FunBox Classic (FBC)

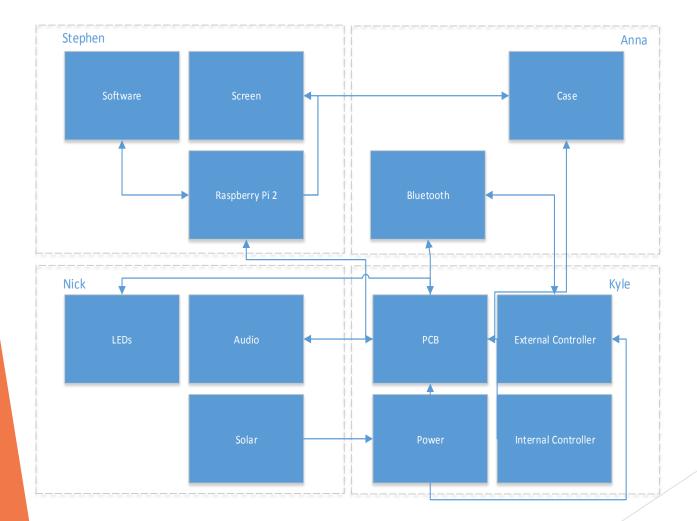
Group 14

Stephen Caskey (EE & CS)

Anna Iskender (EE)

Nick Johnson (EE)

Kyle McCleary (EE & CS)


Goals and Objectives

- Accurately simulate old consoles
- Rechargeable battery from USB
- Emulate GB, GBC, GBA, NES, and SNES at native speed
- Games upload through USB
- Audio through speakers or headphones
- Controller feels like a SNES controller
- Sturdy housing
- Built-in Bluetooth
- Solar Charging
- Battery Life Indicator

Specifications

Component	Parameter	Design Specification		
Screen	Size	Between 3.5" and 6"		
Screen	Refresh Rate	50Hz (PAL)		
Bluetooth	Version	4.0 LE or higher		
Storage	Туре	MicroSD		
	Size	Minimum 16 GB		
Headphones	Connector	3.5mm jack		
Speakers	Power	1W		
Speakers	Impedance	Minimum 8 ohms		
Power	Max Current Draw	700 mA		
	Solar Charge Current	Minimum 100 mA		
	Charging Voltage	5V		
Battery	Capacity	Minimum 2100 mAh		
	Discharge Time	Minimum 2 hours		

Project Block Diagram

Constraints

Economic constraints

- Financing/shipping from ordering many individual components
- Manufacturing constraints
 - Acquisition of needed parts and manufacturing supplies

Size constraints

- Surface mounted components and case design parameters
- Sustainable energy constraints
 - Power supply and battery charging challenges

Standards

Identification Number	Standard Description
SMPTE-170M-1990	Standard for analog television system color bar test system
IEEE 802.15.1	Standard for Bluetooth development (currently under BSIG jurisdiction)
IEC 62680-1:2013	Standard for Universal Serial Bus (USB) interfaces for data and power (revision 2.0)
IEC 62680-2:2013	Standard for micro-USB cables and connectors specifications
IEEE 928-1986	Standard for general performance standards of photovoltaic power systems
IEEE 1625-2008	Standard for rechargeable batteries for multi-cell mobile computing devices

