAT pin both LEDs will
light because there is a path from Vin to ground through the two LEDs and their
resistors which will ignore the high impedance path into the STAT pin. Ultimately,
in the final design, we decided to go with a one LED setup for simplicity and the
second LED was deemed unnecessary.

100

Figure 4.3.1.1 - Schematic of Charging Circuit with Charge State LEDs

Charge State Orange LED Green LED
Charging Yes No
Finished No Yes
Shutdown/No Battery Yes Yes

Table 4.3.1.1 - Table of Active LEDs per Charge State

This circuit safely charges the battery using the standard 5 volts provided by USB
2.0 ports plugged into a wall adapter or a computer, and shows the user the
current charging state of the battery. The total cost of the circuit is less than
$3.00. The circuit also does not have many components, which will help keep the
PCB as small as possible. With the additional charge protection circuit built into
our battery, we felt very confident that our LiPo battery would be able to charge
without any major complications. Now that the battery can be charged we
needed to use it to power the device. First the output of the battery needed to be
converted to a higher voltage level and then regulated.

4.3.2 DC-to-DC Converter Circuit Design

Figure 3.2.8.10 showed a sample regulated 5-volt output circuit using the
TPS61030. We wanted to make a circuit very similar to this circuit, but with an
additional switch to connect and disconnect the battery to the enable pin on the
TSP61030. This will act as our power switch. Additionally when the device is
turned on and working we want an LED to shine. We also want to use the LBO
pin to light an LED when the battery is close to 3 volts to indicate that the battery
is low and the user should turn off and/or plug in the device as soon.

101

All references to components in the following circuit design information will be
referring to the circuit in Figure 3.2.8.10 until stated otherwise. The output voltage
of the device is determined by the resistors R3 and R4 and the voltage at the FB
pin. The TPS61030 datasheet says the resistor R4 should be around 200 kΩ and
that the FB pin voltage is typically 500 mV. Using R4 = 200kΩ and VFB = 500
mV we calculated that R3 needs to be 1.8 MΩ. The LBO pin is active low when
battery voltage drops below the set level and high otherwise. The set battery
voltage cutoff is determined by the resistors R1 and R2 and the onboard LBI
threshold voltage. The resistor R2 is supposed to be around 500 kΩ and the LBI
voltage threshold is 500 mV. Using R2 = 510 kΩ and VLBI-Threshold = 500 mV
and VBAT = 3 V we calculated that R1 should be 2.55 MΩ. Using a 2.7 MΩ
resistor instead makes the LBO pin go active low when VBAT = 3.15 volts. This
was considered suitable to our needs. In the final design, after messing with
different values, we decided to change the resistor values to allow around a 5.2
volt output and a 3.25 volt low battery warning instead. The datasheet says that
in typical applications, such as ours, an inductor with inductance 6.7 µH is
recommended. C1 is recommended to be 10 µF by the datasheet. It also says to
put a 100 nF capacitor in parallel with C1 and as close to the chip as possible.
The output capacitor is recommended to be 220 µF. A 2.2 µF capacitor at the
output will be used as a decoupling capacitor. We also chose in the final design
to use two 100 µF capacitors in parallel instead of a 220 µF capacitor. The basic
5-volt output DC-to-DC converter circuit calculated from the datasheet without
any additions is shown in Figure 4.3.2.1.

Figure 4.3.2.1 - DC-to-DC Converter and Regulator Circuit

102

4.3.3 Power Supply Design

Now that the basic circuit design had been handled we could add what we
needed to it. The first thing we needed to add is a power switch that will switch
the EN pin from the battery to ground. This is demonstrated in Figure 4.3.3.1.
Also shown in Figure 4.3.3.1 is a blue LED attached with a resistor from VOUT to
ground as a power indicator. When the device is on the LED will be lit. The last
major change is the addition of an LED low battery indicator. The LBO pin
outputs VBAT when it is High, so a PNP transistor with the emitter connected to
VBAT, the base connected to LBO, and the collector connected to a resistor and
the LED. When LBO and the emitter are both VBAT the transistor will be off and
no current will flow through the LED. When LBO is low the transistor will turn on
and current will flow through the LED. Figure 4.3.3.1 shows the power supply
circuit that connects the battery to the Raspberry Pi 2 with both a power indicator
LED and a low battery indicator LED.

Figure 4.3.3.1 - Power Supply Circuit

103

4.3.4 Combining the Power Supply and Charge Circuit

The power supply and charge circuit will join at the battery. Some changes to the
circuits were needed due to coming in contact with additional components. The
charging circuit has the battery in parallel with a 4.7 microfarad capacitor while
the power supply circuit has the battery in parallel with a 10 microfarad capacitor
and a 0.1 microfarad capacitor. These capacitors make the 4.7 microfarad
capacitor unnecessary and it will be removed when joining the circuits. The
charger circuit also has a 4.7 microfarad capacitor on the other side of the IC.
This capacitor was changed to a 10 microfarad capacitor for symmetry. No other
changes were needed to join the circuits. The completed battery, charger, and
regulated power supply circuit is shown in Figure 4.3.4.1.

Figure 4.3.4.1 - Complete Power Supply, Charger, and Battery Schematic

104

Figure 4.3.4.1 - Complete Power Supply, Charger, and Battery Schematic

4.3.5 Solar Panel Charge Controller Circuit

Comparing all three charge controllers, each one met the initial concern for
constant voltage and current supplied to the lithium polymer battery. The LT3652
was a moderate-powered controller that required a minimum input voltage of
approximately 5V, which was close to the maximum output of the solar circuit.
Additionally, the LT3652 had the largest amount of pins, at 12 pins, that was
excessive. The SPV1040, on the opposite spectrum, was targeted for lower
power inputs, and raises concern for the compatibility of charging our 4.2V
source battery. Thus, we chose the bq24210, which has an ideal input voltage
range, and included protection from significant current leakage. Additionally,
many sample solar charging lithium battery circuits researched have employed
the use of the bq24210, making it an ideal component. Figure 4.3.5.1 below
shows the initial solar cell charging circuit, with the bq24210 used in connection
with the battery source.

Figure 4.3.5.1 – Initial Battery Control Charger Circuit

105

Originally, for the bq24210, we added a103AT-4 thermistor close to our charging
battery, to take advantage of the thermal protection system. Since the lithium
polymer battery does not have a thermistor built in to it, we could add an external
one close to the battery. If the battery begins to overheat, the TS pin would
trigger the control charger to reduce the voltage and current flow to the battery.
Pins VDPM and CHG are designated for charging detection signals, such as an
LED connection for battery status. Since we were already using a more detailed
battery indicator LED circuit, we chose not be using these pins.

Later revisions of the solar charging circuit led the removal of the thermistor from
the circuit, as the lithium polymer battery would not foreseeably overheat at the
power draws demanded of the project. Additionally, this resulted in the removal
of the 21.5K resistor, as it was not needed. An anticipated maximum current
draw of 100mA from the solar panel also resulted in a revision of the ISET
resistor to 2kilo-ohms. Figure 4.3.5.2 displays the final solar charging circuit.

Figure 4.3.5.2 – Final Solar Charging Circuit

4.3.5.1 Solar Panel Design

Original designs designated the solar panel to be comprised of four
monocrystalline silicon cells, arranged in parallel connection, to yield a maximum
output current of 200mA and maximum output voltage of 5.04V. The idea was
given that solar cells add up current in parallel, and voltage in series connections,
we would want to charge the source battery fastest with four cells in parallel.
However, we did not account for the event of cells on the panel that may be

106

shaded, covered, or damaged. A parallel connection of all four cells results in a
current draw to the shaded cell, significantly reducing the current output available
to the charge controller. Bypass diodes would solve that presented problem, but
the voltage generated by the diodes would lower the output current from the
panel to typical levels around 3.6V, which would not be sufficient to charge the
battery at most levels. In order to maximize output, while still implementing the
bypass diodes as protection, we opted to create two solar cell branches, each
branch containing two cells connected in series. The two branches are then tied
in parallel, resulting in a maximum output of 100mA and 10.4V respectively. The
implemented bypass diodes across each cell were applied in parallel, avoiding a
voltage drop, and allowing optimal current flow, even in the event of a shaded
cell. The use of a LM7805C 5VDC voltage regulator limited the output voltage to
the charge controller, further protecting from the risk of overcharging the battery.
Below, in Figure 4.3.5.1.1, is a display of the solar panel constructed.

Figure 4.3.5.1.1 – Model of Solar Panel

4.3.6 LED Battery Charge Indicator

A specification for the FBC was to design a light-based indicator of battery supply
levels available to the device. Voltage regulated LED circuits enable a test
current to be sent from the battery power source to the designated diodes, with
the LED output response indicating the charge status of the battery. The FBC
has two separate LED battery charge indicators. The first indicator would use a
RGB LED close to the user’s targeted line of vision while operating the device,
next to the upper right corner of the resistive touchscreen. This indicator would
utilize each of the red, green, and blue LEDs to indicate the current battery
charge status while the device is powered on. Additionally, the LED circuit
diagram would be managed to have only one of the three diodes on at one time.

