FunBox Classic (FBC)

Group 14

Stephen Caskey (EE & CS)

Anna Iskender (EE)

Nick Johnson (EE)

Kyle McCleary (EE & CS)

Goals and Objectives

- Accurately simulate old consoles
- Rechargeable battery from USB
- Emulate GB, GBC, GBA, NES, and SNES at native speed
- Games upload through USB
- Audio through speakers or headphones
- Controller feels like a SNES controller
- Sturdy housing
- Built-in Bluetooth
- Solar Charging
- Battery Life Indicator

Specifications

Component	Parameter	Design Specification		
Screen	Size	Between 3.5" and 6"		
Screen	Refresh Rate	50Hz (PAL)		
Bluetooth	Version	4.0 LE or higher		
Storage	Туре	MicroSD		
	Size	Minimum 16 GB		
Headphones	Connector	3.5mm jack		
Speakers	Power	1W		
Speakers	Impedance	Minimum 8 ohms		
Power	Max Current Draw	700 mA		
	Solar Charge Current	Minimum 100 mA		
	Charging Voltage	5V		
Battery	Capacity	Minimum 2100 mAh		
	Discharge Time	Minimum 2 hours		

Work Distribution

Group Member	Case	Raspberry Pi	РСВ	Bluetooth	Solar Battery	Power	Audio	Website
Stephen		Primary	Secondary	Secondary		Secondary		
Kyle		Secondary	Primary		Secondary	Primary		
Nick					Primary		Primary	
Anna	Primary			Primary				Primary

Constraints

Economic constraints

- Financing/shipping from ordering many individual components
- Manufacturing constraints
 - Acquisition of needed parts and manufacturing supplies

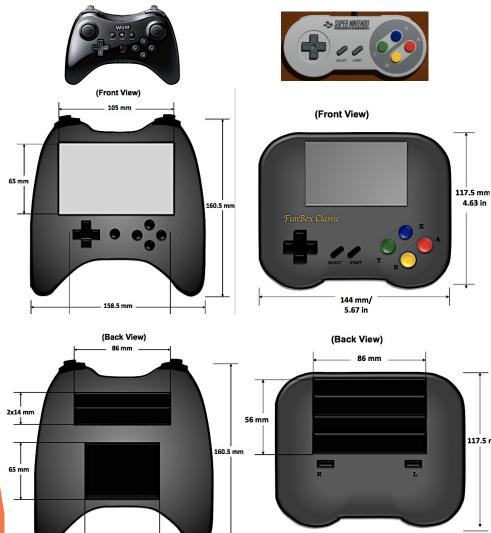
Size constraints

- Surface mounted components and case design parameters
- Sustainable energy constraints
 - Power supply and battery charging challenges

Standards

Identification Number	Standard Description		
SMPTE-170M-1990	Standard for analog television system color bar test system		
IEEE 802.15.1	Standard for Bluetooth development (currently under BSIG jurisdiction)		
IEC 62680-1:2013	Standard for Universal Serial Bus (USB) interfaces for data and power (revision 2.0)		
IEC 62680-2:2013	Standard for micro-USB cables and connectors specifications		
IEEE 928-1986	Standard for general performance standards of photovoltaic power systems		
IEEE 1625-2008	Standard for rechargeable batteries for multi-cell mobile computing devices		