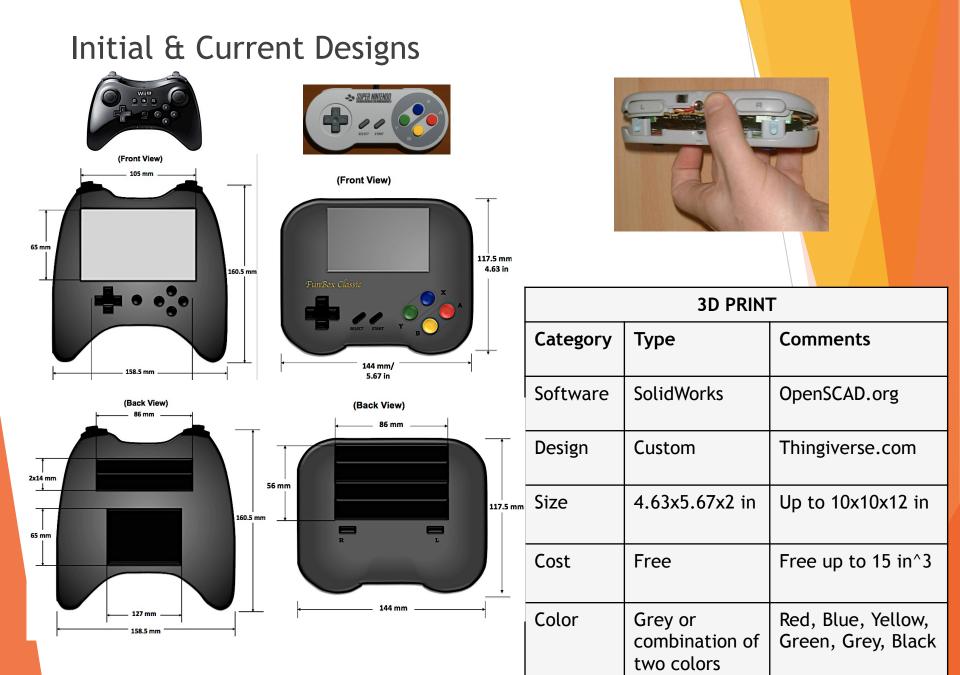
Research On Case-Design

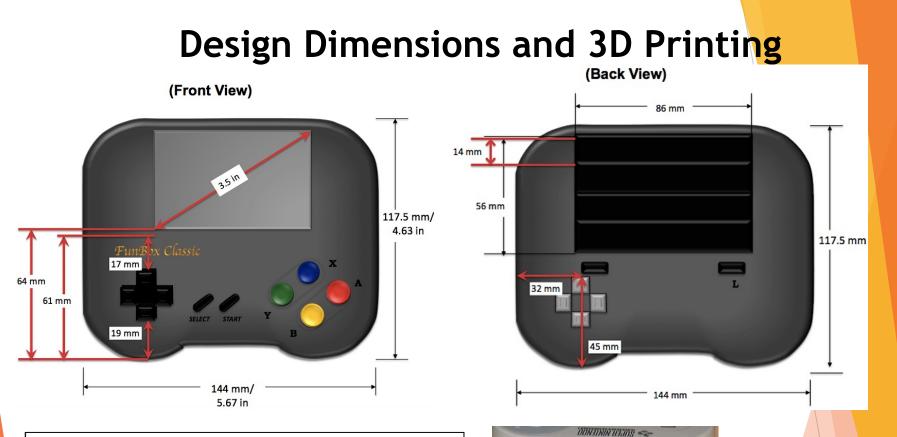
Display: Dual Single

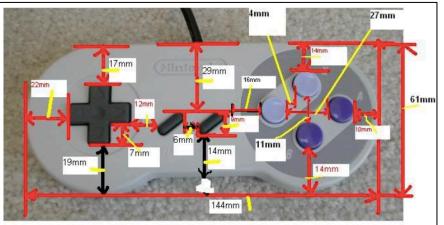
Above Control Buttons

Centered

Buttons:




- Obstacle hard to deal with custom made buttons
- Solution use circuit board with buttons from Nintendo controller



Design Decisions

- Single display located above control buttons
- Use circuit board with buttons from original Nintendo controller
- L and R buttons locate on the back side of the controller

Have Objectives Been Met ✓ Small

٦

✓ Light Weight

ы

✓ 3.5 in Display

(Referenced from Internet)

Raspberry Pi 2

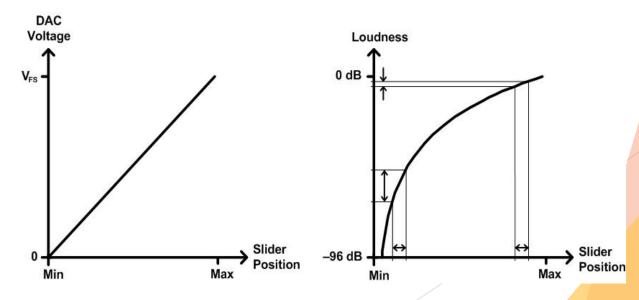
- ► Input: 5V Micro USB
- Current Draw: <= 1A</p>
- 900 MHz quad-core ARM Cortex-A7 CPU
- IGB RAM
- 40 GPIO pins
- Composite Video or HDMI
- 2 USB headers
- VideoCore IV 3D graphics core

Screen

- ► 3.5" Diagonal
- 480x320 Resolution
- Composite Connection
- Backlit

Audio

- Outputs audio via external stereo speakers and 3.5mm jack
- Closed circuit audio port toggles between speakers and auxiliary headphones


Model	Supply Current	Power Output	Cost
TDA2822M	6 mA	300 mW	\$1.33
TS4984	7.4 mA	1 W	\$1.89
LM4880	3.6 mA	250 mW	\$1.26