107

When the FBC is powered on, a current would be generated across each
corresponding resistor to the LED. The blue LED would illuminate when the
battery charge level reads 100%, indicating that the battery was fully charged.
Should the user be charging the FBC’s battery while the system is in use, the
blue LED of the RGB LED would alert the user that the battery is fully charged,
and may be removed from the battery charger. The blue LED would turn off at
any battery charge below the maximum 4.2V charge of the lithium-ion battery.
When the battery was charged between 100% and 25%, the green LED would
illuminate, glowing brightest at the higher battery percentage charge, and
dimming as the charge percentage reduces. Once the battery charge level
reaches below 25%, the green LED would turn off. Simultaneously, when it had
been indicated that the battery charge was below 25%, the red LED would
illuminate. This final LED would stay on until the battery shuts down at 3V, in
which all three diodes of the RGB LED would be powered down, along with the
device.

The secondary charge indicator was designed for the user to more precisely
identify the remaining voltage in the source battery, without needing to power on
the entire device for a status check. On the bottom side paneling of the FBC, a
line of 4 green SMDs would be connected in parallel, with the power supply
connection delivered via push-button action, located just left of the SMDs on the
hardware. While the button was pushed down, a switch bridging the battery
power source to the SMD’s would be closed, sending current across the limiting
resistors and to the SMD’s. At a battery charge reading ranging between 100%
and 70%, all three SMD’s would be on. Following, at a charged range of less
than 70% to 40%, the rightmost SMD, SMD3, would turn off, indicating that the
battery is roughly two thirds charged.

4.3.6.1 LED Microcontroller

The push-button battery indicator LED feature was intended to have the SMD
LEDs turn on in relation to the charge status of the source battery, and stay
illuminated for the specified time of five seconds. Initial designs would
accomplish simply using a push-button feature to allow for a current signal to
send to the LED circuit for as long as the button remained pressed, and using
Zener diodes and current limiting resistors to control the allowable charge flowing
through the LEDs. However, this method did not address the specification of
keeping the LEDs lit without continuously pressing the push-button, or, in the
design case, keeping the LEDs lit for 5 seconds after the push-button has been
pressed, signaling the battery status. Therefore, the implementation of a
programed microcontroller could be used. Now, with the push-button component
directly connecting the power supply battery to the input pin, the corresponding
output voltage could be signaled to the three SMD LEDs, and the initial
programing would instruct each LED status to remain active for the specified
time. In terms of choosing which microcontroller will be suitable to achieve the

108

battery status indicator, we primarily looked for meeting the required pins needed
and acceptable voltage supply to keep the microcontroller on.

The FBC power source was rated at 5 volts, so a microcontroller within that
range would be suitable. We determined that 3 SMD LEDs would be needed for
the indicator status: 3 LEDs lit for a battery charge range of 70% to 100%, 2
LEDs lit for a battery charge range of 40% to 70%, and 1 LED lit for a battery
charge range of 10% to 40%. Thus, 3 pins from the microcontroller were to be
utilized, as well as an additional pin each for the turn-on controller voltage, the
push-button battery status signal, and ground. So, the minimum pin number we
were looking for in our microcontroller is an 8-pin device. We looked at several
models to achieve the design circuit specifications. An 8-pin MSP430G2210
offers over 2 KB of flash memory and 4 general-purpose pins. However, like
many in its family, it is an ultra-low power controller that would need the voltage
source input to be regulated to a lower value. A similar microcontroller to look at
is the ATtiny module. Comparatively, the ATtiny 13 and ATtiny 25 both offer 8
pins and a Vcc input of 5 volts. The ATtiny 25 also offers 2K Bytes of
programmable flash memory, which is an excessive amount needed for the
battery indicator LED circuit, so the 1K Byte ATtiny 13 serves better to avoid
resource overhead.

In addition to monitoring acceptable turn-on voltage to the microcontroller,
consideration for the battery test current to be read must also be observed. As
previously mentioned, flagging the battery status by the remaining source voltage
was an ideal method for turning on the corresponding LEDs. However, with our
source lithium polymer battery, voltage change is hardly detectable until the
battery has nearly discharged; this would result in all 3 LEDs being lit, but quickly
dropping from the just 2 lit, and finally 1 LED lit, until the low power LED turns on,
in a very short amount of time. A more accurate reading for the lithium polymer
battery was via a test current signal, and could be accomplished by current
updating microcontrollers. The microcontroller tests the battery current draw
against the battery cell capacity, predicting the remaining charge left in the
battery. Battery gauge microcontrollers are able to test current, voltage, and
temperature status from the source battery, being an ideal candidate for the
battery source indicator circuit. In particular, the TI bq27200 gauge series
microcontrollers are lithium battery-specific, and can accurately read the
remaining battery voltage via a small test current across a designated flag
resistor. This model was ideal, in that it, like the ATtiny series, is 8-pins and
draws a small amount of current from the battery for continuous operations. The
designated status current can be outputted from the microcontroller’s specified
pin, and be channeled across the Zener-LED series branches to signal which
SMD LED to turn on for indication. Below, in Table 4.3.6.1, we compared the
three discussed microcontrollers for consideration and comparison.

109

Model Supply Voltage Active-Mode
Current

Number of
Operation Modes

MSP430G2210 1.8V to 3.6V 220 µA 5
ATtiny13 2.7V to 5.5V 240 µA 2
bq27200 2.6V to 4.5V < 90 µA 5

Table 4.3.6.1 - Battery Status Controller Comparison

From the three considered parameters, we see that the MSP430G2210
consumes the less voltage needed for controller operation, while the ATtiny13
requires the most, above the readily available 5V pin from the power system. For
the supply current needed for the controller to be in active, or turn-on, mode, the
bq27200 uses a significantly less amount of current, compared to the
MSP430G2210 and ATtiny13. This was desirable for channeling current to the
controller without worry of drawing excess current through the rest of the gauge
circuit. The number of operation modes was considered for use in application of
when the battery status is actually being called upon.

The ATtiny13 has only two modes, active mode, and power down mode, which
fulfill the basic “on” and “off” conditions for the controller. However, the
MSP430G2210 and bq27200 have 5 modes of operation. In addition to active
and power down mode, the bq27200 also features a hibernate and data retention
modes, which are ideal for saving battery status data when low input voltage is
applied to the controller, but still enough to be in a transient stage without yet
being powered down. The fifth option, ship mode, could be ignored, as it only
pertains to the controller’s status for manufacturing purposes. The
MSP430G2210 also has 5 modes of operation, all being different stages of low
power. With each level of input power decreasing, the MSP430G2210 has a
mode that systematically shuts down particular features, such as certain timers
or CPU operations, that may not be immediately essential for constant
operations.

Comparatively, we chose the bq27200 for the FBC battery indicator controller.
The operational supply voltage was in the ideal range provided from the internal
power source, and the low supply current in active mode is extremely useful.
Additionally, the bq27200 features a pin specifically for detecting overheating
from the battery via a thermistor, which, when flagged, would decrease power to
the controller, or shut it down completely.

The battery indicator circuit would be programmed to read a test current from the
source lithium polymer battery when the push-button closed the circuit switch
connecting the battery to the input pin. The corresponding output current at the
pins connecting the 3 LEDs is 40 mA, so current-dividing resistors would be
needed to limit the current down to 20 mA for the maximum forward current
allowed by the LED. In this case, 100-ohm SMD 660-SL1TTE101J resistors
would be sufficient. Once the test current was read from the battery, and the

110

corresponding signals turned on the correct LED indicators, the LED(s) should
remain illuminated for a 5 second period, after which the controller would reset,
and wait for the current reading from the battery when the push-button is pressed
again. Figure 4.3.6.1 below demonstrates the SMD LED push-button battery
indicator circuit, with current-limiting resistors and voltage-regulating Zener
diodes included.

Figure 4.3.6.1 - Battery Status Indicator SMD LED Circuit

4.3.6.2 LED Circuit Revisions and Challenges

Reexamining the LED battery status indicator circuit led us to realize several
flaws with the initial design, the largest having to do with the use of the IC. The
bq27200 controller primarily functions to indicate the source battery’s charge
level independently, sending a signal as programmed to alert the user. However,
it did not correlate with the designated LED’s to visibly indicate a battery
operating range. Thus, a simpler design was favored for the battery status
indicator circuit, comprising of the three LED’s signaled based on voltage dividing
transistor circuits. The new design, as displayed in Figure 4.3.6.2, would still
implement a push-button to send a test voltage signal directly from the battery to
the circuit. LED 3 would always turn on, even at low battery levels, indicating that
at most, 30% of the battery charge remained for operation. LED 1 and LED 2
would be turned on as long as a sufficient current turned on the base pin of the
NPN transistor. If the voltage dropped below the designated voltage dividing
circuit, the transistor would shut off, and the LED would not illuminate. Mistakes

111

not caught in the design phase of the project led to a PCB designed with a faulty
LED battery indicator circuit. Initially, the obvious mistake was the misplacement
of the push button, which was not placed before the first transistor circuit, thus
resulting in constant voltage flowing from the battery to the circuit. The more
serious error was in the values selected in the resistors for the voltage dividing
circuit. Even though the resulting current at the transistor was correct, the initial
current draw from the first resistors, R1 and R2, was much too high, ending with
burnt out traces on the PCB. Given time constraints, and considerable focus on
more prioritized components, we elected to cease repairing the battery indicator
circuit and abandoned it altogether.