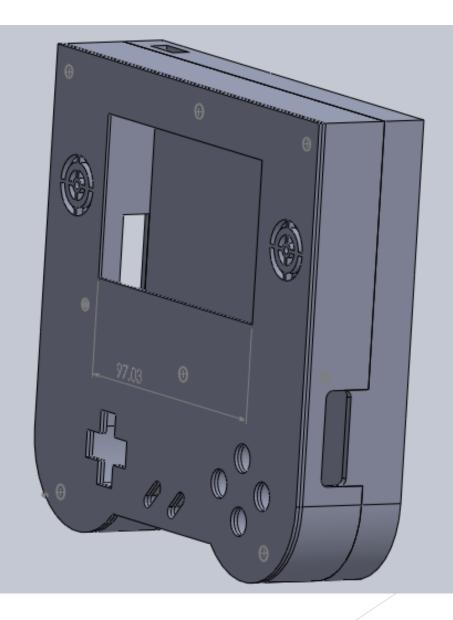
Research on The Case Design



Inspiration

Initial Designs

127 mm 158.5 mm



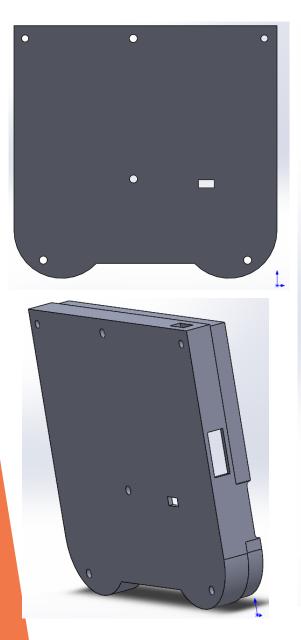
4.63 in

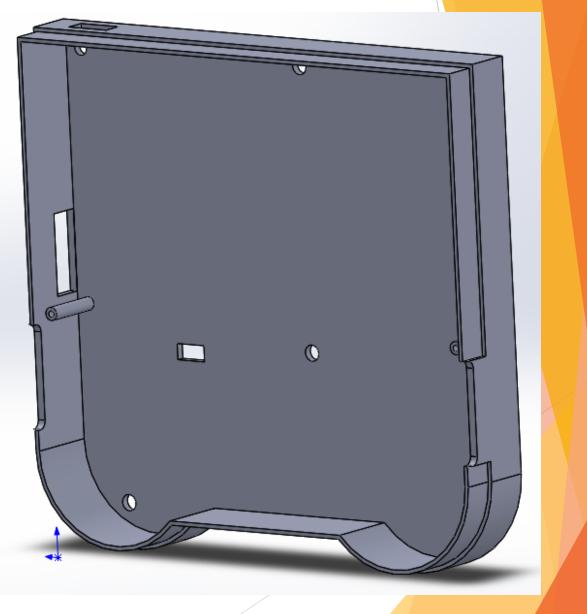
144 mm

		3D PRINT				
Ļ	Category	Туре	Comments			
	Software	SolidWorks	Vs. OpenSCAD.org			
ſ	Design	Custom	Thingiverse.com			
1	Cost	Free	Up to 10 - 15 in^3			
	Size	4.63x5.67x2 in	Up to 10x10x12 in			
117.5 mm						
	Color	Grey or Mix	Red, Blue, Yellow, Green, Grey, Black			

Design Dimensions and 3D Printing

Case Design in SolidWorks




Front Side Design

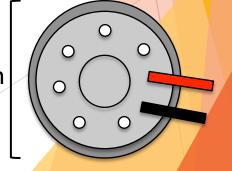
Back Side Design

Raspberry Pi 2

- ► Input: 5V Micro USB
- Current Draw: <= 1A</p>
- 900 MHz quad-core ARM Cortex-A7 CPU
- IGB RAM
- 40 GPIO pins
- Composite Video or HDMI
- 2 USB headers
- VideoCore IV 3D graphics core

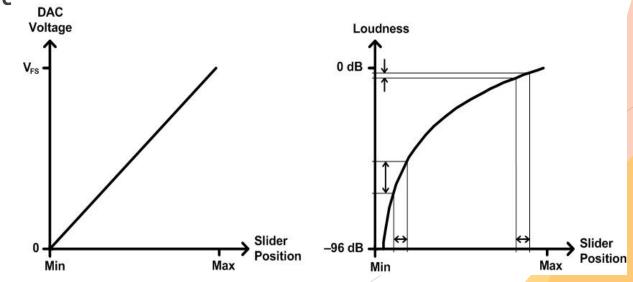
Screen

- ► 4.3" Diagonal
- 480x272 Resolution
- Composite Connection
- Backlit


Audio

- Outputs audio via external stereo speakers and 3.5mm jack
- Closed circuit audio port toggles between speakers and auxiliary headphones

Supply Current	Power Output	Cost
6 mA	300 mW	\$1.33
7.4 mA	1 W	\$1.89
3.6 mA	250 mW	\$1.26
	Current 6 mA 7.4 mA	CurrentOutput6 mA300 mW7.4 mA1 W