- Choose 2 LM4880 8-pin audio amplifiers used to output audio from Raspberry Pi 2
- 2 102-1554-ND speakers
 - 1) Frequency range of 530 Hz 20 KHz
 - 2) 27 mm diameter

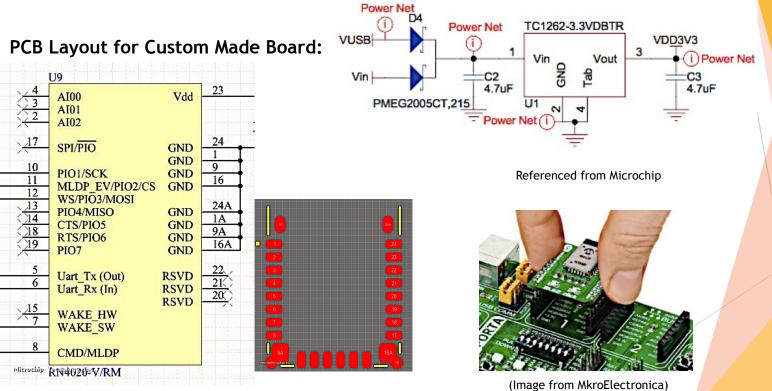
27 mm

Volume Control

- Use Bourns 3352T-103LF-ND thumbwheel potentiometer
- Logarithmic volume control
- 270° rotation angle
- Maximum 10 kilo-ohm resistance to "mute" audio output

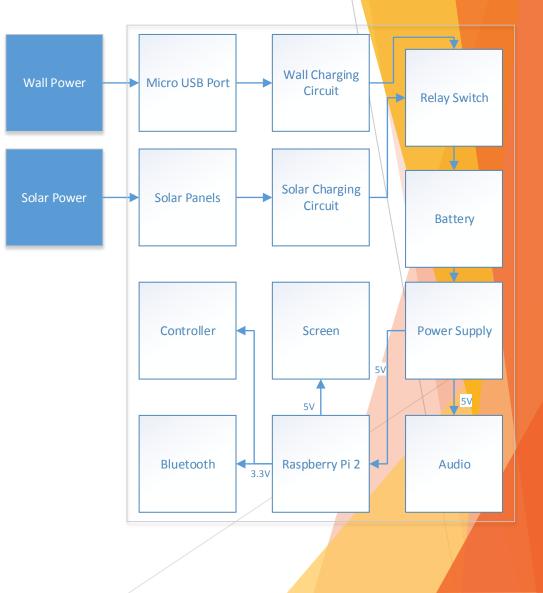
Internal Controller

- We will connect a SNES controller circuit board to the RP2 GPIO pins
- SNES Controller has 5 connections:
 - Power
 - Clock
 - Latch
 - Data
 - Ground


Raspberry Pi 2 code will interpret data from SNES controller

Bluetooth Chip RN4020

Why RN4020:


- Newest Bluetooth Version 4.1
- Comfortable Size 11.5 x 19.5 x 2.5mm
- Best Cost for one chip \$10.61
- Long Range Performance over 100 m or 300 ft
- Low Power Consumption

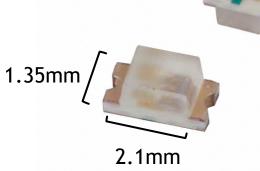
(Suggested PCB Design from Internet)

Power System

- The power system is responsible for supplying the power for the operation of the device
- The power system consists of five main components:
 - Battery
 - Wall Charging Circuit
 - Solar Charging Circuit
 - Relay
 - Power Supply

Battery

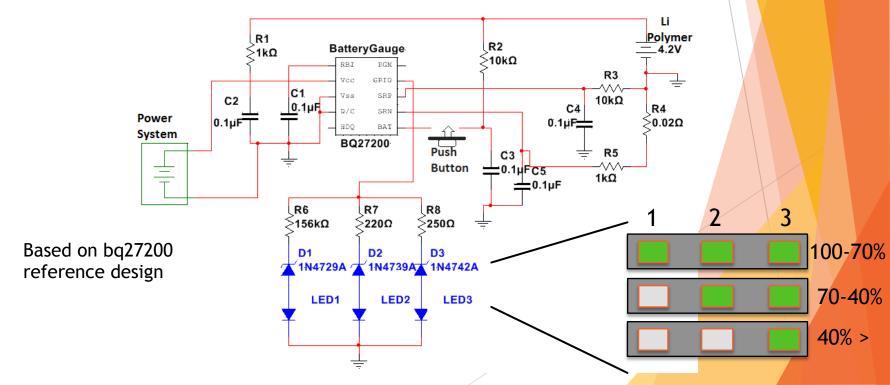
- We compared a few different types of batteries
- We settled on using either a Li-ion battery or LiPo battery for the FBC