Figure 4.3.6.2 – Finalized LED Battery Charge Indicator Circuit

4.3.7 Switching Battery Chargers

In this design, we did not want the solar cell charger to be charging the source
battery at the same time as the wall-charger. In effect, the solar charger was
more of a secondary auxiliary charger, and the wall charger was to take priority
when introduced to the system. To accomplish this, a relay circuit would be
employed to switch from solar charging to wall charging when the USB charger is
inserted to the power supply. For this, the KS2E-M-Series double throw relay
would accomplish the task, with a switch voltage at the wall charger’s 5-volt
value. In functionality, the relay would have its power source, or its coil voltage,
at the source input for the wall charger. Additionally, the double throw input pins
would be set to both the wall charger circuit and the solar circuit, and the output
pin to the lithium polymer battery.

Initially, when the wall charger is not in play, the coil voltage is at zero, and the
relay circuit will be “open”, connecting the solar panel charging circuit to the
battery source. When the wall charger is introduced to the system, the relay coil
will turn on, and the internal switch will “close”, switching from the solar circuit
connectivity to a direct connection between the wall-charging circuit and the
source battery. Once the wall charger is removed, the relay will power down, and
the switch will return to the solar charging circuit. Figure 4.3.7.1 below represents

112

the two charging circuits connected to the relay for connection to the source
battery. Initially, the relay connected the solar charger to the battery, but when
the wall charger was introduced, the relay’s internal switch flips to break the solar
circuit’s connection with the battery, and establishes a connection between the
wall charger and the battery.

Figure 4.3.7.1 – Relay Switching Diagram

113

4.4 Final Case Design

4.4.1 Front Panel

The final front panel of the case built in SolidWorks is shown in Figure 4.4.1.1
and Figure 4.4.1.2 below.

Figure 4.4.1.1 – Final Design of Front Panel

114

Figure 4.4.1.2 – Front Panel View from Inside

115

4.4.2 Back Panel

The final design of back panel built in SolidWorks is shown in Figure 4.4.2.1,
Figure 4.4.2.2 and Figure 4.4.2.3 below.

Figure 4.4.2.1 – Final Design of Back Panel

116

Figure 4.1.4.2 –Back Panel Inside View

Figure 4.1.4.3 –Back Panel Side View

117

5. Prototype Construction

The prototyping of the project was incredibly important. We layed out an overall
plan for acquisition and integration in order to ensure that the building of the FBC
went as smoothly as possible. This section will first outline our plan for acquiring
the hardware needed for the project, followed by a high level description of the
integration of the various hardware components. A more in depth plan for
combining the hardware components will follow the high level description of
hardware integration.

5.1 Hardware Acquisition

Table 5.1.1 details the acquisition status for the hardware components for the
project. If a project has not yet been acquired, a plan for acquisition was
determined.

A full list of the hardware components that we needed is outlined in Table 5.1.2.
This table lists the various hardware components that we have selected for our
project and the amount that we needed for our project.

Component Acquisition Status Acquisition Plan
Resistors Acquired Order from DigiKey
Capacitors Acquired Order from DigiKey
Inductors Acquired Order from DigiKey
LEDs Acquired Order from DigiKey
LCD Screen Acquired
Raspberry Pi 2 Acquired
ICs Acquired Order from DigiKey
Batteries Acquired Order from Adafruit
Plug Headers Acquired Order from DigiKey
Transistor Acquired Order from DigiKey
Buttons/Switch Acquired Order from DigiKey
PCB Acquired Order from OSH Park

Table 5.1.1 – Component Acquisition Information

118

Component Quantity
Raspberry Pi 2 1
LCD Screen 1
RN4020 1
SLMD121H8L 4
BQ24210 1
105-2502-ND 1
LM4880 2
3352T 1
2500 mAh LiPo Battery 1
MCP73831 1
TPS61030 1
KS2E-M 1
BQ27200 1
MicroUSB Header 1
USB Header 1
Headphone Jack 1
PNP Transistor 1
SPDT Switch 1
PCB 2
Resistors Assorted
Capacitors Assorted
Inductors Assorted
LEDs Assorted

Table 5.1.2 – Component List

5.2 Hardware Overview

In this section we will reduce and integrate the various hardware modules to the
best of our ability. The hardware modules contained in our system are the
Bluetooth module, battery, solar charge module, wall charge module, power
supply module, controller module, audio module, screen backlight control
module, battery indicator module, the screen, and the Raspberry Pi 2. A high
level design of the connection of these modules is shown in Figure 5.2.1. This
design connects the smaller modules onto a single PCB which will connect with
the Raspberry Pi 2, battery, and screen.

119

Charge
Power In

Wall
Charge
Module

Solar
Charge
Module

Power
Supply
Module

Bluetooth
Module

Backlight
Controller
Module

Controller
Module

Battery
Indicator
Module

Battery

Audio
Module

Speakers Raspberry
Pi 2 Screen

Figure 5.2.1 – High Level Hardware Integration

5.3 Hardware Integration

The actual integration of the hardware began with the design and acquisition of
the PCB. The PCB integrated the solar charge module, wall charge module, and
audio module. A Bluetooth dongle was added in place of using the Bluetooth chip
because the RN4020 was determined to not work for our purposes. The power
supply was moved to a separate PCB due to complexity in creating it.

120

5.3.1 PCB

The PCB connects to the Raspberry Pi 2, the screen, the battery, and external
power. The PCB is small enough to fit in a portable case. It is shown in Figure
5.3.1.1. Our goal in this section is to determine how we would design the PCB
and how we would acquire the PCB that we designed. Additionally, another PCB
was created for the power system due to the TPS61030 being a very complex
chip. This PCB is shown in Figure 5.3.1.2.

Figure 5.3.1.1 – FunBox Classic Initial PCB Design

121

Figure 5.3.1.2 – FunBox Classic Power Supply PCB

5.3.1.1 Design

CADSoft Eagle is the most common software used in PCB design. There are a
few other options that we explored, such as Fritzing, but ultimately we settled on
making our PCB in the tried and true environment of Eagle. Eagle contains
libraries of many components and also allows users to make their own
components.

We gave our best efforts to make the PCB as minimalistic as possible in Eagle in
order to preserve the portability of our system. Additionally, the PCB has all
necessary connections to the battery, Raspberry Pi 2, and screen easily
accessible on the sides of the PCB.

Figure 5.3.1.2 shows the modules on the PCB interconnected and connected to
the hardware components not on the PCB.

122

5.3.1.2 Acquisition

After designing our PCB in Eagle we needed to order the PCB. There are many
manufacturers that will make and ship PCBs when sent designs. We decided to
order our PCB from OSH Park. OSH Park boards only cost $5 per square inch
for 3 copies of a dual layer PCB. This is a reasonable price and left us with two
extra PCBs to work with if the first one becomes damaged. We estimate the
board to be 5 square inches or less. This will result in the cost of the PCB being
$25 or less. OSH Park ships within 12 calendar days of ordering, which will allow
us to begin testing our PCB in a timely fashion.

5.3.1.3 Mounting

We tinned the leads on the PCB and placed the surface mount components on
them. We then used a hot air gun to reflow the solder on the PCB to attach the
surface mount components to it. Additionally, Quality Manufacturing Services in
Lake Mary, Florida was very helpful in populating the bigger PCB.

123

Wall Power
In

Wall
Charge
Module

Solar
Charge
Module

Power
Supply
Module

Raspberry
Pi 2

Bluetooth
Module

Screen

Backlight
Controller
Module

Controller
Module

Battery
Indicator
Module

Battery

Relay
Switch

Solar Power
In

5V3V3

VBATCHGVSOL VIN

BCOGPIOAin

Audio
Module

Speakers

Aout

Figure 5.3.1.2 – High Level PCB Design

5.4 Software Overview

As seen in Figure 5.4.1, at boot the Raspberry Pi automatically loads the
EmulationStation GUI. From there, user input from the controller, either external
or internal, will choose the option desired: either an emulator or the settings
application. From there the user can choose to use the emulator to play a game,
change settings as desired, or return to the main GUI menu.

124

Figure 5.4.1 – Software Flowchart

5.4.1 Software Acquisition

In order to acquire our software, we performed the following steps:

1. Downloaded the latest Raspbian build (Debian Wheezy 3.18) from
raspberrypi.org

2. Downloaded the latest RetroPie build (Version 3 BETA 2) from
blog.petrockblock.com/retropie/retropie-downloads/

3. Used the installed software to download the emulators.
a. Gambatte, PiSNES, gpSP, FCEUmm.

4. Downloaded SNESDev, a controller handler.
5. Acquired game images (ROMs) by using a modchip on each console to rip

the games from their original cartridges.
6. Acquired system BIOSs by using a modchip on each console to rip the

BIOS from its respective console.