- Chose LM4880 audio amplifier used to output audio from Raspberry Pi 2 to audio jack
- Chose 2 LM4861 audio amplifier used to output audio to left and right speakers
- 2 CLS0231-L152 speakers
 - 1) Frequency range of 650 Hz 18 KHz
 - 2) 23 mm diameter

23 mm

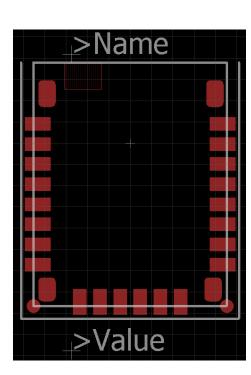
Volume Control

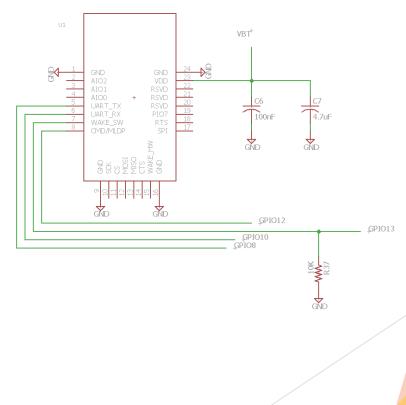
- Use 5-pin thumbwheel potentiometer to simultaneously control both speakers
- Logarithmic volume control
- 270° rotation angle
- Maximum 10 kilo-ohm resistance to "mute" audio output

Internal Controller

- We will connect a SNES controller circuit board to the RP2 GPIO pins
- SNES Controller has 5 connections:
 - Power
 - Clock
 - Latch
 - Data
 - Ground

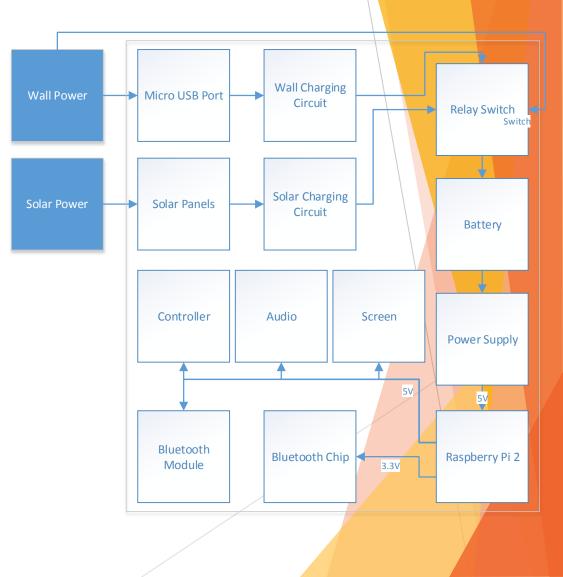
Raspberry Pi 2 code will interpret data from SNES controller


Bluetooth Chip RN4020


Why RN4020:

- Newest Bluetooth Version 4.1
- Comfortable Size 11.5 x 19.5 x 2.5mm
- Best Cost for one chip \$10.61
- Long Range Performance over 100 m or 300 ft
- Low Power Consumption

Major Con:


• BTLE ONLY - Single Mode Chip.

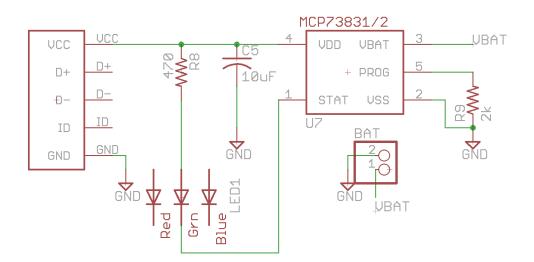
Power System

- The power system is responsible for supplying the power for the operation of the device
- The power system consists of five main components:
 - Battery
 - Wall Charging Circuit
 - Solar Charging Circuit
 - Relay
 - Power Supply

Battery

- We compared a few different types of batteries
- We settled on using either a Li-ion battery or LiPo battery for the FBC

