
Autonomous Sentry
Robot

Group 9
Brian Dodge - EE

Nicholas Musco - EE
Trevor Roman - CpE

● We wanted to do a project that applied and expanded our knowledge of
robotics and computer vision.

● Since we are two electrical and one computer engineering students, we
wanted to do a project that had both hardware and software components
and a robot was a perfect choice.

● We thought it would be an interesting idea to have an autonomous mobile
security system for your home.

Motivation

● Autonomous Control - must be able to perform its tasks without user
control

● Remote Control - user must be able to take control of the robot and
perform the same tasks manually

● Mapping and Localization - must map an enclosed area and determine
its position in that area

● Object Avoidance - must be able to dynamically avoid obstacles and
react to its environment

● Motion Detection - must be able to detect motion with high precision
● User Alerts - must send easily accessible alerts to the user in real time if

motion is detected

Goals and Objectives

Form Factor

Sensors

Power

Specifications

Requirement ID Requirement Description

FF1 The chassis must be low profile, no more than 1ft high, and

1.5ft wide.

Requirement ID Requirement Description

S1 The robot’s sensors must be able to detect obstacles that are

2cm away.

Requirement ID Requirement Description

PW1 The robot must be able to operate for at least 2 hours on a

full charge.

Specifications
Processing

Requirement ID Requirement Description

P1 The robot must reliably operate, react, and make decisions

within 1-3 seconds.

P2 The robot must have 75% certainty of detections before

alerting its user.

P3 The user must receive alert notifications from ASR within 5

seconds of detection.

Design Constraints
● Low Cost
● Low Power
● Lightweight
● Small Form Factor
● Less Time

Related Standards

Hardware Design

Overall Block Diagram

Peripherals

Ultrasonic Sensor - HC-SR04
● Middle layer of obstacle avoidance
● Two Ultrasonic Sensors on the front

Working Voltage

(V)

5

Working Current

(mA)

15

Minimum Range

(cm)

2

Maximum Range (M) 4

Measuring Angle 15 degree

Price ($) 8.99/2

Tactile Sensor

● Used as last layer of obstacle avoidance.
● Four Vex Bumper Switches

○ Two on the front corners
○ Two on the back corners
○ $12.99 for two

Motor Encoders
● Vex Motor 393 Integrated

Encoder Modules
● Made for the motors that we

have chosen, replaces the
back cover

● Can be daisy chained and uses
I2C to communicate with the microcontroller

● $29.99 for two

Microsoft Kinect
● Developed for the Xbox 360
● RGB camera with a resolution of 1280x960
● Infrared (IR) emitter and an

IR depth sensor
● Microphone array
● 3-axis accelerometer
● Tilt Motor
● Requires a power adapter to work with a computer
● Costs $20.00 (used)

Motor Controller and Motors

VEX Motor Controller 29
● Small form factor

○ <2” in length
○ <1” width and height

● Inexpensive
○ $10.00 x 4

● Uses Pulse Width Modulation
○ Speed Control
○ Direction Control

Vex 2-Wire Motor 393
● Runs on 7.2V
● Multiple Gear Ratios
● $14.99 x 4
● Compatible with the VEX Chassis

Wheels
Wheel Type Mecanum Omni Traction

Image

Price $60.00 for 4 $25.00 for 2 $10.00 for 4

Advantage ● Best Mobility

● Can move in any

direction

● Reduces

Friction

● Greater

Mobility

● Simple

● Inexpensive

● Great Traction

Disadvantage ● Slippage

● Complexity

● Price

● Slippage

● Price

● Lacks mobility

Chassis
● Medium Chassis Kit - VEX Robotics
● Rectangular Form Factor
● 12.6” X 12.6”

○ Acceptable Size
○ Adjustable width

● Polycarbonate top
● Chassis only - $21.35
● Suitable for tank drive

Power

5 Volt Regulator

Voltage Regulator LM2576-5

Max Input Voltage

(V)

40

Output Voltage (V) 1.23 to 37

Peak Current (A) 3

Reference Schematic from TI’s LM2576

Datasheet

12 Volt Regulator

Voltage Regulator LM2587-ADJ

Max Input Voltage

(V)