Controller	

Input

EmulationStation	

GUI

Screen

GPIO/UART

Composite

RetroPie	

Debian

FCEUmm PiSNES Gambatte gpSP Settings

125

5.4.2 Software Integration

In order to implement the software into our project, we performed the following
steps:

1. Wrote the disk image file of Raspbian to our MicroSD.
2. Ran Raspi-Config to expand filesystem and enable overscan, as well as

default output to the composite video.
3. Installed RetroPie on our Raspbian build
4. Ran the RetroPie setup script to enable easy download and installation of

emulators.
5. Installed emulators.
6. Installed SNESDev.
7. Rebooted the system to load the device stack.
8. Inserted a blank USB drive to copy file structure of ROM folder

automatically.
9. Copied ROMs to USB drive and replaced it in the FBC to copy test ROMs

to FBC’s MicroSD card.
a. Non-removable after final assembly, thus this method is necessary

10. Confirmed basic functionality.

126

6. Prototype Testing

Extensively testing our prototype was exceedingly important to ensure that it
worked properly during its prolonged use and in standard operating conditions. In
order to best determine what parts may be causing issues we decided to test the
device modularly. First we tested each hardware module individually. Then we
tested the software. After the hardware modules and software were both shown
to work properly they were added piece by piece to the device to test if they still
work. Finally, the final combined prototype was tested. This testing method
allowed us to pinpoint issues as they came along.

6.1 Hardware Testing

We tested each hardware module that was to be placed on the PCB. We also
tested the battery, Raspberry Pi 2, speakers, screen, and charger. All tests were
run in standard operating temperatures and normal lighting. The tests were
performed in such a way as to allow insight into why a particular component may
or may not work in order to help our troubleshooting process.

6.1.1 Raspberry Pi 2

In order to test the Raspberry Pi 2 we first simply plugged it in and saw if it turned
on and output to a known working screen. If the Raspberry Pi 2 failed to turn on
or output to the screen we would have known that it needed to be fixed or
replaced prior to it being used as the workhorse for our project. Additionally, the
RP2 has two built in test points labeled TP1 and TP2. Measuring the voltage
drop from TP1 to TP2 should give a value between 4.75 and 5.25 volts. If the
voltage shown is outside of that range the power being provided to the device
may be the issue. TP2 can also be used to test the F3 Polyfuse on the RP2. If
the voltage from one side of the F3 Polyfuse to TP2 differs from the voltage from
the other side of the F3 Polyfuse to TP2 by more than 0.3 volts the polyfuse is
most likely broken.

6.1.2 Screen

We tested the screen in two ways. First we tested the screen to make sure that it
turned on and wakes upon receiving a video signal. If the screen worked we then
attached various devices to the screen and compared the visual on the screen
with the visual on a known working screen.

The screen was first tested using the composite input and power cable that it
came with. The power cable on the screen will be connected to a standard 12-
volt power supply. Both composite video inputs were tested by connecting to the
composite video output of a known working Raspberry Pi 2. If the screen turned
on and displayed the output of the Raspberry Pi 2 it was considered functional. If
not it was determined faulty and a new screen needed to be acquired.

127

Next, the screen was tested using the composite input to connect to a Raspberry
Pi 2, a Super Nintendo, and a Nintendo 64. These same devices were connected
to a known working screens composite input and visually compared with the
screen for our device. If there are any major discrepancies in the output visuals
we found ways to fix them or got a different screen.

After the screen was removed from its case and no longer had its composite
cables or power cable we tested the device in a different manner. We salvaged
the composite video connectors from the old cables of the screen and use them
to build an adapter on a breadboard. This way we were able to connect the
adapter to the composite pins on the screen circuit board and tested different
devices using the adapter. We also created an adapter for powering the screen
in a similar fashion, but due to the bypassing of the regulator on the screen circuit
we supplied the screen with 3.3 volts instead of 12 volts.

6.1.3 Wall Charge Module

The wall charge module was tested before the battery so that the battery would
have a working charger to test with. The wall charge module was tested by
attaching it to a known working mostly drained LiPo battery and a known working
USB cable and wall adapter. The charge module was tested to ensure a few
different things. The charge module was first tested to see if it would charge the
battery properly. The charge module was then tested to ensure that the
overcharge protection was working properly.

In order to test if the charge circuit properly charged a battery the first thing we
tested was if the circuit output the correct constant current during the first part of
the charge cycle. If the current output of the chip was not close to 500 mA then
something was wrong with the circuit and it needed to be troubleshot. After the
current output was determined to be correct the battery was be charged for 30
minutes. The battery was then tested for a change in voltage across its positive
and negative terminals. If the voltage had not increased the charger circuit
needed to be fixed. The battery was then reattached to the charger. The voltage
output of the device was monitored while the battery charged. Once the voltage
output reached the set limit of 4.2 volts the voltage should not have increased
any further. If the voltage stayed at 4.2 volts then the constant current/constant
voltage charging portion of the circuit worked properly.

In order to test for overcharge protection we continued the charging of the battery
from where we stopped testing to see if the charging portion of the circuit worked
properly. We began by measuring the output current instead of the voltage. The
current should steadily decline until it reaches 5% of the charge current, around
25 mA. If the current continued below 25 mA then the overcharge protection was
not working properly and needed to be fixed. If the current drops to 0 from 25 mA
then the battery was removed from the charging circuit. The voltage across the

128

battery was tested. If it was 4.2 volts the overcharge protection of the charge
circuit worked. If it was not 4.2 volts the circuit needed to be looked at and
possibly reconfigured.

6.1.4 Battery

The testing of the battery was broken into two sections. First, the battery was
tested to ensure that it charges properly, discharges properly, and retains charge
properly. Second, the internal overdischarge protection circuitry of the battery
was tested to ensure user safety in the end product. These tests determined
whether the battery met our needs or not.

6.1.4.1 Battery Characteristics

The battery characteristics test had 3 parts: charging, discharging, and charge
retention. The order of these tests depended on the initial state of the battery
when it was ready for testing. So the very first step was to check the voltage
across the battery. If the battery was fully charged, 4.2 volts, the first test was
charge retention, second discharging, and finally charging. If the battery was
initially discharged, <= 3 volts, the first test was charging, then charge retention,
and then discharging. If the battery was somewhere in between it followed the
same format as if it were initially discharged.

Testing charging was started by measuring and recording the voltage across the
battery. The battery was then hooked up to a known working charging circuit.
The battery was charged at a rate of 1/5 charge capacity for 30 minute. If the
battery voltage had not changed the battery was faulty.

Testing discharging was also started by measuring and recording the voltage
across the battery. The battery was then hooked up to a simple discharge circuit
through a resistor to drain the battery at a rate of 1/5 charge capacity for 30
minutes. If the battery voltage had not changed the battery was faulty.

Testing charge retention was yet again started by measuring and recording the
voltage across the battery. The battery sat isolated for 24 hours. If the voltage
had not changed more than a very small amount then the battery was faulty.

6.1.4.2 Internal Overdischarge Protection Circuit

The internal overdischarge protection circuitry was tested by draining the battery
normally until it reached a voltage of 3.1 volts across its terminals. Then the
battery was carefully drained until it reached 3 volts. If the battery continued to
drain the internal protection circuit was faulty.

6.1.5 Solar Charge Module

129

The solar charge module was tested in a very similar fashion to the wall charge
module. A known working mostly drained LiPo battery was connected. The solar
charge module was tested to determine if it charged the battery correctly. The
solar charge module was then tested to determine if the overcharge protection
was working properly.

In order to test if the solar charge circuit properly charges a battery the first thing
we tested is if the circuit outputs the correct constant current during the first part
of the charge cycle. If the current output of the chip was not close to 200 mA then
something was wrong with the circuit and it needs to be troubleshot. After the
current output is determined to be correct the battery will be charged for 30
minutes. The battery was then tested for a change in voltage across its positive
and negative terminals. If the voltage had not increased the solar charger circuit
needed to be fixed. The battery would then be reattached to the charger. The
voltage output of the device was monitored while the battery charged. Once the
voltage output reached the set limit of 4.2 volts the voltage should not increase
any further. If the voltage stayed at 4.2 volts then the constant current/constant
voltage charging portion of the circuit worked properly.

In order to test for overcharge protection we continued the charging of the battery
from where we stopped testing to see if the charging portion of the circuit worked
properly. We began by measuring the output current instead of the voltage. The
current should have steadily declined until it reaches 5% of the charge current,
around 10 mA. If the current continued below 10 mA then the overcharge
protection was not working properly and needed to be fixed. If the current
dropped to 0 from 10 mA then the battery was removed from the charging circuit.
The voltage across the battery was tested. If it was 4.2 volts the overcharge
protection of the charge circuit worked. If it is not 4.2 volts the circuit needed to
be looked at and possibly reconfigured.

6.1.6 Power Supply Module

The power supply module was first tested to make sure that the module does not
output any voltage when the power switch is off. Next it was tested when on to
ensure that the voltage output of the power supply was a regulated 5 volts no
matter what the voltage across the battery currently was. The last test of the
power supply was to ensure that the low battery LED turned on and that it did so
at the correct time.