	Tenergy Li-Ion 18650 Battery Module 5200	Tenergy Li-lon 18650 Battery Module 2200	Adafruit Lithium Ion Polymer Battery
Capacity (mAh)	5200	2200	2500
Size (mm)	66 x 37 x 19	69 x 19	65 x 51 x 8
Weight (g)	96	54	52
Protection Circuit	Yes	Yes	Yes
Shape	Rectangular	Cylindrical	Rectangular
Price	\$19.99	\$10.99	\$14.95

Battery Status Indicator LEDs

Surface mount LEDs (SMD LEDs) used for size and viewing angle advantages

- > 20 mA forward current
- 2.2 V forward voltage
- > 2.1 mm x 1.35 mm
- 160° viewing angle
- > Cost: \$0.28

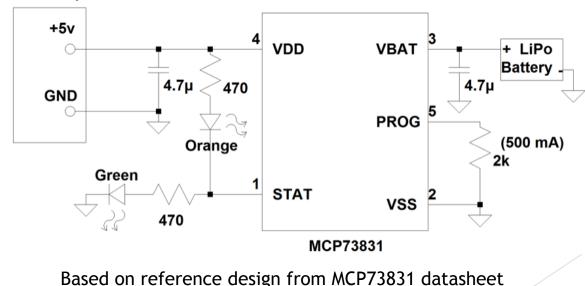


 3 green SMD LEDs will display the remaining charge of the source battery upon push-button initiation

- > 3 SMD LEDs "ON" @ battery charge of 100% to 70%
- > 2 SMD LEDs "ON" @ battery charge of 70% to 40%
- > 1 SMD LED "ON" @ battery charge below 40%

Battery Status Indicator LEDs

- Push button command sends signal of source battery to the battery status LED circuit
- Uses the bq27200 battery gauge to ensure the SMD LED indicators stay lit 5 seconds after push button is initiated



Wall Charging Circuit

- Charging LiPo batteries can be dangerous so we had to make sure that we were safely charging the device
- We needed to find a charging IC that would first charge the FBC with a constant current and then a constant voltage

CROCHIE

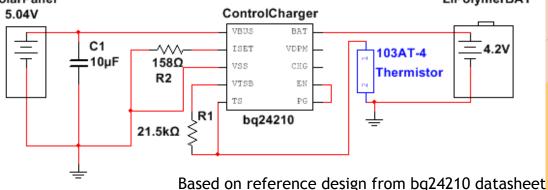
- We chose the MCP73831 as our charging IC
- ▶ The MCP73831 costs \$0.67

USB 5V Input

Solar Cell Selection

Desired panel dimensions: 85 mm x 56 mm

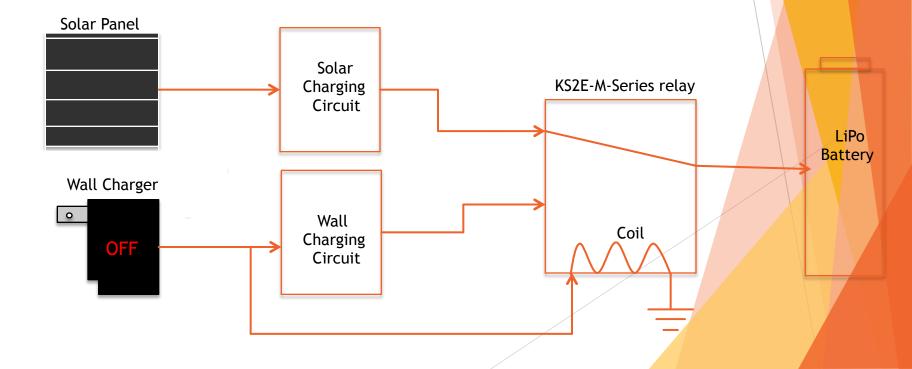
Multi cell panel preferred over single cell


	Monocrystalline	Polycrystalline	Thin Film
Efficiency	•	\bigcirc	•
Durability		\bigcirc	
Exposure Performance		\bigcirc	
Flexibility	\bigcirc	\bigcirc	
Cost	•	\bigcirc	