	Tenergy Li-Ion 18650 Battery Module 5200	Tenergy Li-lon 18650 Battery Module 2200	Adafruit Lithium Ion Polymer Battery
Capacity (mAh)	5200	2200	2500
Size (mm)	66 x 37 x 19	69 x 19	65 x 51 x 8
Weight (g)	96	54	52
Protection Circuit	Yes	Yes	Yes
Shape	Rectangular	Cylindrical	Rectangular
Price	\$19.99	\$10.99	\$14.95


Wall Charging Circuit

- Charging LiPo batteries can be dangerous so we had to make sure that we were safely charging the device
- We needed to find a charging IC that would first charge the FBC with a constant current and then a constant voltage

MICROCHIP

MCP7383

- We chose the MCP73831 as our charging IC
- The MCP73831 costs \$0.67 from DigiKey

Based on reference design from MCP73831 datasheet

Solar Cell Selection

Desired panel dimensions: 85 mm x 56 mm

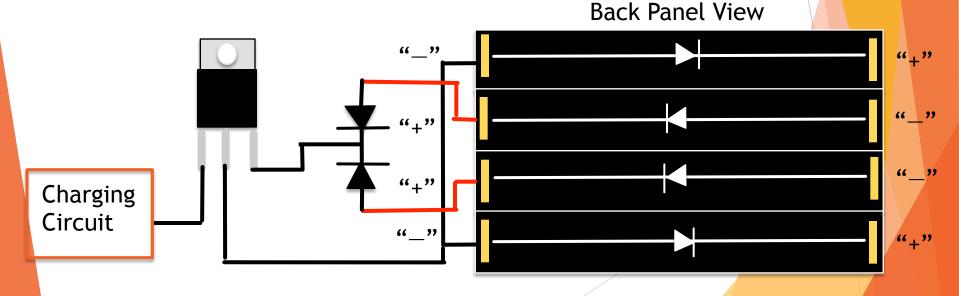
Multi cell panel preferred over single cell

	Monocrystalline	Polycrystalline	Thin Film
Efficiency	•	\bigcirc	•
Durability		\bigcirc	
Exposure Performance		\bigcirc	
Flexibility	\bigcirc	\bigcirc	
Cost	•	\bigcirc	

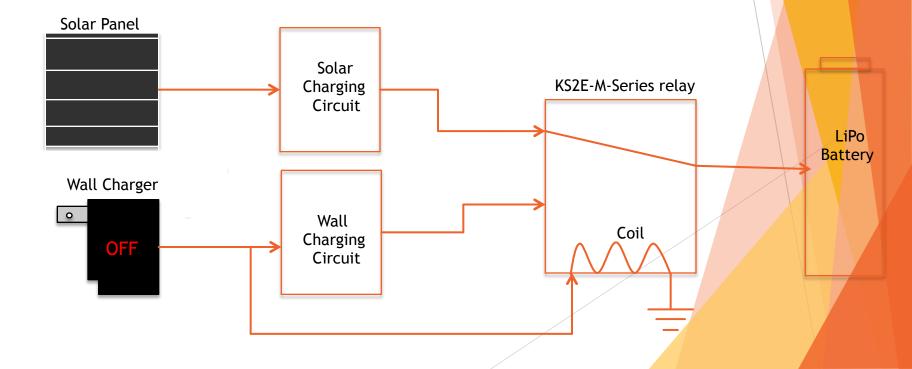
Solar Battery Charger

- Auxiliary battery charger on the exterior case
- 4 monocrystalline solar cells targeted output maximum 100mA to source battery

14mm


- Cost: \$10.23
- 22% Efficiency rating
- Operational in indirect sunlight
- Use the bq24210 charging circuit to charge the source battery