The power switch simply switches the enable pin on the DC-to-DC converter chip
between VBAT and ground. First, without the battery connected, we will use a
multimeter to check for continuity between the enable pin and ground when the
switch is off and to check for continuity between the enable pin and VBAT when
the switch is on. Then the same test was done in reverse to ensure that the
switch was not bridged. The battery was then be connected with the power
switch off. The output voltage of the power supply should have been 0 volts. If it

130

was not then the power supply module was not working properly. Next the power
switch was turned on. The output voltage of the power supply should have been
5.2 volts. If it was not very close to 5.2 volts then the power supply module is not
working properly.

Now that we had determined the power supply puts out 5.2 volts, we needed to
test it with the different voltages the battery will reach in a charge/discharge
cycle. The battery was charged to 4.2 volts and connected to the power supply
and the switch was turned on. If the output voltage was not 5.2 volts the power
supply is malfunctioning. If the output voltage was 5.2 volts the power supply was
working properly. Next the battery was discharged to 3.3 volts and connected to
the power supply. If the output voltage was not 5.2 volts the power supply was
malfunctioning.

The last test was to check that the low battery indicator works properly. The low
battery light is supposed to turn on around 3.25 volts. The way to test this was to
drain the battery to around 3.3 volts and then hook it up to the power supply and
see if the light turned on. If it did it needed to be reconfigured. If it did not,
disconnect the battery from the power supply and discharge down to 3.25 volts.
Reconnect to the power supply and see if the light turned on. If it did not it is
malfunction. If it did then the low battery indicator is working.

6.1.7 Battery Indicator Module

The batter indicator module will be tested by charging and draining a battery
while attached to the battery indicator circuit. After the battery has fully charged
we will drain the battery at 1/5 capacity for an hour. If the battery indicator does
not show around 80% then it is malfunctioning. Likewise, this test will be
performed hourly until the battery is drained, subtracting 20% capacity for each
hour of the test.

This was the plan before the battery indicator circuit was found to be incredibly
flawed and was ultimately removed from the project.

6.1.8 Backlight Controller Module

The backlight controller module will be tested by attaching it to a known working
screen and utilizing the buttons to increase and lower the brightness. If the
brightness of the screen does not change then the module is malfunction.
Otherwise, the backlight controller module is functioning as desired.

This was the plan but the backlight controller module was never designed and
was ultimately removed from the project.

6.1.9 Bluetooth Module

131

The Bluetooth module will be tested by connecting it via UART to a known
working Raspberry Pi 2. We will then attempt to connect a variety of Bluetooth
devices (controllers, keyboards, mice) to the Raspberry Pi 2. If the devices find
the Raspberry Pi 2 and vice versa then the Bluetooth module works. Otherwise
the Bluetooth module needs to be fixed.

This was the plan until the Bluetooth chip was found not to work for our needs
and we had to instead use a Bluetooth dongle in the USB port of the RP2. We
tested this by connecting a Bluetooth controller to it.

6.1.10 Controller Module

The controller module will be tested by connecting it to the GPIO pins of a known
Raspberry Pi 2. First we will make sure that the controller is recognized by the
system. Once the controller has been recognized by the device, we need to
make sure that each button works as intended. Once all buttons have been
tested and configured, a game needs to be played on the Raspberry Pi 2 using
the controller to make sure that the response time of the buttons is adequate for
the games being played, and that the controller does not suffer from noticeable
ghosting.

This was the plan until we decided to instead connect the controller via USB. We
tested by configuring all the buttons on the RP2. If all the buttons were
recognized the controller worked.

6.1.11 Speakers

The speakers were tested by connecting them to a known working amplifier and
attempting to play some audio through them. If no sound came out then the
speakers were faulty. Otherwise the quality of this audio was compared with the
quality of audio output from other portable game consoles. If the speakers were
of a similar or better quality then they were considered working. Otherwise they
were considered faulty or inadequate.

6.1.12 Audio Module

The audio module was tested by connecting it to a known working composite
stereo sound output and a known working pair of 8 ohm speakers. If the
speakers did not correctly output the composite sound, then the audio module
was faulty and needed to be fixed. If the speakers did output the correct sound
then the volume control was tested by moving it up and down to change the
audio output volume. If the level of sound did not change then the audio module
was faulty and needed to be fixed. If the level of sound did change then the audio
module was considered working.

132

6.2 Software Testing

We made use of both premade tools within the system as well as our own
senses and knowledge to test all important aspects of the software. All tests were
run with the system in standard operating temperatures with adequate lighting for
the screen, to reduce hardware bias.

The premade tools allowed us to test things that we can’t judge with sight and
sound alone, such as framerate. These were the most objective tests, as they
relied on quantitative analysis.

Using our own senses allowed us to test things that cannot be judged purely
quantitatively, such as artifacting. The metric for these tests were simpler: if it
looks or sounds wrong, it fails.

6.2.1 Emulator Tests

For each emulator, we tested three games. The first will be a low end game, the
second will mid to high end game, and the third will be a high end game, pushing
one or more aspects of the system to its limits.

In this way we ensured that the entire spectrum of games were supported, with a
few exceptions that, for example, did not follow Nintendo’s programming
guidelines.

For general testing, each game was checked for framerate, resolution, graphics
artifacting, and audio glitches. Special features of each console, such as the
SuperFX chip for the SNES, was also checked.

Games must reach a minimum of 50 frames per second, which is the
requirement for PAL games. NTSC games will be required to output at no less
than 59.97 fps. Additionally, all games must display at full resolution (or higher)
with no cutoff portions. Graphics must be free of artifacts to the point that the
gaming experience is not interrupted. Audio must be free of glitches such that the
music feels consistent.

Additionally, we tested the basic functions and usability of the GUI for the
system, ensuring proper operation at all times.

6.2.1.1 Game Boy

For the Game Boy, the first game we tested will be Pokemon Red Version.
Graphically non-taxing as it was, this was a solid game that spawned an empire.
The graphics and the audio are immediately recognizable to almost anyone in
our generation, making testing for accuracy easy.

133

Donkey Kong Land was the second game tested. This game was an attempt by
RARE to capture the spirit and style of the SNES Donkey Kong as accurately as
possible. With detailed sprites and animation that simulated a 3D experience, this
game is technologically demanding and visually pleasing. Additionally, we had
experience playing this game, and thus knew what to look for when it comes to
testing.

Finally, we looked into a little known title called Faceball 2000. This is a port of an
Atari multiplayer shooter, which resembles a very low quality version of Doom.
With pre-rendered graphics, convincing pseudo-3D, first person view, and the
insane support for 16-player deathmatch, this is a game that truly pushes the
Game Boy to its limits.

6.2.1.2 Game Boy Color

We started off with a non-taxing, but still well made and excellent game: The
Legend of Zelda: Oracle of Ages. This game did not have much in the way of
technical requirements, but easily recognizable graphics and iconic sound from
the Zelda franchise will make emulation mistakes easy to spot. We’d also like to
test the “Game Boy Advance” special features, which are only accessible on a
Game Boy Advance, to see if our system can fake that.

Cannon Fodder was a relatively obscure port of an Amiga game which, while
most of the game wasn’t anything special, had one main feature that set it apart.
It had a PC quality full motion video to open the game, and used the largest
cartridge size possible to store that. Many emulation systems have trouble
emulating this video properly, due to the hardware wizardry required to have it
work on a small system like the Game Boy Color. We think this will serve as a
good, midrange stress test for our system.

Shantae was the final game we will test for the Game Boy Color. Commonly cited
as one of the best games to come out of the GBC’s final years, Shantae
combines color and animation on par with early GBA games with advanced
lighting and scaling effects, as well as a rich and detailed soundtrack. These
make the game perfect for pushing our emulated system to its absolute limits

6.2.1.3 Game Boy Advance

Wario Ware Inc. Mega Microgame$ started off our tests. Simple graphics, simple
layering, simple audio, this game was maddeningly fun but by no means pushed
the hardware to its limits. The gameplay is simple as well, taking place with 5
second long microgames, getting faster and faster as you progress. It will be
easy to see if the game is being emulated properly just by measuring game time.
If it’s not the full five seconds, the game is clearly not being emulated properly
and is experiencing slowdown.

134

Advance Wars 2: Black Hole Rising was a turn-based tactics game. It has simple
graphics, but with advanced use of graphics layers as well as an AI that has to
consider every possible move on a “board” far larger than a chessboard, the
game still manages to tax the system. Two of the biggest things we will be testing
with this game is the accuracy of the AI compared to the original system and the
speed with which it computes optimal moves.

The Castlevania: Double Pack was our final test game under the GBA. It
combines two complex games, Castlevania: Harmony of Dissonance and
Castlevania: Aria of Sorrow into one cartridge, increasing emulation complexity.
With fast platforming, rich soundtracks, and gorgeous graphics, these games
pushed the GBA to its limits. One thing we will be checking in particular with this
title is the ability to properly load each game into memory, without sector overlap.
This has been an issue with non-x86 emulation in the past, and we hope to make
sure that is not the case here.