Solar Battery Charger

- Auxiliary battery charger on the exterior case
- 4 monocrystalline solar cells in parallel output maximum 200mA to source battery
- ► Cost: \$10.23

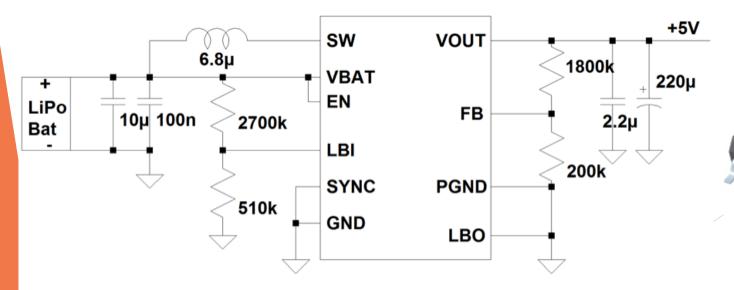
14mm


- 22% Efficiency rating
- Operational in indirect sunlight
- Use the bq24210 charging circuit to charge the source battery SolarPanel

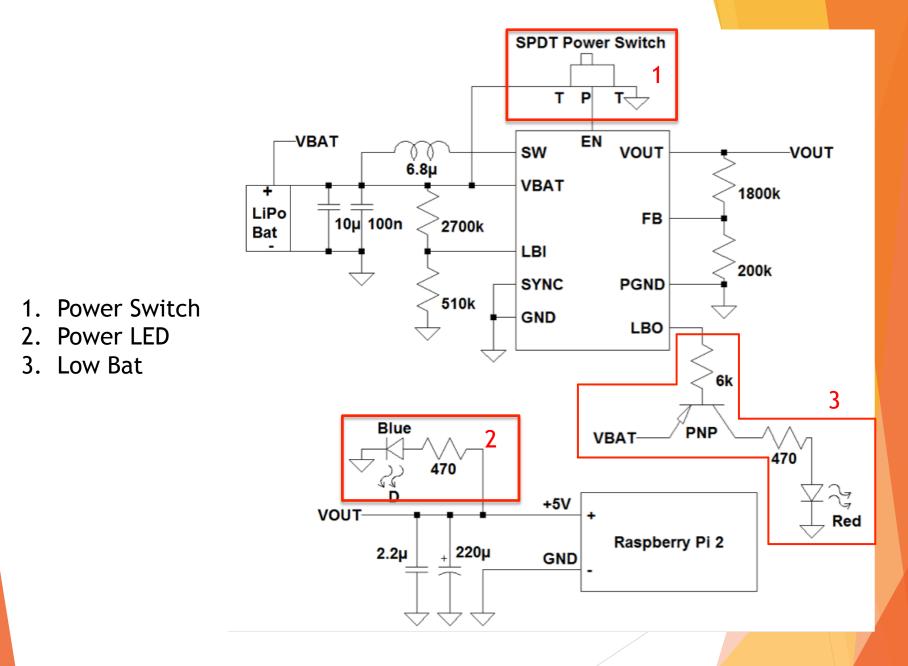
86mm

Solar and Wall Charger Relationship

- To prevent simultaneous charging, KS2E-M-Series relay alternates the two power sources
- Without wall charger present, relay connects solar charge circuit to source battery
- When 5V wall charger is introduced, the internal relay switch disconnects the solar circuit, and connects the wall charger to the source battery


Power Supply

There were a couple of restrictions that played a factor in design of the power supply


TPS61030

JEXAS INSTRUMENTS

- The battery will output between 2.5 and 4.2 volts at any given time
- The Raspberry Pi 2 runs off of 5 volts
- These restrictions led to the selection of TPS61030
- The TPS61030 costs \$3.78

Based on reference design from TPS61030 datasheet.