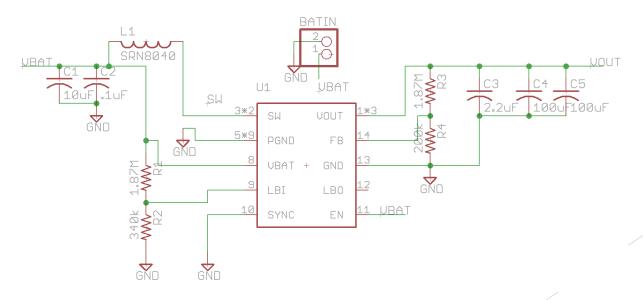
86mm


Solar Panel Connectivity

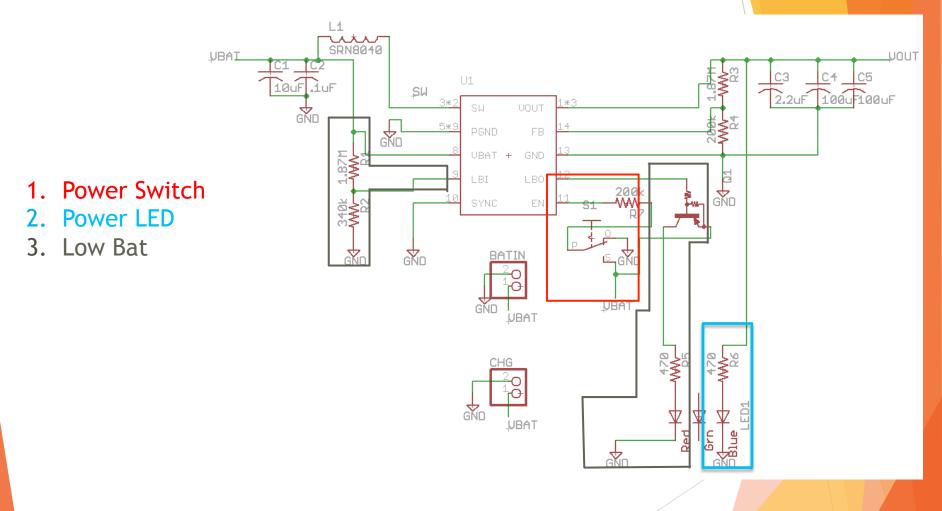
- Panel consists of series and parallel cell connections
- Bypass IN4001 diodes connected for each cell
- LM7805C 5VDC voltage regulator to step down panel output voltage

Solar and Wall Charger Relationship

- To prevent simultaneous charging, KS2E-M-Series relay alternates the two power sources
- Without wall charger present, relay connects solar charge circuit to source battery
- When 5V wall charger is introduced, the internal relay switch disconnects the solar circuit, and connects the wall charger to the source battery