40

Output Voltage (V) 0 to 60

Peak Current (A) 5

Schematic designed in TI’s WEBENCH Power

Architect

Nickel-Metal-Hydride Battery

Nickel-Metal-Hydride Battery Cont.
● Price was also important
● Designed to be as cost effective as possible
● 5000mAh will allow our battery to run for an acceptable amount of time

Battery (Chemistry) Capacity (mAh) Price ($) Voltage (V)

Tenergy (NiMh) 5000 32.99 7.2

Tenergy (Li-Ion) 5000 55.00 7.4

Processing

Microcontroller
● ATmega328P
● Arduino Bootloader

○ Access to libraries

Architecture (bits) 8

Frequency (MHz) 16

Max Operating Voltage (V) 5.5

Program Memory (KB) 32

RAM (KB) 2

USART/SPI 1/1

I2C 1

I/O Pins 26 max

Price per Unit $3.38 (Digi-Key)

PCB Design
● Decided to combine the board for

the microcontroller and power distribution
● It has power and data ports for the

sensors

PCB Schematic

TLC5940NT - Common Anode LED Driver

● 16 Channels
● 12 bit grayscale PWM control
● Drive capability (Constant-Current Sink)

○ 0mA-120mA (Vcc > 3.6V)
● Serial Data Interface
● Dot Correction (For LED Brightness Variation)

○ 6 bits
○ Storable in integrated EEPROM

LEDs and Driver Design

Computer

● Laptop will act as a server for processing
and receiving instructions

● ASUS U52JC
○ i3 2.53 GHz
○ 4GB RAM
○ 6lbs

Software Design

High Level Software Architecture

Development Environment
● Client Laptop for Remote View and Control
● Server Laptop running Ubuntu Linux
● ROS

○ SLAM
○ Hardware Drivers
○ General Framework

● OpenCV
○ Computer Vision Systems

SLAM
● Simultaneous Localization and Mapping
● Original approach

○ Modify BreezySLAM
○ Didn’t originally plan on using ROS

● Attempted Approach
○ Use available ROS packages for SLAM
○ HectorSLAM - Uses No Odometry
○ GMapping - Uses Odometry

SLAM Examples
HectorSLAM

HectorSLAM

GMapping

BreezySLAM

SLAM With Kinect
● Problem

○ Kinect supplies 3D depth clouds
○ Our SLAM choices output 2D grids

● Solution
○ Slice the depth cloud
○ Trick SLAM into thinking the kinect is a laser scanner

ROS is Awesome
● Our idea was available as a ROS node

R.O.S.
“The Robot Operating System (ROS) is a flexible framework for writing robot
software. It is a collection of tools, libraries, and conventions that aim to simplify
the task of creating complex and robust robot behavior across a wide variety of
robotic platforms.”

R.O.S.
● “Meta” Operating System
● Open-source under BSD License
● C++, Python, Java, Lisp
● Network of nodes (processes)
● ROS Core

○ ROS Master
○ Parameter Server
○ rosout

■ Topics

■ Stream-like Communication

■ TCP/IP or UDP

■ Publishers

■ Subscribers

■ Services

■ TCP/IP or UDP

■ Function-like Communication

■ Server

■ Client

Mapping is Difficult

● We applied both GMapping and HectorSLAM
● Experimented and tested for months
● Unfortunately, we never achieved a fully realized map

Mapping is Difficult

Control
● Treat the ASR like a remote access computer
● Use a VNC Viewer to view and control the full desktop
● Integrate ROS visualization tools
● Easier for us, more time for other systems
● Ex)

 asr@asr-ws: $ asr map -m
 asr@asr-ws: $ asr patrol -a
 asr@asr-ws: $ standby

State Manager

Autonomous Navigation

Manual Navigation

Motion Detection

Open-Source
● ROS

○ HectorSLAM
■ Used for mapping and localization
■ Built custom launch file

○ Depth Image to Laser Scan
■ Used to convert depth cloud to a fake laser scan

○ ROS Arduino Bridge
■ Driver for communicating with arduino, motors, encoders, and sensors
■ Reconfigured and customized for use with our hardware
■ Tuned PID controller