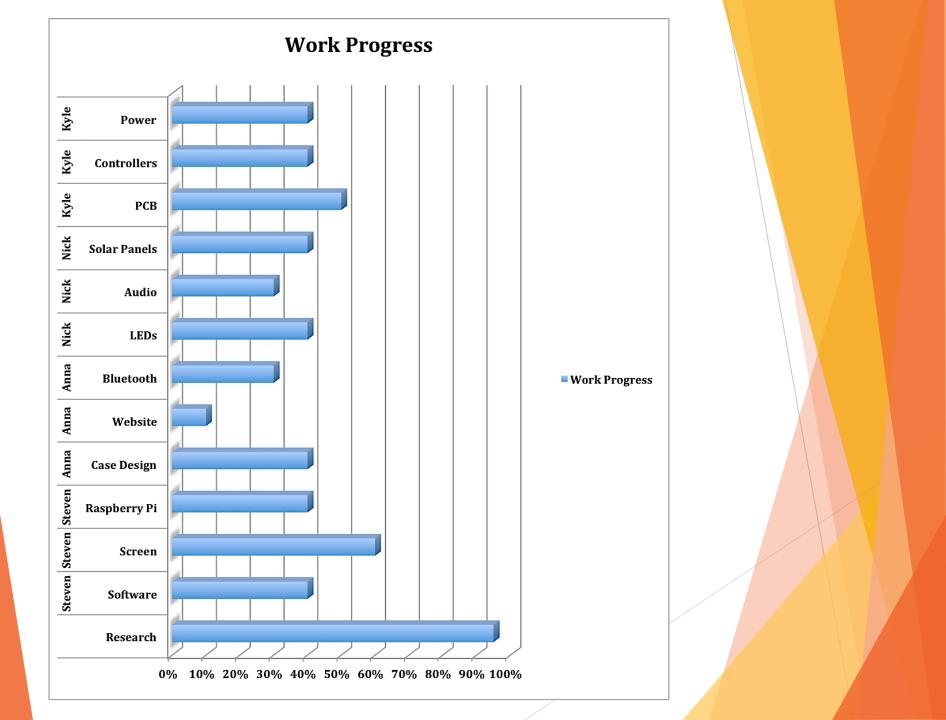
Based on reference design from TPS61030 datasheet.

Software

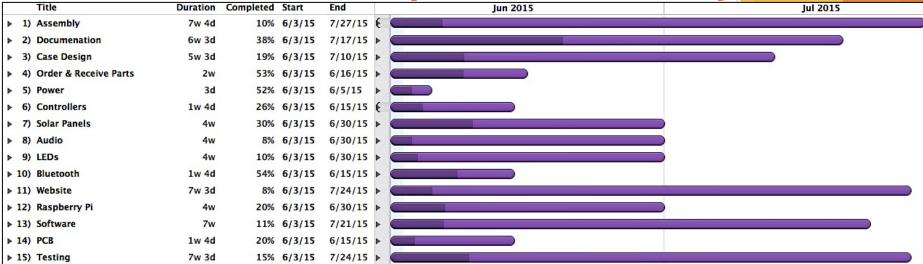
- Debian Kernel
- EmulationStation Frontend
- ► FCEUX, PiSNES, Gambatte, gpSP
- Disabled Power-Intensive Software Features