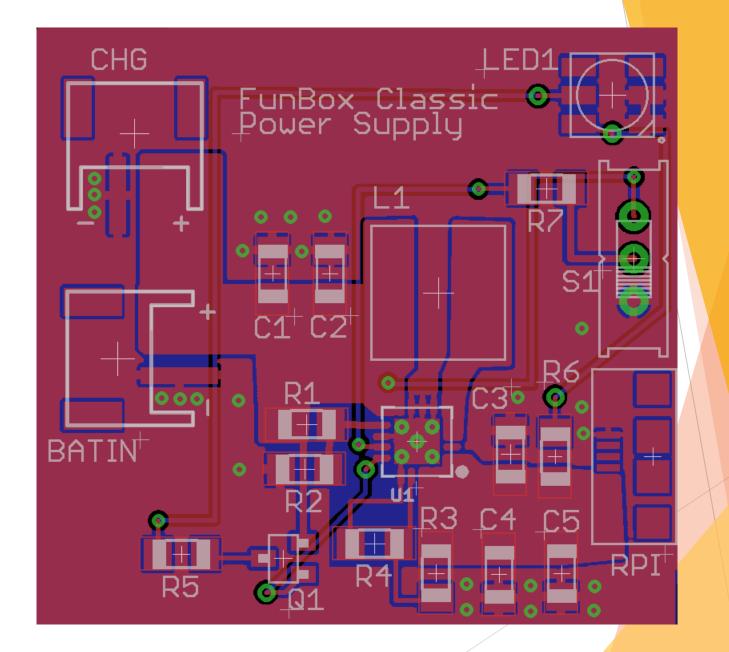

Power Supply

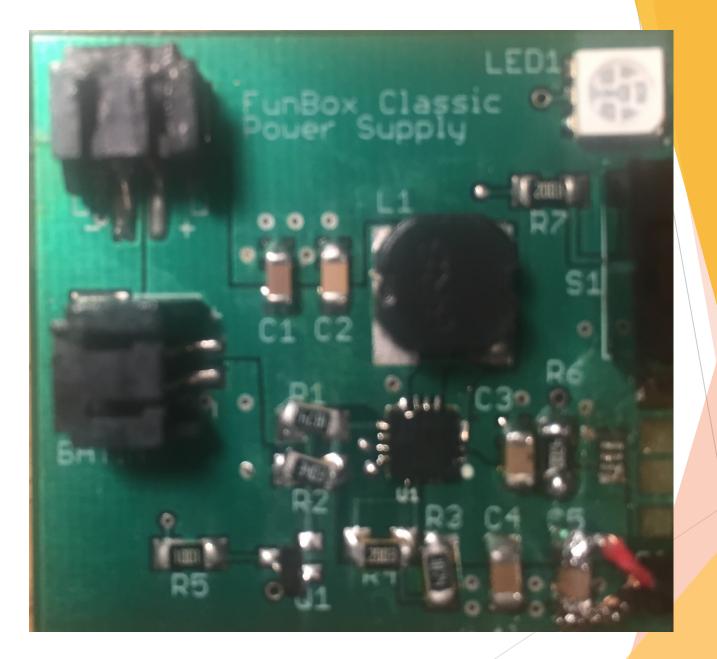
- There were a couple of restrictions that played a factor in design of the power supply
 - The battery will output between 3 and 4.2 volts at any given time
 - The Raspberry Pi 2 runs off of around 5 volts
- These restrictions led to the selection of TPS61030, a DC/DC boost converter

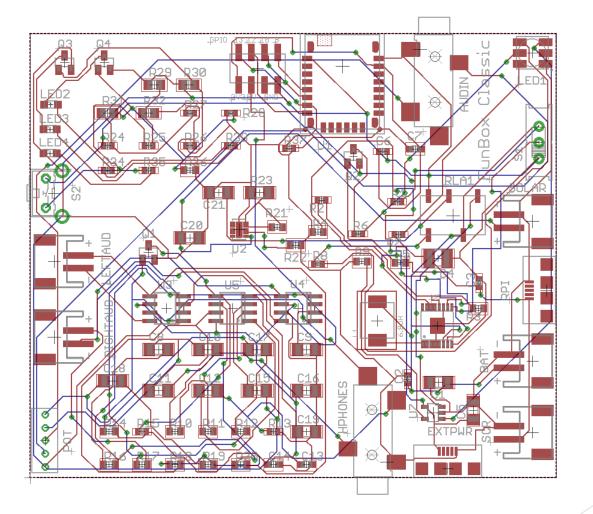

TPS61030

TRUMENTS

The TPS61030 costs \$3.15 from DigiKey




Based on reference design from TPS61030 datasheet


Power Supply Problems/ Solutions

- Preface: TPS61030 is a very fickle chip
- Traces burning out
 - Wire replacements/fixed virtual shorts
 - Eventually made wider traces on a new power only board
- Chip overheating and turning off
 - Better heat dissipation design on the new board
- Component short
 - Short was detected and fixed
- Ceramic vs Tantalum Capacitors
 - Turned out not to be an issue
 - TI rep very adamant about Tantalum output caps due to ESR
- Output port traces ripped off board
 - Wired output cable directly to board

PCB

Software

- Debian Kernel
- EmulationStation Frontend
- ► FCEUX, PiSNES, Gambatte, gpSP
- Disabled Power-Intensive Software Features

Expenses

\$255.85
\$79.15
\$71.61
\$46.80
\$11.00
\$2.71
\$9.00
\$16.04
\$10.60
\$6.99
\$43.20
\$5.00
\$139.15
\$76.00
\$33.00
\$83.78
\$35.00
\$9.99
\$229.84
\$3.99
\$197.57
\$23.38
\$353.83
\$1,035.82
\$1,389.65

Financial Plan

- Self-Sponsored Project
- Planned to Spend Up to \$400
- Total Expenses: \$1,389.65

Jour Input - 20

Questions & Concerns?