6.2.1.4 Nintendo Entertainment System

For the NES, you have to start with Super Mario Bros, one of the most iconic and
beloved games of all time. Simple graphics, quick and easy gameplay, and a
classic soundtrack, this game won’t push the system by any means. It lacks the
memory mapper chips of other, later NES games, making emulation easy by
comparison. The main thing we will be looking at is if it controls as tightly as the
original game, as the graphics and sound should be a non-issue. Additionally, we
will check to make sure original glitches, like the Minus World, are present, as
these will mean that the game is being emulated perfectly. There’s no better way
to check imitation than to see if the same bugs are repeated.

The Legend of Zelda comes up next. Fitting a massive world into the space of a
normal NES cartridge just wasn’t possible, and so this game was one of the first
to take advantage of the MMC1 expansion chip. It allowed save games, a rarity
at the time, multi-directional scrolling, and a greater ROM size. As a result,
emulation complexity increased substantially. With a rich and varied soundtrack,
smooth graphic transitions, and the ability to support many enemies on screen at
once, we feel this is a good game to test the mid-range capabilities of the NES.
We will mainly be making sure that the memory mapper emulation capability
works as intended, as the graphics and sound will most likely not be an issue
beyond that.

 Kirby’s Adventure was a game that truly pushed the limits of the NES. First off,
the largest cartridge of the NES, 6Mbit, was designed specifically for this game.
Second, it used the MMC3, a more advanced version of the MMC1 which also
implemented a scanline based IRQ counter that made layered scrolling easier,
and even more ROM in the form of additional banks. This game could not be fully
contained even on the largest cartridge available. Additionally, it pushed 8-bit

135

graphics to their limits, with rich color, smooth animations, and even advanced
features like parallax scrolling. This game pushed the system to its limits, and we
are eager to see if our system can handle this game while continuing to run at full
speed and with no issues.

6.2.1.5 Super Nintendo Entertainment System

Unlike the other controls, which either had one or no hardware add-ons, the
SNES had eleven different types of so-called “enhancement” chips, ranging from
trigonometric calculations to full simulated 3D graphics. The difficulty in emulating
these various co-processors led to less accurate emulation for years while
figuring out their inner workings. Additionally, the SNES uses advanced graphics
rendering techniques, like Mode 7, which are not easy to duplicate. The SNES
testing will mainly focus on making sure these capabilities function.
Tools built into EmulationStation and the RetroPie core of the FunBox Classic will
allow us to test each emulator for its accuracy and speed in games on the
system.
We will use the framerate monitor in EmulationStation, the resolution
measurement capabilities of the RetroPie core, and use the logging capabilities
of each emulator.

We started with Chrono Trigger, widely considered one of the best games of all
time. With crisp graphics, a beloved soundtrack, and an advanced battle system,
Chrono Trigger still holds its own against the games of today. However, we
placed it in the low-end category due to its lack of any enhancement chips or
special features beyond the base SNES gameplay. This is one of the finest, if not
the finest, example of what a technically “low-end” game can be and its proper
operation on our system is a must.

Star Fox was a shooter, although not your typical one. It was one of the first
console games to adopt and take advantage of 3D polygons. This feat, before
only accomplished by coin operated arcade machines dedicated to that purpose,
was made possible by the use of the Super FX chip. This graphics co-processor
enabled true 3D graphics, albeit very low resolution ones. As a result, the rest of
the system was free to handle the non-graphics tasks, and it made for a very fast
paced game. The accuracy in emulating the Super FX chip will be our primary
test here. Any kind of polygon artifacting or other error will result in a failure for
this test.

Finally, we came to easily the most advanced game on the SNES: Star Ocean.
Released only in Japan, this game combined tried to fit 48Mbits of data into the
largest available SNES cartridge of 32Mbits. This was only made possible
through the use of the S-DD1 enhancement chip, which handled on-the-fly
decompression of game assets. This chip was so difficult to emulate that, up until
very recently, additional graphics packs had to be included with game rips for
proper emulation. It used software drivers to overcome the 64Kbit limit of the

136

onboard SPC700 sound chip, swapping bits in and out of the chip to greatly
increase the level of audio quality. This is never more evident than in the fact that
it was able to support full surround sound in those 64Kbits. In addition, it did its
Mode 7 graphics processing using software tricks and not the onboard graphics.
This allowed a much greater range of effects than the chip was limited to.

As a result of all of these hardware and software tweaks, this was easily the most
difficult system to emulate on our list. We extensively checked for errors in
graphics processing, such as not fully decompressed graphics, to make sure this
game operates properly. In addition to testing all capabilities of the chip, we
applied the unofficial English translation from DeJap to the ROM. This ensured
that our system played “unofficial” games in addition to 1:1 rips.

6.2.1.6 EmulationStation GUI

To make the EmulationStation experience enjoyable, we needed to make sure
that logos and such are clearly visible. To that end, we tested visibility and
usability.
One of the first things we needed to test is overscan or underscan. This was a
very real issue for the device, as it is using a composite output. As a result, it was
necessary to see if any graphics or text are being cropped and to adjust
accordingly.

Additionally, we needed to test readability. EmulationStation outputs at 720p by
default, clearly a far larger resolution than our screen supports. Additionally, with
a 4:3 aspect ratio on a 4.3” screen, we expected the text to be somewhat small
after scaling. We checked to make sure that all text, be it for settings or other
areas of information, are completely legible and easy to make out for any
potential user.

We, of course, also tested whether or not the control scheme for our internal
controller works properly and fluidly with the GUI. Ideally it should have been
seamless, with none of the lag so often associated with pulling someone out of
an experience. A lag as little as 0.1 ms is enough to be jarring to a user. As a
result, we timed the display with internal software timers for testing, ensuring that
all transitions take less time between frames than this crucial milestone. Making
sure that all button presses are correctly interpreted by the system is also key, as
the user should not have to play the game of “guess the button”.

Finally, we did usability testing. We will have an unfamiliar user use the device
for the first time and see if there is any portion of the interface they have a hard
time either using or figuring out. We will make appropriate changes to the
interface pending those results.

All tests worked as planned and the system passed with flying colors.

137

6.3 Final Integrated System Tests

These tests were done as the components of the system were put together. They
ensured that as each component was added the system continued to work. If a
new component was added and the system no longer worked we were able to
determine what caused the issue. Afterwards we tested the system as a whole in
a variety of ways.

6.3.1 Integration Tests

We started the overall integration testing by combining the solar charge module
and wall charge module by using a relay switch and connecting them to the
battery. We tested this by testing the output of the relay switch when the wall
charger was not plugged in. If the output voltage was not the same voltage as the
output voltage of the solar charge module then the combination was faulty.
Otherwise the wall charger was plugged in. The output of the relay switch was
tested and compared with the output voltage of the wall charge module. If the
voltages were not the same then the combination needed to be fixed. Otherwise
the combination was working.

Next the power supply module was connected. We tested this new addition by
testing that the output of the power supply was 5 volts when on and 0 volts when
off. If this was not the case then the addition of the power supply module caused
something to go wrong.

The battery indicator module was attached next. The newly combined circuit was
tested by checking the battery indicator at various states of charge. If the system
still worked as intended we connected the current module to the Raspberry Pi 2.
If the Raspberry Pi 2 turned on when the power switch on the power supply was
on then this combination was working. If not then there was some issue with the
connection between the power supply and the Raspberry Pi 2.

Next we attached the screen to the RP2. If the screen turned on and displayed
the RP2 output when the power supply was turned on then the addition of the
screen was working properly. Otherwise the connection between the screen and
Raspberry Pi 2 was likely faulty. The next thing that was to be added was the
backlight controller. This was removed from the overall design.

The controller module was added to the system next. If the system recognized
the controller and it functioned properly then we would add the next module. If
any issues arose we troubleshot why adding the controller module caused an
issue.

The next module to integrate was the audio module and speakers. If the audio
module and speakers correctly played the sound from the system then we could

138

move on to the last component. Otherwise we needed to figure out what was
wrong with the connection between the audio module and the RP2.

The last module to get added was the Bluetooth module. If we were able to find
and connect to an external Bluetooth device from the system then the Bluetooth
was working properly. If not the Bluetooth and Raspberry Pi 2 connection was
probably faulty.

6.3.2 Final System Tests

The first way we tested the system was simply by using it to play games. If the
console efficiently and effectively played games and was comfortable to use for
an extended period of time then we could move on to the next test. Otherwise we
needed to figure out why it was not working properly or what we could do to
make it more comfortable.

The next test we did was a charge duration test. We charged the battery to full.
We then used the console away from sunlight and recorded how long the battery
lasts before the console dies. We then performed the same test in sunlight to
determine how long the solar panels extended our battery life.

The next test we did was a stress test. While we did not need the system to
survive in extreme conditions, it needed to be able to handle a small fall or two.
We dropped the system onto a couch from 2 feet above it. We then attempted to
turn the system on and check all the components. If everything still worked we
repeated this test a few more times. If not then the structural integrity of the
device needed to be revisited.