Budget

Index	Item	Supplier	Part Number	Quantity	Unit Price	Total Price & Shipping
1	LEDS	DigiKey	475-1410-1-ND	6	\$0.080	\$0.48
2	BATTERY "GAS GAUGE"	DigiKey	296-17521-1-ND	3	\$4.280	\$12.84
7	SPEAKERS	DigiKey	102-1554-ND	3	\$4.150	\$12.45
8	.1 MICROF CAPS	DigiKey	478-1244-1-ND	20	\$0.280	\$5.60
9	.33 MICROF CAPS	DigiKey	478-5902-1-ND	6	\$0.260	\$1.56
10	100 MICROF CAP	DigiKey	478-4091-1-ND	3	\$1.750	\$5.25
11	20K RES	DigiKey	P20.0KHCT-ND	50	\$0.011	\$0.57
12	1K RES	DigiKey	P1.0KJCT-ND	50	\$0.011	\$0.53
13	10 UF CAP	DigiKey	478-1575-1-ND	7	\$0.770	\$5.39
14	21.5K RES	DigiKey	P21.5KHCT-ND	3	\$0.100	\$0.30
15	158 RES	DigiKey	P158HCT-ND	3	\$0.100	\$0.30
16	.02 RES	DigiKey	1276-6157-1-ND	3	\$0.480	\$1.44
17	10K RES	DigiKey	RHM10.0KCDCT-ND	10	\$0.013	\$0.13
18	330 RES	DigiKey	RHM330CFCT-ND	10	\$0.011	\$0.11
19	470 RES	DigiKey	RHM470CDCT-ND	10	\$0.013	\$0.13
20	2K RES	DigiKey	RHM2.00KCFCT-ND	10	\$0.011	\$0.11
21	6.04K RES	DigiKey	541-6.04HHCT-ND	10	\$0.081	\$0.81
22	200K RES	DigiKey	RHM200KCFCT-ND	10	\$0.011	\$0.11
23	1.8M RES	DigiKey	1276-4292-1-ND	25	\$0.005	\$0.12
24	2.7M RES	DigiKey	1276-4457-1-ND	10	\$0.013	\$0.13
25	510K RES	DigiKey	RHM510KCFCT-ND	10	\$0.011	\$0.11
26	100NF CAPS	DigiKey	587-1227-1-ND	10	\$0.012	\$0.12
27	2.2 UF CAPS	DigiKey	1276-1469-1-ND	3	\$0.120	\$0.36
28	220 UF CAPS	DigiKey	1276-3375-1-ND	3	\$1.650	\$4.95
29	4.7 UF CAP	DigiKey	1276-2087-1-ND	4	\$0.100	\$0.40
30	PNP TRANS	DigiKey	MMBT2907A-TPMSCT-ND	3	\$0.140	\$0.42
31	MICRO USB HEADER	DigiKey	609-4616-1-ND	3	\$0.460	\$1.38
32	AUDIO JACK	DigiKey	CP-3523SJCT-ND	3	\$1.340	\$4.02
33	IC REG BOOST SYNC	DigiKey	296-14416-1-ND	3	\$3.150	\$9.45
34	IC CONTROLLER	DigiKey	MCP73831T-2ACI/OTCT-ND	3	\$0.670	\$2.01
35	SMT RGB 5050 LED	Adafruit	ID:619	10	\$0.495	\$4.95
36	Lithium Ion Polymer Battery	Adafruit	ID:328	1	\$14.950	\$14.95
37	Breadboard Slide Switch	Adafruit	ID:805	3	\$0.950	\$2.85
38	Bluetooth RN4020	Microchip	RN4020-V/RM	1	\$17.590	\$17.59
39	Relay	Jameco	KS2E-M-DC5	2	\$11.000	\$13.71
40	Solar Panels	Jameco	IXYS SLMD121H8L	4	\$10.23	\$40.92
	Screen		B0045IIZKU	1	\$17.57	\$17.57
	Raspberry Pi			1	\$39.99	\$39.99
40	United Parcel Service	Adafruit	N/A	1	\$11.620	\$11.62
41	SD1 Document Print	Staples	N/A	1	\$90.00	\$90.00
Total D	Due Date		•	•		\$325.73


Financial Plan

- Self-Sponsored Project
- Planned to Spend Up to \$400
- Total Expenses: \$325.73
- Positive Balance Left: \$74.27


Future Expenses:

Index	ltem	Cost
1	3D Printing	\$0.00
2	Extra Parts	\$50.00
Total		\$50.00

Successful Completion of the Project

۲	1)	Assembly	7w 4d	10%	6/3/15	7/27/15
۲	2)	Documenation	6w 3d	38%	6/3/15	7/17/15
►	3)	Case Design	5w 3d	19%	6/3/15	7/10/15
▶	4)	Order & Receive Parts	2w	53%	6/3/15	6/16/15
►	5)	Power	3d	52%	6/3/15	6/5/15
►	6)	Controllers	1w 4d	26%	6/3/15	6/15/15
•	7)	Solar Panels	4w	30%	6/3/15	6/30/15
▶	8)	Audio	4w	8%	6/3/15	6/30/15
►	9)	LEDs	4w	10%	6/3/15	6/30/15
►	10)	Bluetooth	1w 4d	54%	6/3/15	6/15/15
►	11)	Website	7w 3d	8%	6/3/15	7/24/15
▶	12)	Raspberry Pi	4w	20%	6/3/15	6/30/15
►	13)	Software	7w	11%	6/3/15	7/21/15
►	14)	РСВ	1w 4d	20%	6/3/15	6/15/15
•	15)	Testing	7w 3d	15%	6/3/15	7/24/15