○ Libfreenect Stack
■ Kinect drivers

○ TF
■ Set up various transforms for use in visualization

○ Map Server
■ Hosts and saves map

○ RVIZ
■ Used as a base to customize a user interface

Open-Source

● OpenCV
○ Image processing functions for motion detection

● Arduino
○ Vex 29 Motor Controller Drivers
○ Vex 393 Encoder Drivers
○ NewPing

Administrative Content

Work Distribution

Name Electrical

System

Hardware

Assembly

Hardware

Programming

Software

Systems

Brian P S S S

Nick S P T T

Trevor T T P P

P - primary
S - Secondary
T - Tertiary

Development Budget
Part Quantity Unit Price Expected Cost Actual Cost

Ultrasonic Module HC-SR04 Distance Sensor 4 $8.99 (for two) $17.98 $8.99 - Already Own 2

VEX Bumper Switch 4 $12.99 (for two) $25.98 $12.99 - Already Own 2

Microsoft Kinect 1 $20.00 (Used) $20.00(Used) $0.00 - Already Owned

Vex Motor 393 Motor Encoders 4 $29.99 (for two) $59.98 $59.98

ATmega328P 1 $3.70 $3.70 $0.00 - Already Owned

Mintduino 1 $24.99 $24.99 $0.00 - Already Owned

PCB 3 $21.75 (for three) $21.75 $21.75

Vex 393 Motors and Motor Controller 29 5 $24.98 $124.90 $124.90

3.25 inch Vex Wheels 4 $19.99 (for four) $19.99 $0.00- Already Owned

Robot Chassis - Vex medium chassis 1 $21.35 $21.35 $21.35

Tenergy 7.2V 5000mAh NiMH battery 1 $89.00 (set of two) $89.00 $89.00

Tenergy Battery Charger 1 $22.99 $22.99 $22.99

Voltage Regulators and LED circuit components N/A N/A $20.00 $20.00

Grand Total $479.01 $381.95

Build Budget
Part Quantity Unit Price Total

Ultrasonic Module HC-SR04 Distance Sensor 4 $8.99 (for two) $17.98

VEX Bumper Switch 4 $12.99 (for two) $25.98

Microsoft Kinect 1 $20.00 (Used) $20.00(Used)

Vex Motor 393 Motor Encoders 4 $29.99 (for two) $59.98

ATmega328P 1 $3.70 $3.70

PCB 1 $21.75 (for three) $21.75

Vex 393 Motors and Motor Controller 29 5 $24.98 $124.90

3.25 inch Vex Wheels 4 $19.99 (for four) $19.99

Robot Chassis - Vex medium chassis 1 $21.35 $21.35

Tenergy 7.2V 5000mAh NiMH battery 1 $89.00 (set of two) $89.00

Tenergy Battery Charger 1 $22.99 $22.99

Power Regulators and LED circuit components N/A N/A $20.00

Grand Total $442.62

Financing
● Project sponsored by Boeing

○ $580.11
● Partially financed ourselves

Issues
● ROS

○ Extremely powerful but extremely steep learning curve
○ Inexperienced, had to learn from scratch
○ Most development time was spent learning ROS, debugging ROS

issues, and trying to figure out how to do things the ROS way
● Navigation

○ ROS navigation stack proved very difficult to work with and configure
○ Never accomplished our goal of using the map to navigate, so we had

to fall back on our reactive system
○ Sonar and tactile is only so powerful, we still sometimes hit pitfalls

Achievements
● Autonomous Control

○ Robot has a robust but vulnerable autonomous navigation algorithm completely reliant on
its reactive system

● Remote Control
○ Simple and effective terminal interface with well defined modes of operation and easy to

use
● Mapping and Localization

○ Mapping and localization can be done reasonably well with manual control, but not very
well with autonomous control

● Object Avoidance
○ Robot is capable of avoiding most obstacles but occasionally falls into pitfalls

● Motion Detection
○ Robot has a robust motion detection algorithm which catches 99% of motion and has very

few false positives
● User Alerts

○ Robot has a reliable system for alerting the user and it integrates with their everyday life

Questions?