The last test we did is a temperature test. We wanted the device playable in both
cold and hot areas, seeing as it is meant to be portable. We placed the device in
the fridge for an hour and then attempted to use it. If it worked still we moved on
to the hot test. If it did not we needed to find a way to better insulate the device.
To perform the hot test we placed the device in an oven at 110 degrees for an
hour and then attempted to use it. If it worked still the testing of the device was
finished. If not then we needed to find a way to make the device be able to
survive a hot day in Arizona.

139

7. Administrative Content

7.1 Milestones

Milestones are important for the purpose of sticking to a schedule. The charts
below, in Tables 7.1.1, 7.1.2, and 7.1.3 detail the milestones, their expected
completion dates, and whether those were met, met late, are in progress, or were
not met.

Milestone	
 Action	
 Date	
 Met	

Project	
 Chosen	
 1/28/2015	
 Yes	

Initial	
 Design	
 Completed	
 4/9/2015	
 Yes	

Research	
 Completed	
 4/20/2015	
 Yes	

Final	

Documentation	
 Completed	
 4/23/2015	
 Yes	
 -­‐	
 Late	

Figure 7.1.1 - Senior Design 1 Milestones

Milestone	
 Action	
 Date	
 Met	

Order	
 Parts	
 Completed	
 5/16/2015	
 Yes	

Screen	
 Displays	
 Input	
 5/23/2015	
 Yes	

PCB	
 Designed	
 6/1/2015	
 Yes	

	
 PCB	
 Completed	
 6/8/2015	
 Yes	

Power	
 Subsystem	
 Regulates	
 Power	
 6/5/2015	
 Yes	

Power	
 Subsystem	
 	
 Completed	
 6/15/2015	
 Yes	

Audio	
 Subsystem	
 Completed	
 6/15/2015	
 Yes	

Bluetooth	
 Controller	
 Completed	
 6/15/2015	
 Yes	

Case	
 Designed	
 6/5/2015	
 Yes	
 -­‐	
 Late	

	
 Case	
 Printed	
 6/10/2015	
 Yes	
 -­‐	
 Late	

Controller	
 Subsystem	
 Completed	
 6/15/2015	
 Yes	

Integration	
 Testing	
 Completed	
 6/30/2015	
 Yes	

Prototype	
 Completed	
 7/8/2015	
 Yes	
 -­‐	
 Late	

Final	
 Documentation	
 Completed	
 7/13/2015	
 Yes	
 -­‐	
 Late	

Figure 7.1.2 - Senior Design 2 Main System Milestones

7.2 Workload Distribution

The workload for this project was divided amongst the group members, keeping
in mind individual strengths, requests for sections, and time and effort involved.
All responsibilities are detailed in Figure 7.2.1. While most parts are insulated
and modular, each group member still played a key role in developing the overall

140

system. Roles were decided on by group consensus and parts were purchased
according to the need of each individual member. Each group member worked
on the sections they were assigned for the paper, and then administrative
sections were discussed and written jointly.

Case	
 	

Design	

Raspberry	

Pi	
 PCB	
 Bluetooth	
 Solar	

Battery	
 Power	
 Audio	
 Website	

	
 	
 Stephen	
 Stephen	
 	
 	
 	
 	
 Stephen	
 	
 	
 	
 	

	
 	
 Kyle	
 Kyle	
 	
 	
 Kyle	
 Kyle	
 	
 	
 	
 	

Anna	
 	
 	
 	
 	
 Anna	
 	
 	
 	
 	
 	
 	
 Anna	

	
 	
 	
 	
 	
 	
 	
 	
 Nick	
 	
 	
 	
 Nick	
 	
 	
 	

Figure 7.2.1 – Workload Distribution

7.3 Budget and Finances

The FunBox Classic was estimated to cost approximately $400. This could have
definitely been cut down if we were to make it again, but initial investments on
tools and other materials certainly helped to bring the cost up. We decided not to
apply for a sponsorship, as we wanted to keep the device ourselves. We will be
splitting all costs equally, as we think that $100 each is a reasonable price to pay.
The budget is laid out in Table 7.3.1.

Item	
 Cost	

Battery	
 $15	
 	

Bluetooth	
 $11	
 	

Case	
 $20	
 	

Extra	
 Parts	
 $50	
 	

Microcontrollers	
 $10	
 	

Misc.	
 Components	
 $20	
 	

PCBs	
 $75	
 	

Raspberry	
 Pi	
 2	
 $35	
 	

Screen	
 $20	
 	

Speakers	
 $10	
 	

Tools	
 $150	
 	

Total	
 $416	
 	

Table 7.3.1 – Project Budget

However, we greatly exceeded this budget and our actual finances are shown
below in Table 7.3.2. The issues came with design considerations, re-ordered
parts, and most importantly: time. They say time is money and we certainly

141

learned that, with rush order and shipping charges adding up to a significant
portion of our total spent.

Digikey	
 	
 $	
 	
 	
 	
 	
 255.85	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 79.15	
 	

Adafruit	
 	
 $	
 	
 	
 	
 	
 	
 	
 71.61	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 46.80	
 	

Jameco	
 	
 $	
 	
 	
 	
 	
 	
 	
 11.00	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 	
 	
 2.71	
 	

Sparkfun	
 	
 $	
 	
 	
 	
 	
 	
 	
 	
 	
 9.00	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 16.04	
 	

Mouser	
 	
 $	
 	
 	
 	
 	
 	
 	
 10.60	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 	
 	
 6.99	
 	

Oshpark	
 	
 $	
 	
 	
 	
 	
 	
 	
 43.20	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 	
 	
 5.00	
 	

Sunstone	
 	
 $	
 	
 	
 	
 	
 139.15	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 76.00	
 	

4PCB	
 	
 $	
 	
 	
 	
 	
 	
 	
 33.00	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 83.78	
 	

RP2	
 	
 $	
 	
 	
 	
 	
 	
 	
 35.00	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 	
 	
 9.99	
 	

Amazon	
 	
 $	
 	
 	
 	
 	
 229.84	
 	

Shipping	
 	
 $	
 	
 	
 	
 	
 	
 	
 	
 	
 3.99	
 	

Radioshack	
 	
 $	
 	
 	
 	
 	
 197.57	
 	

Home	
 Depot	
 	
 $	
 	
 	
 	
 	
 	
 	
 23.38	
 	

Shipping	
 Total	
 	
 $	
 	
 	
 	
 	
 353.83	
 	

Parts	
 Total	
 	
 $	
 	
 1,035.82	
 	

Total	
 	
 $	
 	
 1,389.65	
 	

Table 7.3.2 – Total Cost

142

8. User Manual

8.1. System Power

8.1.1 Charging the System

In order to charge your FunBox Classic, you can make use of one of two
methods.

The first, and fastest, is to plug in a standard MicroUSB cable into the port
located on the left of the device. A green light will illuminate to let you know the
device has entered charging mode.

The second is to simply be in sunlight. Thanks to the solar panels on the rear of
the device, your FunBox Classic can charge by being outside. Please note that
this is a far slower and less powerful method of charging and that the green light
will not illuminate for this method, for power-saving reasons.

Concurrent solar and MicroUSB charging will not occur, and the charging cable
will shut off solar power.

8.1.2 Powering on the System

In order to turn your FunBox Classic on, please switch the large power switch on
the right of the device to the up position. A blue light will illuminate to let you
know that the device is on, and activity lights will flash in the upper right of the
device.

The switch can be pushed down to power off the device.

8.1.3 Low Power

Please note that when the system has 10 to 15 minutes of power remaining, a
red light will turn on in the power light. This will give the light a purple appearance
instead of a blue one. Please save your game and begin recharging the device
as soon as possible to prevent a loss of data or progress.

143

8.2. Using the EmulationStation Menu

Upon the full boot of the system, you will find yourself on the screen in Figure
8.2.1.1 below.

Figure 8.2.1.1 – Boot Screen

In order to access system menu functions, hit the start button. You will find
yourself presented with the screen in Figure 8.2.1.2 below.

Figure 8.2.1.2 – System Settings Menu

144

8.2.1 Scraper

The Scraper will not work without an Internet connection. If you plug an Ethernet
cable into the device, you will then be able to use this function to grab information
and pictures about your newly added games from the internet.

8.2.2 Sound Settings

Here you are able to modify the absolute maximum volume for the system. It is
set to 100% as default.

8.2.3 UI Settings

Here you are able to modify various settings, such as a screensaver, on-screen
help, and transition styles.

8.2.4 Configure Input

Here you are able to configure input mappings for the internal controller as well
as any external controllers you may have connected.

8.2.5 Quit

Here you are able to shutdown the software before powering off the device. Note
that this is not necessary.

8.3 Playing Games

From the main menu, simply select an emulator with the directional pad and
press the A button. You will be taken to a screen similar to the one shown in
Figure 8.3.1.1 below.

145

Figure 8.3.1.1 – Emulator Menu

From there, you may browser through your games using the up and down
directions on the D-pad, or switch emulators with left and right. Once you’ve
found the game you want to play, simply hit the A button to be taken right into
playing it. If you find that you wish to play another game, simply press the start
and select buttons at the same time to be returned to the emulator menu. You
may also turn the device off if you prefer.