Tracking Project Progress

Title	Duration	Completed Start	End	Jun 2015	Jul 2015
▼ 1) Assembly	7w 4d	10% 6/3/15	7/27/15		
 1.1) Prototype 	5w 1d	0% 6/3/15	7/8/15		
• 1.2) Bluetooth	1d	0% 6/3/15	6/3/15		
• 1.3) Audio	5w 1d	0% 6/3/15	7/8/15		
• 1.4) Power	5w 1d	20% 6/3/15	7/8/15		
• 1.5) Solar Panels	5w 1d	0% 6/3/15	7/8/15		
• 1.6) LEDs	5w 1d	0% 6/3/15	7/8/15	C	
• 1.7) Screen	5w 1d	50% 6/3/15	7/8/15		
• 1.8) Complete Assembly	7w 4d	3% 6/3/15	7/27/15	(
▼ 2) Documenation	6w 3d	38% 6/3/15	7/17/15		
• 2.1) CDR	2d	100% 6/3/15	6/4/15		
• 2.2) Conference Paper	6w 1d	0% 6/3/15	7/15/15	C	
• 2.3) Final Documentation	6w 3d	70% 6/3/15	7/17/15		
▼ 3) Case Design	5w 3d	19% 6/3/15	7/10/15		
 3.1) Designed 	4d	90% 6/3/15	6/8/15	Anna	
3.2) All Mesurments Approved	1w 4d	50% 6/3/15	6/15/15		
• 3.3) Designed in SolidWorks	5w	0% 6/8/15	7/10/15		
• 3.4) 3D Print	4d	0% 7/6/15	7/9/15		Anna Anna
4) Order & Receive Parts	2w	53% 6/3/15	6/16/15		
▼ 5) Power	4w 4d	16% 6/3/15	7/6/15		
• 5.1) Power Regulator	4d	52% 6/3/15	6/8/15	Kyle	
5.2) All Power Parts Connected	4w 4d	10% 6/3/15	7/6/15		Kyle
▼ 6) Controllers	1w 4d	26% 6/3/15	6/15/15		
6.1) Backlight Controls	1d	100% 6/3/15	6/3/15	Skyle	
6.2) Backlight Photoresist	1w 4d	50% 6/3/15	6/15/15	Kyle	
6.3) Bluetooth Controller	1w 4d	0% 6/3/15	6/15/15	Kyle	
6.4) Controller Subsystem	1w 4d	20% 6/3/15	6/15/15	Kyle	

Tracking Project Progress

Title	Duration	Completed	Start	End	Jun 2015	Jul 2015
▼ 7) Solar Panels	4w	30%	6/3/15	6/30/15		
 7.1) Fully Assembled 	4w	30%	6/3/15	6/30/15		
▼ 8) Audio	4w	8%	6/3/15	6/30/15		
 8.1) Subsystem 	1w 4d	30%	6/3/15	6/15/15	Nick	
8.2) Volume Control Butto	2w 4d	0%	6/3/15	6/22/15	Nick	
 8.3) Speakers 	4w	20%	6/3/15	6/30/15	Nick	
 8.4) Headphone Jack 	4w	0%	6/3/15	6/30/15	Nick	
8.5) All Audio Working	2w 4d	0%	6/3/15	6/22/15	Nick	
▼ 9) LEDs	4w	10%	6/3/15	6/30/15		
• 9.1) All LEDS fully functioning	4w	10%	6/3/15	6/30/15	Nick	
v 10) Bluetooth	1w 4d	54%	6/3/15	6/15/15		
• 10.1) Parts and Schematic	lw 4d	60%	6/3/15	6/15/15		
 10.2) Soldering 	1d	0%	6/3/15	6/3/15		
▼ 11) Website	5w 1d	13%	6/3/15	7/8/15		
• 11.1) Website Completed	5w 1d	22%	6/3/15	7/8/15		Anna
• 11.2) Website Design	2w 1d	30%	6/3/15	6/17/15		1
▶ 12) Raspberry Pi	4w	40%	6/3/15	6/30/15		
▼ 13) Software	7w	14%	6/3/15	7/21/15		
• 13.1) All Software Working	7w	30%	6/3/15	7/21/15		Steven
• 13.2) Screen Displays Input	1w 3d	100%	6/3/15	6/12/15	Steven	
• 13.3) Bluetooth	7w	0%	6/3/15	7/21/15		Steven
• 13.4) Power	7w	0%	6/3/15	7/21/15		Steven
• 13.5) Audio	7w	10%	6/3/15	7/21/15		Steven
• 13.6) All Tested and Working	6w 3d	10%	6/3/15	7/17/15		Steven
▼ 14) PCB	2w 4d	35%	6/3/15	6/22/15		
• 14.1) Complete PCB Layout	1w 4d	70%	6/3/15	6/15/15	Kyle	
• 14.2) PCB Board Designed	2w 4d	13%	6/3/15	6/22/15	Kyle	
▼ 15) Testing	7w 3d	15%	6/3/15	7/24/15		
• 15.1) Assembled Controller	7w 3d	30%	6/3/15	7/24/15		

Jour Input - 200 Sofital

Questions & Concerns?