Volume can be controlled through the hardware volume wheel in the upper left
corner of the device. Headphones may be plugged in near the charging port if
you prefer.

For multiplayer, simply turn on the included external controller and load a game
that has support for more than one player. Please note that the controller will stay
on until the device has been powered down, so please shut off the device after
playing a multiplayer game to conserve power.

Additional games can be loaded through the internal USB port. Simply plug your
device in with the games on it and they will automatically load into the system.
Please do respect the directory hierarchy and place games inside the appropriate
folders on the USB. Failure to do so will result in games not loading.

We hope you enjoy your new FunBox Classic gaming device.

146

9. Conclusion

When the project was, at last, completed, the group felt it had a much clearer
understanding of what was necessary to reach a final production ready system in
the working world. Each group member became intimately familiar with their
individual component research areas while still not losing sight of the overall
project definition. While each member was qualified for the tasks ahead,
designing schematics and diagrams was a new endeavor for most, and required
the utmost care and attention to succeed. Each step of the design process, each
decision made was carefully and completely documented and laid out in this
paper. This added accountability and justification for every step, ensuring that the
right choices had been made.

What started as an overly ambitious and underestimated, in terms of work,
project turned into the FunBox Classic as it stands today. Gone were the lofty
goals of a custom operating system and a cartridge slot, replaced with the more
reasonable Linux and MicroSD slot. What started as vague ideas and frantically
talked about plans began to take shape into individual components, overarching
modularity, and the central system that would tie them all together. When all was
said and done for, we had our project: A Raspberry Pi 2 connected to a custom
support PCB with Bluetooth, custom power regulation, audio splitters, and a
controller, all outputting to a composite screen and contained within a custom
case. Detailed and exhaustive testing procedures exist to ensure the proper and
complete operation of the FunBox Classic, no matter the situation.

This Senior Design project pushed the group members into things that had not
been taught before. Skills like soldering, PCB design, and proper and extensive
schematic design. These were things that either weren’t taught or were glossed
over in the classroom, which were important to learn due to their essential nature
to the industry at large. We learned time-management, although not without a
great deal of reticence, practiced and improved technical writing, and made our
best attempts at working on communication and group dynamics. The biggest
thing learned, however, was how to take a vague concept, tweak it, build on it,
and improve it until it stopped being just an idea, turning into a fully fleshed out
product design. Throughout the process, group members became intimately
familiar with things such as power regulation, Bluetooth, solar power, and how
older devices compensated for low system specifications. This project spanned
several classes worth of ideas, from the simplest electrical networks all the way
up to operational amplifiers, which can be used for almost an astounding number
of different things. We are pleased that we have completed our project design
document and are ready to get to work building and testing our other such
projects in the working world.

147

Appendices

Appendix A – Copyright Permissions

Press/Media Inquire
2 messages

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 7:44 PM
To: info-en-c@wikimedia.org

To whom it may concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am conducting research for a Senior Design project here at the
University of Central Florida. Our report researches audio jack technology, and I was wondering
if I could use the jack schematic from your page
http://en.wikipedia.org/wiki/Phone_connector_(audio)
All credit from the diagram would be credited to Wikipedia in the report.

Please let me know if this would be permissible!

Sincerely,
Nick Johnson

EN-Copyvio <info-en-c@wikipedia.org> Tue, Apr 28, 2015 at 8:12 PM
To: nick.j8809@gmail.com

148

Dear Nick Johnson,

In principle, text on Wikipedia is available under CC-BY-SA license, and may be used free
of charge for any purpose. Reading more about the license should help explain it in simpler
terms: <https://creativecommons.org/licenses/by-sa/3.0/>.

Some embedded images and media are under specific licenses, which can be seen upon
clicking on the desired image or file. Most images are available under free licenses such as
CC-BY-SA, but some copyrighted content (such as book covers) falls under the "fair use"
clause. For more information, see the page
<https://en.Wikipedia.org/wiki/Wikipedia:Copyrights>.

A specific permission for reusing Wikipedia's freely licensed content is not necessary, as
long as the re-user observes the license conditions. For most cases, this means:

* An attribution is required, which can simply be a link to the history page of an article or
image <https://en.Wikipedia.org/wiki/Help:Tracking_changes#Page_history>. For images,
mentioning the creator is a good idea. E.g. for this image
<https://en.wikipedia.org/wiki/Phone_connector_(audio)#/media/File:Phone_jack_symbols.p
ng>, the creator is "Omegatron" (as can be seen after clicking "View author information").
So, you can mention something like "Image credit: Omegatron, Wikipedia".

* If you modify the content, you must re-release it under a similar free license, which allows
others to use the new content freely <https://en.wikipedia.org/wiki/Share-alike> ('SA' or
'ShareAlike').

For more information please see:
<https://en.Wikipedia.org/wiki/Wikipedia:Copyrights#Reusers.27_rights_and_obligations> or
<https://commons.wikimedia.org/wiki/Commons:Reuse>.

If you have any questions, you can ask them at the Wikipedia Help
Desk: https://en.wikipedia.org/wiki/Wikipedia:Help_desk

Please note: Neither the Wikimedia Foundation, nor the authors of articles on Wikimedia
sites, nor the volunteers answering mail to this address provide legal advice. It is your
responsibility, if you intend to reuse content from Wikimedia sites, to determine how the
licenses of the content that we host apply to your intended uses.

Yours sincerely,
Utkarsh Atmaram

Press/Media Inquire

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 7:38 PM
To: bourns.marcom@bourns.com

To whom it may concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am planning to use the Bourns 3352T-103LF-ND potentiometer

149

for a Senior Design project here at the University of Central Florida. I was wondering if I
could use dimension diagrams from the 3352T-103LF-ND datasheet here for our report:
http://www.bourns.com/data/global/PDFs/3352.pdf
All credit from the diagrams will be credited to Bourns.

Please let me know if this would be permissible!

Sincerely,
Nick Johnson

Press/Media Inquire

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 7:34 PM
To: sysdev@microsoft.com

To whom it may concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am conducting research for a Senior Design project here at the
University of Central Florida. Our project involves studies in potentiometers, and I was wondering
if we could use the DAC potentiometer response diagrams from your company website here:

https://msdn.microsoft.com/en-us/library/windows/desktop/dd370798(v=vs.85).aspx

All credit from diagrams used will be credited to Windows in the report.

Please let me know if this would be permissible!

Sincerely,
Nick Johnson

Press/Media Inquire

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 7:28 PM
To: sales@maximintegrated.com

To whom it may concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am researching for a Senior Design Project here at the University
of Central Florida. Our project includes research in potentiometers, and I was wondering if I
could us the linear and logarithmic response diagrams from your company website here:
http://www.maximintegrated.com/en/app-notes/index.mvp/id/838
All credit from the site used will be credited to Maxim Integrated in the report.

Please let me know if this would be permissible!

Sincerely,
Nick Johnson

Press/Media Inquires

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 1:56 PM
To: stefan.schmidt@osram.com

150

To whom it may concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am planning to use the LG R971 LED in a Senior Design
project here at the University of Central Florida. I was wondering if I would be able to use
diagrams and charts from the LG R971 datasheet:
http://www.osram-os.com/Graphics/XPic9/00078860_0.pdf
With all credit to the used material going to Osram Opto Semiconductors in the report.

Please let me know if this would be permissible!

Sincerely,
Nick Johnson

Press/Media Inquires

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 1:52 PM
To: matris@matrisled.com

To whom it may concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am planning a research report for a Senior Design project here at
the University of Central Florida. A significant part of the project investigates LED research. I was
wondering if I could use the LED Viewing Angle diagram found on your company's page:
http://www.matrisled.com/led_screen_viewing_angle.htm
All credit to the diagram will be given to Matrisled in the report.

Please let me know if this would be permissible!

Sincerely,
Nick Johnson

Press/Media Inquires

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 1:33 PM
To: press.relations@avagotech.com

To Whom It May Concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am planning to use the Avago HSMF-A341-xxxxx tri-color led for a
Senior Design project here at the University of Central Florida. I am wondering if I would be able to
use the supplied diagrams from the HSMF-A341-xxxxx datasheet in our report. All credit to Avago
Technologies will be given within the report.

Please let me know if this would be permissible!
Sincerely,
Nick Johnson

Press/Media Inquires

Nick Johnson <nick.j8809@gmail.com> Tue, Apr 28, 2015 at 1:23 PM
To: sales@mec-corp.com

151

To Whom It May Concern,

I'm not sure if this is specifically a "Press/media inquiry" but I could not
find a more suitable category. I am planning to use the IXYS SLMD121H87 solar cell for a Senior
Design Project here at the University of Central Florida. I'm wondering if I would be able to use
your images and diagrams from the SLMD121H87 data sheet for the report:
http://ixapps.ixys.com/DataSheet/20110107-SLMD121H08-DATA-SHEET.pdf
All credit will be given to the IXYS Corporation within our report as well.

Please let me know if this would be permissible!
Sincerely,
Nick Johnson

Permission was received over the phone, as the company remained
unresponsive to email.

152

